

Page: 1 of 39

TEST REPORT

Application No.: HKEM2001000024HS

Applicant: Kingtronics International Trading Co., Ltd

Address of Applicant: Units 1203, 05, 07 & Penthouse, Century Centre, 44-46 Hung To Road,

Kwun Tong, Kowloon, HongKong

Manufacturer: **CELIOS CORPORATION**

Address of Manufacturer: 401 Edgewater PI, Suite 190, Wakefield, MA, 01880, USA

KINGTRONICS CORPORATION OF ELEC.&MECH. TECHNOLOGY Factory:

(ZHANGZHOU)CO., LTD

NO.20 Longchi Road, Longchi Industrial Park, Zhangzhou Taiwanese Address of Factory:

Investment Zone

Equipment Under Test (EUT):

EUT Name: G200 Advanced Air Purifier Remote Control

Model No.: G200-Remote FCC ID.: 2AVYPG200-RM-01

Trade Mark: celios®

47 CFR Part 15, Subpart C 15.247 Standard(s):

2020-03-20 Date of Receipt:

Date of Test: 2020-03-24 to 2020-04-05

Date of Issue: 2020-04-11

Test Result: Pass*

Law Man Kit **EMC** Manager

document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request and accessible at http://www.sgs.com/en/Terms-and-conditions.aspx and, for tronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, memilication and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and in the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and gations under the transaction documents. The document cannot be reproduced execute in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the tent or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: HKEM200100002403 Page: 2 of 39

Revision Record							
Version	Chapter	Date	Modifier	Remark			
01		2020-04-11		Original			

Authorized for issue by:		
	Zer Xn.	
	Leo Xu	
	/Project Engineer	Date: 2020-04-11
	Law	
	Law Man Kit	
	/Reviewer	Date: 2020-04-11

Page: 3 of 39

2 Test Summary

Radio Spectrum Technical Requirement							
Item	Standard	Method	Requirement	Result			
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass			

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
Conducted Disturbance at AC Power Line(150kHz- 30MHz)	CFR 47 FCCPart 15, Subpart C 15.207	ANSI C63.10: 2013 Section 6.2	47 CFR FCC Part 15, Subpart C 15.207	N/A		
Minimum 6dB	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Bandwidth	Subpart C 15.247	Section 11.8.1	C 15.247a(2)			
Conducted Peak	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Output Power	Subpart C 15.247	Section 11.9.2.3	C 15.247(b)(3)			
Power Spectrum	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Density	Subpart C 15.247	Section 11.10.2	C 15.247(e)			
Conducted Band	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Edges Measurement	Subpart C 15.247	Section 11.13.3.2	C 15.247(d)			
Conducted Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Emissions	Subpart C 15.247	Section 11.11	C 15.247(d)			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass		
Radiated Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Emissions	Subpart C 15.247	Section 6.4,6.5,6.6	C 15.205 & 15.209			

Declaration of EUT Family Grouping:

None

Abbreviation:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

Report No.: HKEM200100002403 Page: 4 of 39

Contents

			Page
1	COVE	R PAGE	1
2	TEST	SUMMARY	3
3	CONT	ENTS	4
4	GENE	RAL INFORMATION	6
		DETAILS OF E.U.T.	
		DESCRIPTION OF SUPPORT UNITS	
		Measurement Uncertainty(95% confidence level, K=2)	
		TEST LOCATION	
		TEST FACILITY	
		DEVIATION FROM STANDARDS	
		ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQUI	PMENT LIST	9
6	RADIO	O SPECTRUM TECHNICAL REQUIREMENT	12
	6.1 A	ANTENNA REQUIREMENT	12
	6.1.1	Test Requirement:	12
	6.1.2	Conclusion	12
7	RADIO	O SPECTRUM MATTER TEST RESULTS	13
	7.1 N	MINIMUM 6DB BANDWIDTH	13
	7.1.1	E.U.T. Operation	13
	7.1.2	Test Setup Diagram	
	7.1.3	Measurement Procedure and Data	
		CONDUCTED PEAK OUTPUT POWER	
	7.2.1	E.U.T. Operation	
	7.2.2	Test Setup Diagram	
	7.2.3	Measurement Procedure and Data	
		Power Spectrum Density	
	7.3.1 7.3.2	E.U.T. Operation Test Setup Diagram	
	7.3.2	Measurement Procedure and Data	
		Conducted Band Edges Measurement	
	7.4.1	E.U.T. Operation	
	7.4.2		
	7.4.3	Measurement Procedure and Data	16
	7.5	CONDUCTED SPURIOUS EMISSIONS	
	7.5.1	E.U.T. Operation	17
	7.5.2	Test Setup Diagram	17
	7.5.3	Measurement Procedure and Data	
	7.6 F	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.6.1	E.U.T. Operation	
	7.6.2	Test Setup Diagram	
	7.6.3	Measurement Procedure and Data	
		RADIATED SPURIOUS EMISSIONS	- -
	7.7.1	E.U.T. Operation	
	7.7.2 7.7.3	Test Setup Diagram Measurement Procedure and Data	
	1.1.3	ivieasurement frocedure and Data	23

