

Page 1 of 107

TEST REPORT

Smart Helmet **Product**

N/A Trade mark

N901 Model/Type reference

Serial Number N/A

Report Number EED32M00160903

FCC ID : 2AVZ7N901 Date of Issue Jun. 23, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

Shenzhen Kuang-Chi Space Technology Co., Ltd 301-B077, Building 2, No.1, Mawu Road, **Baoan Community, Longgang District,** Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Compiled by:

Sunlight Sun

Mark Chen

Sunlight Sun

Reviewed by:

Nove Xm

San Clevery

Ware Xin

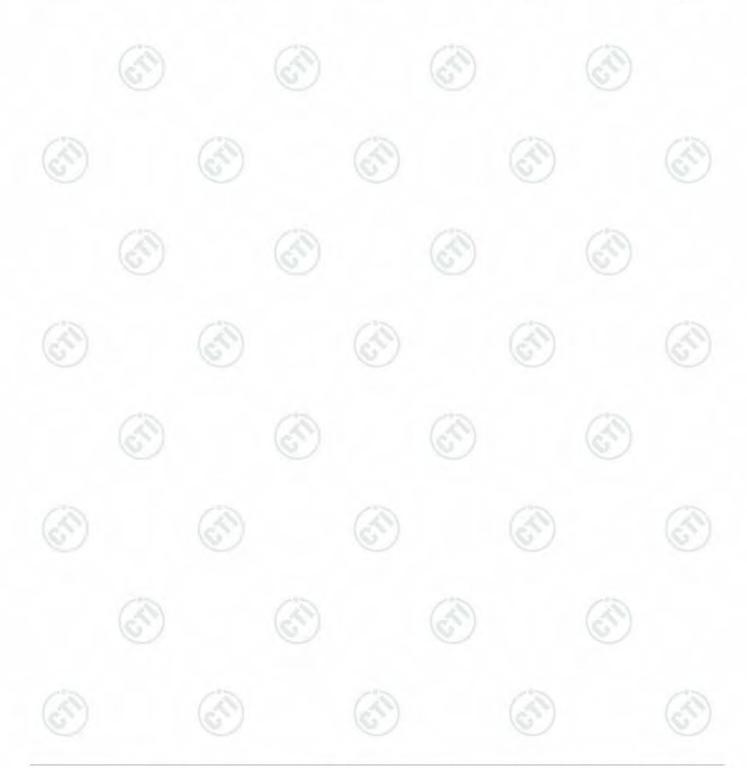
Sam Chuang

Date:


Hotline: 400-6788-333

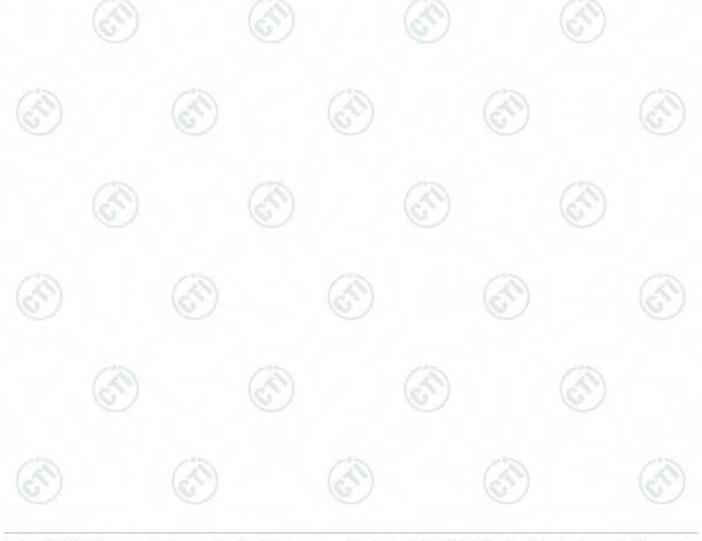
Jun. 23, 2020

Check No.:3096347029


Report Seal

2 Version

Version No.	Date	Description		
00	Jun. 23, 2020	Original		
	(S) (S)			


Page 3 of 107

3 Test Summary

o rest oanning	75	777		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013		
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
13.3 /	19.9 /		1.7	

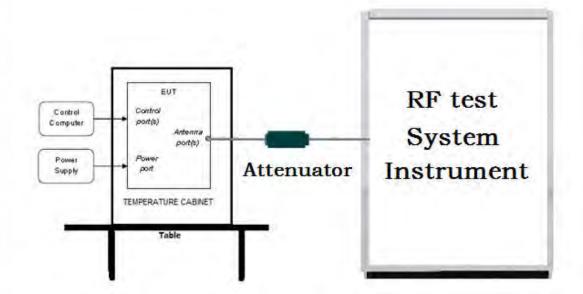
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Page 4 of 107

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	5
5.1 TEST SETUP	5
5.1.1 For Conducted test setup	5
5.1.2 For Radiated Emissions test setup	5
5.1.3 For Conducted Emissions test setup	
5.2 TEST ENVIRONMENT	
5.3 TEST CONDITION	6
6 GENERAL INFORMATION	8
6.1 CLIENT INFORMATION	8
6.2 GENERAL DESCRIPTION OF EUT	
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	8
6.4 DESCRIPTION OF SUPPORT UNITS	10
6.5 Test Location	
6.6 DEVIATION FROM STANDARDS	
6.7 ABNORMALITIES FROM STANDARD CONDITIONS	
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6.9 Measurement Uncertainty (95% confidence levels, K=2)	
7 EQUIPMENT LIST	11
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): Conducted Peak Output Power	16
Appendix B): 6dB Occupied Bandwidth	23
Appendix C): Band-edge for RF Conducted Emissions	
Appendix D): RF Conducted Spurious Emissions	
Appendix E): Power Spectral Density	
Appendix F): Antenna Requirement	
Appendix G): AC Power Line Conducted Emission	
Appendix H): Restricted bands around fundamental frequency (Radiated)	
Appendix I): Radiated Spurious Emissions	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	107



Report No.: EED32M00160903 Page 5 of 107

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

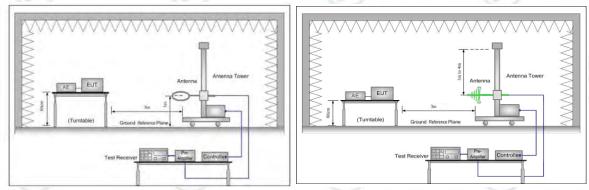


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

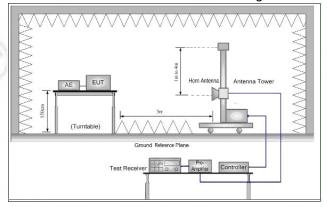
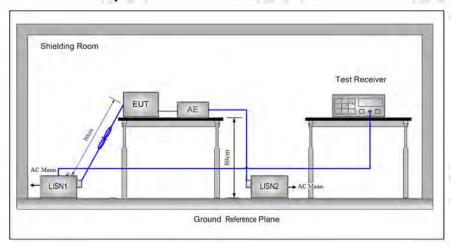



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

Page 6 of 107

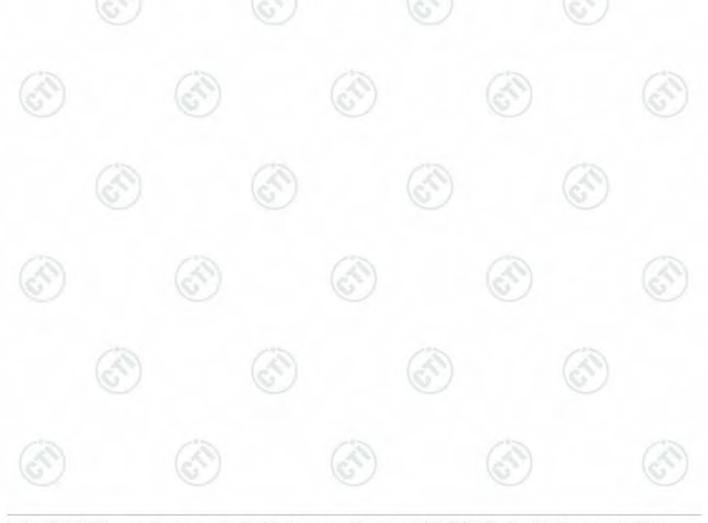
5.2 Test Environment

Operating Environment:						
Temperature:	24 °C					
Humidity:	53 % RH	- 5				
Atmospheric Pressure:	1010mbar	40				

5.3 Test Condition

Test channel:

Test Mode	Tv/Dv	RF Channel					
	Tx/Rx	Low(L)	Middle(M)	High(H)			
802.11b/g/n(HT20)	2442MH - 2462 MH-	Channel 1	Channel 6	Channel 11			
	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz			
802.11n(HT40)	04001411 04501411	Channel 3	Channel 6	Channel 9			
	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz			
Transmitting mode:	Keep the EUT in transmit data rate.	tting mode with all	kind of modulation	and all kind of			


Report No.: EED32M00160903 Page 7 of 107

Test mode: est mode:

Pre-scan under all rate at lowest channel 1

Mode			8	302.11	b					
Data Rate		1Mbp	s 2Mb _l	os 5.	5Mbps	11Mbp	s			
Power(dBm)	1	18.01	18.0	0	17.99	17.95				
Mode	10	3			10	80	2.11g	0		10
Data Rate		6Mbp	s 9Mb	ps 12	2Mbps	18Mbps	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm)	17.44	17.4	.0	17.38	17.35	17.30	17.29	17.25	17.20
Mode			100	N.		802.11n	(HT20)		(30)	
Data Rate	6.5	Mbps	13Mbps	19.5	Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	1	6.12	16.10	15	.99	15.96	15.93	15.90	15.88	15.85
Mode						802.11n	(HT40)			
Data Rate	13.	5Mbps	27Mbps	40.5	Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power(dBm)	\1	5.23	15.20	15	.18	15.15	15.12	15.10	15.08	15.05

Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

Report No. : EED32M00160903 Page 8 of 107

6 General Information

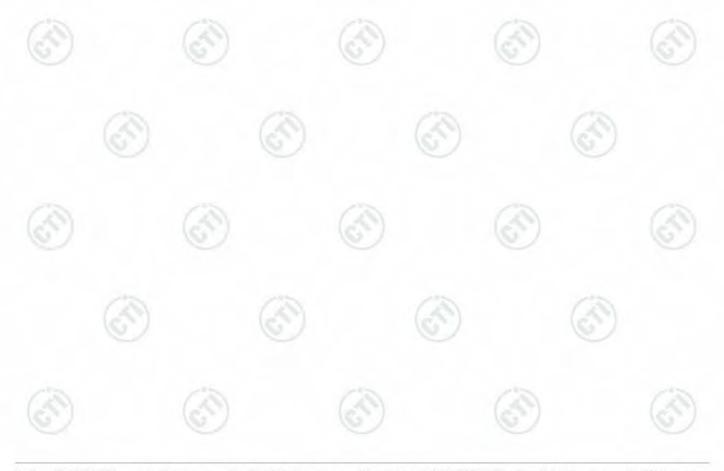
6.1 Client Information

Applicant:	Shenzhen Kuang-Chi Space Technology Co., Ltd			
Address of Applicant:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China			
Manufacturer:	Shenzhen Kuang-Chi Space Technology Co., Ltd			
Address of Manufacturer:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China			
Factory:	Shenzhen Kuang-Chi Space Technology Co., Ltd			
Address of Factory:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China			

6.2 General Description of EUT

Product Name:	Smart Helmet					
Model No.(EUT):	N901		200			
Trade Mark:	N/A	왕) (종) (종	(C)			
EUT Supports Radios application:	Wi-Fi IEEE 802.11 2412MHz to 2462M	b/g/n(HT20)(HT40), 1Hz				
Power Supply:	LI-ION BATTERY	RATED CAPACITY 5000mAh (19Wh) TYPICAL CAPACITY5100mAh (19.38Wh) NOMINAL VOLTAGE:3.8V LIMITED CHARGE VOLTAGE:4.35 MODEL:GQ-V496594P				
Sample Received Date:	Jun. 08, 2020					
Sample tested Date:	Jun. 08, 2020 to Jun. 17, 2020					

6.3 Product Specification subjective to this standard


Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
Type of Modulation:	DSSS,OFDM
Test Power Grade:	Refence Table
Test Software of EUT:	Engineering Order *#*#9646633#*#*(manufacturer declare)
Antenna Type and Gain:	Type:monopole antenna Gain: 3 dBi
Test Voltage:	BATTERY 3.8V

	Оре	eration Frequ	uency each of c	hannel(802.	11b/g/	/n HT20)	130	
Channel	Frequency	Channel	Frequency	Channel	Free	quency	Channel	Frequency
1	2412MHz	4	2427MHz	7	244	2MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	244	7MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	245	2MHz		
	0	peration Fre	quency each of	channel(80	2.11n	HT40)		1-85
Channel	Frequ	ency	Channel	Frequenc	су	Cha	nnel	Frequency
3	2422	MHz	6	2437MH	Z	9)	2452MHz
4	2427	MHz	7	2442MH	Z			
5	2432	MHz	8	2447MH	Z			

Table 1:

Mode	Channel	Frequency	Data Rate	Power Setting
10.1	1	2412	/	25
b	6	2437	1 Mbps	20
	11	2462		20
	1	2412		14.5
g	6	2437	6 Mbps	13.5
	11	2462	(245)	14
(1	2412		13.5
n20	6	2437	MCS 0	12.5
	11	2462		13
	3	2422		11.5
n40	6	2437	MCS 0	11.5
(200	9	2452) (4	11.5

Report No.: EED32M00160903 Page 10 of 107

6.4 Description of Support Units

The EUT has been tested with associated equipment below

Associated equipment name		Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
						100
	(6)	(*)	(0)		(3)	(6)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

Measurement Uncertainty
7.9 x 10 ⁻⁸
0.46dB (30MHz-1GHz)
0.55dB (1GHz-18GHz)
4.3dB (30MHz-1GHz)
4.5dB (1GHz-12.75GHz)
3.5dB (9kHz to 150kHz)
3.1dB (150kHz to 30MHz)
0.64°C
3.8%
0.026%

Report No. : EED32M00160903 Page 11 of 107

7 Equipment List

		Communication I	Serial	Cal. Date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
Spectrum Analyzer	Agilent	E4440A	MY46185649	11-05-2019	11-04-2020
Communication test set	R&S	CMW200	111935	02-17-2020	02-16-2021
Signal Generator	Keysight	E8257D	MY53401106	02-17-2020	02-16-2021
Communication test set	R&S	CMW500	152394	02-17-2020	02-16-2021
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		(A)	- 6
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		(0)	
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001			
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	(54)		(4)
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001			
DC Power	Keysight	E3642A	MY55156236	02-17-2020	02-16-2021
DC Power	Keysight	E3642A	MY56376035	02-17-2020	02-16-2021
PC-2	Lenovo	R4960d		(5-1)	1/2
PC-3	Lenovo	R4960d			
RF control unit	JS Tonscend	JS0806-1	158060004	02-17-2020	02-16-2021
DC power Box	JS Tonscend	JS0806-4	158060007		- CO
LTE Automatic test software	JS Tonscend	JS1120-1	(4)		(E)
WCDMA Automatic test software	JS Tonscend	JS1120-3			
GSM Automatic test software	JS Tonscend	JS1120-3		(4)	- (
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020

Manufacturer

Equipment

Page 12 of 107

Cal. date

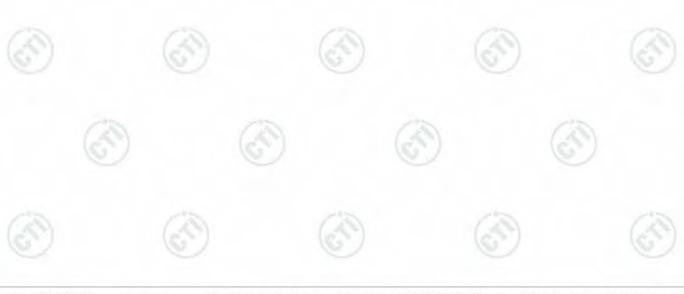
(mm-dd-yyyy)

Cal. Due date

(mm-dd-yyyy)

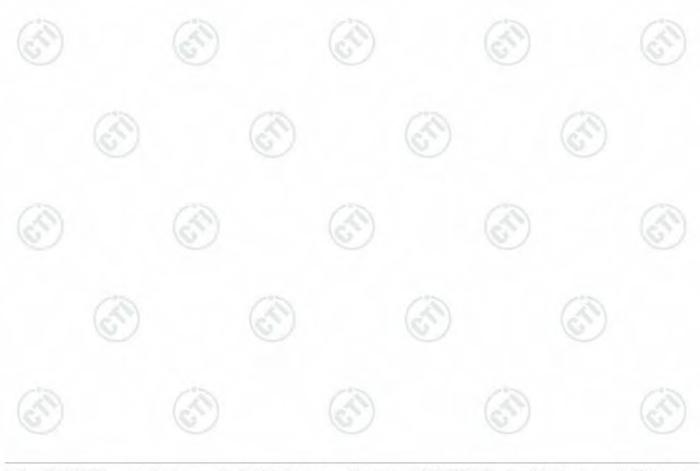
						(iiiiii aa yyyy)	(iiiii aa yyyy)
	Receiver		R&S	ESCI	100435	04-28-2020	04-27-2021
0	Temperature/ Hur Indicator	midity	Defu	TH128	1	05-29-2020	05-28-2021
	LISN	6	R&S	ENV216	100098	03-05-2020	03-04-2021
	Barometer		changchun	DYM3	1188	06-20-2019	06-19-2020
	(3)						
	61						

Conducted disturbance Test


Serial Number

Model No.

