

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637 Website:

www.cga-cert.com

Report Template Version: V04 Report Template Revision Date: 2018-07-06

Test Report

Report No.: CQASZ20240200265E-04

TOPDON TECHNOLOGY Co., Ltd. **Applicant:**

Unit 2005 20/F, Qianhai Shimao Tower, Qianhai Shenzhen-Hong kong Cooperation **Address of Applicant:**

Zone, Shenzhen, China, 518052

Equipment Under Test (EUT):

Product: THINKTOOL PROS+, Smart Automotive Diagnostic System

Model No.: TKT04, Phoenix Plus, Phoenix Plus 2

Teat Model No.: TKT04

TOPDON Brand Name:

FCC ID: 2AVYW-PHPLUS

Standards: 47 CFR Part 15, Subpart E

KDB 789033 D02 General UNII Test Procedures New Rules v02

KDB 558074 D01 Meas Guidance v05

Date of Receipt: 2024-02-01

Date of Test: 2024-02-01 to 2024-03-06

Date of Issue: 2024-03-06 PASS* **Test Result:**

*In the configuration tested, the EUT complied with the standards specified above

Tested By:

[Lewis Zhou] Reviewed By: _ (Timo Lei) Approved By: _____ (Alex Wang)

Report No.: CQASZ20240200265E-04

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20240200265E-04	Rev.01	Initial report	2024-03-06

Note:

This test report (Ref. No.: CQASZ20240200265E-04)

All test data comes from source test reports (Ref. No.:CQASZ20210300306E-04).

Only on the basis of the original report Change Model No., ower supply panel, Applicant, Address of Applicant, Manufacturer, Address of Manufacturer, Brand Name, Photographs of EUT. These changes do not affect RF performance.

Report No.: CQASZ20240200265E-04

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	ANSI C63.10-2013	PASS
Conducted Output Power and transmit power control mechanism	47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(4)(h)(1)	ANSI C63.10-2013 N/A	
Emission Bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)	ANSI C63.10-2013	N/A
Peak Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(5)	ANSI C63.10-2013	N/A
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	ANSI C63.10-2013 N/A	
Operation in the absence of information to the transmit	47 CFR Part 15 Subpart E Section 15.407 (c)	47 CFR Part 15 Subpart E	N/A
Radiated Spurious Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(5) (6)(7)(8)	ANSI C63.10-2013 PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart E Section 15.407 (b)(6)(7)(8)	ANSI C63.10-2013	N/A

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.
 Rx: In this whole report Rx (or rx) means Receiver.
 RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

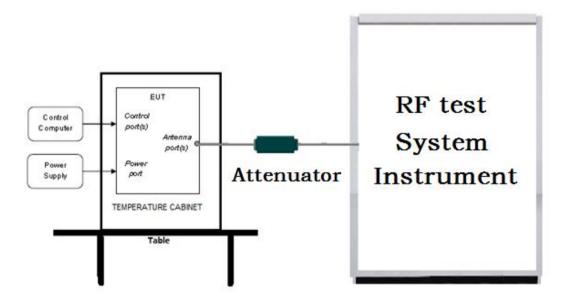
Press: In this whole report Press means Pressure.

N/A: In this whole report not application

Report No.: CQASZ20240200265E-04

3 Content

	Page
1 VERSION2 TEST SUMMARY	
3 CONTENT	
4 TEST REQUIREMENT	
4.1 TEST SETUP	
4.1.1 For Conducted test setup	
4.1.2 For Radiated Emissions test setup	
4.2 TEST ENVIRONMENT	
4.3 TEST CONDITION	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION	(
5.2 GENERAL DESCRIPTION OF EUT	9
5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 TEST FACILITY	
5.7 DEVIATION FROM STANDARDS	11
5.8 ABNORMALITIES FROM STANDARD CONDITIONS	
5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
5.10 Measurement Uncertainty (95% confidence levels, k=2)	
6 EQUIPMENT LIST	
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
Appendix F): Antenna Requirement	
Appendix G): Operation in the absence of information to the transmit	
Appendix H): AC Power Line Conducted Emission	
• • • • • • • • • • • • • • • • • • • •	
8 PHOTOGRAPHS - EUT TEST SETUP	
8.1 RADIATED SPURIOUS EMISSION	
8.2 CONDUCTED EMISSION	
9 PHOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	24