Report No.: HKEM200100002403 Page: 5 of 39

8 Pi	PHOTOGRAPHS	
9 AI	PPENDIX 15.247	28
9.1	MINIMUM EMISSION BANDWIDTH 6 DB	28
9.2	CONDUCTED PEAK OUTPUT POWER	30
9.3	Power Spectral Density	32
9.4	CONDUCTED BAND EDGES MEASUREMENT	34
9.5	CONDUCTED SPURIOUS EMISSIONS	37
9.6	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	39

Page: 6 of 39

4 General Information

4.1 Details of E.U.T.

Power supply:	3VDC ("AAA" size battery x 2)
Test voltage:	3VDC
Antenna Gain:	0.5dBi
Antenna Type:	PCB Antenna
Bluetooth Version:	V5.0
Channel Spacing:	2MHz
Modulation Type:	GFSK
Number of Channels:	40
Operation Frequency:	2402MHz to 2480MHz
Tested Channels:	2402MHz, 2442MHz, 2480MHz

4.2 Description of Support Units

The EUT has been tested with corresponding accessories as below:

Supplied by client

Description	Manufacturer	Model No.	SN/Certificate NO
MCHPRT 2 Test Software	N/A	Version 1.0	N/A

Supplied by SGS:

Description	Manufacturer	Model No.	SN/Certificate NO
NoteBook (EMC4)	Dell	P75F	N/A

Page: 7 of 39

4.3 Measurement Uncertainty(95% confidence level, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	Conduction emission	± 3.0dB (150kHz to 30MHz)
5	RF conducted power	± 0.75dB
6	RF power density	± 2.84dB
7	Conducted Spurious emissions	± 0.75dB
8	DE Dodicted newer	± 4.5dB (Below 1GHz)
Ö	RF Radiated power	± 4.8dB (Above 1GHz)
9	Dedicted Churious emission test	± 4.5dB (Below 1GHz)
9	Radiated Spurious emission test	± 4.8dB (Above 1GHz)
10	Temperature test	± 1 ℃
11	Humidity test	± 3%
12	Supply voltages	± 1.5%
13	Time	± 3%

Remark:

The Ulab (lab Uncertainty) is less than Ucispr (CISPR Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

Page: 8 of 39

4.4 Test Location

All tests were performed at:

SGS IECC Limited (Member of the SGS Group (SGS SA)) Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong Tel: +852 2305 2570 Fax: +852 2756 4480

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· HOKLAS (Lab Code: 125)

SGS IECC Limited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2005 an it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

• FCC Recognized Accredited Test Firm(CAB Registration No.: 446297)

SGS IECC Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0010, Test Firm Registration Number: 446297.

• Industry Canada (Site Registration No.: 5193A; CAB Identifier No.: HK0010)

SGS IECC Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0010, Site Registration Number: 5193A-2.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: HKEM200100002403 Page: 9 of 39

5 Equipment List

Minimum 6dB Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20	
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20	
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20	
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20	
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22	
WMS32 Test Software	R&S	Version 10	N/A			

Conducted Peak Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A		

Power Spectrum Density						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20	
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20	
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20	
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20	
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22	
WMS32 Test Software	R&S	Version 10	N/A			

Conducted Band Edges Measurement						
Equipment Manufacturer Model No Inventory No Cal Date Cal Due					Cal Due Date	
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20	

Report No.: HKEM200100002403 Page: 10 of 39

FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A	-	

Radiated Spurious Emissions (30MHz-1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2019/8/9	2020/8/8		
Coaxial Cable	SGS	N/A	E167	2019/7/22	2020/7/21		
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2019/9/2	2020/9/1		
TRILOG Super Broadb. Test Antenna, (25) 30- 1000 (2	Schwarzbeck	VULB 9168	E264	2018/10/20	2020/10/19		
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	1			
Turntable with Controller	ChamPro	EM1000	E238				
EMC32 Test Software	R&S	Version 10	N/A				