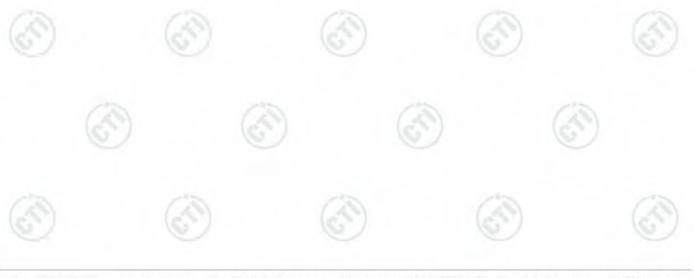
Page 13 of 107


Equipment	Manufactura	Madal Na	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		C35
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		(6.0)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	-	
Cable line	Times	EMC104-NMNM- 1000	SN160710	(45)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(39)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Page 14 of 107

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(40)		CON
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A	(A)	
Cable line	Fulai(3M)	SF106	5216/6A	(2 14 1)	
Cable line	Fulai(3M)	SF106	5217/6A	<u></u>	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001			

Report No. : EED32M00160903 Page 15 of 107


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part 15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No.: EED32M00160903 Page 16 of 107

Appendix A): Conducted Peak Output Power

Test Limit

According to §15.247(b)(3),

Peak output power:

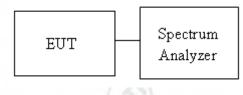
For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi. If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

		12
Limit	☐ Antenna with DG greater than 6 dBi :	(6)
LIIIII	[Limit = $30 - (DG - 6)$]	
	☐ Point-to-point operation :	

<u>Average output power</u>: For reporting purposes only.

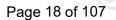
Test Procedure

Test method Refer as KDB 558074 D01.


- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW = 1 MHz.
 - b) Set the VBW \geq [3 \times RBW].
 - c) Set the span \geq [1.5 \times DTS bandwidth].
 - d) Detector = peak.
 - e) Sweep time = auto couple.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges.
- 4. Measure and record the result in the test report.

Page 17 of 107

Test Setup



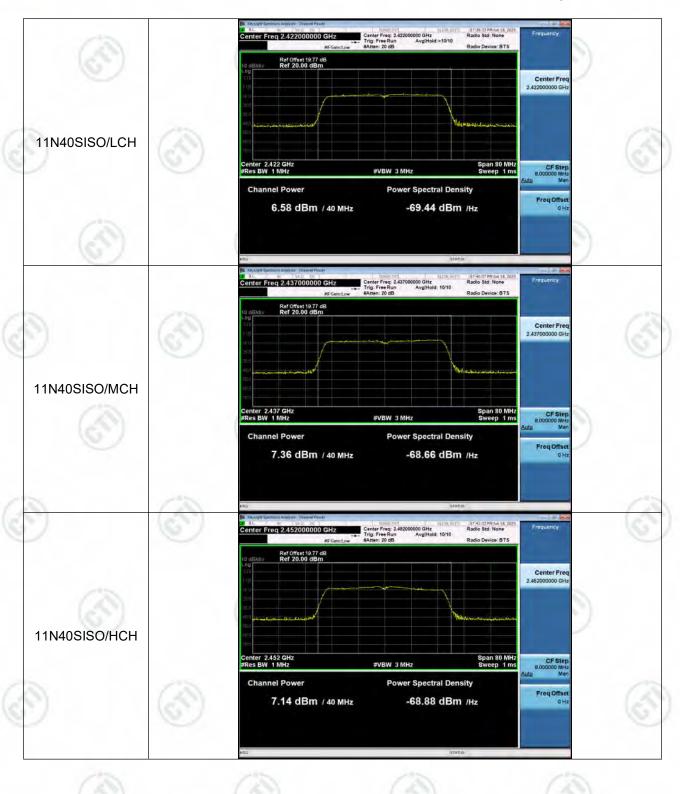
Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	8.65	PASS
11B	MCH	8.73	PASS
11B	HCH	8.56	PASS
11G	LCH	7.78	PASS
11G	MCH	7.53	PASS
11G	HCH	7.08	PASS
11N20SISO	LCH	6.08	PASS
11N20SISO	MCH	6.84	PASS
11N20SISO	HCH	6.39	PASS
11N40SISO	LCH	6.58	PASS
11N40SISO	MCH	7.36	PASS
11N40SISO	HCH	7.14	PASS

Report No. : EED32M00160903 Page 19 of 107

Test Graph

Page 20 of 107



Page 21 of 107

Page 22 of 107

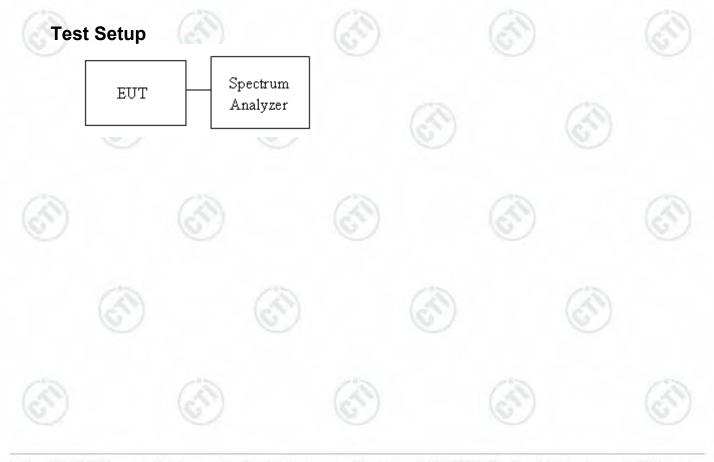
Report No.: EED32M00160903 Page 23 of 107

Appendix B): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2),

6 dB Bandwidth:


Limit	Shall be at least 500kHz

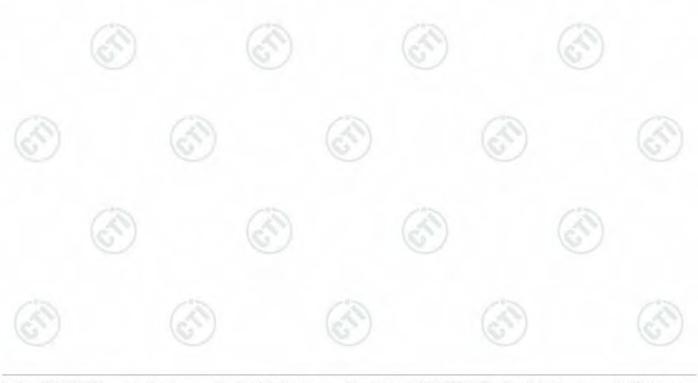
Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz , VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Report No. : EED32M00160903 Page 24 of 107


Result Table

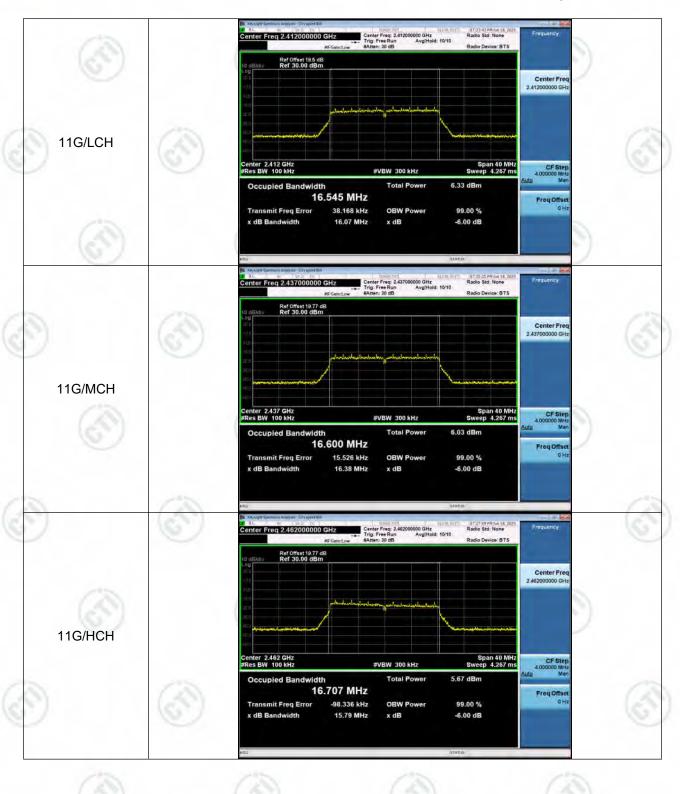
6dB OBW

Mode	Channel	6dB Bandwidth [MHz]	Verdict
11B	LCH	10.05	PASS
11B	MCH	10.06	PASS
11B	HCH	11.03	PASS
11G	LCH	16.07	PASS
11G	MCH	16.38	PASS
11G	HCH	15.79	PASS
11N20SISO	LCH	17.42	PASS
11N20SISO	MCH	17.62	PASS
11N20SISO	HCH	15.32	PASS
11N40SISO	LCH	35.43	PASS
11N40SISO	MCH	35.47	PASS
11N40SISO	HCH	35.12	PASS

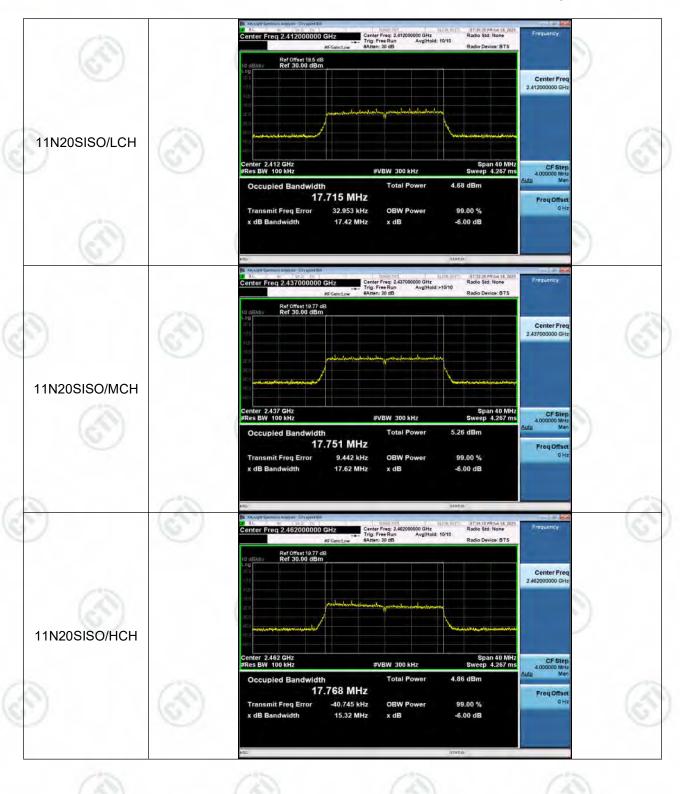
99% OBW

33 /0 OD1				
Mode	Channel	99% OBW [MHz]	Verdict	
11B	LCH	14.412	PASS	
11B	MCH	14.685	PASS	
11B	HCH	14.746	PASS	
11G	LCH	16.752	PASS	
11G	MCH	16.754	PASS	
11G	HCH	16.895	PASS	
11N20SISO	LCH	17.827	PASS	
11N20SISO	MCH	17.880	PASS	
11N20SISO	HCH	17.903	PASS	
11N40SISO	LCH	36.513	PASS	
11N40SISO	MCH	36.540	PASS	
11N40SISO	HCH	36.382	PASS	

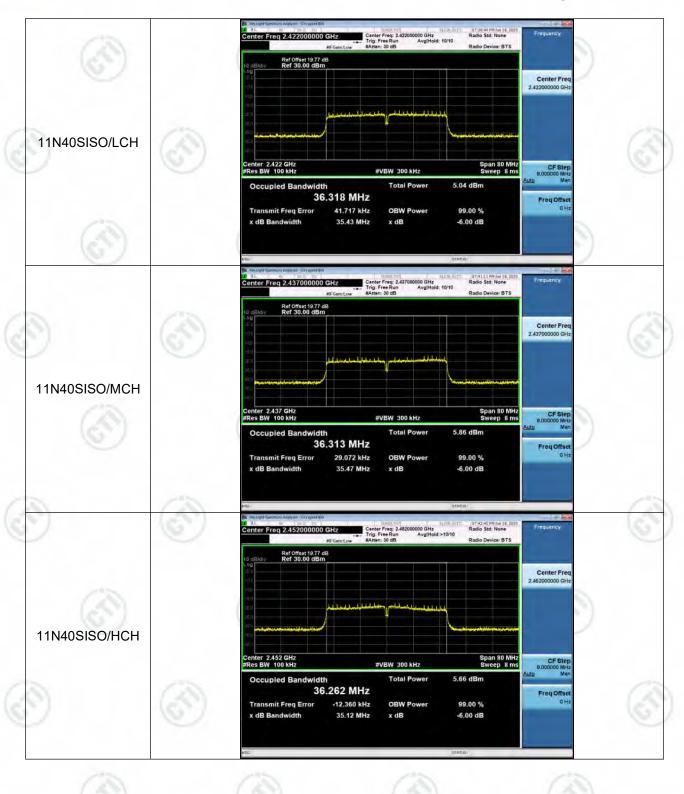
Report No. : EED32M00160903 Page 25 of 107


6dB OBW

Test Graph



Page 26 of 107



Page 27 of 107

Page 28 of 107

Page 29 of 107

Test Graph

99% **OBW**

Page 30 of 107



Page 31 of 107

Page 32 of 107

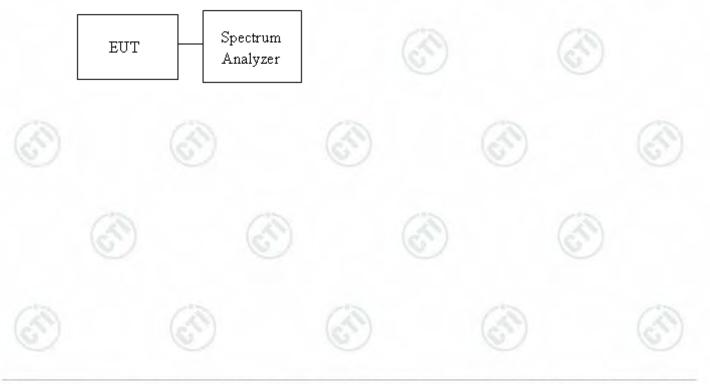
Report No.: EED32M00160903 Page 33 of 107

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

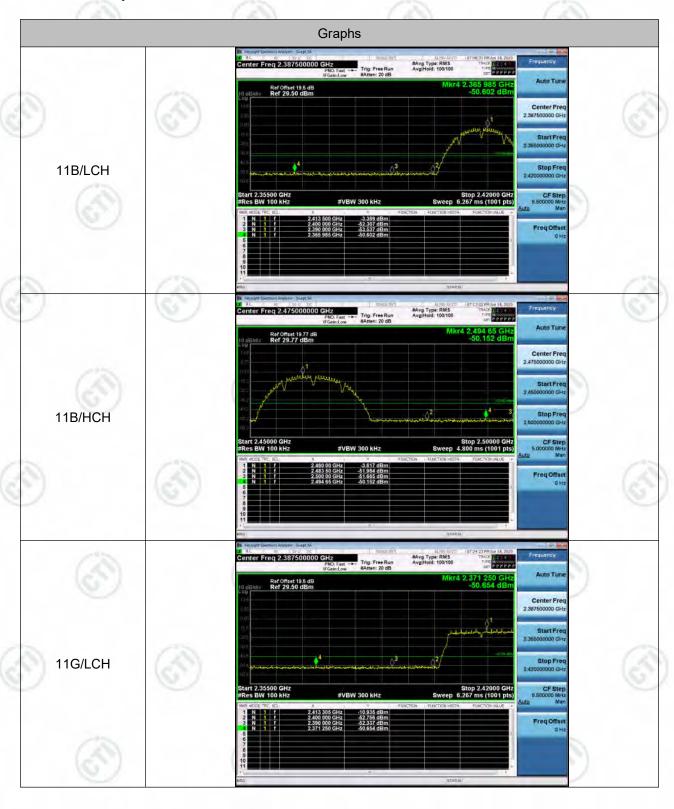
Test method Refer as KDB 558074 D01.

