KSIGN (Guangdong) Testing Co., Ltd.

KSIGN®

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

TEST REPORT				
Report No:	KS2104S0984E			
FCC ID······:	2AVYW-BT700PRO			
Applicant:	TOPDON TECHNOLOGY Co., Ltd			
Address	Unit 2005 20/F, No.3040 Xinghai Avenue, Qianhai Shimao Tower, Qianhai Shenzhen-Hong kong Cooperation Zone, Shenzhen, PR. China			
Manufacturer	TOPDON TECHNOLOGY Co., Ltd			
Address	Unit 2005 20/F, No.3040 Xinghai Avenue, Qianhai Shimao Tower, Qianhai Shenzhen-Hong kong Cooperation Zone, Shenzhen, PR. China			
Product Name:	Battery Tester			
Trade Mark:	TOPDON			
Model/Type reference	BT700 Pro			
Listed Model(s):	N/A			
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of Receipt:	Apr. 23, 2021			
Date of Test Date:	Apr. 23, 2021~May. 11, 2021			
Date of issue:	May. 11, 2021			
Test result:	Pass			
Compiled by: (Printed name+signature)	Rory Huang Rory Huang Test			
Supervised by: (Printed name+signature)	Eder Zhan Eder, Than			
Approved by:	Care Lus			
(Printed name+signature)	Cary Luo			
Testing Laboratory Name:	KSIGN(Guangdong) Testing Co., Ltd.			
Address	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China			
This test was at your he dowline to be				

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Page

TABLE OF CONTENTS

		1 million
1. TEST SUMMARY		
1.1. Test Standards		-
1.2. Report version		
1.3. TEST DESCRIPTION		
1.4. TEST FACILITY		5
1.5. MEASUREMENT UNCERTAINTY		
1.6. Environmental conditions		
2. GENERAL INFORMATION		
2.1. GENERAL DESCRIPTION OF EUT.		
2.2. OPERATION STATE		
2.3. MEASUREMENT INSTRUMENTS LIST		
2.5. Test Software		9
3. TEST ITEM AND RESULTS		10
3.1. ANTENNA REQUIREMENT.		
3.2. PEAK OUTPUT POWER		
3.3. POWER SPECTRAL DENSITY		
3.4. 6dB Bandwidth		
3.5. BAND EDGE AND SPURIOUS EMISSION (CONDUCTED)		22
3.6. BAND EDGE EMISSIONS(RADIATED)		24
3.7. Spurious Emission (Radiated)		
3.8. CONDUCTED EMISSION		
4. EUT TEST PHOTOS	Child In party	43
5 PHOTOGRAPHS OF FUT CONSTRUCTIONAL		
		Δ F

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

KDB 558074 D01 : The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under § 15.247 of the FCC rules (Title 47 of the Code of Federal Regulations)

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	May. 11, 2021	Original
128		

1.3. Test Description

FCC Part 15 Subpart C(15.247)					
Test House	Standard Section	Deceli	Test Engineer		
Test Item	FCC	- Result			
Antenna Requirement	15.203	Pass	Rory Huang		
Conducted Emission	15.207	Pass	Rory Huang		
Restricted Bands	15.205	Pass	Rory Huang		
Peak Output Power	15.247(b)	Pass	Rory Huang		
Band Edge Emissions	15.247(d)	Pass	Rory Huang		
Power Spectral Density	15.247(e)	Pass	Rory Huang		
Radiated Emission	15.205&15.209	Pass	Rory Huang		
6dB Bandwidth	15.247(a)(2)	Pass	Rory Huang		
Spurious RF Conducted Emission	15.247(d)	Pass	Rory Huang		

Note:

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. General Description of EUT

Test Sample Number 1:	1-1-1(Normal Sample),1-1-2(E	Engineering Sample)	
Product Name:	Battery Tester		A State
Trade Mark:	TOPDON		× *
Model/Type reference:	BT700 Pro		
Listed Model(s):	N/A		
Model Difference:	N/A		
Power supply:	DC 9V~15V		
Power supply(battery)	DC 7.4V 2600mAh		
Hardware version:	V2.3		201
Software version:	V1.0		
Bluetooth V4.0			
Modulation:	GFSK	A A	y.
Operation frequency:	2402MHz~2480MHz	5.47	
Max Peak Output Power:	-0.57 dBm		
Channel number:	40	NY N	
Channel separation:	2MHz		
Antenna type:	PCB Antenna		
Antenna gain:	3 dBi		

2.2. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing. Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
19	2440
20	2442
21	2444
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test mode

NO.	TEST MODE DESCRIPTION			
1	Low channel TX (2402MHz)			
2	Middle channel TX (2440MHz)			
3	High channel TX (2480MHz)			

Note:

1. Only the result of the worst case was recorded in the report, if no other cases..

2. The test software is the SecureCRTSecure_V7.0.0.326 which can set the EUT into the individual test modes.

2.3. Measurement Instruments List

	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022	
2	Vector Signal Generator	Agilent	N5182A	MY5014252 0	03/18/2022	
3	Analog Signal Generator	HP	83752A	3344A00337	03/18/2022	
4	Power Sensor	Agilent	E9304A	MY5039000 9	03/18/2022	
5	Power Sensor	Agilent	E9300A	MY4149831 5	03/18/2022	
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/18/2022	
7	Climate Chamber	Angul	AGNH80L	1903042120	03/18/2022	
8	Dual Output DC Power Supply	Agilent	E3646A	MY4000999 2	03/18/2022	
9	RF Control Unit	Tonscend	JS0806-2	1	03/18/2022	

	Transmitter spur	ious emissions & Re	eceiver spurious en	nissions	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	EMI Test Receiver	R&S	ESR	102525	03/18/2022
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/22/2022
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/22/2022
4	Spectrum Analyzer	HP	8593E	3831U02087	03/22/2022
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/27/2022
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/22/2022
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/22/2022

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	LISN	R&S	ENV432	1326.6105.02	03/27/2022
2	EMI Test Receiver	R&S	ESR	102524	04/07/2022
3	Manual RF Switch	JS TOYO	1	MSW-01/002	04/07/2022

Note:

1)The Cal. Interval was one year.
2)The cable loss has calculated in test result which connection between each test instruments.
2.5. Test Software

	Software name	Model	Version
	Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
	Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
2	Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

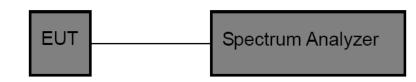
FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Note: The antenna is permanently fixed to the EUT



3.2. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)		
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

Test Configuration

Test Procedure

1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator..