Radiated Spurious Emissions (above 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2019/8/9	2020/8/8		
Coaxial Cable	SGS	N/A	E167	2019/7/22	2020/7/21		
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2019/9/2	2020/9/1		
Signal and Spectrum Analyzer 2Hz - 26.5GHz	Rohde & Schwarz	FSW26	E296	2019/10/29	2020/10/28		
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2019/4/23	2020/4/22		
Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2020/1/29	2022/1/29		
Horn Antenna 15 - 40GHz	Schwarzbeck	BBHA9170	E212	2017/10/17	2020/10/16		
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2019/4/24	2020/4/23		
Preamplifier 33dB, 18 - 26.5GHz	Schwarzbeck	BBV9719	E215	2019/4/24	2021/4/23		
Broadband Coaxial Preamplifier typ. 30 dB, 18-40 G	Schwarzbeck	BBV 9721	E266	2019/8/22	2020/8/21		
Highpass Filter 3.5- 26.5GHz	Wainwright	WHNX3.5/26.5 G-6SS	E205	2019/4/24	2021/4/23		

Report No.: HKEM200100002403 Page: 11 of 39

Band Reject Filter 2.4- 2.5GHz	Wainwright	WRCJV 2400/2500- 2100	E206	2019/4/24	2021/4/23
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207-1	2019/9/26	2020/9/25
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237		
Turntable with Controller	ChamPro	EM1000	E238		
EMC32 Test Software	R&S	Version 10	N/A		

Conducted Spurious Emissions							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20		
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20		
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20		
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20		
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22		
WMS32 Test Software	R&S	Version 10	N/A				

General used equipment							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2019/10/28	2020/10/27		
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2019/10/28	2020/10/27		
Barometer with digital thermometer	SATO	7612-00	E218	2019/05/19	2020/05/18		
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2019/08/22	2020/08/21		

Page: 12 of 39

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

FCC Part 15 Subpart C Section 15.247 & 15.203

6.1.2 Conclusion

Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

15.203 requirement:

For intentional device. According to 15.203. an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna uses a unique coupling to the intentional radiator and no consideration of replacement.

The best case gain of the antenna: 0.5 dBi.

Page: 13 of 39

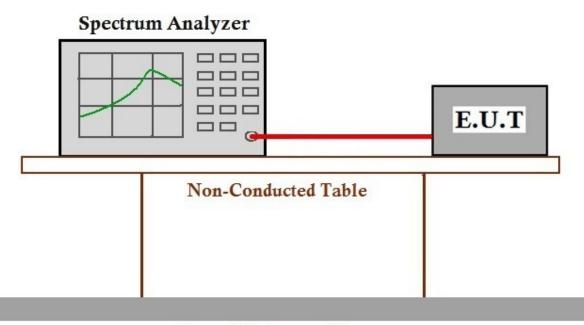
7 Radio Spectrum Matter Test Results

7.1 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

Page: 14 of 39

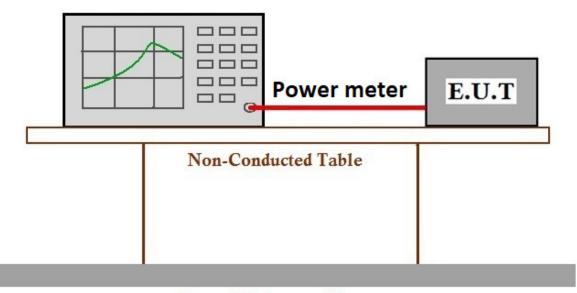
7.2 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method: ANSI C63.10 (2013) Section 11.9.2.3

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH :

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Page: 15 of 39

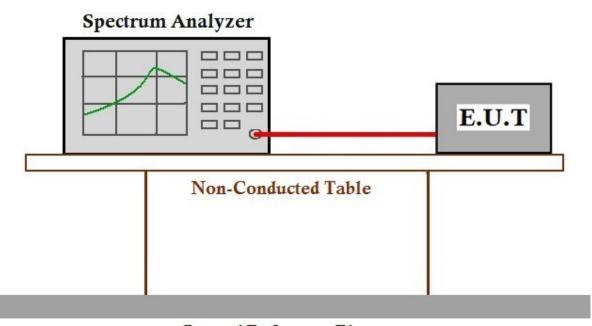
7.3 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.3.1 E.U.T. Operation


Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH

Test mode a:TX mode Keep the EUT in continuously transmitting mode with GFSK

modulation

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

Page: 16 of 39

7.4 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

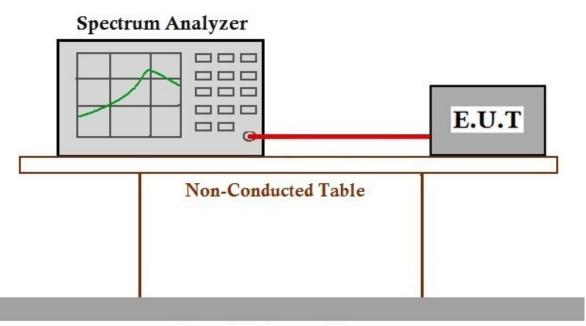
spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition,

radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.4.1 E.U.T. Operation


Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH

Test mode a:TX mode Keep the EUT in continuously transmitting mode with GFSK

modulation

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

Page: 17 of 39

7.5 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.11

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

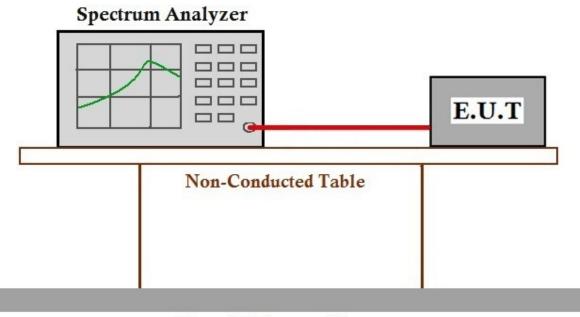
spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition,

radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation


Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH

Test mode a:TX mode Keep the EUT in continuously transmitting mode with GFSK

modulation

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

Page: 18 of 39

7.6 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

Measurement Distance: 3m

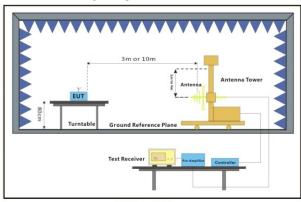
Limit:

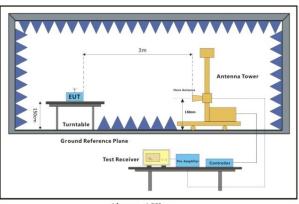
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page: 19 of 39

7.6.1 E.U.T. Operation


Operating Environment:


Temperature: 22.5 °C Humidity: 49.1 % RH

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.6.2 Test Setup Diagram

30MHz-1GHz Above 1GHz

Page: 20 of 39

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Remark:

- 1. For radiated emission test: Correction Factor = Antenna Factor + Cable Loss.
- 2. For conducted emission test: Correction Factor = LISN Factor + Cable Loss.
- 3. Margin = Limit Reading
- 4. Pol = Polarization

Page: 21 of 39

7.7 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

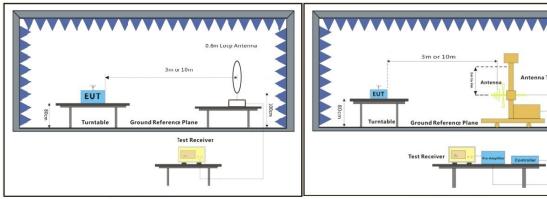
Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

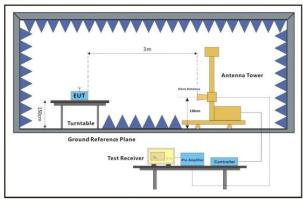
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page: 22 of 39

7.7.1 E.U.T. Operation


Operating Environment:

Temperature: 22.8 °C Humidity: 49.2 % RH


Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.7.2 Test Setup Diagram

Below 30MHz 30MHz-1GHz

Above 1GHz

Page: 23 of 39

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

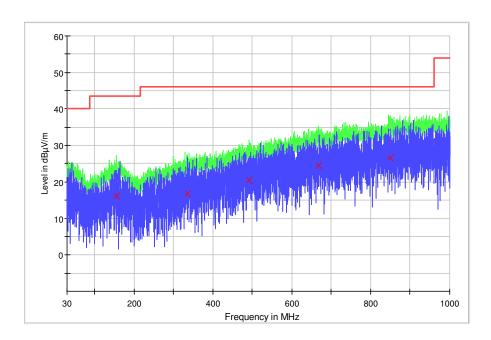
Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