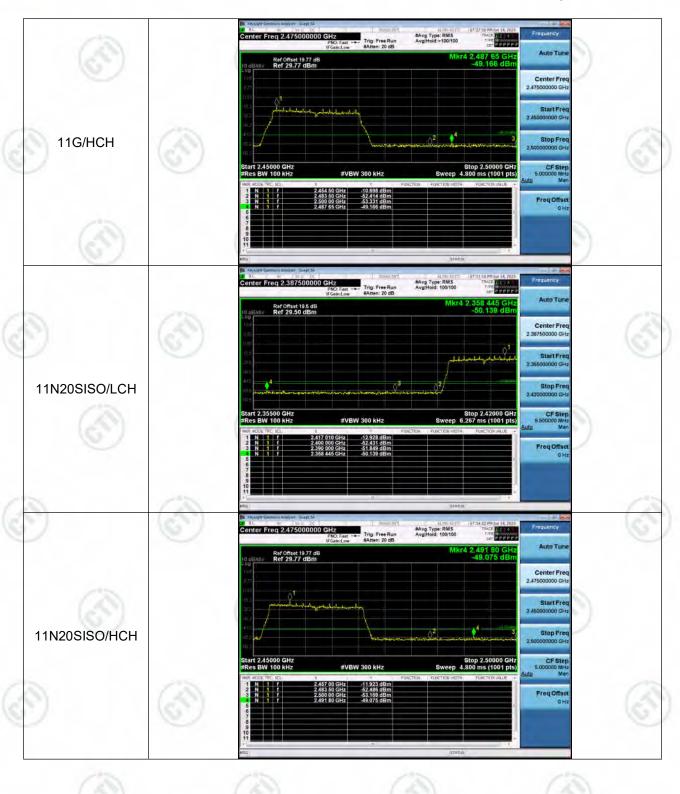
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

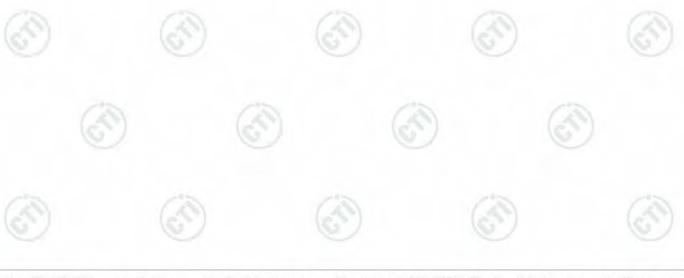
Report No. : EED32M00160903 Page 34 of 107

Result Table


Mode	Channel	Carrier	Max.Spurious	Limit [dBm]	Verdict
		Power[dBm] Leve	Level [dBm]		- 1120
11B	LCH	-3.389	-50.602	-33.39	PASS
11B	HCH	-3.617	-50.152	-33.62	PASS
11G	LCH	-10.935	-50.654	-40.94	PASS
11G	HCH	-10.698	-49.166	-40.7	PASS
11N20SISO	LCH	-12.928	-50.139	-42.93	PASS
11N20SISO	HCH	-11.923	-49.075	-41.92	PASS
11N40SISO	LCH	-15.944	-50.597	-45.94	PASS
11N40SISO	HCH	-14.039	-48.748	-44.04	PASS


Report No. : EED32M00160903 Page 35 of 107

Test Graph


Page 36 of 107

Page 37 of 107

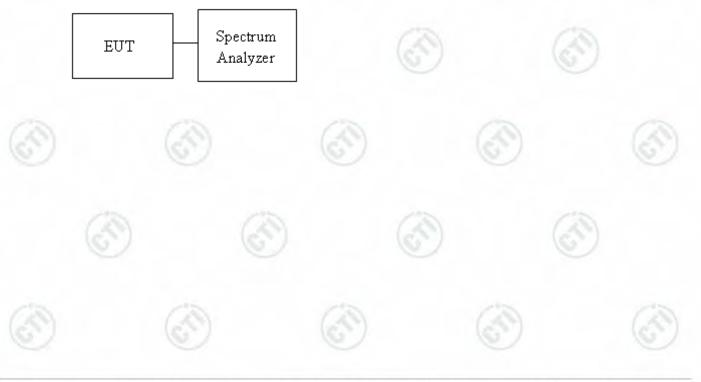
Report No.: EED32M00160903 Page 38 of 107

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

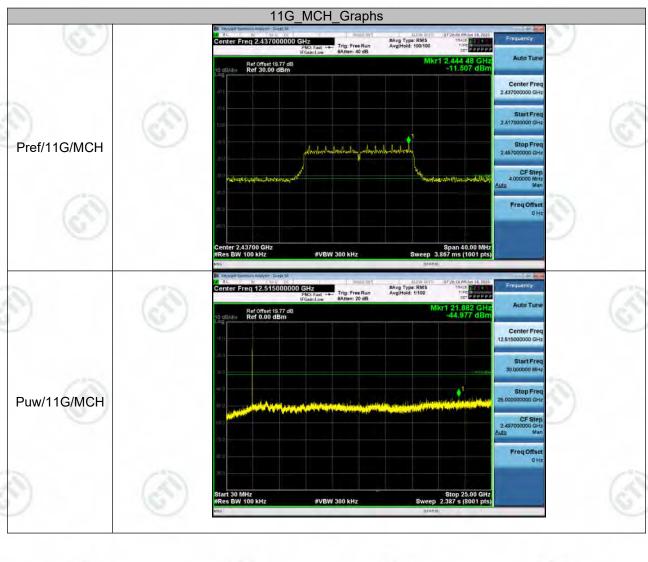
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict		
11B	LCH	-3.614	<limit< td=""><td>PASS</td></limit<>	PASS		
11B	MCH	-3.447	<limit< td=""><td>PASS</td></limit<>	PASS		
11B	HCH	-3.756	<limit< td=""><td>PASS</td></limit<>	PASS		
11G	LCH	-10.805	<limit< td=""><td>PASS</td></limit<>	PASS		
11G	MCH	-11.507	<limit< td=""><td>PASS</td></limit<>	PASS		
11G	HCH	-11.34	<limit< td=""><td>PASS</td></limit<>	PASS		
11N20SISO	LCH	-12.321	<limit< td=""><td>PASS</td></limit<>	PASS		
11N20SISO	MCH	-12.186	<limit< td=""><td>PASS</td></limit<>	PASS		
11N20SISO	HCH	-11.301	<limit< td=""><td>PASS</td></limit<>	PASS		
11N40SISO	LCH	-15.066	<limit< td=""><td>PASS</td></limit<>	PASS		
11N40SISO	MCH	-13.803	<limit< td=""><td>PASS</td></limit<>	PASS		
11N40SISO	HCH	-13.628	<limit< td=""><td>PASS</td></limit<>	PASS		

Report No.: EED32M00160903 Page 40 of 107

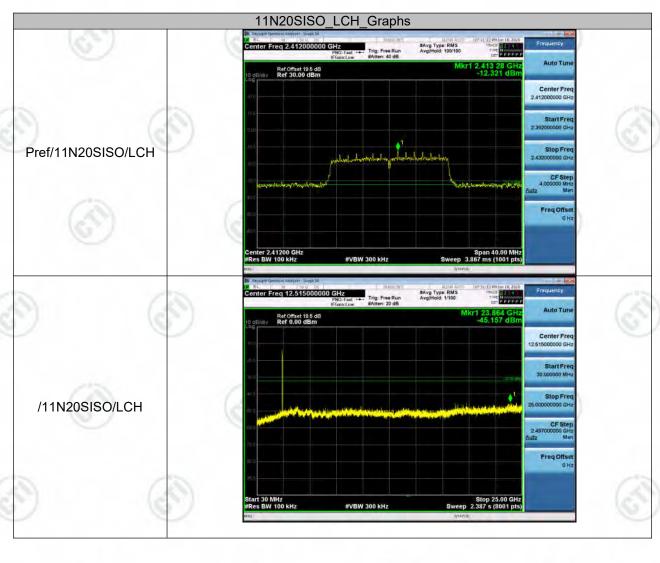
Test Graph

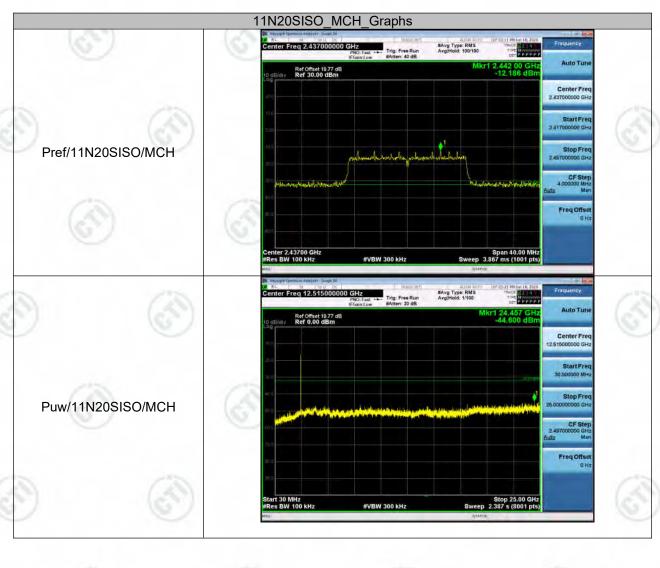
Page 41 of 107

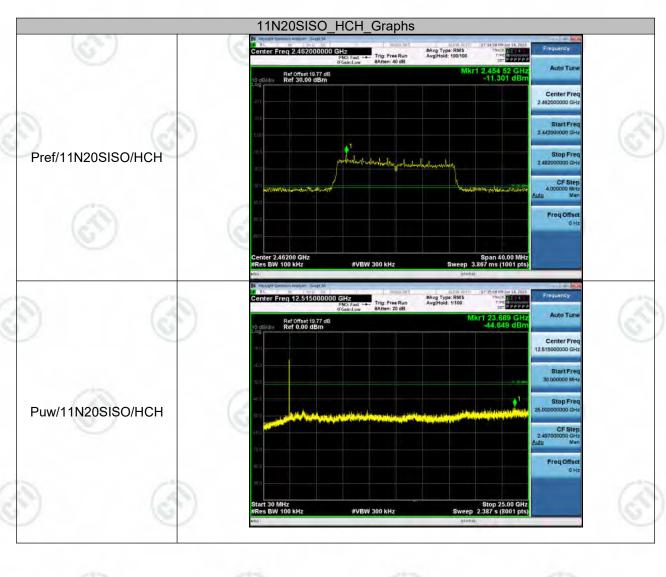
Page 42 of 107

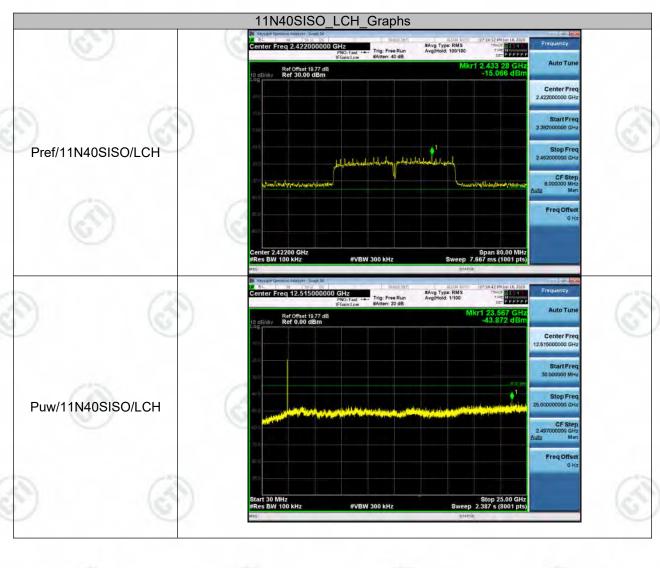

Page 43 of 107

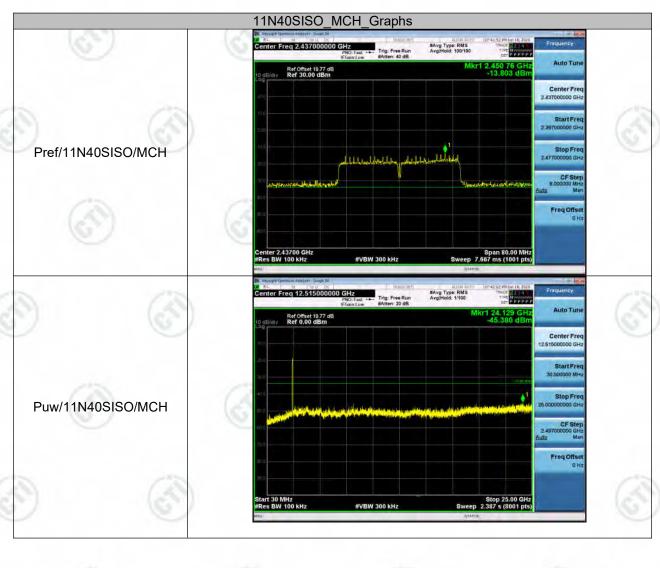
Page 44 of 107

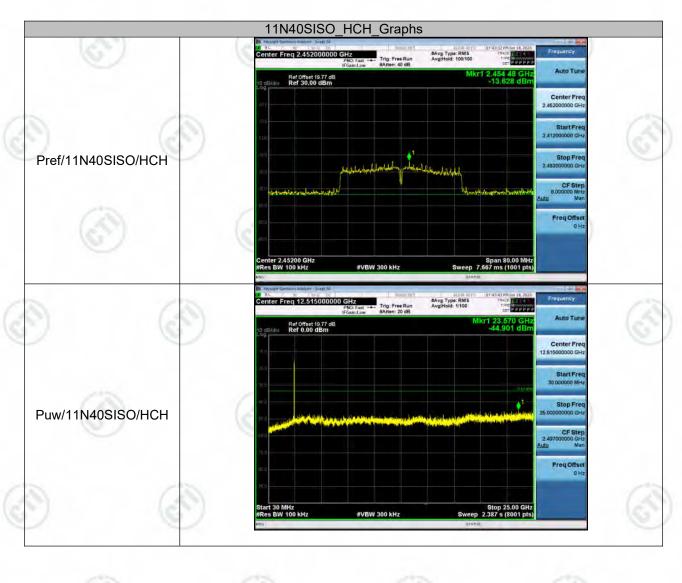

Page 45 of 107


Page 46 of 107


Page 47 of 107


Page 48 of 107


Page 49 of 107


Page 50 of 107

Page 51 of 107

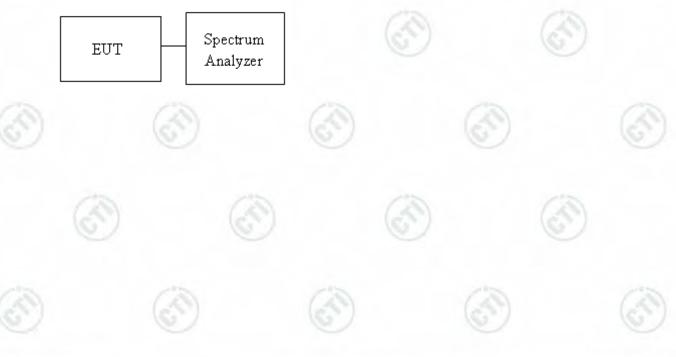
Page 52 of 107

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit	☐ Antenna with DG greater than 6 dBi : [Limit = 8 – (DG – 6)]
	☐ Point-to-point operation :

Test Procedure

Test method Refer as KDB 558074 D01.

