



**Test Report** FCC Part15 Subpart C

| Product Name | : | BASE STATION |
|--------------|---|--------------|
| Model No.    | : | BASE2.0      |
| FCC ID       | : | 2AVYXBASE20  |

Applicant : SAIC GM Wuling Automobile Co., Ltd.

Address : No.18 Hexi Road, Liuzhou City, Guangxi Zhuang Autonomous Region, China

| Date of Receipt | : | Mar. 31 , 2020                |
|-----------------|---|-------------------------------|
| Test Date       | : | Apr. 02 , 2020~ Apr. 24, 2020 |
| Issued Date     | : | Jun. 29, 2020                 |
| Report No.      | : | 2032200R-RF-US-P06V05         |
| Report Version  | : | V1.1                          |

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory.

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to calculate the uncertainty associated with the measurement result. This report is not used for social proof in China (or Mainland China) market.



# Test Report Certification

Issued Date : Jun. 29, 2020 Report No. : 2032200R-RF-US-P06V05

|                                   | <b>DEKRA</b>                                                                                                                                                                                                                                                                         |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Name                      | : BASE STATION                                                                                                                                                                                                                                                                       |
| Applicant                         | SAIC GM Wuling Automobile Co., Ltd.                                                                                                                                                                                                                                                  |
| Address                           | <ul> <li>No.18 Hexi Road, Liuzhou City, Guangxi Zhuang Autonomous<br/>Region, China</li> </ul>                                                                                                                                                                                       |
| Manufacturer                      | : United Automotive Electronic Systems Co., Ltd.                                                                                                                                                                                                                                     |
| Address                           | : No. 8, cheyuanheng fifth road yufeng area, Liuzhou City, Guangx Province, 516006, P.R. China.                                                                                                                                                                                      |
| Factory                           | : United Automotive Electronic Systems Co., Ltd.                                                                                                                                                                                                                                     |
| Address                           | : No. 8, cheyuanheng fifth road yufeng area, Liuzhou City, Guangxi Province, 516006, P.R. China.                                                                                                                                                                                     |
| Model No.                         | : BASE2.0                                                                                                                                                                                                                                                                            |
| FCC ID<br>EUT Voltage             | : 2AVYXBASE20<br>: DC 12V                                                                                                                                                                                                                                                            |
| Test Voltage                      | : DC 12V                                                                                                                                                                                                                                                                             |
| Brand Name<br>Applicable Standard | : SGMW<br>: FCC CFR Title 47 Part 15 Subpart C;                                                                                                                                                                                                                                      |
|                                   | ANSI C63.10: 2013                                                                                                                                                                                                                                                                    |
| Test Result<br>Performed Location | <ul> <li>Complied</li> <li>DEKRA Testing and Certification (Suzhou) Co., Ltd.<br/>No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu,<br/>China<br/>TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098<br/>FCC Designation Number: CN1199; IC Lab Code: 4075B</li> </ul> |
| Documented By                     | Kathy La                                                                                                                                                                                                                                                                             |
|                                   | ( Adm. Specialist: Kitty Li )                                                                                                                                                                                                                                                        |
| Reviewed By                       | Frankhe                                                                                                                                                                                                                                                                              |
|                                   | (Senior Project Manager: Frank He)                                                                                                                                                                                                                                                   |
| Approved By                       | Jack sharg                                                                                                                                                                                                                                                                           |
|                                   | (Engineering Supervisor: Jack Zhang)                                                                                                                                                                                                                                                 |