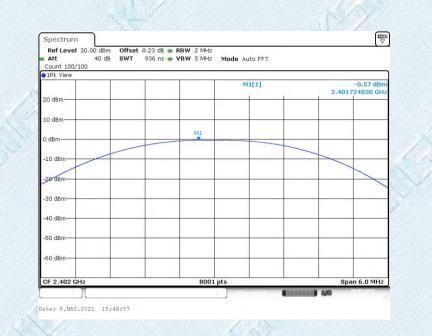
2. Spectrum Setting:

Peak Detector: RBW≥DTS Bandwidth, VBW≥3*RBW.

Sweep time=Auto.

Detector= Peak.

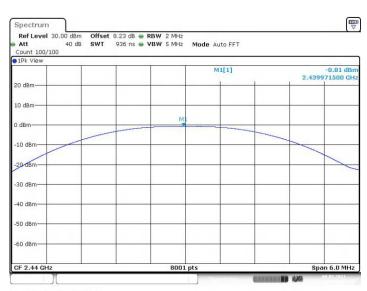
Trace mode= Maxhold.


Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2.

Test Result


Test Mode:	BLE Mode	6 N	
Channel freque	ncy (MHz)	Test Result (dBm)	Limit (dBm)
2402		-0.57	
2440		-0.81	30
2480		-1.44	
		BLE Mode	
12		2402 MHz	

BLE Mode

2440 MHz

Date: 8.MAY.2021 15:49:31

BLE Mode 2480 MHz

3.3. Power Spectral Density

Limit

FCC Part 15 Subpart C(15.247)					
Test Item	Limit	Frequency Range(MHz)			
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

Test Configuration

EUT	Spectrum Analyzer

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.b-6.ii of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 10 kHz Set the VBW to: 30 kHz Detector: peak Sweep time: auto Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

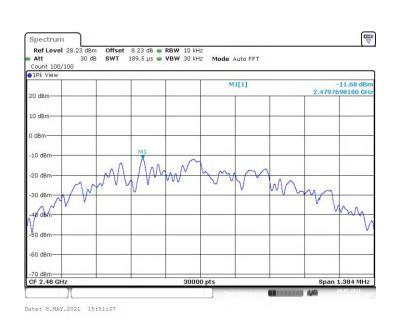
Please refer to the clause 2.2.

Test Result

Note:

Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)


Test Mode: BLE N	lode	and the second	
Channel Frequency (MHz)	Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)
2402	-10.45	-15.68	
2440	-10.88	-16.11	8dBm/3kHz
2480	-11.68	-16.91	
LAS -	BLE Mode		<u> </u>
	2402 MHz		



BLE Mode

2440 MHz

BLE Mode 2480 MHz

3.4. 6dB Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)	
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5	

Test Configuration

EUT Spectrum Analyzer

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.
- 3. The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

4. Spectrum Setting:

6dB bandwidth:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \ge 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.

(7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

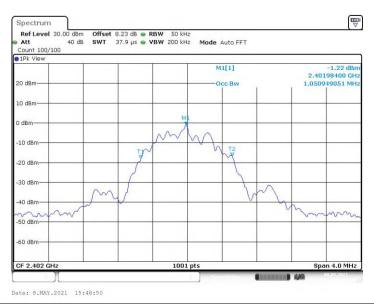
NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.2.

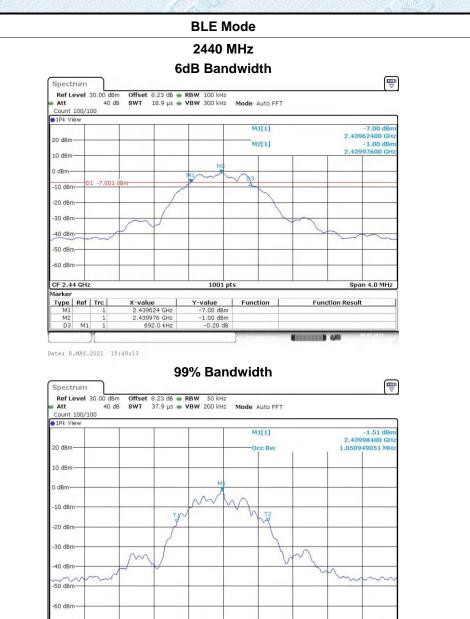
Test Results

	2000 No. 09 W				
Test Mode:	BLE Mode		Sale Sale		
Channel freque	ncy (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)	
2402		0.692	1.051		
2440		0.692	1.051	≧0.5	
2480		0.692	1.055		
		BLE Mod	le		


2402 MHz

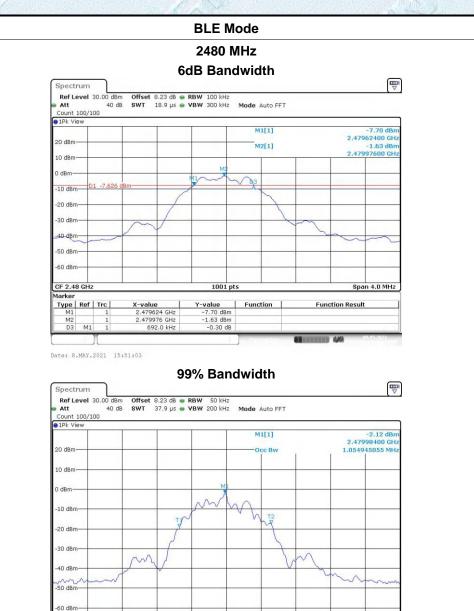
6dB Bandwidth

Att		30.00 dBi 40 d			Mode A	uto FFT			
1Pk Vi	e₩								
20 dBm		_				1[1] 2[1]		2,4010	6.84 dBr 2400 GH 0.72 dBr 8000 GH
10 dBm				MP					
0 dBm-	-			MI	0				
-10 dBm	D	1 -6.715	dBm		V 43				
-20 dBm	-					7			
-30 dBm	-						~~~		
-40 dBm			V Y				2		
	~	~						\sim	
-50 dBm	1								
-60 dBm	+								
CF 2.4	02 GH	z		1001 pt	s			Spar	4.0 MHz
1arker	_				-				
Туре	Ref		X-value	Y-value	Funct	ion	Fund	tion Result	
M1 M2		1	2.401624 GHz 2.40198 GHz	-6.84 dBm -0.72 dBm					
D3	M1	1	692.0 kHz	-0.06 dB					