4 Test Requirement

4.1 Test setup

4.1.1 For Conducted test setup

4.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

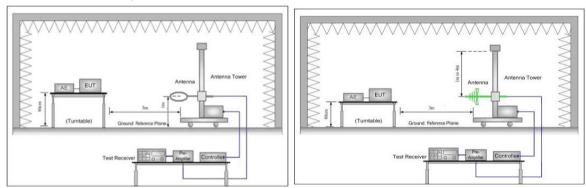


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

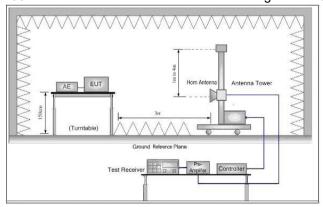
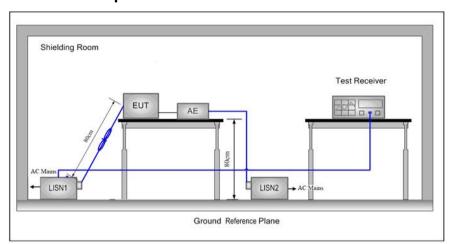



Figure 3. Above 1GHz

Report No.: CQASZ20240200265E-04

4.1.3 For Conducted Emissions test setup Conducted Emissions setup

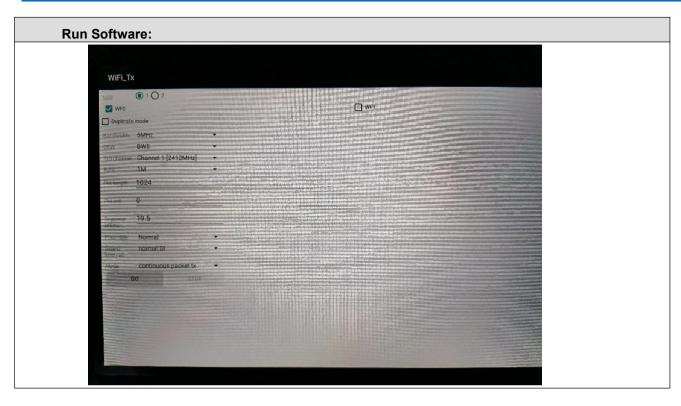
4.2 Test Environment

Operating Environment	:	
Conducted Emissions:		
Temperature:	25.6 °C	
Humidity:	60 % RH	
Atmospheric Pressure:	1009 mbar	
Radiated Emissions:		
Temperature:	25.5 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1009mbar	
Radio conducted item t	est (RF Conducted test room):	
Temperature:	25.3 °C	
Humidity:	50 % RH	
Atmospheric Pressure:	1009 mbar	
Test Condition	Temperature (°C)	Voltage (V)
TN/VN	+15 to +35	7.6
TL/VL	0	6.84
TH/VL	50	6.84
TL/VH	0	8.36
TH/VH	50	8.36

Remark:

- 1)The EUT just work in such extreme temperature of 0 °C to 50 °C and the extreme voltage of 6.84V to
- 8.36V, so here the EUT is tested in the temperature of 0 °C to 50 °C and the voltage of 6.84V to 8.36V.
- 2)VN: Normal Voltage; TN: Normal Temperature;
- TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
- VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

Report No.: CQASZ20240200265E-04


4.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest wode	I X/KX	Low(L)	Middle(M)	High(H)	
902 44a/p/aa/20M)	5150MU 5250 MU-	Channel 36	Channel 40	Channel 48	
802.11a/n/ac(20M)	5150MHz ~5250 MHz	5180MHz	5200MHz	5240MHz	
900 11p/pp/40M)	5150MU 5250 MU-	Channel 38	N/A	Channel 46	
802.11n/ac(40M)	5150MHz ~5250 MHz	5190MHz	N/A	5230MHz	
802.11ac(80M)	5150MHz ~5250 MHz	N/A	Channel 42	N/A	
		N/A	5210MHz	N/A	
902 11a/p/aa/20M)	5725MHz ~5850 MHz	Channel 149	Channel 157	Channel 165	
802.11a/n/ac(20M)	3/23WINZ ~303U WINZ	5745MHz	5785MHz	5825MHz	
902 11p/pp/40M)	5725MHz ~5850 MHz	Channel 151	N/A	Channel 159	
802.11n/ac(40M)		5755MHz	N/A	5795MHz	
902 11aa(90M)	5725MHz ~5850 MHz	N/A	Channel 155	N/A	
802.11ac(80M)	37 23WII 12 ~3030 WITZ	N/A	5775MHz	N/A	

Report No.: CQASZ20240200265E-04

Test mode:

Pre-scan under all rate at lowest channel for Ant1

Through Pre-scan, 6Mbps is the worst case of 802.11a (20M); MCS0 is the worst case of 802.11n (20M); MCS0 is the worst case of 802.11ac (20M); MCS0 is the worst case of 802.11ac (40M); MCS0 is the worst case of 802.11ac (80M).