# TABLE OF CONTENTS

| Dese | cription                       | Page |
|------|--------------------------------|------|
| 1.   | General Information            | 5    |
| 1.1. | EUT Description                | 5    |
| 1.2. | Antenna information            | 6    |
| 1.3. | Mode of Operation              | 7    |
| 1.4. | Tested System Details          | 8    |
| 1.5. | Configuration of Tested System | 9    |
| 1.6. | EUT Exercise Software          | 10   |
| 2.   | Technical Test                 | 11   |
| 2.1. | Summary of Test Result         | 11   |
| 2.2. | Test Environment               | 11   |
| 3.   | Conducted Emission             | 12   |
| 3.1. | Test Equipment                 | 12   |
| 3.2. | Test Setup                     | 12   |
| 3.3. | Limit                          | 13   |
| 3.4. | Test Procedure                 | 13   |
| 3.5. | Uncertainty                    | 13   |
| 3.6. | Test Result                    | 14   |
| 4.   | Radiated Emission              | 15   |
| 4.1. | Test Equipment                 | 15   |
| 4.2. | Test Setup                     | 16   |
| 4.3. | Limit                          | 17   |
| 4.4. | Test Procedure                 | 17   |
| 4.5. | Uncertainty                    | 18   |
| 4.6. | Test Result                    | 19   |
| 5.   | 20dB Occupied Bandwidth        | 23   |
| 5.1. | Test Equipment                 | 23   |
| 5.2. | Test Setup                     | 24   |
| 5.3. | Limit                          | 25   |
| 5.4. | Test Procedure                 | 25   |
| 5.5. | Uncertainty                    | 25   |
| 5.6. | Test Result                    | 26   |
| 6.   | Antenna Requirement            | 27   |
| 6.1. | Requirement                    | 27   |
| 6.2. | Result                         | 27   |



# History of This Test Report

| REPORT NO.            | VERSION | DESCRIPTION            | ISSUED DATE   |
|-----------------------|---------|------------------------|---------------|
| 2032200R-RF-US-P06V05 | V1.0    | Initial Issued Report  | Apr. 28, 2020 |
| 2032200R-RF-US-P06V05 | V1.1    | 1. Remove unnecessary  | Jun. 29, 2020 |
|                       |         | standards              |               |
|                       |         | 2. Modify product name |               |
|                       |         |                        |               |
|                       |         |                        |               |



## 1. General Information

## 1.1. EUT Description

| Product Name       | BASE STATION |
|--------------------|--------------|
| Model No.          | BASE2.0      |
| Working Voltage    | DC 12V       |
| Carrier Frequency  | 125KHz       |
| Type of Modulation | ASK          |



## 1.2. Antenna information

| Model No.            | N/A                                 |          |  |                      |             |  |  |  |
|----------------------|-------------------------------------|----------|--|----------------------|-------------|--|--|--|
| Antenna manufacturer | N/A                                 |          |  |                      |             |  |  |  |
| Antenna Delivery     | □ 1*TX+1*RX □ 2*TX+2*RX □ 3*TX+3*RX |          |  |                      | ] 3*TX+3*RX |  |  |  |
| Antenna technology   | $\square$                           | SISO     |  |                      |             |  |  |  |
|                      |                                     |          |  | Basi                 | )           |  |  |  |
|                      |                                     | MIMO     |  | CDD                  |             |  |  |  |
|                      |                                     |          |  | Sectorized           |             |  |  |  |
|                      |                                     |          |  | Beam-forming         |             |  |  |  |
| Antenna Type         |                                     |          |  | Dipole               |             |  |  |  |
|                      |                                     | External |  | Sectorized           |             |  |  |  |
|                      |                                     |          |  | PIFA                 |             |  |  |  |
|                      | Internal                            |          |  | PCB                  |             |  |  |  |
|                      |                                     |          |  | Ceramic Chip Antenna |             |  |  |  |
|                      |                                     |          |  | Coil antenna         |             |  |  |  |
|                      |                                     |          |  | Type F antenna       |             |  |  |  |



#### **1.3. Mode of Operation**

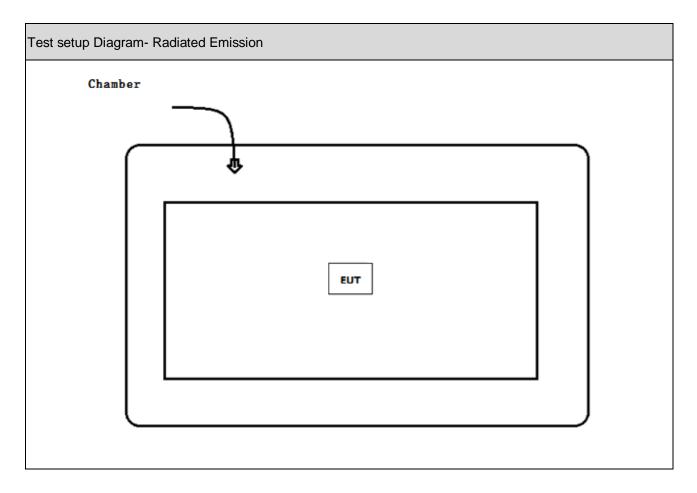
DEKRA has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

| Test Mode        |  |
|------------------|--|
| Mode 1: Transmit |  |

Note:

- 1. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 2. For portable device, radiated spurious emission was verified over X, Y, Z Axis, and shown the worst case on this report.