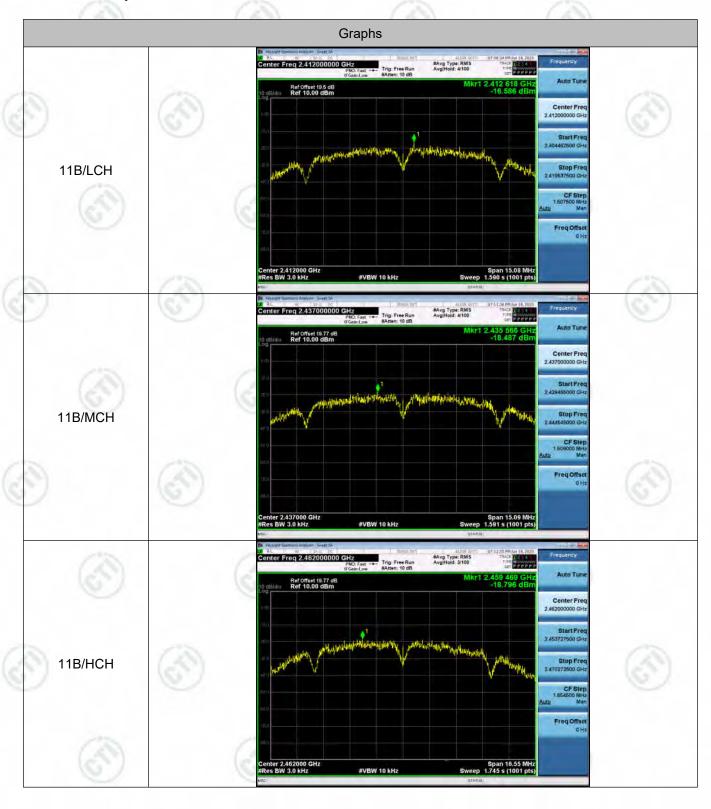
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

Test Setup



Report No. : EED32M00160903 Page 53 of 107

Result Table


Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-16.586	PASS
11B	MCH	-18.487	PASS
11B	HCH	-18.796	PASS
11G	LCH	-24.596	PASS
11G	MCH	-22.292	PASS
11G	HCH	-23.046	PASS
11N20SISO	LCH	-23.044	PASS
11N20SISO	MCH	-22.274	PASS
11N20SISO	HCH	-23.166	PASS
11N40SISO	LCH	-22.759	PASS
11N40SISO	MCH	-22.822	PASS
11N40SISO	HCH	-20.904	PASS

Report No. : EED32M00160903 Page 54 of 107

Test Graph

Page 55 of 107

Page 56 of 107

Page 57 of 107

Report No.: EED32M00160903 Page 58 of 107

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3 dBi

Report No. : EED32M00160903 Page 59 of 107

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz 1)The mains terminal disturbar		conducted in a shield	ed room.				
	2) The EUT was connected to Stabilization Network) which power cables of all other which was bonded to the graph the unit being measured. A power cables to a single LIS exceeded.	o AC power source to help provides a 50Ω/5 units of the EUT we cound reference plane multiple socket outle	through a LISN 1 (L 60μ H + 5Ω linear in the connected to a second in the same way as the strip was used to constant in the same way as the the	ine Impedance npedance. The econd LISN 2, in the LISN 1 for onnect multiple				
(3)	3)The tabletop EUT was place reference plane. And for fluorizontal ground reference	oor-standing arrange						
	4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the reference plane for LISNs distance was between the of the EUT and associated	vertical ground refe ed to the horizontal g boundary of the unit mounted on top of closest points of the l	erence plane. The round reference plan under test and bond the ground referen LISN 1 and the EUT	vertical ground ne. The LISN 1 led to a ground ce plane. This . All other units				
(20)	5) In order to find the maximum the interface cables must measurement.	n emission, the relativ	e positions of equip	ment and all of				
Limit:	(0,	(0,	(0,0)					
	Francisco (MALIE)	Limit (dBμV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
(1)	0.5-5	56	46	(3)				
	5-30	60	50					
	* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency							

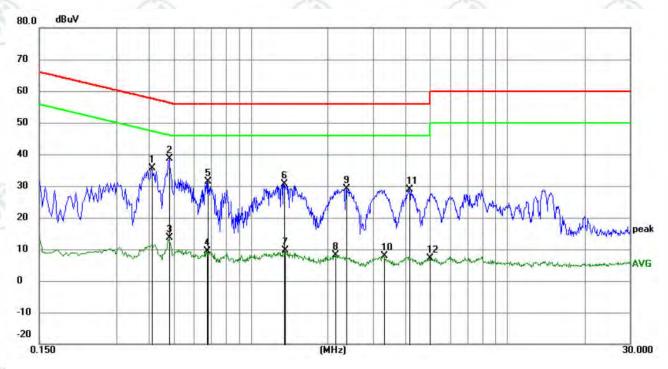
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

: 23℃

Page 60 of 107

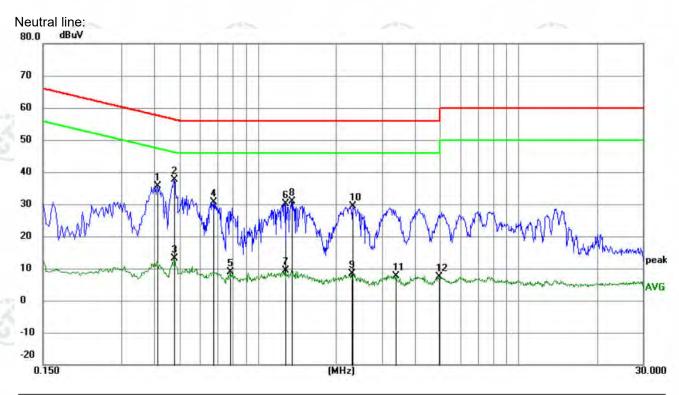

Product Smart Helmet Model/Type reference

KC-N901

Humidity 54%

Live line:

Temperature


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.4110	25.69	10.00	35.69	57.63	-21.94	QP	
2 *	0.4830	28.72	10.00	38.72	56.29	-17.57	QP	
3	0.4830	3.52	10.00	13.52	46.29	-32.77	AVG	
4	0.6720	-0.50	9.77	9.27	46.00	-36.73	AVG	
5	0.6809	21.58	9.73	31.31	56.00	-24.69	QP	
6	1.3515	20.76	9.88	30.64	56.00	-25.36	QP	
7	1.3560	-0.31	9.88	9.57	46.00	-36.43	AVG	
8	2.1390	-1.64	9.83	8.19	46.00	-37.81	AVG	
9	2.3640	19.32	9.83	29.15	56.00	-26.85	QP	
10	3.2955	-1.87	9.83	7.96	46.00	-38.04	AVG	
11	4.1415	19.13	9.83	28.96	56.00	-27.04	QP	
12	4.9785	-2.75	9.83	7.08	46.00	-38.92	AVG	

Page 61 of 107

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4110	25.71	10.00	35.71	57.63	-21.92	QP	
2	*	0.4785	27.55	10.00	37.55	56.37	-18.82	QP	
3		0.4785	3.22	10.00	13.22	46.37	-33.15	AVG	
4		0.6765	20.79	9.75	30.54	56.00	-25.46	QP	
5		0.7799	-0.88	9.86	8.98	46.00	-37.02	AVG	
6		1.2750	20.34	9.89	30.23	56.00	-25.77	QP	
7		1.2750	-0.50	9.89	9.39	46.00	-36.61	AVG	
8		1.3515	21.11	9.88	30.99	56.00	-25.01	QP	
9		2.2920	-1.54	9.83	8.29	46.00	-37.71	AVG	
10		2.3190	19.46	9.83	29.29	56.00	-26.71	QP	
11		3.3855	-2.08	9.83	7.75	46.00	-38.25	AVG	
12		4.9740	-2.40	9.83	7.43	46.00	-38.57	AVG	

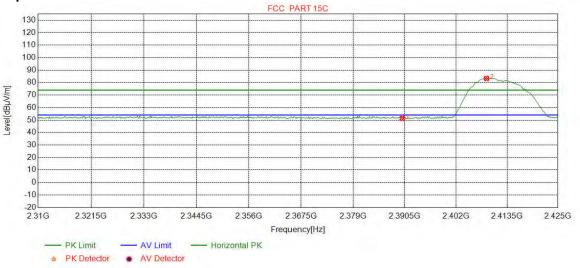
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

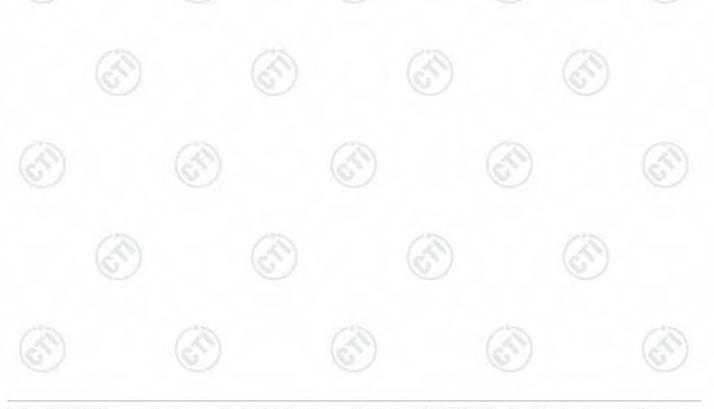
Report No.: EED32M00160903 Page 62 of 107

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	-
	Above 1G112	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu a. The EUT was placed or at a 3 meter semi-anecd determine the position of the EUT was set 3 met was mounted on the top of the antenna height is well determine the maximum polarizations of the antenna was tuned was turned from 0 degree. The test-receiver system Bandwidth with Maximum.	re as below: In the top of a room to camber. The fighest raters away from the of a variable-haried from one on value of the ficenna are set to unission, the EUT to heights from the ees to 360 degram was set to Periodical property of the p	tating table ne table wandiation. The interfere eight anter meter to foeld strength make the nown was arran 1 meter to ees to find	e 0.8 meter is rotated 3 ence-recei nna tower. our meters n. Both hor neasurement ged to its v 4 meters a the maxin	rs above the 360 degrees ving antenna above the grizontal and vent. Worst case along the rotation of the reading.	to a, whice ound to rertica and the able
	f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	nd of the restric pliance. Also m um analyzer plo	easure any	emissions	s in the restri	
	f. Place a marker at the e frequency to show com bands. Save the spectrofor lowest and highest of the first test procedute. Above 1GHz test procedute. G. Different between above to fully Anechoic Chamman 18GHz the distance is find the EUT in the low in the radiation measurer. Transmitting mode, and	nd of the restrict pliance. Also may be analyzer plot channel re as below: e is the test site the test site than the site of the test site than the set of the test site of the set channel, the set channel, the nents are performed to the X ax	easure any of. Repeat f of table 0.8 de is 1.5 me ne Highest rmed in X, is positioni	remissions for each por from Semi- meter to 1 eter). channel Y, Z axis p ing which i	Anechoic Ch.5 meter(Aboositioning fo	dulatic nambe ove r
imit:	f. Place a marker at the e frequency to show com bands. Save the spectrofor lowest and highest of the first specific for lowest and highest of the first specific for lowest and highest of lowest and highest of fully Anechoic Chamman 18GHz the distance is first the EUT in the low in the radiation measurer than the first specific for the first	nd of the restrict pliance. Also may manalyzer plot channel re as below: e is the test site the per change form the same of the test site than the sest channel, the ments are performed the X axing es until all frequents.	easure any of the change for the table 0.8 de is 1.5 me the Highest remed in X, is positioniquencies me	remissions for each por rom Semi- meter to 1 eter). channel Y, Z axis p ing which i	Anechoic Ch.5 meter(Aboositioning for is worse can be complete.	dulatic nambe ove r
imit:	f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of the standard form. Above 1GHz test procedured g. Different between above to fully Anechoic Champan 18GHz the distance is form. Test the EUT in the low in the radiation measurer than 18 Transmitting mode, and in the spectra in the standard form. Frequency	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site over change form the meter and table west channel, the ments are performed found the X axions and the X axions are until all frequents (dBµV/Limit (dBµV/Lim	easure any of. Repeat f of change from table 0.8 de is 1.5 me me Highest remed in X, is positionifuencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which in	Anechoic Ch.5 meter(Abecositioning for is worse can be complete.	dulation nambe ove
imit:	f. Place a marker at the e frequency to show com bands. Save the spectrofor lowest and highest of the first specific for lowest and highest of the first specific for lowest and highest of the first specific for lowest and highest of lowest and highest of fully Anechoic Champan 18GHz the distance is first the EUT in the low in the radiation measurer fransmitting mode, and job first specific for lowest procedure frequency and market specific for lowest procedure frequency and first specific for lowest procedure frequency and first specific for lowest and highest of lowest procedure frequency and first specific for lowest and highest of lowest and highest of lowest procedure for lowest and highest of lowest and highest	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site the change form of the meter and table west channel, the ments are perform of the X axis as until all frequency. Limit (dBµV/40.0	easure any t. Repeat f t. change fin table 0.8 le is 1.5 me ne Highest rmed in X, is positioni uencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i	Anechoic Ch.5 meter(Aboositioning for is worse can be complete.	dulation nambe ove
imit:	f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of the first test procedury. Above 1GHz test procedury. Begin and the first test procedury of fully Anechoic Champaton 18GHz the distance is and the first the EUT in the low in the radiation measurer. Transmitting mode, and the first test above procedury. Frequency 30MHz-88MHz 88MHz-216MHz	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change form of the test channel, the test ch	easure any t. Repeat for table 0.8 le is 1.5 me he Highest remed in X, is positioniquencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rer Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the e frequency to show com bands. Save the spectrofor lowest and highest of the first specific for lowest and highest of the first specific for lowest and highest of the first specific for lowest and highest of lowest and highest of fully Anechoic Champan 18GHz the distance is first the EUT in the low in the radiation measurer fransmitting mode, and job first specific for lowest procedure frequency and market specific for lowest procedure frequency and first specific for lowest procedure frequency and first specific for lowest and highest of lowest procedure frequency and first specific for lowest and highest of lowest and highest of lowest procedure for lowest and highest of lowest and highest	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site the change form of the meter and table west channel, the ments are perform of the X axis as until all frequency. Limit (dBµV/40.0	easure any tr. Repeat for table 0.8 le is 1.5 me he Highest rmed in X, is positioniquencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which ineasured was Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Aboositioning for is worse can be complete.	dulation nambe ove
_imit:	f. Place a marker at the e frequency to show com bands. Save the spectrifor lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamina 18GHz the distance is such that the EUT in the lowing lowest l	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site ber change form I meter and table vest channel, the nents are perform I found the X axives until all frequency Limit (dBµV/40.043.546.045)	easure any t. Repeat f the change from table 0.8 le is 1.5 me the Highest the Highest the med in X, lis positionifuencies med m @3m) the change from @3m)	remissions for each portion Semi-meter to 1 eter). channel Y, Z axis ping which it easured was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(About 15 to 15	dulatic nambe ove r