Report No.: CQASZ20240200265E-04

5 General Information

5.1 Client Information

Applicant:	TOPDON TECHNOLOGY Co., Ltd.
Address of Applicant:	Unit 2005 20/F, Qianhai Shimao Tower, Qianhai Shenzhen-Hong kong Cooperation Zone, Shenzhen, China, 518052
Manufacturer:	TOPDON TECHNOLOGY Co., Ltd.
Address of Manufacturer:	Unit 2005 20/F, Qianhai Shimao Tower, Qianhai Shenzhen-Hong kong Cooperation Zone, Shenzhen, China, 518052
Factory:	THINKCAR TECH CO., LTD. BanTian Branch
Address of Factory:	2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen

5.2 General Description of EUT

Product Name:	THINKTOOL PROS+, Smart Automotive Diagnostic System	
Model No.:	TKT04, Phoenix Plus, Phoenix Plus 2	
Test Model No.:	TKT04	
Trade Mark:	TOPDON	
Hardware Version:	BSK-Y8-V3	
Software Version:	Y8_tool_proplus_20201023_1413_V1.8	
Test sample SN:	850022568053	
EUT Power Supply:	lithium battery:DC7.6V, 6300mAh, Charge by DC5V	
	Adapter:	
	MODEL: PSYB0502500	
	INPUT: 100-240V~50/60Hz 0.6A Max	
	OUTPUT: 5V 2.5A, 12.5W	
EUT Supports Radios	Bluetooth Dual mode: 2402-2480MHz	
application:	2.4GHz: Wi-Fi: 802.11b/g/n(HT20): 2412MHz~2462MHz;	
	802.11n(HT40): 2422MHz~2452MHz	
	5GHz: Wi-Fi: U-NII-1: 5.15-5.25GHz; U-NII-3: 5.725-5.850GHz	

5.3 Product Specification subjective to this standard

•			
Operation Frequency:	IEEE 802.11a/n/ac(20M): 5150MHz ~5250 MHz IEEE802.11n/ac(40M): 5150MHz ~5250 MHz IEEE802.11ac(80M): 5150MHz ~5250 MHz IEEE 802.11a/n/ac(20M): 5725MHz ~5850 MHz IEEE802.11n/ac(40M): 5725MHz ~5850 MHz IEEE802.11ac(80M): 5725MHz ~5850 MHz		
Channel Numbers:	IEEE 802.11a/n/ac(20M): 5150MHz ~5250MHz/ 4 channel IEEE 802.11n/ac(40M): 5150MHz ~5250MHz/ 2 channel IEEE 802.11ac(80M): 5150MHz ~5250MHz/ 1 channel IEEE 802.11a/n/ac(20M): 5725MHz ~5850MHz/ 5 channel IEEE 802.11n/ac(40M): 5725MHz ~5850MHz/ 2 channel IEEE 802.11ac(80M): 5725MHz ~5850MHz/ 1 channel		
Type of Modulation:	OFDM		
Sample Type:	☐ Mobile ☐ Portable ☐ Fix Location		
Test Power Grade:	N/A		
Test Software of EUT:	RF Test (manufacturer declare)		
Antenna Type:	internal antenna with ipex connector		

Report No.: CQASZ20240200265E-04

Antenna gain:	3.68dBi@5GHz: Wi-Fi: U-NII-1, 5.46dBi@5GHz: Wi-Fi: U-NII-3
---------------	--

Operation Frequency each of channel

operation requestoy each	or eriaririer		
For 802.	11a/n/ac(20M) Operation	in the 5150MHz ~5250	MHz band
Channel	Frequency	Channel	Frequency
36	5180MHz	44	5220MHz
40	5200MHz	48	5240MHz
For 802.	11a/n/ac(20M) Operation	in the 5725MHz ~5850	MHz band
Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz	NA	NA