Date: 8.MAY.2021 15:46:39

99% Bandwidth

Span 4.0 MHz


1001 pt

Date: 8.MAY.2021 15:49:24

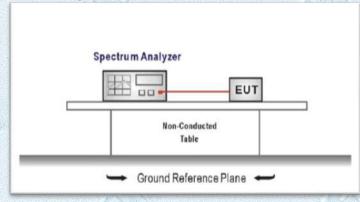
CF 2.44 G

Span 4.0 MHz

1001 pt

Date: 8.MAY.2021 15:51:14

CF 2.48 G


3.5. Band edge and Spurious Emission (conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

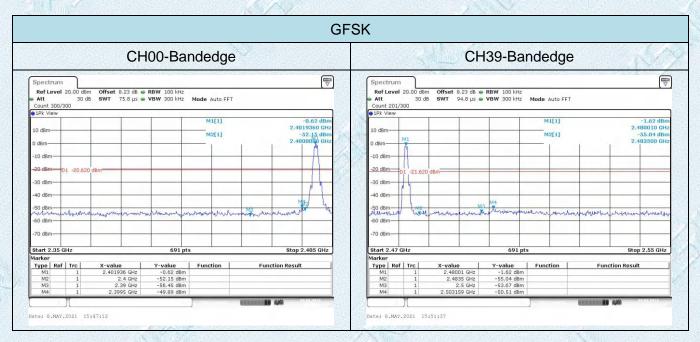
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

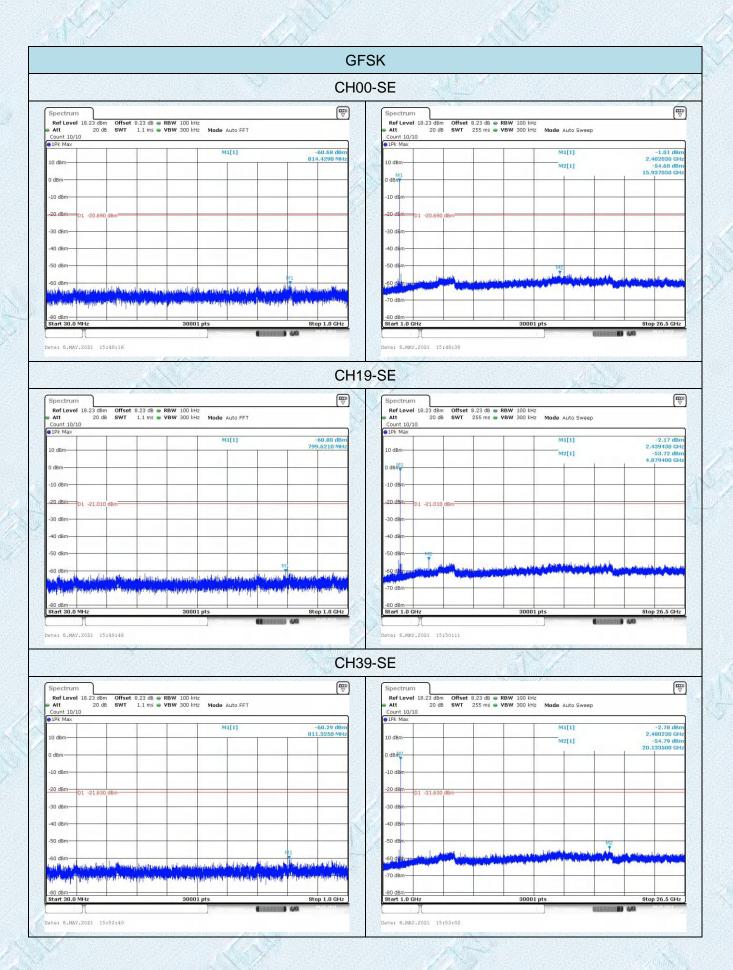
Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting: RBW=100KHz VBW=300KHz.

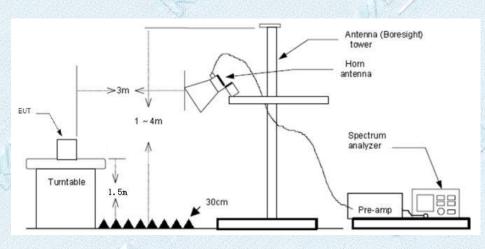
Detector function: Peak. Trace: Max hold. Sweep = Auto couple.


Allow the trace to stabilize.

Test Mode


Please refer to the clause 2.2.

Test Results


3.6. Band Edge Emissions(Radiated)

Limit

Restricted Frequency Band	(dBuV/m)(at 3m)		
(MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.2.

Test Results

Note:

(1)Measurement = Reading level + Correct Factor

(2)Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

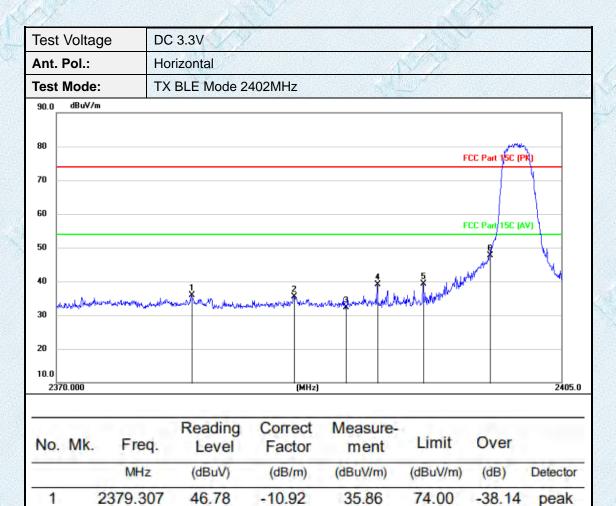
2

3

4

5

6


2386.394

2390.000

2392.190

2395.378

2400.000

46.40

43.26

50.08

50.24

58.60

-10.92

-10.92

-10.92

-10.91

-10.92

35.48

32.34

39.16

39.33

47.68

74.00

74.00

74.00

74.00

74.00

-38.52

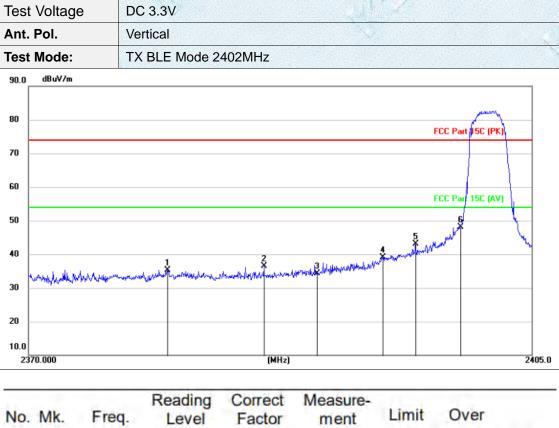
-41.66

-34.84

-34.67

-26.32

peak


peak

peak

peak

peak

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2379.642	46.31	-10.92	35.39	74.00	-38.61	peak
2		2386.317	47.44	-10.92	36.52	74.00	-37.48	peak
3	1	2390.000	45.31	-10.92	34.39	74.00	-39.61	peak
4		2394.570	50.03	-10.91	39.12	74.00	-34.88	peak
5	-	2396.890	53.93	-10.92	43.01	74.00	-30.99	peak
6	*	2400.000	59.03	-10.92	48.11	74.00	-25.89	peak

Tes	t Voltage	DC 3.3V
Ant	. Pol.	Horizontal
Tes	t Mode:	TX BLE Mode 2480 MHz
90.0	dBu¥/m	
80		FCC Part 15C (PK)
70		
60		FCC Part 15C (AV)
50		
40	Sund Sand Stand Sundal Star	Municipal Marine Barren and Articles and and a second and
30		
20		
10.0		
24	75.000	(MHz) 2500.0

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	_	MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	*	2483.500	51.90	-10.88	41.02	74.00	-32.98	peak
2	1.1	2486.088	48.43	-10.88	37.55	74.00	-36.45	peak
3		2489.972	44.50	-10.89	33.61	74.00	-40.39	peak
4		2493.983	46.81	-10.89	35.92	74.00	-38.08	peak
5	-	2495.383	44.25	-10.87	33.38	74.00	-40.62	peak
6	11	2500.000	41.88	-10.88	31.00	74.00	-43.00	peak

Tes	st Voltage	DC 3.3V	¢		NOV	9		
Ant	t. Pol.	Vertical			<u></u>			
Tes	t Mode:	TX BLE Mod	de 2480 MHz					
90.0	dBuV/m							7
80		my -				FCC I	Part 15C (PK)	_
70								
60		N				FCC	Part 15C (AV)	
50	and the second		and	2	3 4		5	
40	and the second		al manager and a second and a second	and the second sec	umalay.com	Mapping	half of the state of the second second	*
30								
20 10.0								
	75.000		(MHz)					2500.0

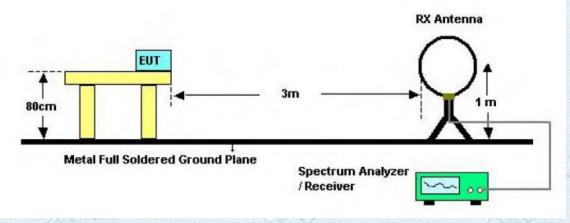
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	51.73	-10.88	40.85	74.00	-33.15	peak
2	*	2488.597	52.27	-10.89	41.38	74.00	-32.62	peak
3	-	2491.813	52.21	-10.89	41.32	74.00	-32.68	peak
4		2494.155	51.79	-10.89	40.90	74.00	-33.10	peak
5		2496.142	51.85	-10.87	40.98	74.00	-33.02	peak
6	2.00	2500.000	49.65	-10.88	38.77	74.00	-35.23	peak

3.7. Spurious Emission (Radiated)

Limit

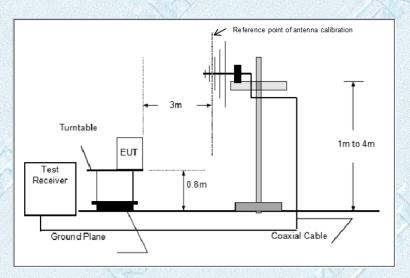
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

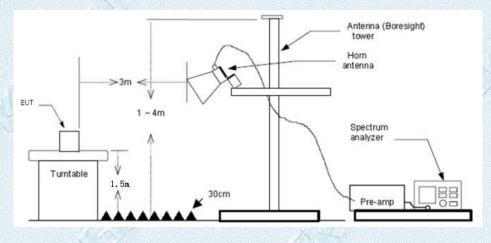

Radiated Emission Limit (Above 1000MHz)

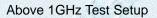
Frequency	Distance Meter	rs(at 3m)
(MHz)	Peak	Average
Above 1000	74	54

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration




Below 30MHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz Peak detector for Average value.

Test Mode

Please refer to the clause 2.2.

Test Result

9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:

- Measurement = Reading level + Correct Factor
 Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5) Pre-scan CH00, CH19 and CH39 modulation, and found the GFSK_CH00 which it is worse case for 30MHz-1GHz, so only show the test data for worse case.

BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

2

3

4

5

6

48.6208

116.9905

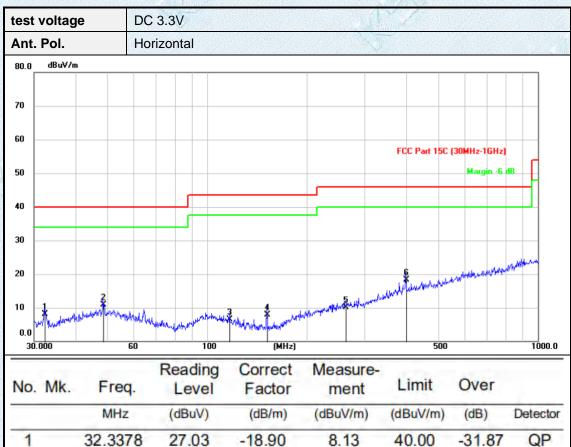
152.0231

261.9753

400.0109

26.61

25.65


29.34

25.66

29.16

Emission Level= Read Level+ Correct Factor

30MHz-1GHz

-15.75

-19.11

-21.35

-15.52

-10.91

10.86

6.54

7.99

10.14

18.25

40.00

43.50

43.50

46.00

46.00

-29.14

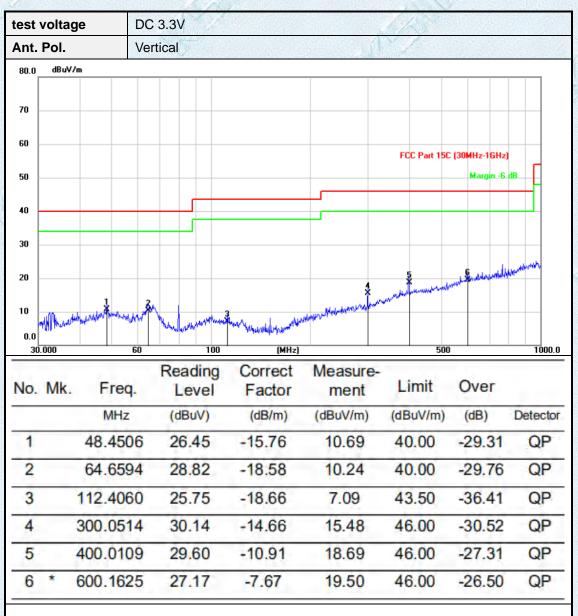
-36.96

-35.51

-35.86

-27.75

QP


QP

QP

QP

QP

Adobe 1GHz

1031	est voltage DC 3.3V nt. Pol. Horizontal									
Ant.	Pol.	Ho	rizontal							
Test	est Mode: TX BLE Mode 2402MHz									
90.0	dBuV/m									
80						FI	CC Part 15C (PK	.)		
70										
60 -						FI	CC Part 15C (AV	'n		
50					3 4	5	Sector And Sector	when march		
40			ł	2	Non Jacom Jacoman Low	meny history war	Y			
30	an an an the state of the second	Mul mun market	man man and all and and	wholeward whether whether						
30 m	all the second se									
20		and the second								
20	0.000			(MHz)		8000		18000		
20		Freq.	Reading	Correct Factor	Measure- ment	8000	Over	18000		
20	0.000		Reading	Correct		1.1.1.	Over (dB)	Detector		
20	0.000 Mk.	Freq.	Reading Level	Correct Factor	ment	Limit		Detecto		
20 10.0 1000	0.000 Mk. 23	Freq. MHz	Reading Level (dBuV)	Correct Factor (dB/m)	(dBuV/m)	Limit (dBuV/m)	(dB)	Detecto peak		
20 10.0 1000 NO.	0.000 Mk. 23	Freq. MHz 390.600	Reading Level (dBuV) 51.16	Correct Factor (dB/m) -10.92	ment (dBuV/m) 40.24	Limit (dBuV/m) 74.00	(dB) -33.76	Detecto peak peak		
20 10.0 1000 NO.	0.000 Mk. 23 37 59	Freq. MHz 390.600 726.800	Reading Level (dBuV) 51.16 48.20	Correct Factor (dB/m) -10.92 -9.12	ment (dBuV/m) 40.24 39.08	Limit (dBuV/m) 74.00 74.00	(dB) -33.76 -34.92	Detecto peak peak peak		
20 10.0 1000 NO. 1 2 3	0.000 Mk. 23 37 59 7(Freq. MHz 390.600 726.800 931.700	Reading Level (dBuV) 51.16 48.20 48.45	Correct Factor (dB/m) -10.92 -9.12 -3.96	ment (dBuV/m) 40.24 39.08 44.49	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -33.76 -34.92 -29.51			

Emission Level= Read Level+ Correct Factor

test v	voltage	e 🔤	DC	3.3V				hand the	
Ant.	Ant. Pol. Vertical Test Mode: TX BLE Mode 2402MHz 00.0 dBuV/m								
Test									
90.0	dBu¥/m								
80	0						F	CC Part 15C (P)	()
70									
60							F	CC Part 15C (A)	n
50						3	manutur	\$	~~ [*] ~
40				1	Ş	and the second second	working have been been been been been been been be	and and a second se	
				T T					
30 🚧	handerstreption	glumulauria	mpything	man manhan	and the second and the second and the second se	N.N. W. WANNEL .			
30 ····	uranghar baypate	glament harder the	n hay shiring	mentanja Malador Maria	A shak we all a shak we are shown as				
20	0.000	ylumoutesindome	an hay been a	man Manton	(MHz)		8000		18000
20		Frec		Reading	(MHz) Correct Factor	Measure- ment	8000 Limit	Over	18000
20	0.000	- 077	1.		Correct			Over (dB)	
20	0.000 Mk.	Free	4.	Level	Correct Factor	ment	Limit		Detector
20 10.0 1000	0.000 Mk.	Free	ą. 200	Level (dBuV)	Correct Factor (dB/m)	ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
20 10.0 1000 NO.	0.000 Mk.	Frec MHz 2392.30	1. DO DO	Level (dBuV) 48.97	Correct Factor (dB/m) -10.92	ment (dBuV/m) 38.05	Limit (dBuV/m) 74.00	(dB) -35.95	Detector peak
20 10.0 1000 No.	0.000 Mk.	Frec MHz 2392.30 3720.00	a. 00 00	Level (dBuV) 48.97 49.60	Correct Factor (dB/m) -10.92 -9.13	ment (dBuV/m) 38.05 40.47	Limit (dBuV/m) 74.00 74.00	(dB) -35.95 -33.53	Detector peak peak
20 10.0 1000 NO. 1 2 3	0.000 Mk.	Frec MHz 2392.30 3720.00 5977.60	1. 00 00 00	Level (dBuV) 48.97 49.60 53.57	Correct Factor (dB/m) -10.92 -9.13 -3.85	ment (dBuV/m) 38.05 40.47 49.72	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -35.95 -33.53 -24.28	Detector peak peak peak

