

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

CONSUMER CAMERA

MODEL NUMBER: IPC-F26FP

ADDTIONAL MODEL NUMBER: IPC-F26FP-A-0360B-imou;IPC-F26FN-A-0360B-imou;IPC-F26FN-A-0600B-imou;IPC-F26FN-A-imou;IPC-F26FN-A-imou;IPC-F26FN-A;IPC-F26FP-A;IPC-F26FP-0360B-imou;IPC-F26FN-0360B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;IPC-F26FN-060B-imou;

PROJECT NUMBER: 4789794801

REPORT NUMBER: 4789794801-4

FCC ID: 2AVYF-IPC-FX6F-A-LC

ISSUE DATE: Feb. 20, 2021

Prepared for

Hangzhou Huacheng Network Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 192

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	02/20/2021	Initial Issue	

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	9
	<i>5.4.</i>	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE WORSE CASE CONFIGURATIONS	11
	5.8.	TEST ENVIRONMENT	12
	5.9.	DESCRIPTION OF TEST SETUP	13
	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED	14
6.	ME	ASUREMENT METHODS	15
7.	AN	TENNA PORT TEST RESULTS	16
	7.1.	ON TIME AND DUTY CYCLE	16
	7.2.	6 dB BANDWIDTH	19
	7.3.	PEAK CONDUCTED OUTPUT POWER	33
	7.4.	POWER SPECTRAL DENSITY	35
	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	50
		RADIATED TEST RESULTS	
	7.6 7.6		
	7.6	3. RESTRICTED BANDEDGE	115
	7.6	4. SPURIOUS EMISSIONS	132
8.	AC	POWER LINE CONDUCTED EMISSIONS	189
a	ΔN	TENNA REQUIREMENTS	102

Page 4 of 192

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Hangzhou Huacheng Network Technology Co., Ltd.

Address: No.2930, Nanhuan Road, Binjiang District, Hangzhou, China

Manufacturer Information

Company Name: Hangzhou Huacheng Network Technology Co., Ltd.

Address: No.2930, Nanhuan Road, Binjiang District, Hangzhou, China

EUT Description

Product Name: CONSUMER CAMERA

Model Name: IPC-F26FP

Additional No.: IPC-F26FP-A-0360B-imou;IPC-F26FN-A-0360B-imou;IPC-

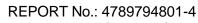
F26FN-A-0600B-imou;IPC-F26FP-A-0600B-imou;IPC-F26FN-A-

imou;IPC-F26FP-A-imou;IPC-F26FN-A;IPC-F26FP-A;IPC-

F26FP-0360B-imou;IPC-F26FN-0360B-imou;IPC-F26FN-0600B-imou;IPC-F26FP-0600B-imou;IPC-F26FN-imou;IPC-F26FP-

imou;IPC-F26FN

Sample Number: 3606969


Data of Receipt Sample: Jan. 19, 2021

Date Tested: Jan. 19, 2021~ Feb. 18, 2021

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

Page 5 of 192

	Summary of Test Results							
Clause	Test Items	FCC/IC Rules	Test Results					
1	6db DTS Bandwidth	FCC 15.247 (a) (2)	Complied					
2	Conducted Output Power	FCC 15.247 (b) (3)	Complied					
3	Power Spectral Density	FCC 15.247 (e)	Complied					
4	Conducted Band edge And Spurious emission	FCC 15.247 (d)	Complied					
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	Complied					
6	Conducted Emission Test For AC Power Port	FCC 15.207	Complied					
7	Antenna Requirement	FCC 15.203	Complied					

Remark:

Prepared By:	Reviewed By:
Jason Yang	Tom Tang
Jason Yang Engineer	Tom Tang Engineer Project Associate
Authorized By:	
Chris Zhong	
Chris Zhong Laboratory Leader	

¹⁾ The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C> when <Accuracy Method> decision rule is applied.

²⁾ For this product, it has two antennas, antenna1 and antenna2, but only the modes of 11N HT20 and 11N HT40 can support MIMO mode.