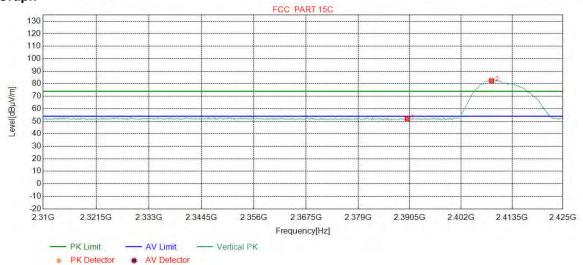
Page 63 of 107


Test plot as follows:

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.81	51.31	74.00	22.69	Pass	Horizontal
2	2408.8799	32.27	13.34	-43.11	80.79	83.29	74.00	-9.29	Pass	Horizontal

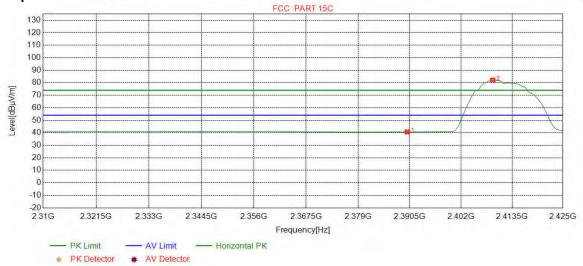


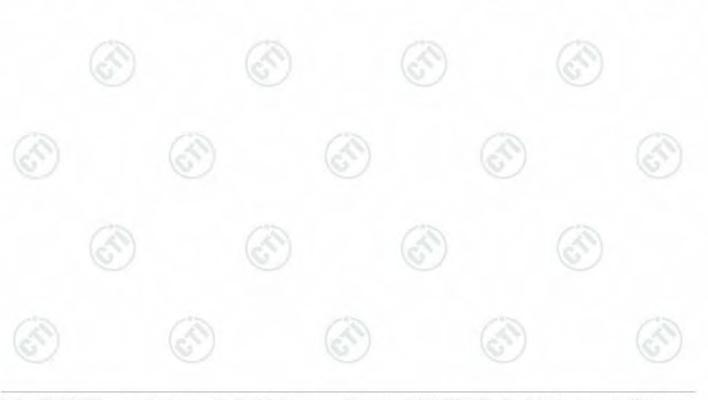

Page 64 of 107

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.58	52.08	74.00	21.92	Pass	Vertical
2	2408.8799	32.27	13.34	-43.11	79.95	82.45	74.00	-8.45	Pass	Vertical

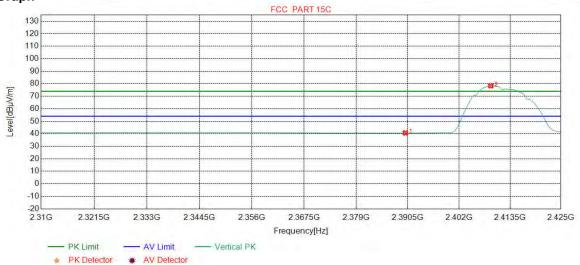


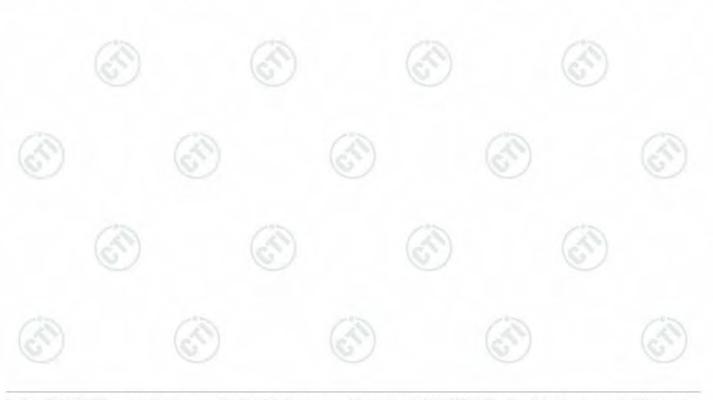

Page 65 of 107

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.18	40.68	54.00	13.32	Pass	Horizontal
2	2409.1677	32.27	13.34	-43.11	79.53	82.03	54.00	-28.03	Pass	Horizontal




Page 66 of 107

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.14	40.64	54.00	13.36	Pass	Vertical
2	2409.1677	32.27	13.34	-43.11	75.84	78.34	54.00	-24.34	Pass	Vertical

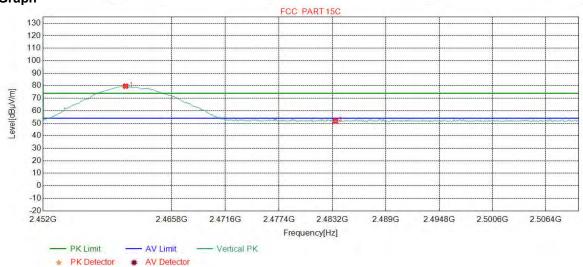


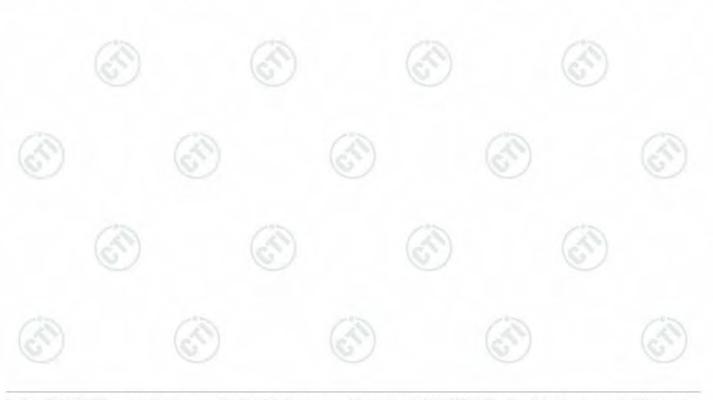

Page 67 of 107

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2460.9287	32.35	13.48	-43.11	85.38	88.10	74.00	-14.10	Pass	Horizontal
	2	2483.5000	32.38	13.38	-43.11	50.05	52.70	74.00	21.30	Pass	Horizontal

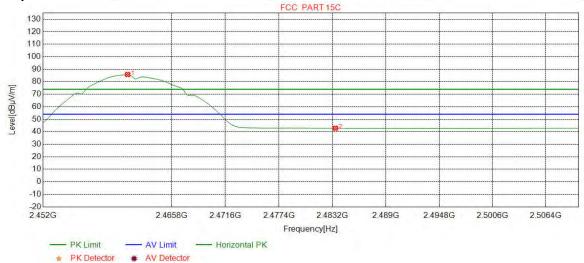



Page 68 of 107

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.8561	32.35	13.48	-43.11	76.91	79.63	74.00	-5.63	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.15	51.80	74.00	22.20	Pass	Vertical

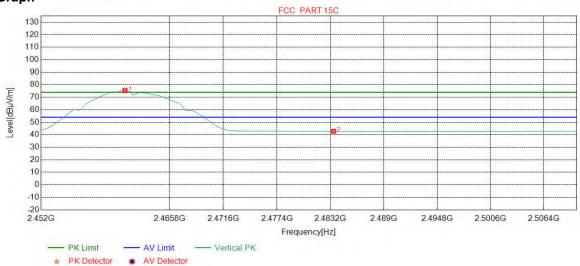


Page 69 of 107

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2461.0738	32.35	13.48	-43.11	83.07	85.79	54.00	-31.79	Pass	Horizontal
	2	2483.5000	32.38	13.38	-43.11	40.16	42.81	54.00	11.19	Pass	Horizontal
-	F - 6							/			V

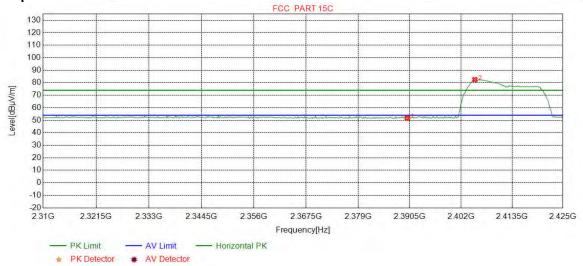


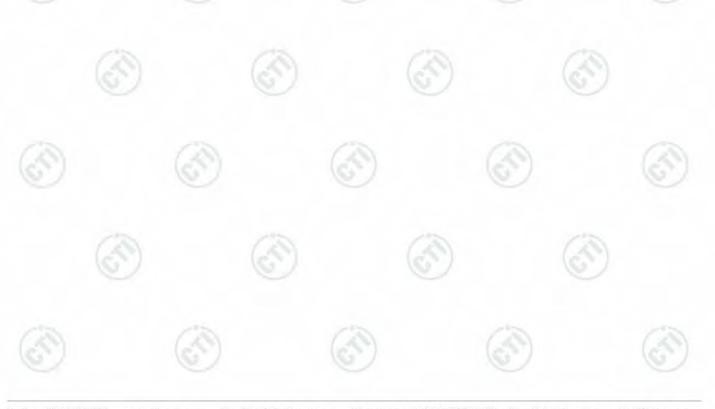

Page 70 of 107

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462	
Remark:	AV			

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2461.0013	32.35	13.48	-43.11	72.65	75.37	54.00	-21.37	Pass	Vertical
	2	2483.5000	32.38	13.38	-43.11	40.14	42.79	54.00	11.21	Pass	Vertical
	F - A			4.7		7 43		/			/ 53

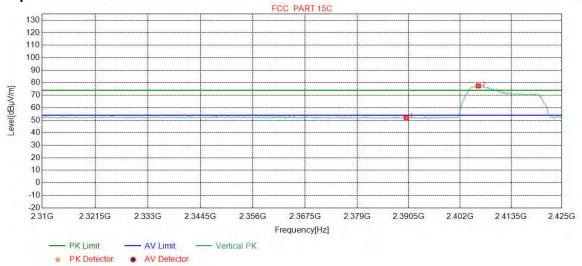



Page 71 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.29	51.79	74.00	22.21	Pass	Horizontal
2	2405.1377	32.27	13.32	-43.12	80.01	82.48	74.00	-8.48	Pass	Horizontal

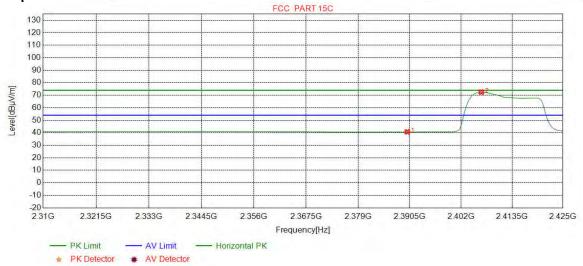


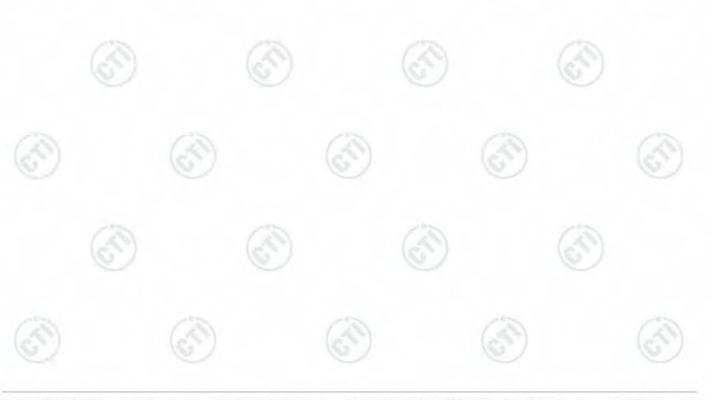
Page 72 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.60	52.10	74.00	21.90	Pass	Vertical
2	2406.1452	32.27	13.33	-43.12	74.95	77.43	74.00	-3.43	Pass	Vertical

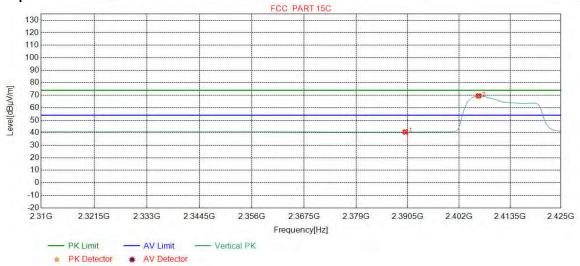



Page 73 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2390.0000	32.25	13.37	-43.12	38.19	40.69	54.00	13.31	Pass	Horizontal
2	2	2406.5770	32.27	13.33	-43.12	70.02	72.50	54.00	-18.50	Pass	Horizontal
		_						/			V 63

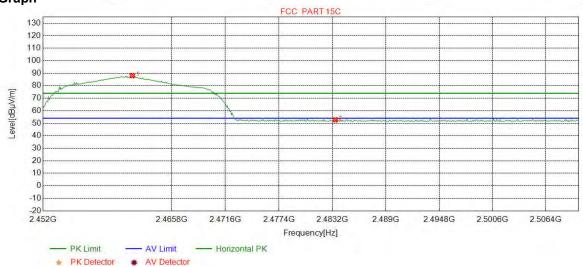


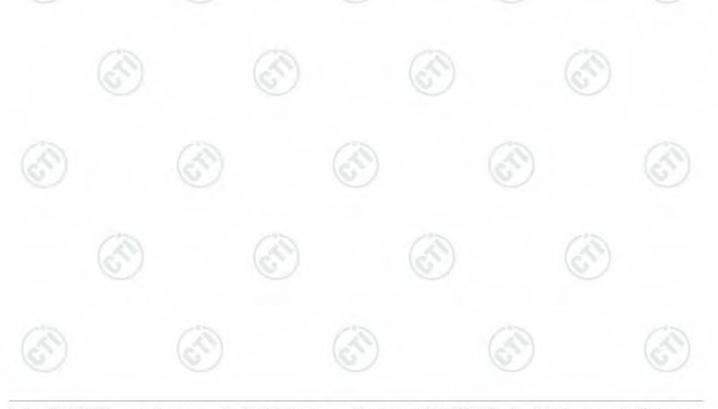
Page 74 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

ı	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	38.13	40.63	54.00	13.37	Pass	Vertical
	2	2406.4330	32.27	13.33	-43.12	66.99	69.47	54.00	-15.47	Pass	Vertical