For 802.11n/ac((40M) Operation in the 5150MHz ~5250 MHz band		
Channel	Frequency	Channel	Frequency
38	5190MHz	46	5230MHz
Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

For 802.11ac(80M) Operation in the 5150MHz ~5250 MHz band			
Channel	Frequency	NA	NA
42	5210MHz	NA	NA
For 802.11ac(80M) Operation in the 5725MHz ~5850 MHz band			
Channel	Frequency	NA	NA
155	5775MHz	NA	NA

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
PC	Lenovo	ThinkPad E450c	FCC ID	CQA

Report No.: CQASZ20240200265E-04

5.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

5.6 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	3 x 10 ⁻⁸
2	RF power, conducted	0.86dB
3	Padiated Spurious emission test	5.12dB (Below 1GHz)
3	Radiated Spurious emission test	4.6dB (Above 1GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.8°C
6	Humidity test	2.0%
7	DC power voltages	0.5%

Report No.: CQASZ20240200265E-04

6 Equipment List

<u> </u>					
Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2023/9/8	2024/9/7
Spectrum analyzer	R&S	FSU26	CQA-038	2023/9/8	2024/9/7
Spectrum analyzer	R&S	FSU40	CQA-075	2023/9/8	2024/9/7
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2023/9/8	2024/9/7
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2023/9/8	2024/9/7
Preamplifier	EMCI	EMC184055SE	CQA-089	2023/9/8	2024/9/7
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2023/9/8	2024/9/7
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2023/9/8	2024/9/7
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2023/9/8	2024/9/7
Antenna Connector	CQA	RFC-01	CQA-080	2023/9/8	2024/9/7
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2023/9/8	2024/9/7
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2023/9/8	2024/9/7
Power meter	R&S	NRVD	CQA-029	2023/9/8	2024/9/7
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2023/9/8	2024/9/7
EMI Test Receiver	R&S	ESR7	CQA-005	2023/9/8	2024/9/7
LISN	R&S	ENV216	CQA-003	2023/9/8	2024/9/7
Coaxial cable	CQA	N/A	CQA-C009	2023/9/8	2024/9/7
DC power	KEYSIGHT	E3631A	CQA-028	2023/9/8	2024/9/7

Test software:

	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

Report No.: CQASZ20240200265E-04

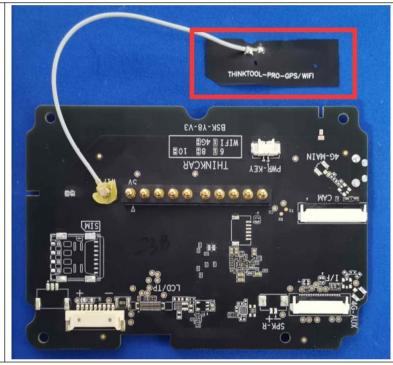
7 Radio Technical Requirements Specification

Reference documents for testing:

.0.0.0	moo accamicing for toothing.			
No.	Identity Document Title			
1	FCC Part15E	Subpart C-Intentional Radiators		
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices		
3	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E		
4	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band		

Report No.: CQASZ20240200265E-04

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is internal antenna with ipex connector. The best case gain of the 5G WiFi antenna is 3.68dBi@Band 1, 5.46dBi@Band 4.

Report No.: CQASZ20240200265E-04

Appendix G): Operation in the absence of information to the transmit

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signal ling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

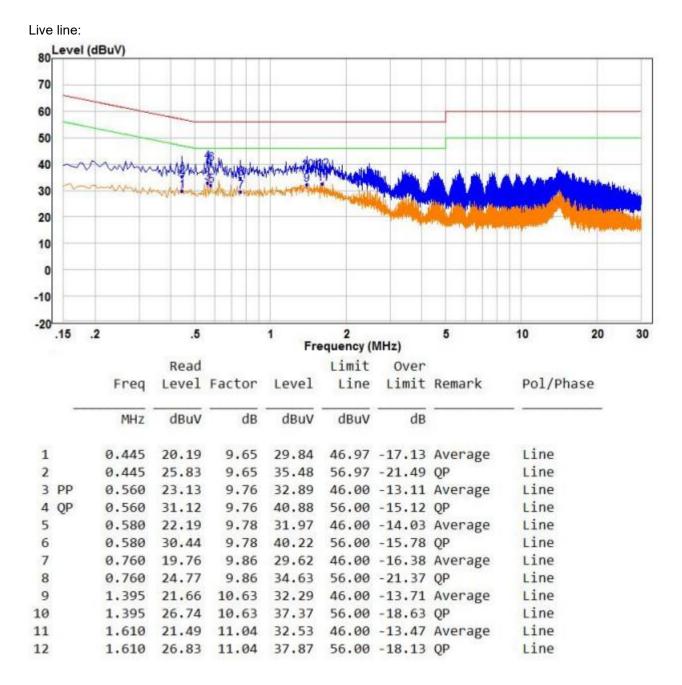
Operation in the absence of information to the transmit