Page 6 of 192

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 662911 D01 Multiple Transmitter Output v02r01.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 7 of 192

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.1dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.4dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.4dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.9dB (1GHz-18Gz)
Note: This was estaints assume that a surrounded by	4.2dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 192

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	CONSUMER CAMERA
Model No.:	IPC-F26FP
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)
Channels Step:	Channels with 5MHz step
Sample Type:	Fixed production
Test software of EUT:	Secure CRT (manufacturer declare)
Antenna Type:	Dipole Antenna
Antenna Gain:	Antenna1: 1.79 dBi Antenna2: 1.79 dBi
	Remark: This data is provided by customer and our lab isn't responsible for this data
Adapter	NAME: Power Adapter MODEL: ADS-12AM-12 12012-EPCU INPUT:100-240V,50/60Hz, 0.3A OUTPUT:12V 1A

Remark:

Number:	Name:	Number:	Name:	Number:	Name:
1	IPC-F26FP	2	IPC-F26FP-A-0360B- imou	3	IPC-F26FN-A-0360B- imou
4	IPC-F26FN-A-0600B- imou	5	IPC-F26FP-A-0600B- imou	6	IPC-F26FN-A-imou
7	IPC-F26FP-A-imou	8	IPC-F26FN-A	9	IPC-F26FP-A
10	IPC-F26FP-0360B- imou	11	IPC-F26FN-0360B- imou	12	IPC-F26FN-0600B- imou
13	IPC-F26FP-0600B- imou	14	IPC-F26FN-imou	15	IPC-F26FP-imou
16	IPC-F26FN				

Only the main model **IPC-F26FP** was tested and only the data of this model is shown in this test report. Since their technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction are the same, the difference is only the name of the models.

Page 9 of 192

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max AV Conducted Power (dBm)
1	IEEE 802.11B SISO	1-11[11]	17.72
1	IEEE 802.11G SISO	1-11[11]	16.57
2	IEEE 802.11N HT20 MIMO	1-11[11]	19.39
2	IEEE 802.11N HT40 MIMO	3-9[7]	19.46

Remark: For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical.

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452		

	Channel List for 802.11n (40 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

Page 10 of 192

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Software Secu				ıreCRT				
	Transmit		Test (Channel		
Modulation Mode	Antenna	1	NCB: 20MF	łz	١	ICB: 40MHz		
Mode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1/2	N/A	N/A	N/A				
802.11g	1/2	N/A	N/A	N/A	/			
802.11n HT20	1/2	N/A	N/A	N/A]			
802.11n HT40	1/2						N/A	

Page 11 of 192

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	Directional gain(dBi)
1	2400-2483.5	Dipole Antenna	1.79	4.00
2	2400-2483.5	Dipole Antenna	1.79	4.80

Note:

- 1) Directional gain= $10\log [(10^{G1/20} + 10^{G2/20})^2/N_{ANT}] = 4.80 dBi$
- 2) N_{ANT}: the number of Antenna
- 3) For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical.

Test Mode	Transmit and Receive Mode	Description		
IEEE 802.11b	⊠2TX, 2RX	Antenna1 or Antenna2 can be used as transmitting/receiving antenna independently.		
IEEE 802.11g	⊠2TX, 2RX	Antenna1 or Antenna2 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N (HT20) MIMO	⊠2TX, 2RX	Antenna1 or Antenna2 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N (HT20) MIMO	⊠2TX, 2RX	Antenna1 or Antenna2 can be used as transmitting/receiving antenna independently.		

Remark:

- For this product, it has two antennas, antenna1 and antenna2, only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical. But for the 11B and 11G modes only support the SISO technical.
- 2) For the 11N mode (including the 11N HT20 SISO,11N HT20 MIMO,11N HT40 SISO,11N HT40 MIMO), pre-testing all test modes, only the worst case modes is included in this report.

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there two transmission antennas, and pre-testing both of them, only the worse data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 12 of 192

5.8. **TEST ENVIRONMENT**

Environment Parameter	Selected Values During Tests				
Relative Humidity	55 ~ 65%				
Atmospheric Pressure:	1025Pa				
Temperature	TN	23 ~ 28°C			
	VL	N/A			
Voltage :	VN	AC 120V			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 13 of 192

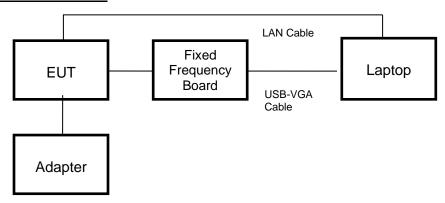
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E550c	N/A
2	Fixed Frequency Board	N/A	N/A	Supply by UL Lab

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	LAN	LAN	LAN Cable	100cm Length (Supply by UL Lab)	N/A
2	USB	USB	USB-VGA Cable	100cm Length (Supply by UL Lab)	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Micro SD card	Kingston	32GB	Supply by UL lab

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

Remark: The EUT has been built one SD card during the testing.