test	voltag	е	DC	3.3V		2	N/2		
Ant.	Pol.		Hor	izontal					
Test	Mode):	ТΧ	BLE Mode	2440MHz				
90.0	dBu¥∕n	ı							
80								FCC Part 15C (F	
70									
60 -								FCC Part 15C (A	v)
50							4 5		6
40			1		2	manyan show the pringer	a marine	www.howwow	·
30 🖌	Lingt-Judgebra (1968) Pr	harponenter	Mary Law M	and the second and the second	Awaron				
20									
10.0 100	0.000				(MHz		8000		18000.
No.	Mk.	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	-	MH	z	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	-	1969.0	00	44.66	-11.09	33.57	74.00	-40.43	peak
2	100	3631.6	00	49.44	-9.34	40.10	74.00	-33.90	peak
3	_	6049.0	00	46.37	-3.64	42.73	74.00	-31.27	peak
4		8134.9	00	41.25	2.03	43.28	74.00	-30.72	peak
5	1	0081.4	00	39.18	4.21	43.39	74.00	-30.61	peak
6	* 1	6521.0	00	34.92	13.78	48.70	74.00	-25.30	peak

test	volta	ge DC	3.3V			hay for			
Ant.	Pol.	Ve	Vertical						
Test	Mod	e: TX	BLE Mode	2440MHz					
90.0	dBuV	/m							
80							FCC Part 15C (F	261	
70							ree rait 15e (i	~)	
60							FCC Part 15C (/	v)	
50							5/^		
40					way hourse	an the main mar	mmm		
30	Wayschned	halensselvenesselversheersk	hash dan segande som ward						
20									
10.0 10	00.000			(MHz)		8000		18000.	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
1		3332.400	49.15	-9.98	39.17	74.00	-34.83	peak	
2	-	4447.600	46.62	-6.92	39.70	74.00	-34.30	peak	

Emission Level= Read Level+ Correct Factor

46.10

40.55

35.08

37.14

-3.83

2.06

9.79

13.53

74.00

74.00

74.00

74.00

42.27

42.61

44.87

50.67

-31.73

-31.39

-29.13

-23.33

peak

peak

peak

peak

5987.800

8065.200

12922.100

17794.300

3

4

5

6

٠

test voltage D		DC 3.3V								
Ant.	Pol.	I	Horizontal							
Test Mode:		:	TX BLE Mode 2480MHz							
90.0	dBuV/m	n								
80							FCC Part 15C (P			
70										
60							FCC Part 15C (A			
50					2		man Aller of Male	when when		
40				1 2 martine from the	when we	with the win	muren have			
				AND THE REAL PROPERTY OF						
30	ton for the second second	alandon da fanling	warmer and a state of the second							
30	h-teoffersennalite	ulandaktanda kuntuka	hadden had a feel a service of the s							
20 10.0	1.300 ⁰ 00.000	uhovetterskejerttet	nanarhannana shekarrane			8000		18000.		
20 10.0 100		Freq	Reading	(MHz)	Measure- ment	8000 Limit	Over	18000.		
20 10.0 100	00.000		Reading	(MHz) g Correct				18000. Detector		
20 10.0 100	. Mk.	Freq	Reading Level (dBuV)	(MHz) (MHz) Correct Factor	ment	Limit				
20 10.0 100	. Mk.	Freq	Reading Level (dBuV) 0 47.27	MHz (MHz) Correct Factor (dB/m)	ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detector		
20 10.0 100 NO.	. Mk.	Freq MHz 3266.10	Reading Level (dBuV) 0 47.27 0 47.66	(MHz) (MHZ) (MHZ)	ment (dBuV/m) 37.16	Limit (dBuV/m) 74.00	(dB) -36.84	Detector peak		
20 10.0 100 No.	00.000 . Mk.	Freq MHz 3266.10 3730.20	Reading Level (dBuV) 0 47.27 0 47.66 0 48.61	(мнг) (мнг) Correct Factor (dB/m) -10.11 -9.10	ment (dBuV/m) 37.16 38.56	Limit (dBuV/m) 74.00 74.00	(dB) -36.84 -35.44	Detector peak peak		
20 10.0 100 No.	00.000 . Mk.	Freq MHz 3266.10 3730.20 4959.30	Reading Level (dBuV) 0 47.27 0 47.66 0 48.61 0 42.06	(мнг) (мнг) Correct Factor (dB/m) -10.11 -9.10 -5.51	ment (dBuV/m) 37.16 38.56 43.10	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -36.84 -35.44 -30.90	Detector peak peak peak		

Emission Level= Read Level+ Correct Factor

KSIGN

Ant. Pol. Vert		DC 3.3V							
		Vertical							
		TX	TX BLE Mode 2480MHz						
90.0	dBu¥/m								
80							20 D-+ 150 (DK		
70							CC Part 15C (PK	.J	
60						FC	CC Part 15C (AV	n	
50				1 ¥	3 X		Summe	<u>6</u>	
40					2 and many marker when the second	www.www.www.www	whitered"		
				weeken weeken	•				
30 👫	have a the strategy and	alman and a subserver and a subs	apatrant a magness of the	N/					
30 M	hand a start and a start and a start a	adand/oranged/and	nyaataan kalenda ahaa kalenda k						
20	1	adread and a subard	npertrestrements of the	(MHz)		8000		18000	
20 10.0 100		Freq.	Reading		Measure- ment	8000 Limit	Over	18000	
20 10.0 100	00.000		Reading	(MHz)			Over (dB)		
20 10.0 100	0.000 . Mk.	Freq.	Reading Level	(MHz) Correct Factor	ment	Limit		Detector	
20 10.0 1000	0.000 Mk. 37	Freq. MHz	Reading Level (dBuV)	(MHz) Correct Factor (dB/m)	ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detecto	
20 10.0 1000 NO.	0.000 Mk. 37 49	Freq. MHz 33.600	Reading Level (dBuV) 55.68	(MHz) Correct Factor (dB/m) -9.09	ment (dBuV/m) 46.59	Limit (dBuV/m) 74.00	(dB) -27.41	Detecto peak peak	
20 10.0 1000 NO.	Mk. 37 49 59	Freq. MHz 33.600 59.300	Reading Level (dBuV) 55.68 44.75	(MHz) Correct Factor (dB/m) -9.09 -5.51	ment (dBuV/m) 46.59 39.24	Limit (dBuV/m) 74.00 74.00	(dB) -27.41 -34.76	Detecto peak peak peak	
20 10.0 1000 NO.	Mk. 37 49 59 80	Freq. MHz 33.600 59.300 89.500	Reading Level (dBuV) 55.68 44.75 53.80	(MHz) Correct Factor (dB/m) -9.09 -5.51 -3.82	ment (dBuV/m) 46.59 39.24 49.98	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -27.41 -34.76 -24.02	Detecto peak	