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (manufacturer declare)

Report No.: CQASZ20240200265E-04

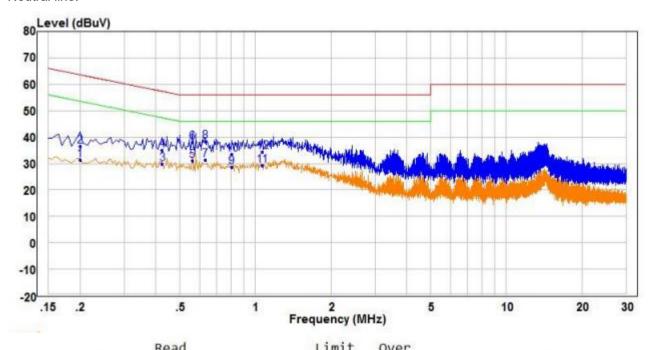
Appendix H): AC Power Line Conducted Emission

7 10 10 0 11 0 11 7 1 1 1 1 1 1 1 1 1 1	JI OWCI EIIIC OOIIGC		•			
Test Procedure:	Test frequency range :150KHz 1)The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the grown the unit being measure multiple power cables to a exceeded. 3)The tabletop EUT was place reference plane. And for fix horizontal ground reference. 4) The test was performed wield EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximulal of the interface cable conducted measurement.	nce voltage test was con AC power source through provides a 50Ω/50μ units of the EUT were ground reference plane ed. A multiple socket of single LISN provided the dupon a non-metallic por-standing arrangement are plane, with a vertical ground reference to the horizontal ground associated equipment are emission, the relative provides and associated equipment in the provides and the	rough a LISN 1 (Line In	Impedance dance. The nd LISN 2, the LISN 1 to connect was not the ground ced on the rear of the ical ground. The LISN onded to a reference d the EUT. Im from the pment and		
Limit:		Limit (dBµV)				
	Frequency range (MHz)	Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency					


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Neutral line:

		Read		100000000000000000000000000000000000000	Limit	over		000000000000000000000000000000000000000
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
-	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.200	21.82	9.61	31.43	53.61	-22.18	Average	Neutral
2	0.200	26.82	9.61	36.43	63.61	-27.18	QP	Neutral
3	0.425	20.18	9.63	29.81	47.35	-17.54	Average	Neutral
4	0.425	25.40	9.63	35.03	57.35	-22.32	QP	Neutral
4 5	0.560	21.47	9.76	31.23	46.00	-14.77	Average	Neutral
6	0.560	28.35	9.76	38.11	56.00	-17.89	QP	Neutral
7 PP	0.630	21.43	9.83	31.26	46.00	-14.74	Average	Neutral
8 QP	0.630	28.64	9.83	38.47	56.00	-17.53	QP	Neutral
9	0.805	18.95	9.83	28.78	46.00	-17.22	Average	Neutral
10	0.805	23.80	9.83	33.63	56.00	-22.37	QP	Neutral
11	1.065	19.47	9.70	29.17	46.00	-16.83	Average	Neutral
12	1.065	24.72	9.70	34.42	56.00	-21.58	QP	Neutral

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

Report No.: CQASZ20240200265E-04

Appendix J): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1CHz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