## 1.4. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Product | Manufacturer | Model No. | Serial No. | Power Cord |
|---------|--------------|-----------|------------|------------|
| 1 N/A   | N/A          | N/A       | N/A        | N/A        |



## 1.5. Configuration of Tested System





## **1.6. EUT Exercise Software**

| 1 | Setup the EUT and simulators as shown on above. |
|---|-------------------------------------------------|
| 2 | Turn on the power of equipment.                 |
| 3 | Start to continue transmit.                     |



#### 2. Technical Test

### 2.1. Summary of Test Result

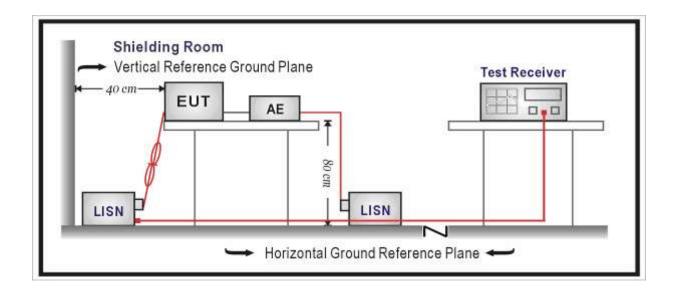
 $\boxtimes$  No deviations from the test standards

Deviations from the test standards as below description:

| Performed Test Item        | Normative References                        | Limit      | Result |
|----------------------------|---------------------------------------------|------------|--------|
| Conducted Emission         | FCC CFR Title 47 Part 15 Subpart C          | FCC 15.207 | N/A    |
|                            | Section 15.207                              |            |        |
| Field Strength of Spurious | FCC CFR Title 47 Part 15 Subpart C          | FCC 15.209 | PASS   |
|                            | Section 15.209                              |            |        |
| Channel Bandwidth          | FCC CFR Title 47 Part 15 Subpart C          | FCC 15.215 | PASS   |
|                            | Section 15.215(c)                           |            |        |
| Antenna Requirement        | FCC CFR Title 47 Part 15 Subpart C: Section | FCC 15.203 | PASS   |
|                            | 15.203                                      |            |        |

#### 2.2. Test Environment

| Items                      | Required (IEC 68-1) | Actual   |
|----------------------------|---------------------|----------|
| Temperature (°C)           | 15-35               | 21       |
| Humidity (%RH)             | 25-75               | 50       |
| Barometric pressure (mbar) | 860-1060            | 950-1000 |




## 3. Conducted Emission

## 3.1. Test Equipment

| Conducted Emission /                                                                                             | Conducted Emission / TR-1 |          |            |            |               |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------|----------|------------|------------|---------------|--|
| Instrument                                                                                                       | Manufacturer              | Type No. | Serial No. | Cal. Date  | Cal. Due Date |  |
| EMI Test Receiver                                                                                                | R&S                       | ESCI     | 100726     | 2020.03.29 | 2021.03.28    |  |
| Two-Line V-Network                                                                                               | R&S                       | ENV216   | 100043     | 2020.03.29 | 2021.03.28    |  |
| Two-Line V-Network                                                                                               | R&S                       | ENV216   | 100044     | 2019.09.17 | 2020.09.16    |  |
| 50ohm Coaxial                                                                                                    | Anritsu                   | MP59B    | 6200464462 | 2020.03.02 | 2021.03.01    |  |
| Switch                                                                                                           | Annisu                    | INIF 39D | 0200404402 | 2020.03.02 | 2021.03.01    |  |
| 50ohm Termination                                                                                                | SHX                       | TF2      | 07081401   | 2019.09.17 | 2020.09.16    |  |
| Temperature/Humidity                                                                                             | zhicheng                  | ZC1-2    | TR1-TH     | 2020.01.04 | 2021.01.03    |  |
| Meter                                                                                                            | Zhicheng                  | 201-2    |            | 2020.01.04 | 2021.01.03    |  |
| Note: All equipment are calibrated with traceable calibrations. Each calibration is traceable to the national or |                           |          |            |            |               |  |
| international standards                                                                                          | nternational standards.   |          |            |            |               |  |