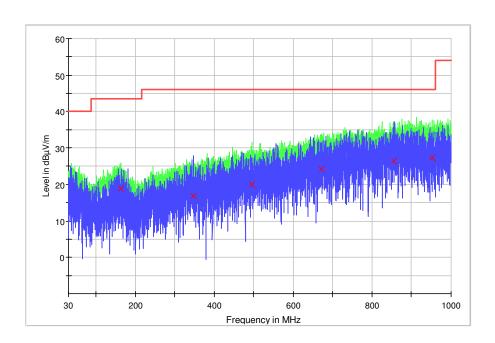
Remark:


- 1. For radiated emission test: Correction Factor = Antenna Factor + Cable Loss.
- 2. For conducted emission test: Correction Factor = LISN Factor + Cable Loss.
- 3. Margin = Limit Reading
- 4. Pol = Polarization

Report No.: HKEM200100002403 Page: 24 of 39

Radiated emission below 1GHz

Horizontal (worst plot was shown as below)



Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Result
(MHz)	(dBμV/m)	. •	(dB/m)	(dB)	(dBμV/m)	1100011
154.936000	16.0	Н	14.8	27.5	43.5	Pass
335.356000	16.8	Н	15.6	29.2	46.0	Pass
490.847000	20.5	Н	19.1	25.5	46.0	Pass
667.969000	24.5	Н	23.3	21.5	46.0	Pass
850.135000	26.6	Н	25.8	19.4	46.0	Pass
921.566000	32.1	Н	26.7	13.9	46.0	Pass

Report No.: HKEM200100002403 Page: 25 of 39

Vertical (worst plot was shown as below)

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Result
(MHz)	(dBμV/m)		(dB/m)	(dB)	(dBµV/m)	
163.472000	19.0	٧	14.3	24.5	43.5	Pass
346.220000	16.8	V	16.0	29.3	46.0	Pass
495.697000	20.0	٧	19.3	26.0	46.0	Pass
670.976000	24.3	V	23.3	21.7	46.0	Pass
854.985000	26.5	٧	25.9	19.5	46.0	Pass
952.858000	27.4	V	26.8	18.7	46.0	Pass

Report No.: HKEM200100002403 Page: 26 of 39

Above 1GHz

Channel:Low

Frequency	Antenna	Emission Level (dBμV/m)		Limit (dBμV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	
1006.570	Н	35.7	/	74.0	54.0	Pass
4838.850	Н	41.9	/	74.0	54.0	Pass
5783.270	V	49.7	/	74.0	54.0	Pass
7397.940	V	56.1	46.9	74.0	54.0	Pass
8018.960	V	52.2	/	74.0	54.0	Pass
9982.200	Н	55.5	48.5	74.0	54.0	Pass

Channel:Middle

Frequency	Antenna		on Level IV/m)	Limit (c	IBμV/m)	Remark
(MHz)	Polarization	Peak	Average	Peak	Average	
1342.580	Н	38.9	/	74.0	54.0	Pass
3819.880	Н	45.8	/	74.0	54.0	Pass
5579.410	V	57.2	/	74.0	54.0	Pass
7400.360	V	54.5	/	74.0	54.0	Pass
8812.450	V	57.8	48.5	74.0	54.0	Pass
9914.380	Н	62.9	45.2	74.0	54.0	Pass