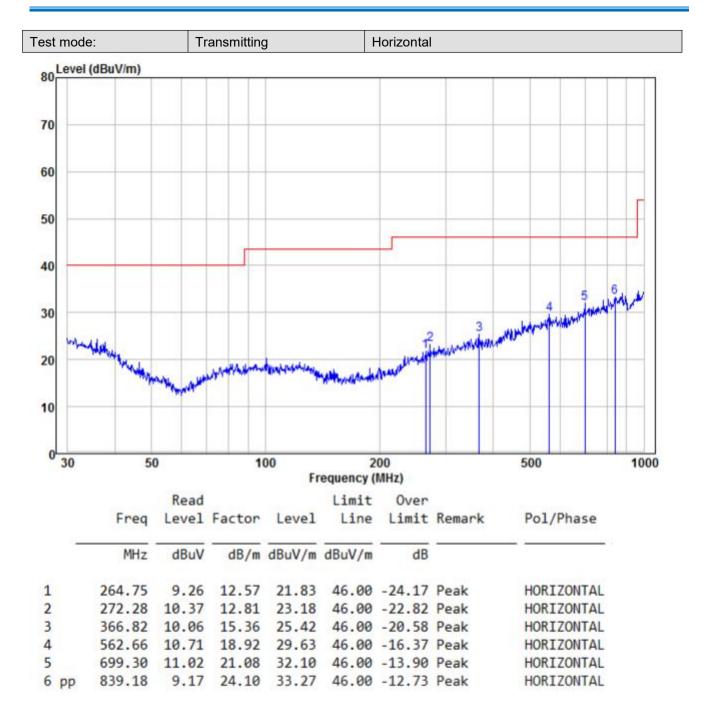
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel .the middle channel .the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

ı	im	it٠
ᆫ	1111	ıι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/cm)	Remark	Measurement distance (cm)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

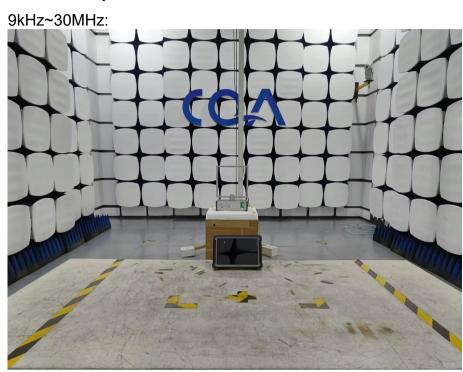
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

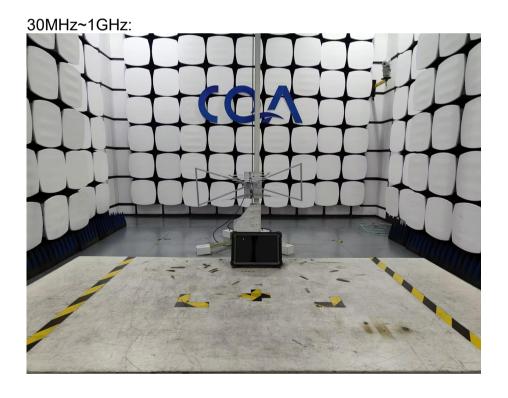
Test result: PASS



Test Data: Radiated Emission below 1GHz

30MHz~	1GHz								
est mod	e:	Tı	ansmitting	9	·	Vertical			
80 Leve	(dBuV/m)								
70									
60									
50									
40									
30	2 NM 3					الماد	ne the second state of the second state of the second seco	4 5	and the state of
10	and the same	Marineritae	pine majorith Apric	it file contract	rendermak	j. Legalia Maria			
0 30	5	0	1	00		200		500	1000
		Read		1	requency	Production of the second			
	Freq		Factor	Level	Limit Line	Over	Remark	Pol/Phase	2
2	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	ş ı		
			45 63	29 59	40.00	-10.41	Peak	VERTICAL	
1 pp	31.07	13.96	15.63	60.00				*	
1 pp	31.07 36.64	13.96 14.73				-11.26	Peak	VERTICAL	
		14.73	14.01	28.74	40.00				
2	36.64	14.73 11.68	14.01 10.86	28.74 22.54	40.00	-11.26	Peak	VERTICAL	
2 3	36.64 44.12	14.73 11.68	14.01 10.86	28.74 22.54 30.87	40.00 40.00 46.00	-11.26 -17.46	Peak Peak	VERTICAL VERTICAL	


Report No.: CQASZ20240200265E-04



8 Photographs - EUT Test Setup

8.1 Radiated Spurious Emission



8.2 Conducted Emission

Report No.: CQASZ20240200265E-04

9 Photographs - EUT Constructional Details

Refer to PHOTOGRAPHS OF EUT for CQASZ20240200265E-01.

*** END OF REPORT ***