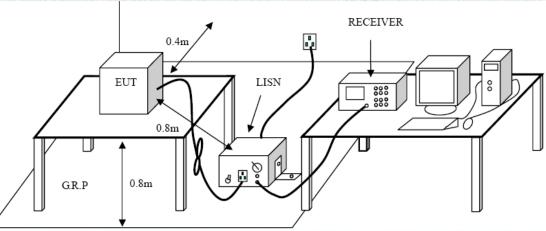
Emission Level= Read Level+ Correct Factor

3.8. Conducted Emission

Limit

Conducted Emission Test Limit

Frequency	Maximum RF Line Voltage (dBµV)			
Frequency	Quasi-peak Level	Average Level 56 ~ 46 *		
150kHz~500kHz	66 ~ 56 *			
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:

Please refer to the clause 2.2.

Test Results

Test Voltage:		AC 12	AC 120V/60Hz							
Term	Terminal:		Line							
Test	Mode:	Charg	ging							
80.0 70 60	dBuV					F	CC Part 15 C (Q	P)		
50 40	M M M	N.u. N	*			FC	C Part 15 C (AV	6)		
30 20 10			Marth party and the second sec	and the second se	WWW WWW	Anna Anna	mmmm	AVG		
0.0	50		T MI T	(MHz)				30.000		
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
_		MHz	dBuV	dB	dBuV	dBuV	dB	Detector		
1		0.1819	28.25	10.74	38.99	64.40	-25.41	QP		
2		0.1819	9.12	10.74	19.86	54.40	-34.54	AVG		
3		0.4060	19.62	10.53	30.15	57.73	-27.58	QP		
4	100	0.4060	5.03	10.53	15.56	47.73	-32.17	AVG		
5	*	0.5860	25.26	10.47	35.73	56.00	-20.27	QP		
6		0.5860	8.43	10.47	18.90	46.00	-27.10	AVG		
7		1.1860	13.65	10.41	24.06	56.00	-31.94	QP		
8	-	1.1860	-1.37	10.41	9.04	46.00	-36.96	AVG		
9		1.9740	12.93	10.56	23.49	56.00	-32.51	QP		
10		1.9740	-0.93	10.56	9.63	46.00	-36.37	AVG		

Remarks:

11

12

1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit

14.41

-1.19

10.61

10.61

25.02

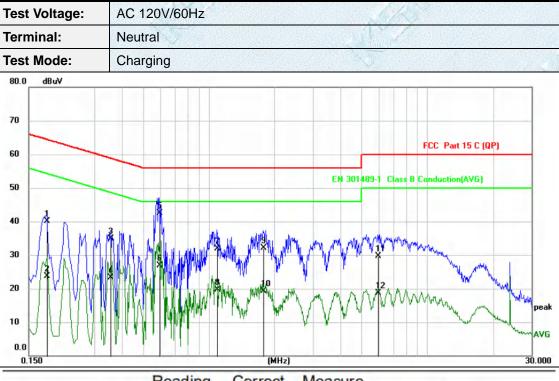
9.42

56.00

46.00

-30.98

-36.58


QP

AVG

3.7380

3.7380

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	29.28	10.74	40.02	64.40	-24.38	QP
2	0.1819	12.89	10.74	23.63	54.40	-30.77	AVG
3	0.3540	24.36	10.53	34.89	58.87	-23.98	QP
4	0.3540	12.75	10.53	23.28	48.87	-25.59	AVG
5 *	0.5940	32.11	10.46	42.57	56.00	-13.43	QP
6	0.5940	16.49	10.46	26.95	46.00	-19.05	AVG
7	1.0900	21.46	10.49	31.95	56.00	-24.05	QP
8	1.0900	9.24	10.49	19.73	46.00	-26.27	AVG
9	1.7780	21.57	10.53	32.10	56.00	-23.90	QP
10	1.7780	8.82	10.53	19.35	46.00	-26.65	AVG
11	5.9500	19.18	10.59	29.77	60.00	-30.23	QP
12	5.9500	8.04	10.59	18.63	50.00	-31.37	AVG

Remarks:

1.Measurement = Reading Level+ Correct Factor

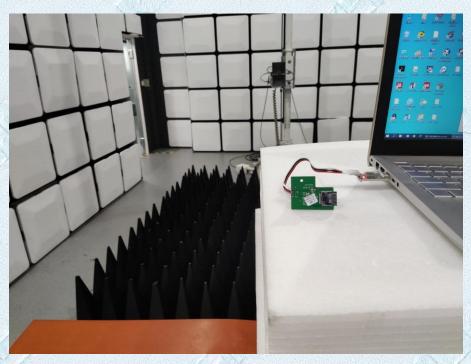
2.Over = Measurement -Limit

Page 43 of 56

4.EUT TEST PHOTOS

Radiated Measurement (Below 1GHz)

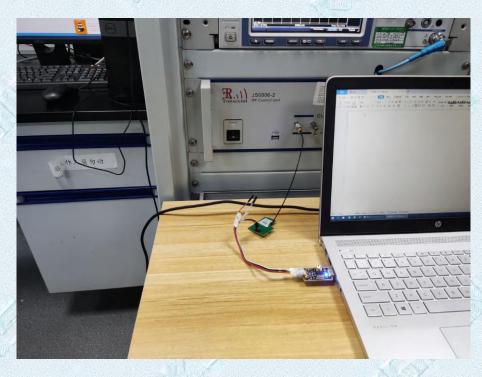
Radiated Measurement (Above 1GHz)