Page 14 of 192

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions (Instrument)								
		Cor	nducted	Emis:	sions (Instrur				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
\checkmark	EMI Test Receiver	R&S	ESR	3	126700	2019-12-12	2020-12-05	2021-12-04	
V	Two-Line V-Network	R&S	ENV2	16	126701	2019-12-12	2020-12-05	2021-12-04	
V	Artificial Mains Networks	R&S	ENY8	31	126711	2019-12-12	2020-12-05	2021-12-04	
	Software								
Used	Des	scription		Ma	anufacturer	Name	Version		
V	Test Software for 0	Conducted distur	bance		R&S	EMC32	Ver. 9.25		
		Ra	diated E	miss	ions (Instrum	ent)			
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
$\overline{\checkmark}$	Spectrum Analyzer	Keysight	N9010	0B	MY57110128	2019-05-29	2020-05-10	2021-05-09	
$\overline{\checkmark}$	EMI test receiver	R&S	ESR2	26	1267603	2019-12-12	2020-12-05	2021-12-04	
V	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1	1513	513-265	N/A	2018-06-15	2021-06-14	
V	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		177821	N/A	2019-01-28	2022-01-27	
V	Receiver Antenna (1GHz-18GHz)	R&S	HF90)7	126705	2018-01-29	2019-01-28	2022-01-27	
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9	170	126706	2019-02-06	2020-12-05	2021-12-04	
V	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G ²	18-50	14140-13467	2019-03-18	2020-12-05	2021-12-04	
V	Pre-amplification (To 26.5GHz)	R&S	SCU-2	26D	134668	2019-02-06	2020-09-27	2021-09-26	
$\overline{\checkmark}$	Band Reject Filter	Wainwright	WRCJ' 2350-24 2483.5-25 4085	400- 533.5-	1	2019-05-29	2020-05-10	2021-05-09	
	Highpass Filter	Wainwright	WHKX 2700-30 18000-4	000-	2	2019-05-29	2020-05-10	2021-05-09	
				Soft	ware				
Used	Desc	ription	Ma	anufac	turer	Name	Version		
V	Test Software for R	for Radiated disturbance Tonscend		end	JS32	V1.0			
			Oth	er ins	truments				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
\checkmark	Spectrum Analyzer	Keysight	N9010	0B	MY57110128	2019-05-29	2020-05-10	2021-05-09	
V	Power Meter	Keysight	U2021	XA	MY57110002	2019-06-12	2020-05-10	2021-05-09	

Page 15 of 192

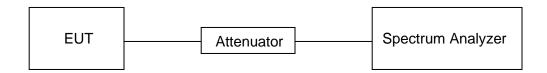
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Conducted Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 192

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

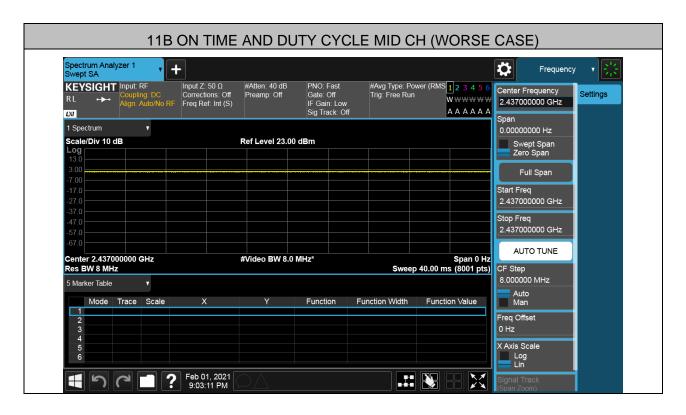
PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