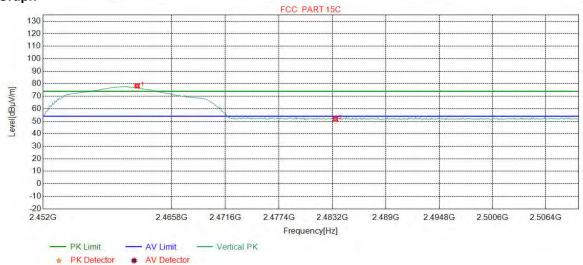


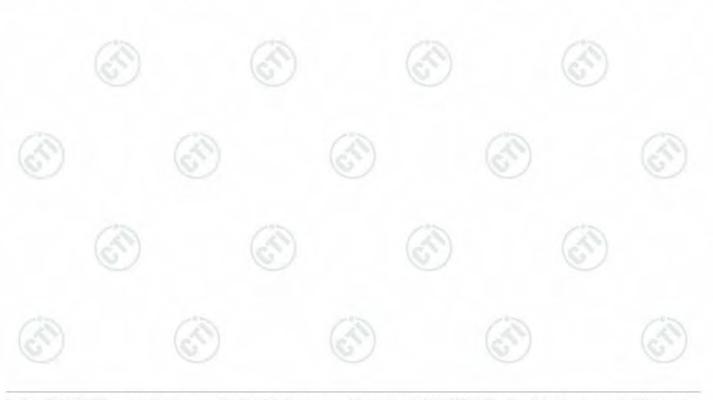

Page 75 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.5820	32.35	13.48	-43.11	85.42	88.14	74.00	-14.14	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.10	52.75	74.00	21.25	Pass	Horizontal

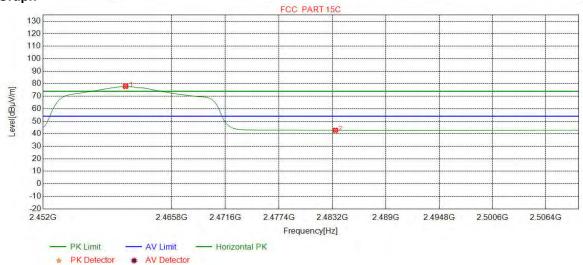



Page 76 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.0901	32.35	13.47	-43.11	75.48	78.19	74.00	-4.19	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.06	51.71	74.00	22.29	Pass	Vertical

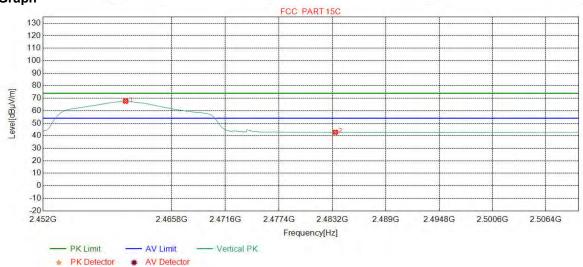


Page 77 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.8561	32.35	13.48	-43.11	75.16	77.88	54.00	-23.88	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.17	42.82	54.00	11.18	Pass	Horizontal

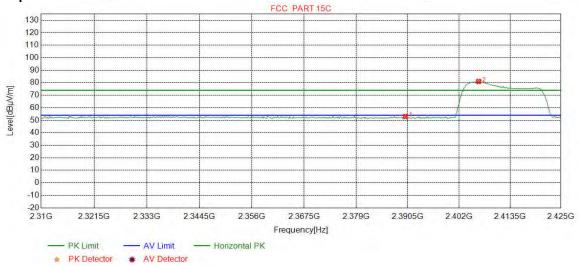


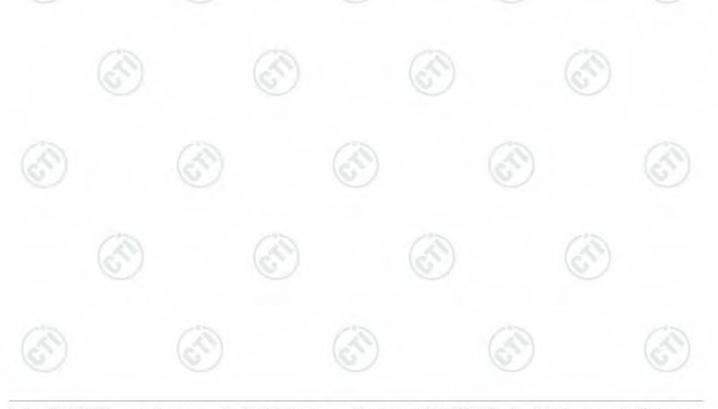

Page 78 of 107

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.8561	32.35	13.48	-43.11	64.92	67.64	54.00	-13.64	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.17	42.82	54.00	11.18	Pass	Vertical

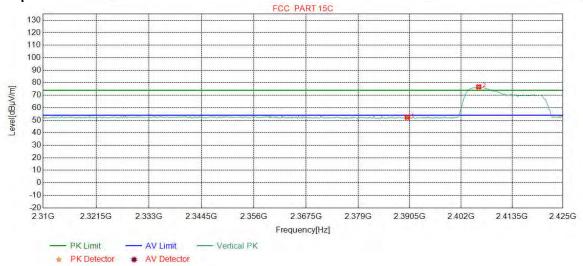


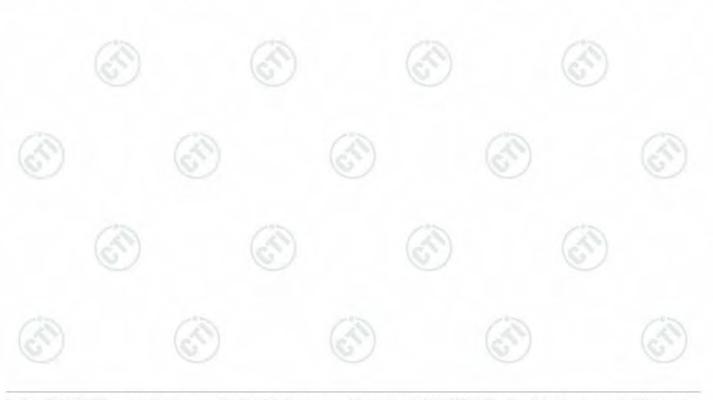

Page 79 of 107

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channe	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1 :	2390.0000	32.25	13.37	-43.12	50.50	53.00	74.00	21.00	Pass	Horizontal
2	2406.4330	32.27	13.33	-43.12	78.50	80.98	74.00	-6.98	Pass	Horizontal

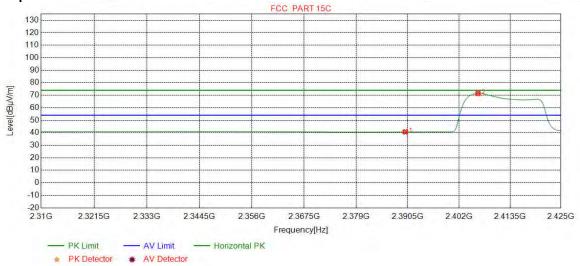


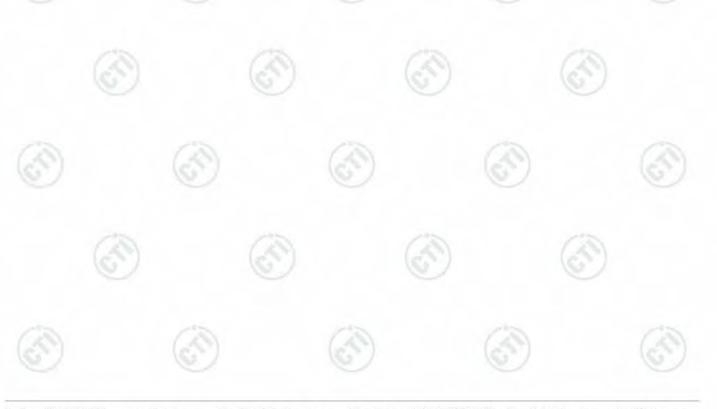

Page 80 of 107

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Cha	2412
Remark:	PK		

Test Graph

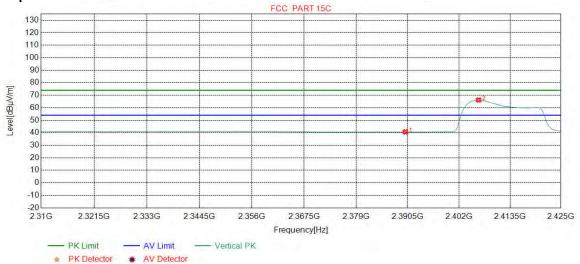
[dB] [dB] [dB] [dB] [dB]		[dB] Result Foliality
1 2390.0000 32.25 13.37 -43.12 49.97 52.47 74.00 21.53 Pas	1	21.53 Pass Vertical
2 2406.0013 32.27 13.33 -43.12 74.20 76.68 74.00 -2.68 Pas	2	2.68 Pass Vertical




Page 8	81	of '	1	07
--------	----	------	---	----

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel	2412
Remark:	AV		

Test Graph

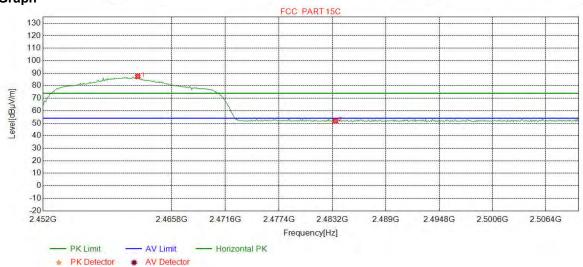

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.18	40.68	54.00	13.32	Pass	Horizontal
2	2406.2891	32.27	13.33	-43.12	68.96	71.44	54.00	-17.44	Pass	Horizontal

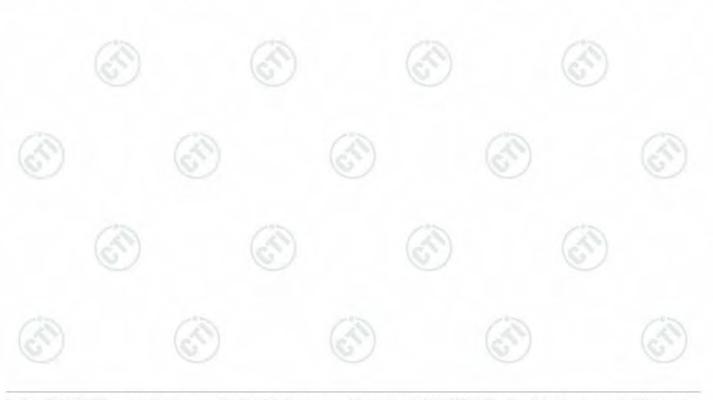


Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channe	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.16	40.66	54.00	13.34	Pass	Vertical
2	2406.4330	32.27	13.33	-43.12	63.67	66.15	54.00	-12.15	Pass	Vertical

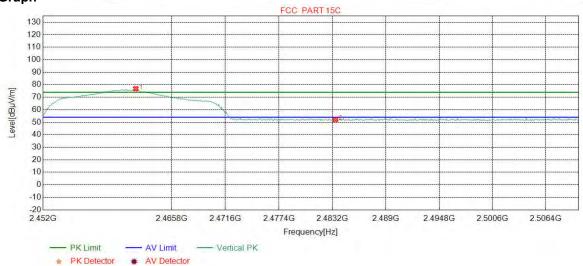


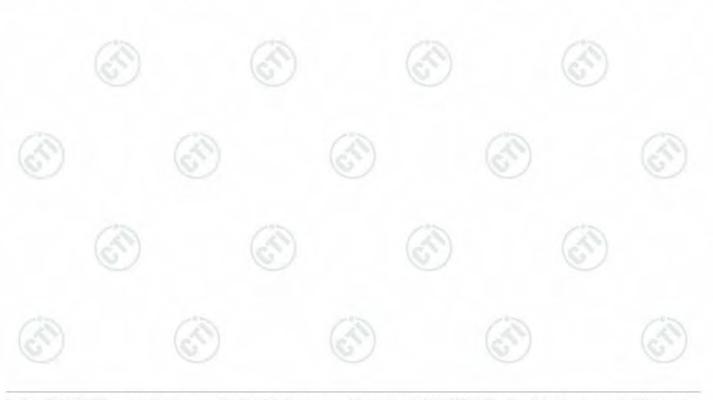

Page	83	of	1	07	
------	----	----	---	----	--

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.1627	32.35	13.47	-43.11	84.68	87.39	74.00	-13.39	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.22	51.87	74.00	22.13	Pass	Horizontal

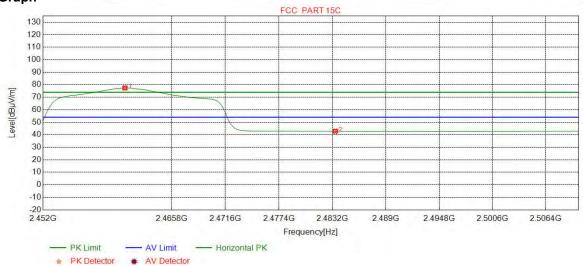


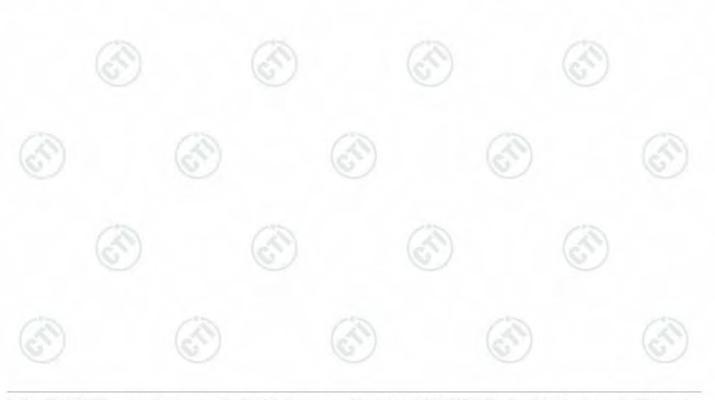

Page 84 of 107

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.9449	32.35	13.48	-43.12	74.13	76.84	74.00	-2.84	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.49	52.14	74.00	21.86	Pass	Vertical

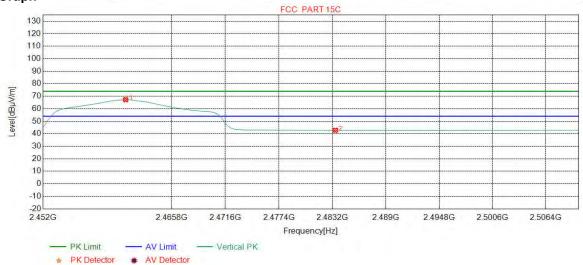



Page	85	of	10	7	
. 490	~	\sim .			