Page 44 of 56

Report No.:KS2104S0984E

Radiated Measurement (Above 1GHz)



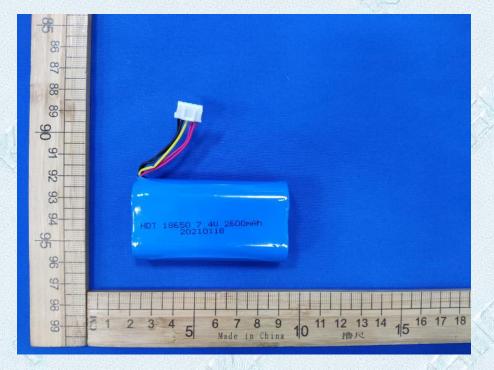
RF Conducted

RF Conducted

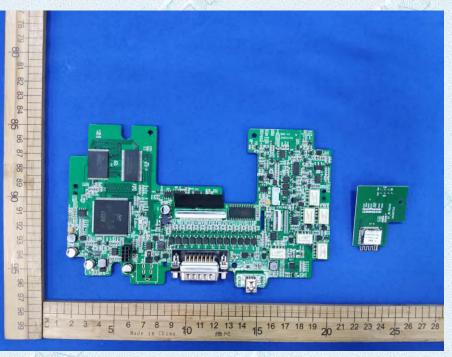
Conducted Emission

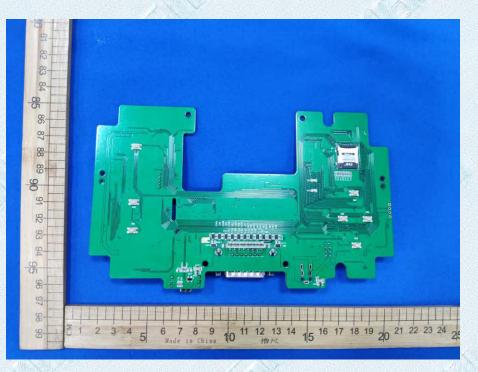
5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

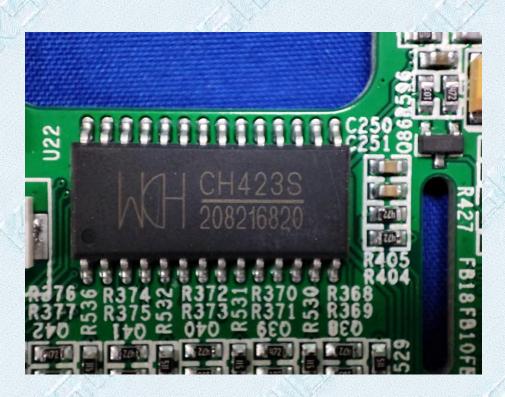
External Photographs

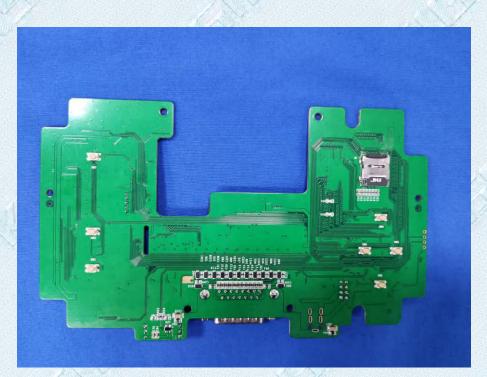

Report No.:KS2104S0984E

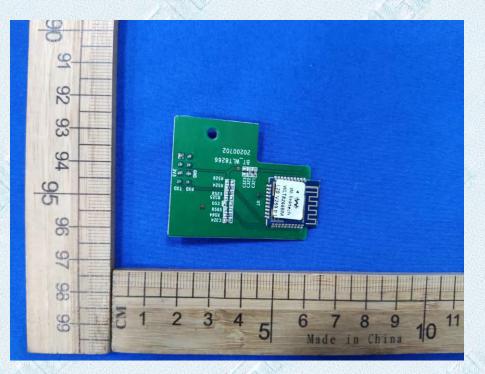
Internal photos

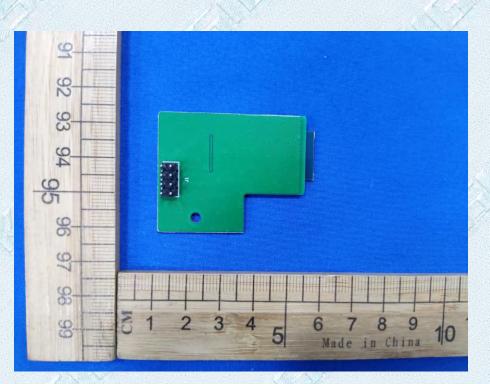


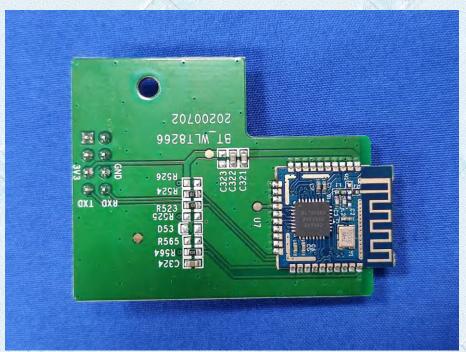


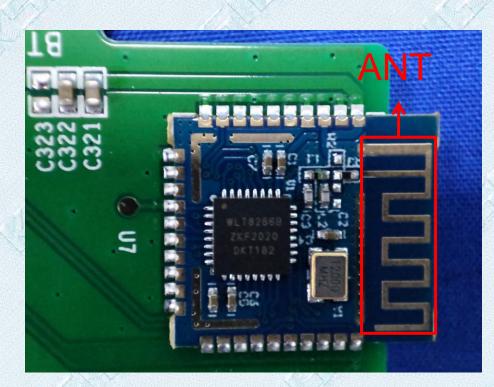







Report No.:KS2104S0984E





*****THE END*****