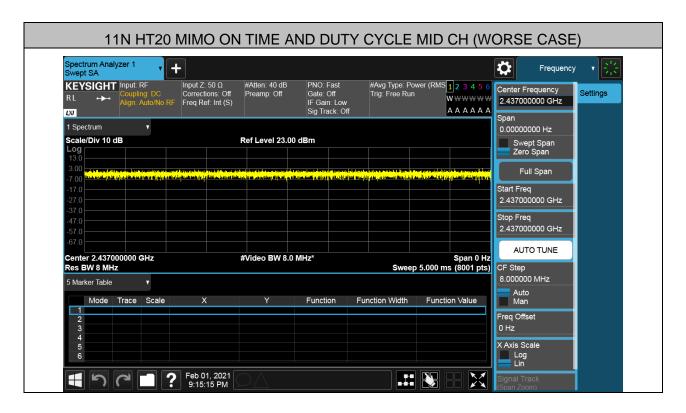
TEST ENVIRONMENT

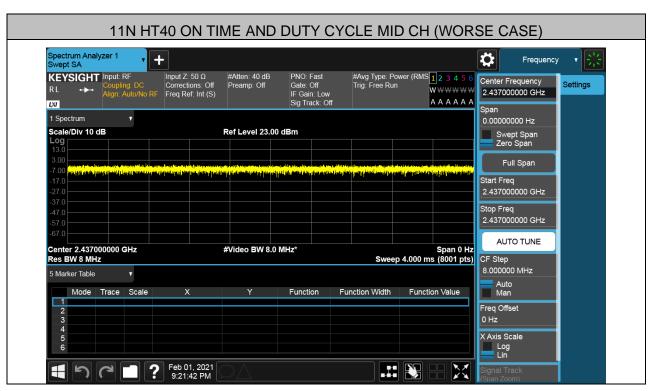
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V


RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)
11B	100	100	1	100	0	0.01
11G	100	100	1	100	0	0.01
11N20 MIMO	100	100	1	100	0	0.01
11N40 MIMO	100	100	1	100	0	0.01

Note: 1) Duty Cycle Correction Factor=10log(1/x).


- 2) Where: x is Duty Cycle(Linear)
- 3) Where: T is On Time (transmit duration)
- 4) Pre-testing Antenna 1 and Antenna2, and pre-testing SISO and MIMO modes, only the data of worse case is shown in this test repot.

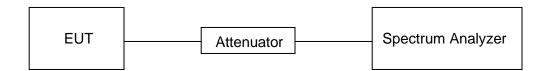


REPORT No.: 4789794801-4 Page 19 of 192

7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5			


TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test		
Detector	Peak		
RBW	For 6 dB Bandwidth :100K		
VBW	For 6dB Bandwidth : ≥3 × RBW		
Trace	Max hold		
Sweep	Auto couple		