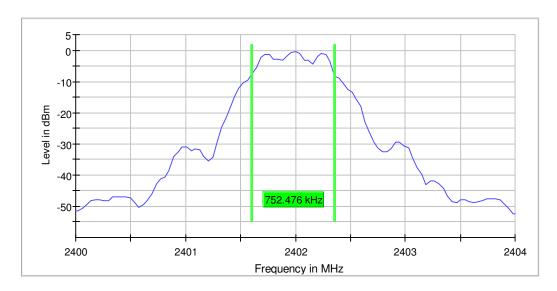
Channel: High

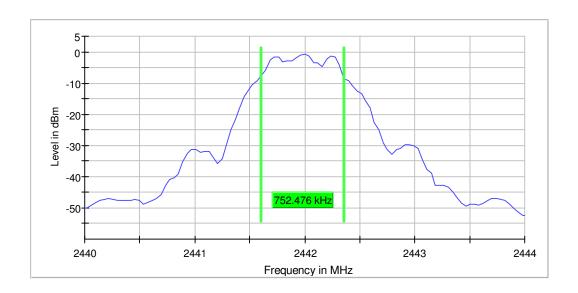
Frequency	Antenna		on Level IV/m)	Limit (dBμV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	
1758.625	Н	41.3	/	74.0	54.0	Pass
4997.512	Н	47.4	/	74.0	54.0	Pass
7253.980	V	49.8	/	74.0	54.0	Pass
8728.950	V	53.8	/	74.0	54.0	Pass
9282.360	V	61.8	51.2	74.0	54.0	Pass
10033.130	Н	58.6	48.7	74.0	54.0	Pass

Report No.: HKEM200100002403 Page: 27 of 39

Photographs 8

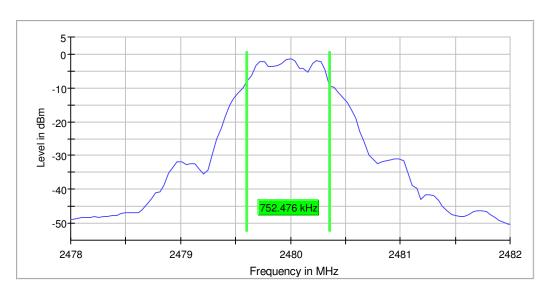
Remark: Photos refer to Appendix A, Appendix B and Appendix C of HKEM200100002403.


Page: 28 of 39


9 Appendix 15.247

9.1 Minimum Emission Bandwidth 6 dB

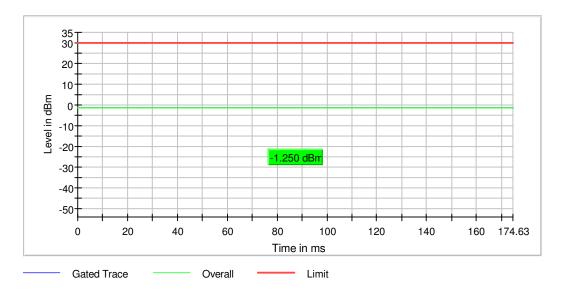
DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)
2402.000000	0.752476	0.500000		2401.603960	2402.356436
2442.000000	0.752476	0.500000		2441.603960	2442.356436
2480.000000	0.752476	0.500000		2479.603960	2480.356436

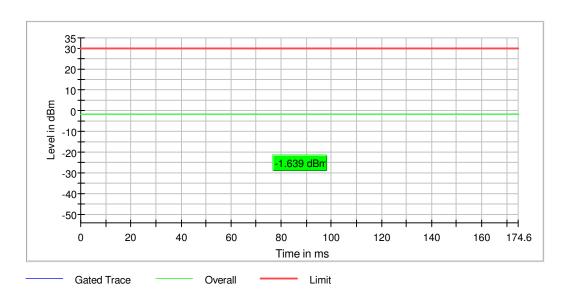

Test Plot:

Report No.: HKEM200100002403 Page: 29 of 39

Measurement Setting:

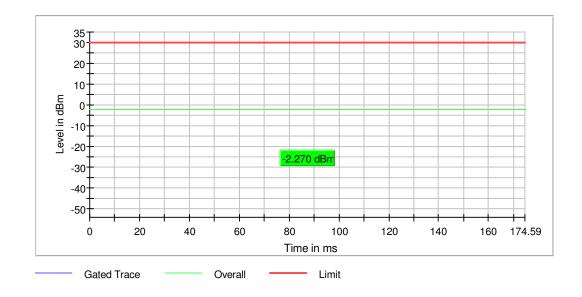
weasurement Setting.				
Setting	Instrument Value	Target Value		
Span	4.000 MHz	4.000 MHz		
RBW	100.000 kHz	~ 100.000 kHz		
VBW	300.000 kHz	~ 300.000 kHz		
SweepPoints	101	~ 80		
Sweeptime	18.938 us	AUTO		
Reference Level	-10.000 dBm	-10.000 dBm		
Attenuation	10.000 dB	AUTO		
Detector	MaxPeak	MaxPeak		
SweepCount	100	100		
Filter	3 dB	3 dB		
Trace Mode	Max Hold	Max Hold		
Sweeptype	FFT	AUTO		
Preamp	off	off		
Stablemode	Trace	Trace		
Stablevalue	0.50 dB	0.50 dB		
Run	12 / max. 150	max. 150		
Stable	5 / 5	5		
Max Stable Difference	0.25 dB	0.50 dB		