## 3.2. Test Setup





#### 3.3. Limit

| FCC Part 15 Subpart C Paragraph 15.207 Limits |              |              |  |  |  |  |
|-----------------------------------------------|--------------|--------------|--|--|--|--|
| Frequency<br>(MHz)                            | QP<br>(dBuV) | AV<br>(dBuV) |  |  |  |  |
| 0.15 - 0.50                                   | 66 - 56      | 56 – 46      |  |  |  |  |
| 0.50 - 5.0                                    | 56           | 46           |  |  |  |  |
| 5.0 - 30                                      | 60           | 50           |  |  |  |  |

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

#### 3.4. Test Procedure

The EUT was setup according to ANSI C63.10 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

#### 3.5. Uncertainty

The measurement uncertainty is defined as ± 2.02 dB



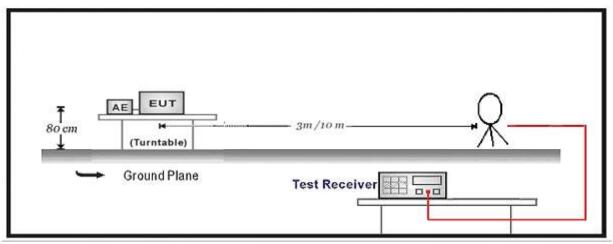
## 3.6. Test Result

The device was powered by DC source, so this test was not applied.

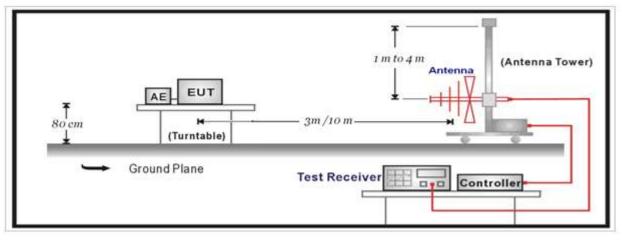


## 4. Radiated Emission

# 4.1. Test Equipment


AC1

| Instrument                    | Manufacturer | Model No. | Serial No.  | Cali. Due Date |
|-------------------------------|--------------|-----------|-------------|----------------|
| EMI Test Receiver             | R&S          | ESCI      | 100175      | 2020.05.24     |
| Preamplifier                  | Quietek      | AP-025C   | CHM-0602008 | 2021.04.12     |
| Coaxial Cable                 | Huber+Suhner | RG 214_U  | AC1-R       | 2021.04.12     |
| Loop Antenna                  | R&S          | HFH2-Z2   | 833799/003  | 2021.01.27     |
| Temperature/Humidity<br>Meter | zhichen      | ZC1-2     | AC1-TH      | 2020.08.20     |




### 4.2. Test Setup

9kHz~30MHz Test Setup:



30MHz~1GHz Test Setup:





## 4.3. Limit

Field strength of emissions from intentional radiators operated under 15.209(a) shall not

|                       | FCC Part 15.209(a) |                            |  |  |  |  |
|-----------------------|--------------------|----------------------------|--|--|--|--|
| Fundamental frequency | Field strength of  | Field strength of spurious |  |  |  |  |
| (MHz)                 | fundamental (µV/m) | emissions (µV/m)           |  |  |  |  |
| 0.009-0.490           | 2400/F(kHz)        | 300                        |  |  |  |  |
| 0.490-1.705           | 24000/F(kHz)       | 30                         |  |  |  |  |
| 1.705-30.0            | 30                 | 30                         |  |  |  |  |
| 30-88                 | 100**              | 3                          |  |  |  |  |
| 88-216                | 150**              | 3                          |  |  |  |  |
| 216-960               | 200**              | 3                          |  |  |  |  |
| Above 960             | 500                | 3                          |  |  |  |  |

exceed the following:

(1)The tighter limits apply at the band edges.

(2)Measurements were performed at 10m and the data was extrapolated to the specified measurement distance of 300m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)(2). Extrapolation Factor = 40 log<sub>10</sub>(300/10) = 59dB for example.

Measurements were performed at 10m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in (10, 10) Extrapolation Factor = 40  $\log_{10}(30/10)$  = 19dB for example.