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Chan	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7835	32.35	13.48	-43.11	74.72	77.44	54.00	-23.44	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.20	42.85	54.00	11.15	Pass	Horizontal

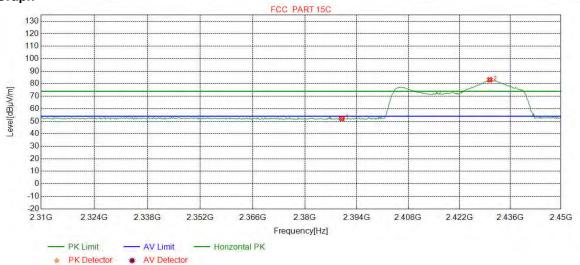


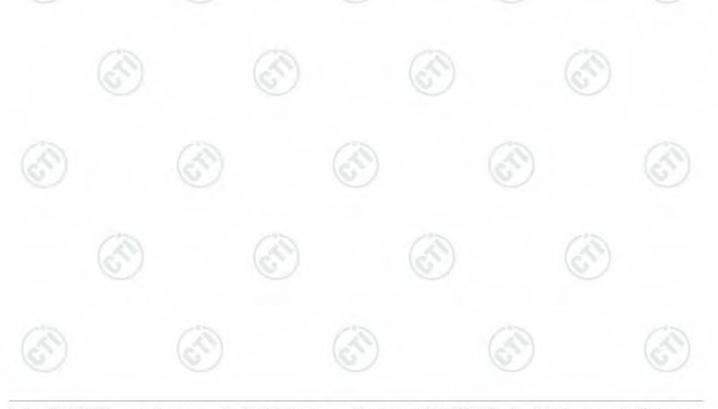

Page 86 of 107

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.8561	32.35	13.48	-43.11	64.54	67.26	54.00	-13.26	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.15	42.80	54.00	11.20	Pass	Vertical

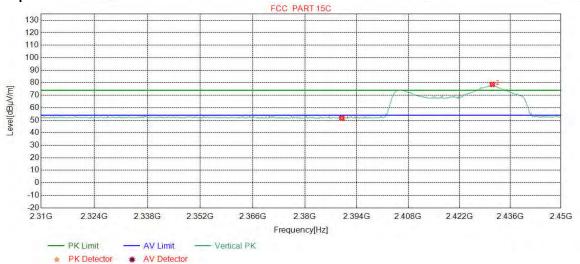



	Page	87	of	107	,
--	------	----	----	-----	---

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Chann	2422
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.66	52.16	74.00	21.84	Pass	Horizontal
2	2430.3755	32.30	13.44	-43.11	80.52	83.15	74.00	-9.15	Pass	Horizontal

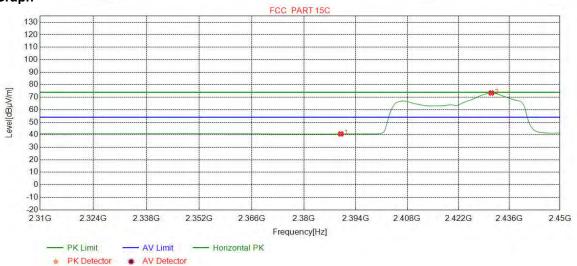


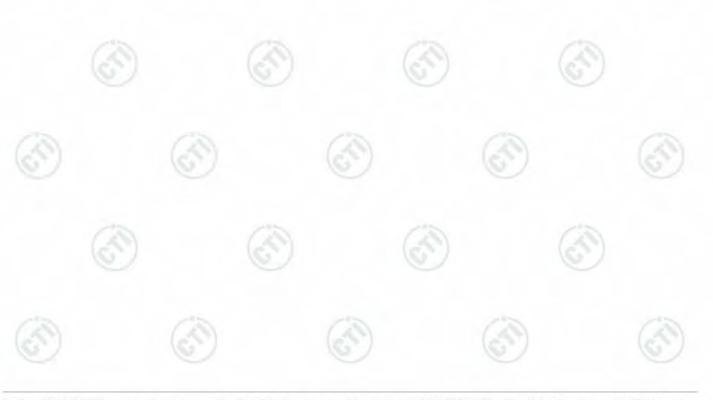

Page 88 of 107	107
----------------	-----

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Chann	2422
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.18	51.68	74.00	22.32	Pass	Vertical
2	2431.0763	32.30	13.44	-43.11	75.99	78.62	74.00	-4.62	Pass	Vertical

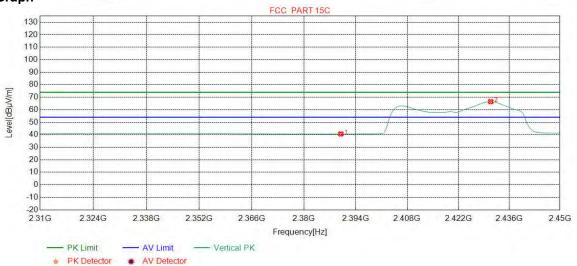



Page 8	39 of	: 1(07
--------	-------	------	----

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Chann	2422
Remark:	AV		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2390.0000	32.25	13.37	-43.12	38.18	40.68	54.00	13.32	Pass	Horizontal
	2	2431.0763	32.30	13.44	-43.11	70.73	73.36	54.00	-19.36	Pass	Horizontal

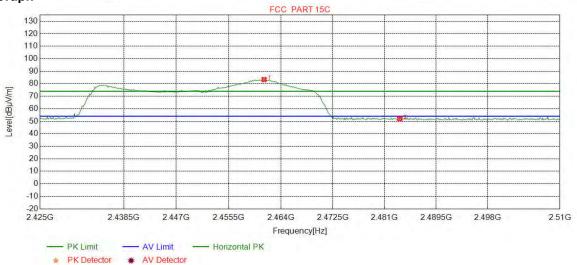



Page 90 of 107

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Chann	2422
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.15	40.65	54.00	13.35	Pass	Vertical
2	2430.9011	32.30	13.44	-43.11	63.86	66.49	54.00	-12.49	Pass	Vertical

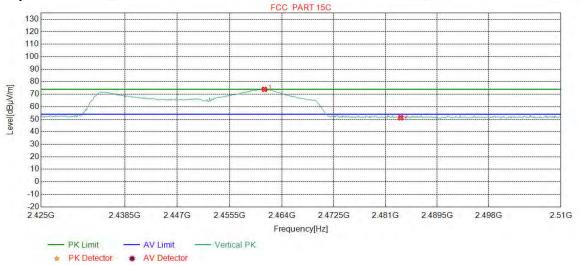



Page 91 of 107

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Cha	2452
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2766	32.35	13.48	-43.11	80.61	83.33	74.00	-9.33	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.32	51.97	74.00	22.03	Pass	Horizontal

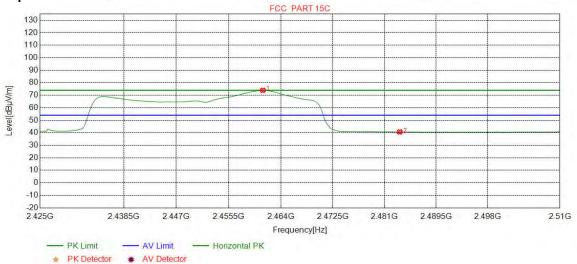


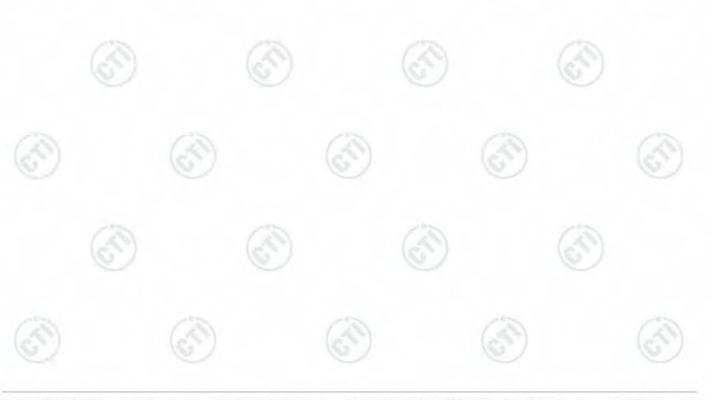
Page 92 of 107

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Chann	2452
Remark:	PK		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2461.1702	32.35	13.48	-43.11	71.17	73.89	74.00	0.11	Pass	Vertical
	2	2483.5000	32.38	13.38	-43.11	48.54	51.19	74.00	22.81	Pass	Vertical
-	F - 6			4.7							7 .63

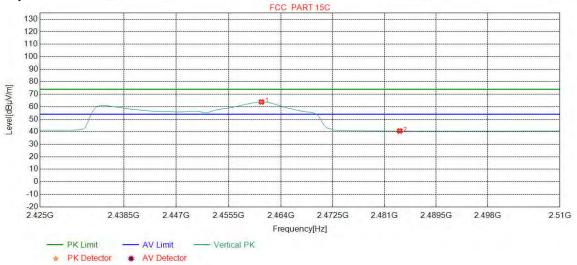



Page	93	of	107	
------	----	----	-----	--

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Chann	2452
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.0638	32.35	13.48	-43.11	71.18	73.90	54.00	-19.90	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	38.01	40.66	54.00	13.34	Pass	Horizontal



Page 94 of 107

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Chan	2452
Remark:	AV		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.8511	32.35	13.48	-43.11	61.08	63.80	54.00	-9.80	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.95	40.60	54.00	13.40	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 1Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00160903 Page 95 of 107

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Detector	RBW	VBW	Remark
Peak	10kHz	30kHz	Peak
Average	10kHz	30kHz	Average
Quasi-peak	10kHz	30kHz	Quasi-peak
Peak	10kHz	30kHz	Peak
Average	10kHz	30kHz	Average
Quasi-peak	10kHz	30kHz	Quasi-peak
Quasi-peak	120kHz	300kHz	Quasi-peak
Peak	1MHz	3MHz	Peak
Peak	1MHz	10Hz	Average
	Peak Average Quasi-peak Average Quasi-peak Quasi-peak Peak	Peak 10kHz Average 10kHz Quasi-peak 10kHz Peak 10kHz Average 10kHz Quasi-peak 10kHz Quasi-peak 120kHz Peak 1MHz	Peak 10kHz 30kHz Average 10kHz 30kHz Quasi-peak 10kHz 30kHz Peak 10kHz 30kHz Average 10kHz 30kHz Quasi-peak 10kHz 30kHz Quasi-peak 120kHz 300kHz Peak 1MHz 3MHz

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

١	in	nit [,]

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(30)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32M00160903 Page 96 of 107

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	Mode):	802.11	b (1Mbps	s) Transm	itting	Channel:		2437		
-1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	42.6113	12.77	0.74	-31.52	41.34	23.33	40.00	16.67	Pass	Н
	2	124.7785	8.48	1.31	-32.04	60.73	38.48	43.50	5.02	Pass	Н
	3	276.3076	12.73	1.98	-31.92	42.55	25.34	46.00	20.66	Pass	Н
	4	495.5496	16.93	2.66	-31.90	40.70	28.39	46.00	17.61	Pass	Н
	5	649.9890	19.40	3.10	-32.07	39.14	29.57	46.00	16.43	Pass	Н
	6	779.9820	20.68	3.34	-32.01	35.13	27.14	46.00	18.86	Pass	Н
	7	43.3873	12.91	0.74	-31.58	46.49	28.56	40.00	11.44	Pass	V
	8	123.3233	8.70	1.31	-32.05	58.31	36.27	43.50	7.23	Pass	V
	9	360.0270	14.52	2.27	-31.84	40.68	25.63	46.00	20.37	Pass	V
	10	500.1090	17.00	2.67	-31.90	45.00	32.77	46.00	13.23	Pass	V
	11	649.8920	19.40	3.10	-32.07	43.74	34.17	46.00	11.83	Pass	V
	12	779.9820	20.68	3.34	-32.01	39.65	31.66	46.00	14.34	Pass	V

Page 97 of 107

Transmitter Emission above 1GHz

Mode	ə:	802.11	b (1Mbp	s) Transn	nitting	Channel:		2412			
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.4062	27.96	2.52	-43.03	56.20	43.65	74.00	30.35	Pass	Н	Peak
2	1594.2594	29.02	3.07	-42.91	52.86	42.04	74.00	31.96	Pass	Н	Peak
3	2130.3130	31.88	3.62	-43.17	56.18	48.51	74.00	25.49	Pass	Н	Peak
4	4811.1207	34.50	4.57	-42.80	50.63	46.90	74.00	27.10	Pass	Н	Peak
5	7236.0000	36.34	5.79	-42.16	46.08	46.05	74.00	27.95	Pass	Н	Peak
6	9648.0000	37.66	6.72	-42.10	46.24	48.52	74.00	25.48	Pass	Н	Peak
7	2125.7126	31.88	3.62	-43.18	61.19	53.51	74.00	20.49	Pass	V	Peak
8	3100.0067	33.24	4.72	-43.10	50.40	45.26	74.00	28.74	Pass	V	Peak
9	3984.0656	33.79	4.33	-43.00	51.34	46.46	74.00	27.54	Pass	V	Peak
10	4824.0000	34.50	4.61	-42.80	49.91	46.22	74.00	27.78	Pass	V	Peak
11	7236.0000	36.34	5.79	-42.16	46.42	46.39	74.00	27.61	Pass	V	Peak
12	9648.0000	37.66	6.72	-42.10	46.87	49.15	74.00	24.85	Pass	V	Peak

Mode	e:	802.11	b (1Mbp	os) Transr	nitting	Channel:		2437			
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.4062	27.96	2.52	-43.03	55.52	42.97	74.00	31.03	Pass	Н	Peak
2	2127.1127	31.88	3.62	-43.18	59.46	51.78	74.00	22.22	Pass	Н	Peak
3	3990.0660	33.79	4.33	-43.00	50.64	45.76	74.00	28.24	Pass	Н	Peak
4	4868.1245	34.50	4.75	-42.80	50.13	46.58	74.00	27.42	Pass	Н	Peak
5	7311.0000	36.41	5.85	-42.14	46.26	46.38	74.00	27.62	Pass	Н	Peak
6	9748.0000	37.70	6.77	-42.10	46.64	49.01	74.00	24.99	Pass	Н	Peak
7	1382.0382	28.28	2.87	-42.70	52.12	40.57	74.00	33.43	Pass	V	Peak
8	2127.3127	31.88	3.62	-43.18	60.78	53.10	74.00	20.90	Pass	V	Peak
9	3985.0657	33.79	4.33	-43.00	52.56	47.68	74.00	26.32	Pass	V	Peak
10	4874.0000	34.50	4.78	-42.80	48.24	44.72	74.00	29.28	Pass	V	Peak
11	7311.0000	36.41	5.85	-42.14	48.37	48.49	74.00	25.51	Pass	V	Peak
12	9748.0000	37.70	6.77	-42.10	47.06	49.43	74.00	24.57	Pass	V	Peak

Page 98 of 107

	1.60			7 6 3		1.6		(
Mode) :	802.11	b (1Mbps	s) Transmi	tting	Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar k
1	1064.2064	27.96	2.52	-43.02	55.43	42.89	74.00	31.11	Pass	Н	Peak
2	1661.4661	29.47	3.15	-42.75	52.67	42.54	74.00	31.46	Pass	Н	Peak
3	2125.1125	31.88	3.62	-43.18	55.73	48.05	74.00	25.95	Pass	Н	Peak
4	4924.0000	34.50	4.85	-42.80	47.02	43.57	74.00	30.43	Pass	Н	Peak
5	7386.0000	36.49	5.85	-42.13	46.08	46.29	74.00	27.71	Pass	Н	Peak
6	9848.0000	37.74	6.83	-42.10	46.69	49.16	74.00	24.84	Pass	Н	Peak
7	1418.4418	28.32	2.92	-42.76	51.96	40.44	74.00	33.56	Pass	V	Peak
8	2129.3129	31.88	3.62	-43.17	60.02	52.35	74.00	21.65	Pass	V	Peak
9	3986.0657	33.79	4.33	-43.00	52.69	47.81	74.00	26.19	Pass	V	Peak
10	4924.0000	34.50	4.85	-42.80	48.38	44.93	74.00	29.07	Pass	V	Peak
11	7386.0000	36.49	5.85	-42.13	46.72	46.93	74.00	27.07	Pass	V	Peak
12	9848.0000	37.74	6.83	-42.10	46.40	48.87	74.00	25.13	Pass	V	Peak