Page: 30 of 39

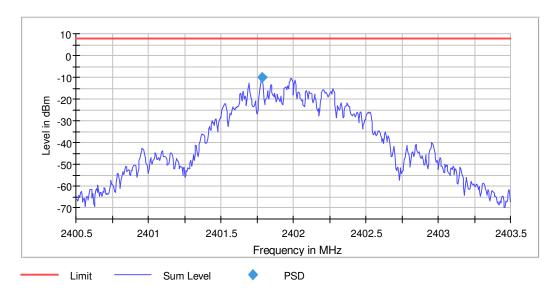

9.2 Conducted Peak Output Power

DUT Frequency (MHz)	Limit Max (dBm)	Gated Level (dBm)	Result
2402.000000	30.0	-1.2	PASS
2442.000000	30.0	-1.6	PASS
2480.000000	30.0	-2.3	PASS

Remark: Antenna gain: 0.5dBi


Test Plot:

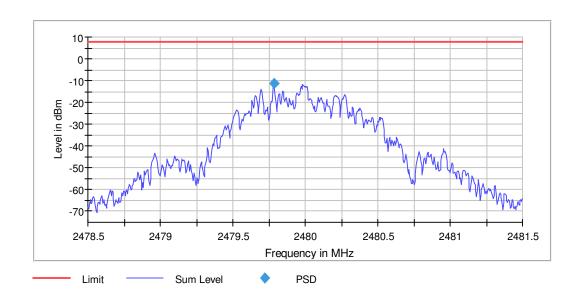
Report No.: HKEM200100002403 Page: 31 of 39



Page: 32 of 39

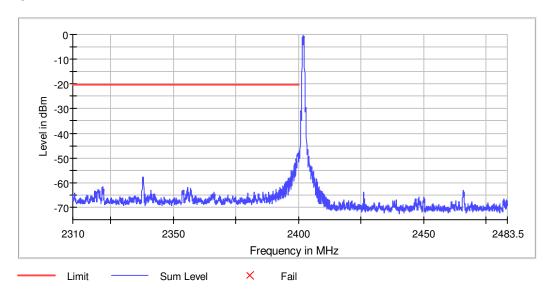
9.3 Power Spectral Density

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
2402.000000	2401.782500	-10.160	8.0	PASS
2442.000000	2441.787500	-11.271	8.0	PASS
2480.000000	2479.782500	-11.332	8.0	PASS


Test Plot:

Report No.: HKEM200100002403 Page: 33 of 39

Measurement Setting:


Setting	Instrument Value	Target Value
Span	3.000 MHz	3.000 MHz
RBW	10.000 kHz	<= 10.000 kHz
VBW	30.000 kHz	>= 30.000 kHz
SweepPoints	600	~ 600
Sweeptime	12.000 ms	12.000 ms
Reference Level	-10.000 dBm	-10.000 dBm
Attenuation	10.000 dB	AUTO
Detector	RMS	RMS
SweepCount	1	_1
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	Sweep
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	37 / max. 150	max. 150
Stable	3 / 3	3
Max Stable Difference	0.14 dB	0.50 dB

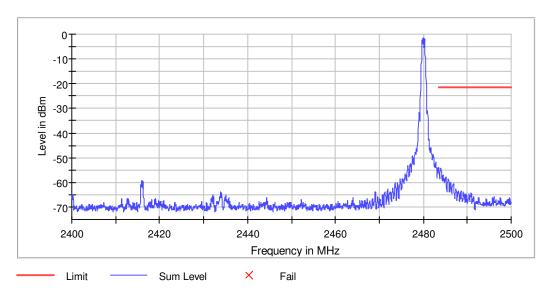
Page: 34 of 39

9.4 Conducted Band Edges Measurement

Band Edge Low

Inband Peak

Frequency	Level
(MHz)	(dBm)
2402 025000	-0.3


Measurements

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2399.625000	-48.1	27.8	-20.3	PASS
2399.975000	-48.1	27.8	-20.3	PASS
2399.575000	-48.1	27.9	-20.3	PASS
2399.825000	-48.2	27.9	-20.3	PASS
2399.675000	-48.3	28.0	-20.3	PASS
2399 725000	-48 3	28.0	-20.3	PASS