(3)All measurements were performed using a loop antenna. The antenna was positioned in three orthogonal positions (X front, Y side, Z top) and the position with the highest emission level was recorded.

## 4.4. Test Procedure

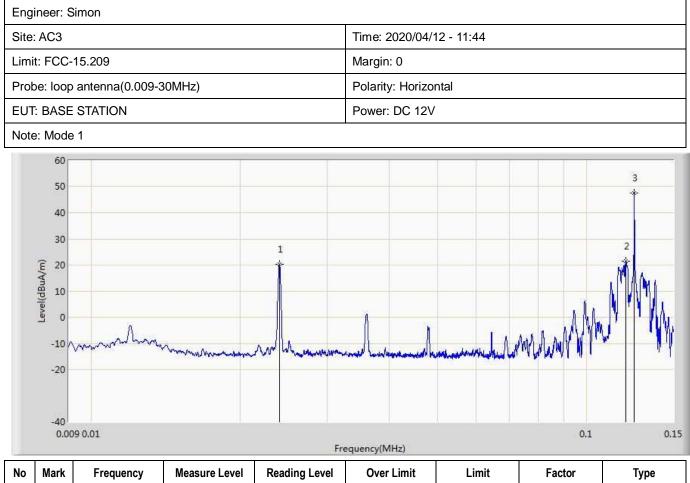
The EUT was setup according to ANSI C63.10 for compliance to FCC 47CFR 15.209 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 10 meters.

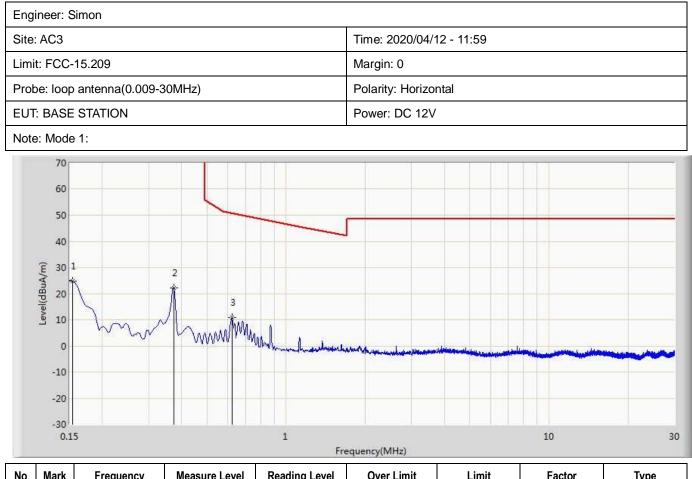
The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This



is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.

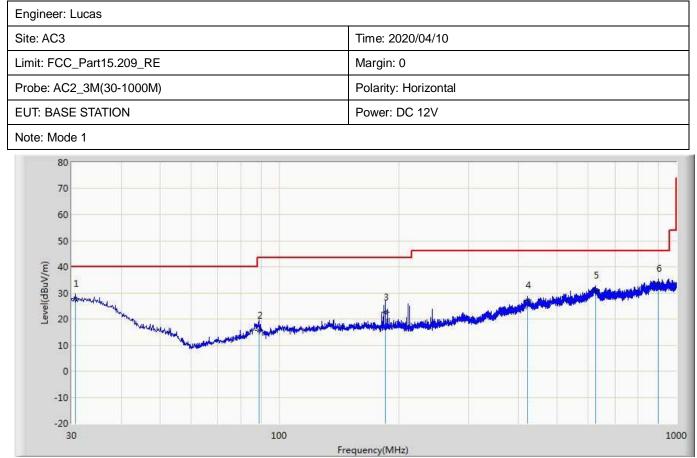

The frequency range from 9kHz to 10<sup>th</sup> harmonic is checked.