Mode	: :	802.11	g (6Mbps	s) Transmi	tting	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.4062	27.96	2.52	-43.03	55.96	43.41	74.00	30.59	Pass	Н	Peak
2	1592.8593	29.01	3.06	-42.91	54.58	43.74	74.00	30.26	Pass	Н	Peak
3	2123.7124	31.87	3.61	-43.17	61.14	53.45	74.00	20.55	Pass	Н	Peak
4	4824.0000	34.50	4.61	-42.80	48.37	44.68	74.00	29.32	Pass	Н	Peak
5	7236.0000	36.34	5.79	-42.16	47.56	47.53	74.00	26.47	Pass	Н	Peak
6	9648.0000	37.66	6.72	-42.10	47.42	49.70	74.00	24.30	Pass	Н	Peak
7	1445.4445	28.35	2.95	-42.88	51.30	39.72	74.00	34.28	Pass	V	Peak
8	2130.3130	31.88	3.62	-43.17	58.93	51.26	74.00	22.74	Pass	V	Peak
9	3981.0654	33.78	4.33	-43.00	50.53	45.64	74.00	28.36	Pass	V	Peak
10	4824.0000	34.50	4.61	-42.80	48.65	44.96	74.00	29.04	Pass	V	Peak
11	7236.0000	36.34	5.79	-42.16	45.74	45.71	74.00	28.29	Pass	V	Peak
12	9648.0000	37.66	6.72	-42.10	47.33	49.61	74.00	24.39	Pass	V	Peak

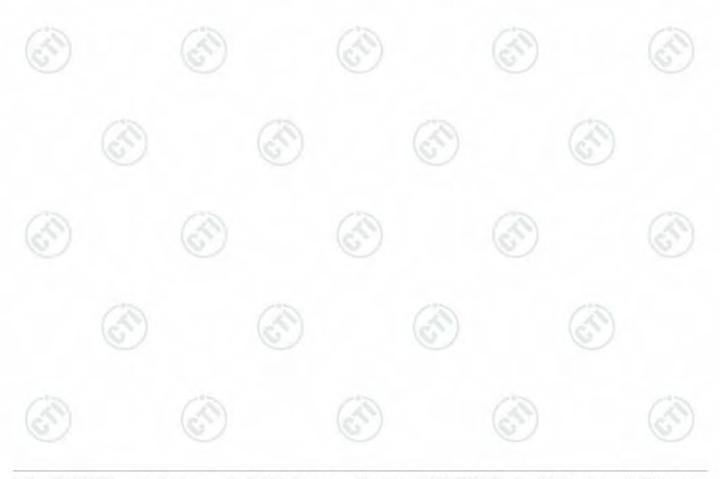
Page 99 of 107

Mode) :	802.11	g (6Mbps	s) Transmit	ting	Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1065.0065	27.97	2.53	-43.04	54.90	42.36	74.00	31.64	Pass	Н	Peak
2	1667.4667	29.51	3.16	-42.74	51.88	41.81	74.00	32.19	Pass	Н	Peak
3	2127.7128	31.88	3.62	-43.18	57.30	49.62	74.00	24.38	Pass	Н	Peak
4	4824.0000	34.50	4.61	-42.80	47.46	43.77	74.00	30.23	Pass	Н	Peak
5	7236.0000	36.34	5.79	-42.16	45.62	45.59	74.00	28.41	Pass	Н	Peak
6	9648.0000	37.66	6.72	-42.10	47.74	50.02	74.00	23.98	Pass	Н	Peak
7	1417.2417	28.32	2.92	-42.76	50.95	39.43	74.00	34.57	Pass	V	Peak
8	2125.9126	31.88	3.62	-43.18	58.67	50.99	74.00	23.01	Pass	V	Peak
9	3997.0665	33.80	4.33	-43.00	51.84	46.97	74.00	27.03	Pass	V	Peak
10	4874.0000	34.50	4.78	-42.80	47.89	44.37	74.00	29.63	Pass	V	Peak
11	7311.0000	36.41	5.85	-42.14	45.22	45.34	74.00	28.66	Pass	V	Peak
12	9748.0000	37.70	6.77	-42.10	46.77	49.14	74.00	24.86	Pass	V	Peak

	1.63			1 4 50					/ 4 30			
Mode) :	802.11	g (6Mbps	s) Transmit	ting	Channel:		2462				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1665.0665	29.49	3.16	-42.75	52.55	42.45	74.00	31.55	Pass	Н	Peak	
2	2133.5134	31.89	3.63	-43.18	59.38	51.72	74.00	22.28	Pass	Н	Peak	
3	2664.5665	32.66	4.10	-43.10	55.28	48.94	74.00	25.06	Pass	Н	Peak	
4	4923.1282	34.50	4.85	-42.80	50.29	46.84	74.00	27.16	Pass	Н	Peak	
5	7386.0000	36.49	5.85	-42.13	46.46	46.67	74.00	27.33	Pass	Н	Peak	
6	9848.0000	37.74	6.83	-42.10	46.76	49.23	74.00	24.77	Pass	Н	Peak	
7	1419.4419	28.32	2.92	-42.76	51.63	40.11	74.00	33.89	Pass	V	Peak	
8	2129.7130	31.88	3.62	-43.17	58.01	50.34	74.00	23.66	Pass	V	Peak	
9	3988.0659	33.79	4.33	-43.00	51.78	46.90	74.00	27.10	Pass	V	Peak	
10	4924.0000	34.50	4.85	-42.80	48.92	45.47	74.00	28.53	Pass	V	Peak	
11	7386.0000	36.49	5.85	-42.13	48.36	48.57	74.00	25.43	Pass	V	Peak	
12	9848.0000	37.74	6.83	-42.10	45.88	48.35	74.00	25.65	Pass	V	Peak	

Page 100 of 107

Mode):	802.11	n (HT20)	(6.5Mbps))	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1066.4066	27.97	2.53	-43.04	54.96	42.42	74.00	31.58	Pass	Н	Peak
2	2124.5125	31.87	3.61	-43.17	60.89	53.20	74.00	20.80	Pass	Н	Peak
3	3574.0383	33.46	4.39	-43.08	50.14	44.91	74.00	29.09	Pass	Н	Peak
4	4824.0000	34.50	4.61	-42.80	48.55	44.86	74.00	29.14	Pass	Н	Peak
5	7236.0000	36.34	5.79	-42.16	45.79	45.76	74.00	28.24	Pass	Н	Peak
6	9648.0000	37.66	6.72	-42.10	46.85	49.13	74.00	24.87	Pass	Н	Peak
7	1399.4399	28.30	2.90	-42.68	51.63	40.15	74.00	33.85	Pass	V	Peak
8	2129.9130	31.88	3.62	-43.17	56.62	48.95	74.00	25.05	Pass	V	Peak
9	4263.0842	34.17	4.48	-42.90	52.14	47.89	74.00	26.11	Pass	V	Peak
10	4824.0000	34.50	4.61	-42.80	49.05	45.36	74.00	28.64	Pass	V	Peak
11	7236.0000	36.34	5.79	-42.16	46.25	46.22	74.00	27.78	Pass	V	Peak
12	9648.0000	37.66	6.72	-42.10	46.89	49.17	74.00	24.83	Pass	V	Peak


Mode:		802 11	n (HT20)	(6.5Mbps	1	Channel:		2437				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1062.4062	27.96	2.52	-43.03	56.40	43.85	74.00	30.15	Pass	Н	Peak	
2	2130.7131	31.88	3.62	-43.17	59.76	52.09	74.00	21.91	Pass	Н	Peak	
3	3198.0132	33.28	4.65	-43.10	50.53	45.36	74.00	28.64	Pass	Н	Peak	
4	4874.0000	34.50	4.78	-42.80	47.35	43.83	74.00	30.17	Pass	Н	Peak	
5	7311.0000	36.41	5.85	-42.14	46.55	46.67	74.00	27.33	Pass	Н	Peak	
6	9748.0000	37.70	6.77	-42.10	46.23	48.60	74.00	25.40	Pass	Н	Peak	
7	1273.4273	28.17	2.71	-42.81	51.96	40.03	74.00	33.97	Pass	V	Peak	
8	2128.5129	31.88	3.62	-43.17	57.39	49.72	74.00	24.28	Pass	V	Peak	
9	4251.0834	34.15	4.51	-42.90	52.13	47.89	74.00	26.11	Pass	V	Peak	
10	4874.0000	34.50	4.78	-42.80	47.11	43.59	74.00	30.41	Pass	V	Peak	
11	7311.0000	36.41	5.85	-42.14	46.01	46.13	74.00	27.87	Pass	V	Peak	
12	9748.0000	37.70	6.77	-42.10	47.57	49.94	74.00	24.06	Pass	V	Peak	

Page 101 of 107

Mode:		802.11	n (HT20)	(6.5Mbps))	Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1065.0065	27.97	2.53	-43.04	55.17	42.63	74.00	31.37	Pass	Н	Peak
2	1599.8600	29.06	3.07	-42.90	55.10	44.33	74.00	29.67	Pass	Н	Peak
3	3923.0615	33.74	4.34	-43.02	49.70	44.76	74.00	29.24	Pass	Н	Peak
4	4924.0000	34.50	4.85	-42.80	47.25	43.80	74.00	30.20	Pass	Н	Peak
5	7386.0000	36.49	5.85	-42.13	46.88	47.09	74.00	26.91	Pass	Н	Peak
6	9848.0000	37.74	6.83	-42.10	45.91	48.38	74.00	25.62	Pass	Н	Peak
7	1419.4419	28.32	2.92	-42.76	51.50	39.98	74.00	34.02	Pass	V	Peak
8	2127.3127	31.88	3.62	-43.18	59.06	51.38	74.00	22.62	Pass	V	Peak
9	3935.0623	33.75	4.34	-43.01	51.02	46.10	74.00	27.90	Pass	V	Peak
10	4924.0000	34.50	4.85	-42.80	47.76	44.31	74.00	29.69	Pass	V	Peak
11	7386.0000	36.49	5.85	-42.13	46.24	46.45	74.00	27.55	Pass	V	Peak
12	9848.0000	37.74	6.83	-42.10	46.57	49.04	74.00	24.96	Pass	V	Peak

Page 102 of 107

				193		100		715			
Mode	Mode:		n(HT40) itting	(13.5Mbps	;)	Channel:		2422			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1662.6663	29.47	3.16	-42.75	53.48	43.36	74.00	30.64	Pass	Н	Peak
2	2123.1123	31.87	3.61	-43.17	59.88	52.19	74.00	21.81	Pass	Н	Peak
3	3986.0657	33.79	4.33	-43.00	51.24	46.36	74.00	27.64	Pass	Н	Peak
4	4844.0000	34.50	4.66	-42.80	47.68	44.04	74.00	29.96	Pass	Н	Peak
5	7266.0000	36.37	5.80	-42.15	45.05	45.07	74.00	28.93	Pass	Н	Peak
6	9688.0000	37.68	6.62	-42.10	47.08	49.28	74.00	24.72	Pass	Н	Peak
7	1660.2660	29.46	3.15	-42.76	51.89	41.74	74.00	32.26	Pass	V	Peak
8	2131.3131	31.88	3.62	-43.17	59.02	51.35	74.00	22.65	Pass	V	Peak
9	3329.0219	33.33	4.55	-43.10	50.01	44.79	74.00	29.21	Pass	V	Peak
10	4844.0000	34.50	4.66	-42.80	48.22	44.58	74.00	29.42	Pass	V	Peak
11	7266.0000	36.37	5.80	-42.15	47.10	47.12	74.00	26.88	Pass	V	Peak
12	9688.0000	37.68	6.62	-42.10	46.94	49.14	74.00	24.86	Pass	V	Peak

Mode	: :	802.11 Transm		(13.5Mbps	s)	Channel:		2437				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1065.6066	27.97	2.53	-43.04	56.19	43.65	74.00	30.35	Pass	Н	Peak	
2	1662.0662	29.47	3.15	-42.75	52.55	42.42	74.00	31.58	Pass	Н	Peak	
3	2130.1130	31.88	3.62	-43.17	58.10	50.43	74.00	23.57	Pass	Н	Peak	
4	4874.0000	34.50	4.78	-42.80	48.57	45.05	74.00	28.95	Pass	Н	Peak	
5	7311.0000	36.41	5.85	-42.14	46.12	46.24	74.00	27.76	Pass	Н	Peak	
6	9748.0000	37.70	6.77	-42.10	47.63	50.00	74.00	24.00	Pass	Н	Peak	
7	2126.5127	31.88	3.62	-43.18	56.26	48.58	74.00	25.42	Pass	V	Peak	
8	2659.3659	32.65	4.10	-43.10	57.52	51.17	74.00	22.83	Pass	V	Peak	
9	3986.0657	33.79	4.33	-43.00	50.41	45.53	74.00	28.47	Pass	V	Peak	
10	4874.0000	34.50	4.78	-42.80	47.86	44.34	74.00	29.66	Pass	V	Peak	
11	7311.0000	36.41	5.85	-42.14	46.33	46.45	74.00	27.55	Pass	V	Peak	
12	9748.0000	37.70	6.77	-42.10	46.65	49.02	74.00	24.98	Pass	V	Peak	

Page 103 of 107

Mode	Mode:		n(HT40) itting	(13.5Mbps	5)	Channel:		2452			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1061.6062	27.96	2.52	-43.03	55.92	43.37	74.00	30.63	Pass	Н	Peak
2	1593.4593	29.02	3.06	-42.91	55.70	44.87	74.00	29.13	Pass	Н	Peak
3	2131.5132	31.88	3.62	-43.17	59.82	52.15	74.00	21.85	Pass	Н	Peak
4	4904.0000	34.50	4.88	-42.80	47.31	43.89	74.00	30.11	Pass	Н	Peak
5	7356.0000	36.46	5.85	-42.13	46.14	46.32	74.00	27.68	Pass	Н	Peak
6	9808.0000	37.72	6.59	-42.10	47.29	49.50	74.00	24.50	Pass	Н	Peak
7	1752.8753	30.07	3.24	-42.69	51.13	41.75	74.00	32.25	Pass	V	Peak
8	2127.7128	31.88	3.62	-43.18	56.66	48.98	74.00	25.02	Pass	V	Peak
9	3984.0656	33.79	4.33	-43.00	51.91	47.03	74.00	26.97	Pass	V	Peak
10	4904.0000	34.50	4.88	-42.80	46.68	43.26	74.00	30.74	Pass	V	Peak
11	7356.0000	36.46	5.85	-42.13	46.41	46.59	74.00	27.41	Pass	V	Peak
12	9808.0000	37.72	6.59	-42.10	47.22	49.43	74.00	24.57	Pass	V	Peak

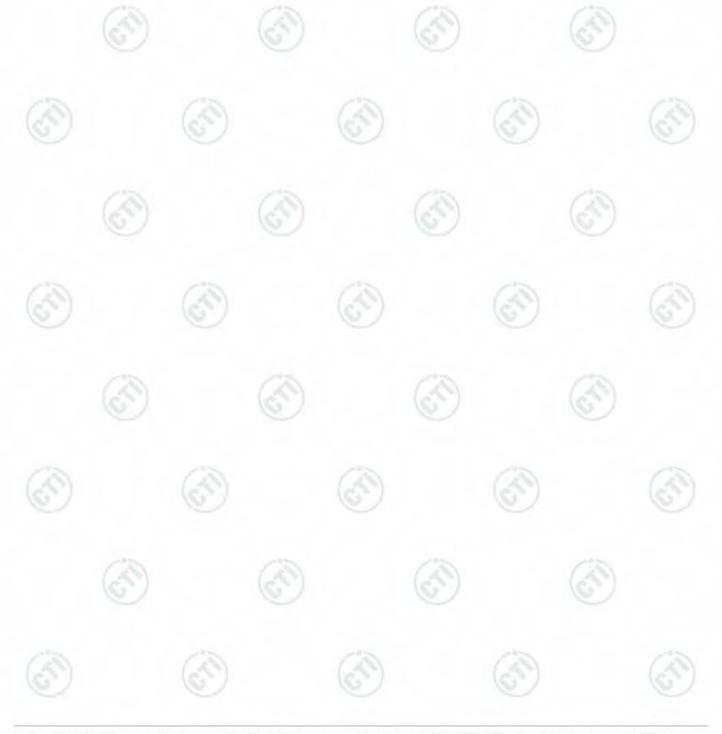
Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No. : EED32M00160903 Page 107 of 107

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32M00160901 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