Report No.: HKEM200100002403 Page: 35 of 39

Band Edge High

Inband Peak

Frequency	Level
(MHz)	(dBm)
2490 025000	1.4

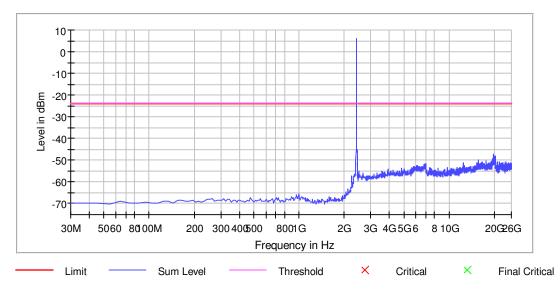
Measurements

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2483.925000	-54.2	32.8	-21.4	PASS
2483.975000	-54.2	32.8	-21.4	PASS
2483.525000	-54.4	33.0	-21.4	PASS
2483.875000	-54.7	33.4	-21.4	PASS
2484.025000	-54.8	33.4	-21.4	PASS
2484.075000	-55.9	34.5	-21.4	PASS

Report No.: HKEM200100002403 Page: 36 of 39

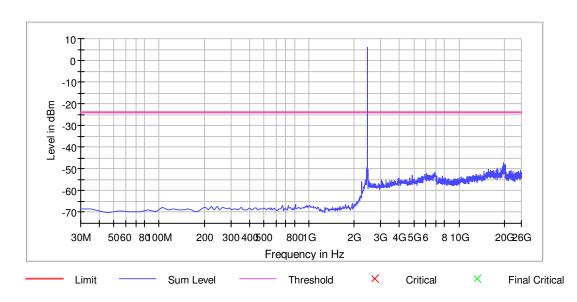
Measurement Setting:

Setting	Instrument Value	Target Value
Span	83.500 MHz	83.500 MHz
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	1670	~ 1670
Sweeptime	1.670 ms	AUTO
Reference Level	-10.000 dBm	-10.000 dBm
Attenuation	10.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	8 / max. 150	max. 150
Stable	3/3	3
Max Stable Difference	0.04 dB	0.50 dB



Page: 37 of 39

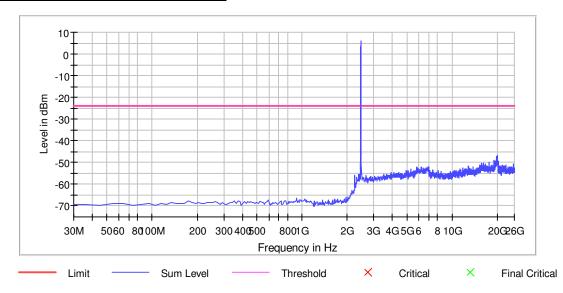
9.5 Conducted Spurious Emissions


Lowest Channel

Frequency	Level	Margin	Limit
(MHz)	(dBm)	(dB)	(dBm)
2395.021008	-44.2	20.2	-24.0

Middle Channel

Frequency	Level	Margin	Limit
(MHz)	(dBm)	(dB)	(dBm)
19728.600191	-47.5	23.8	-23.7



Report No.: HKEM200100002403 Page: 38 of 39

Highest Channel

Frequency	Level	Margin	Limit
(MHz)	(dBm)	(dB)	(dBm)
20138.364960	-46.7	22.6	-24.0

Measurement Setting:

Setting	Instrument Value	Target Value
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	238	~ 238
Sweeptime	23.700 ms	AUTO
Reference Level	-10.000 dBm	-30.000 dBm
Attenuation	20.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	3	3
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	7 / max. 40	max. 40
Stable	3 / 3	3
Max Stable Difference	0.00 dB	0.50 dB

Report No.: HKEM200100002403 Page: 39 of 39

9.6 Radiated Emissions which fall in the restricted bands

Lowest Channel:

Frequency	Antenna	Emission Level (dBμV/m)		Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
2389.750	V	55.6	41.2	74.0	54.0	Pass
2487.750	V	59.8	40.9	74.0	54.0	Pass

Middle Channel:

Frequency	Antenna	Emission Level (dBμV/m)		Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
2389.750	V	59.2	43.8	74.0	54.0	Pass
2483.500	V	60.3	42.1	74.0	54.0	Pass

Highest Channel:

Frequency	Antenna	Emission Level (dBμV/m)		Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
2389.750	V	62.1	41.0	74.0	54.0	Pass
2484.250	V	60.1	45.5	74.0	54.0	Pass

- End of the Report -