#### 4.5. Uncertainty


The measurement uncertainty is defined as  $\pm$  3.80 dB



### 4.6. Test Result

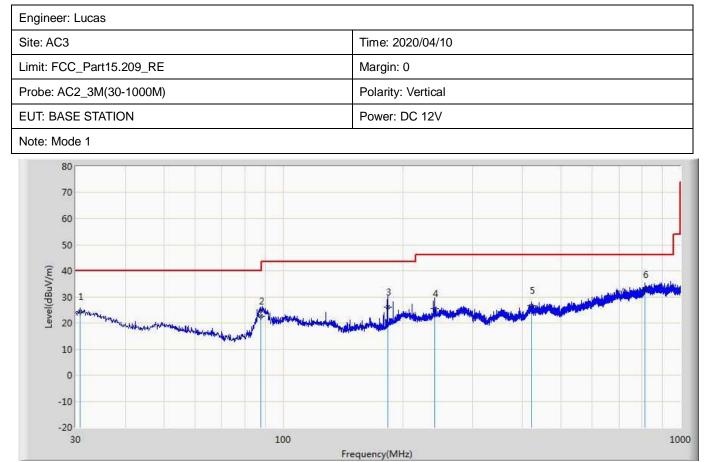



| No | Mark | Frequency | Measure Level | Reading Level | Over Limit | Limit    | Factor | Туре |
|----|------|-----------|---------------|---------------|------------|----------|--------|------|
|    |      | (MHz)     | (dBuA/m)      | (dBuA)        | (dB)       | (dBuA/m) | (dB)   |      |
| 1  |      | 0.024     | 20.279        | 9.479         | -78.806    | 99.085   | 10.800 | QP   |
| 2  |      | 0.120     | 21.385        | 10.585        | -63.720    | 85.105   | 10.800 | QP   |
| 3  | *    | 0.125     | 47.441        | 36.641        | -37.310    | 84.751   | 10.800 | QP   |



| No | Mark | Frequency | Measure Level | Reading Level | Over Limit | Limit    | Factor | Туре |
|----|------|-----------|---------------|---------------|------------|----------|--------|------|
|    |      | (MHz)     | (dBuA/m)      | (dBuA)        | (dB)       | (dBuA/m) | (dB)   |      |
| 1  |      | 0.154     | 24.817        | 14.017        | -58.122    | 82.939   | 10.800 | QP   |
| 2  |      | 0.374     | 22.278        | 11.478        | -52.954    | 75.232   | 10.800 | QP   |
| 3  | *    | 0.624     | 11.010        | 0.410         | -39.775    | 50.785   | 10.600 | QP   |

Note: We evaluated the three axes of X, Y and Z, and only the worst axis data is shown in the report




| No | Mark | Frequency | Measure  | Reading | Over    | Limit    | Probe  | Cable | Amp   | Ant  | Table | Туре |
|----|------|-----------|----------|---------|---------|----------|--------|-------|-------|------|-------|------|
|    |      | (MHz)     | Level    | Level   | Limit   | (dBuV/m) | (dB/m) | (dB)  | (dB)  | Pos  | Pos   |      |
|    |      |           | (dBuV/m) | (dBuV)  | (dB)    |          |        |       |       | (cm) | (deg) |      |
| 1  | *    | 30.728    | 27.683   | 0.100   | -12.317 | 40.000   | 20.956 | 6.628 | 0.000 | 100  | 30    | QP   |
| 2  |      | 89.049    | 15.524   | 1.800   | -27.976 | 43.500   | 6.985  | 6.739 | 0.000 | 100  | 50    | QP   |
| 3  |      | 185.079   | 22.690   | 5.500   | -20.810 | 43.500   | 9.880  | 7.310 | 0.000 | 100  | 111   | QP   |
| 4  |      | 420.910   | 27.269   | 0.100   | -18.731 | 46.000   | 19.201 | 7.968 | 0.000 | 100  | 150   | QP   |
| 5  |      | 625.338   | 30.881   | 0.200   | -15.119 | 46.000   | 22.111 | 8.570 | 0.000 | 100  | 45    | QP   |
| 6  |      | 901.540   | 33.541   | 0.300   | -12.459 | 46.000   | 23.988 | 9.253 | 0.000 | 100  | 200   | QP   |

Note:

1. " \* ", means this data is the worst emission level.

2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).



| No | Mark | Frequency | Measure  | Reading | Over    | Limit    | Probe  | Cable | Amp   | Ant  | Table | Туре |
|----|------|-----------|----------|---------|---------|----------|--------|-------|-------|------|-------|------|
|    |      | (MHz)     | Level    | Level   | Limit   | (dBuV/m) | (dB/m) | (dB)  | (dB)  | Pos  | Pos   |      |
|    |      |           | (dBuV/m) | (dBuV)  | (dB)    |          |        |       |       | (cm) | (deg) |      |
| 1  |      | 30.849    | 24.265   | 0.200   | -15.735 | 40.000   | 17.436 | 6.629 | 0.000 | 100  | 83    | QP   |
| 2  |      | 87.836    | 22.679   | 6.000   | -17.321 | 40.000   | 9.953  | 6.726 | 0.000 | 100  | 167   | QP   |
| 3  |      | 183.024   | 26.149   | 6.800   | -17.351 | 43.500   | 12.211 | 7.138 | 0.000 | 100  | 114   | QP   |
| 4  |      | 240.975   | 25.651   | 2.100   | -20.349 | 46.000   | 16.023 | 7.528 | 0.000 | 100  | 96    | QP   |
| 5  |      | 421.516   | 26.701   | 0.100   | -19.299 | 46.000   | 18.632 | 7.969 | 0.000 | 100  | 10    | QP   |
| 6  | *    | 812.547   | 32.898   | 0.200   | -13.102 | 46.000   | 23.658 | 9.039 | 0.000 | 100  | 340   | QP   |



## 5. 20dB Occupied Bandwidth

# 5.1. Test Equipment

AC1

| Instrument                    | Manufacturer | Model No. | Serial No.  | Cali. Due Date |
|-------------------------------|--------------|-----------|-------------|----------------|
| EMI Test Receiver             | R&S          | ESCI      | 100175      | 2020.05.24     |
| Preamplifier                  | Quietek      | AP-025C   | CHM-0602008 | 2021.04.12     |
| Coaxial Cable                 | Huber+Suhner | RG 214_U  | AC1-R       | 2021.04.12     |
| Loop Antenna                  | R&S          | HFH2-Z2   | 833799/003  | 2021.01.27     |
| Temperature/Humidity<br>Meter | zhichen      | ZC1-2     | AC1-TH      | 2020.08.20     |



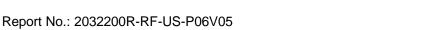
### 5.2. Test Setup

9kHz~30MHz Test Setup:

| ₹<br>80 cm | AE EUT         |               |  |
|------------|----------------|---------------|--|
|            | - Ground Plane | Test Receiver |  |



#### 5.3. Limit

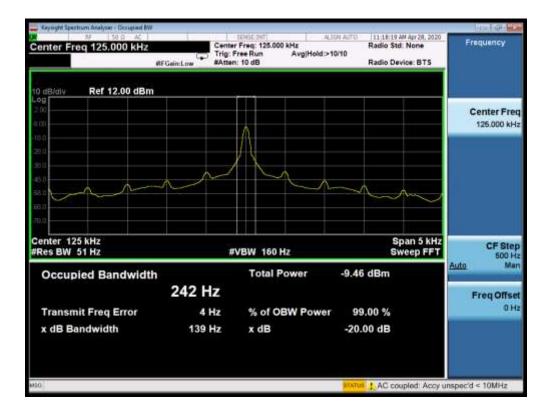

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.215(c), must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

#### 5.4. Test Procedure

The bandwidth of the fundamental frequency was measured by spectrum analyzer with the RBW 1%~5% of 20dBc bandwidth and the VBW three times of the RBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

#### 5.5. Uncertainty

The measurement uncertainty is defined as  $\pm$  10 Hz






## 5.6. Test Result

| Product      | BASE STATION            |           |      |
|--------------|-------------------------|-----------|------|
| Test Item    | 20dB Occupied Bandwidth |           |      |
| Test Mode    | Mode 1: Transmit        |           |      |
| Date of Test | 2020/04/28              | Test Site | AC-1 |

| Frequency | 20dB Bandwidth | 99% Bandwidth |
|-----------|----------------|---------------|
| (kHz)     | (kHz)          | (kHz)         |
| 125       | 0.139          | 0.242         |



| Test Result | Pass |  |  |
|-------------|------|--|--|
|-------------|------|--|--|



#### 6. Antenna Requirement

#### 6.1. Requirement

#### Antenna Requirement Limit

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

#### 6.2. Result

Antenna Connector Construction

The use of a permanently attached antenna  $\square$ 

The antenna use of a unique coupling to the intentional radiator

The use of a nonstandard antenna jack or electrical connector

Please refer to the attached document "Internal Photograph" to show the antenna connector.

The End