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

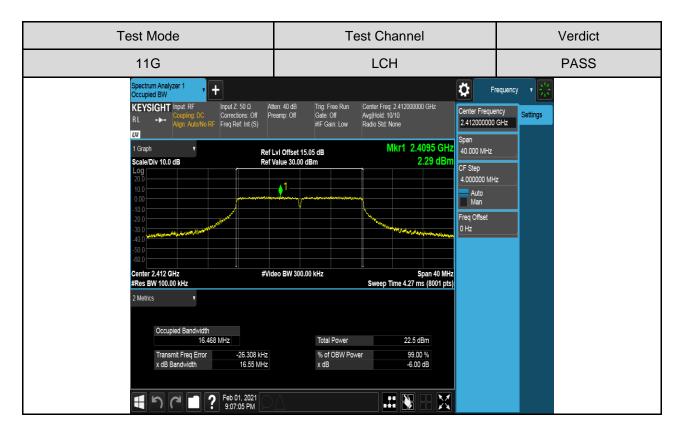
Page 20 of 192

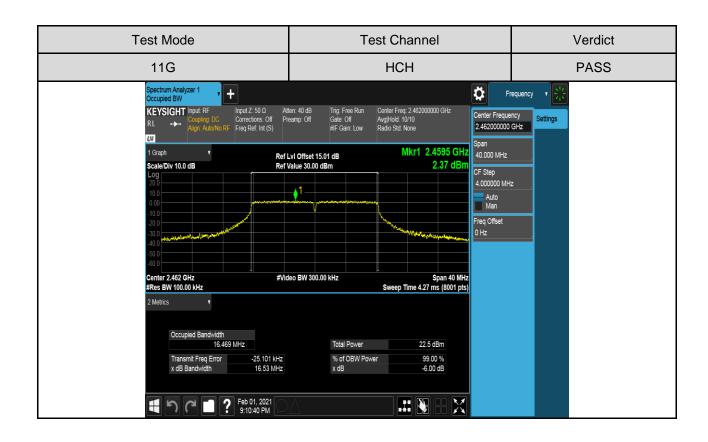
RESULTS

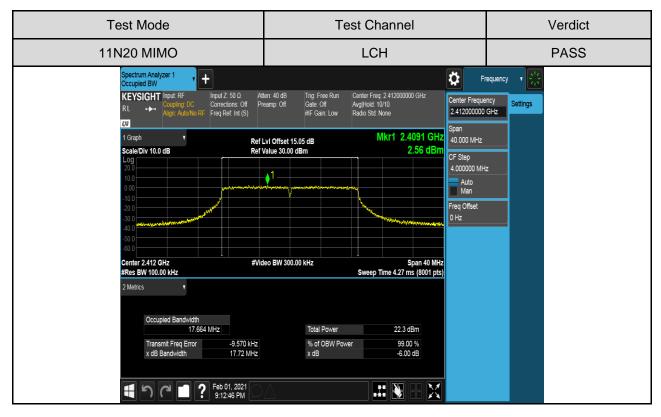
Test Mode	Test Antenna	Test Channel	6dB bandwidth (MHz)	Result
		LCH	10.07	Pass
	Antenna 1	MCH	10.07	Pass
11B SISO		HCH	10.07	Pass
116 3130		LCH	10.05	Pass
	Antenna 2	MCH	10.03	Pass
		HCH	10.07	Pass
		LCH	16.55	Pass
	Antenna 1	MCH	16.55	Pass
11G SISO		HCH	16.53	Pass
116 3130	Antenna 2	LCH	16.55	Pass
		MCH	16.55	Pass
		HCH	16.56	Pass
	Antenna 1 Antenna 2	LCH	17.72	Pass
		MCH	17.71	Pass
11N20MIMO		HCH	17.73	Pass
TTINZOWIIWIO		LCH	17.71	Pass
		MCH	17.71	Pass
		HCH	17.69	Pass
	Antenna 1	LCH	36.43	Pass
		MCH	36.42	Pass
11N40MIMO		HCH	36.42	Pass
I IN40IVIIIVIO		LCH	36.41	Pass
	Antenna 2	MCH	36.41	Pass
		HCH	36.42	Pass

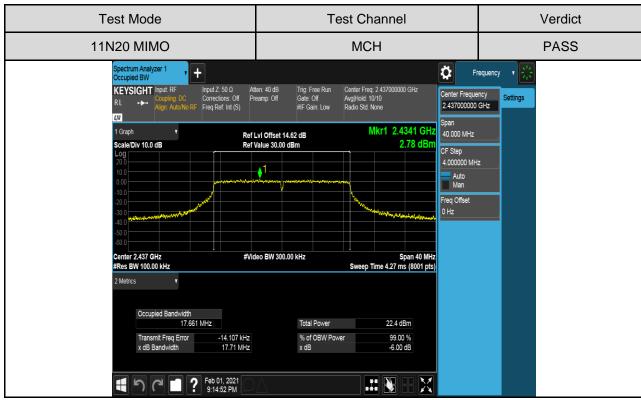
Remark:

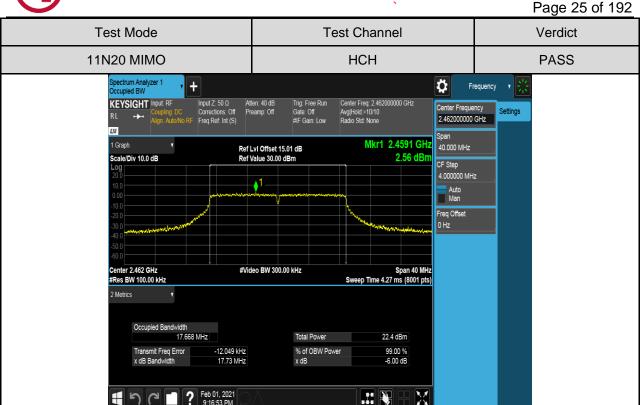
- 1) For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical.
- 2) Through pre-testing all the test modes of 11N 20 and 11N40, including SISO and MIMO, but only the data if worse case is included in this test report.


Test Graphs Antenna1

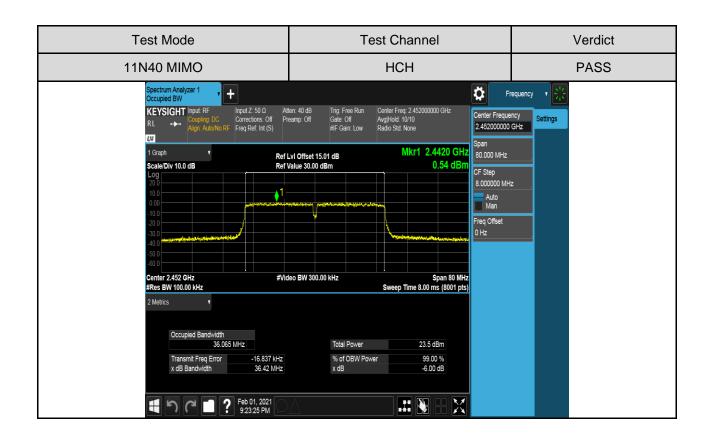




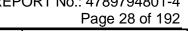

Test Mode Test Channel Verdict **PASS** 11G **MCH** pectrum Analyzer 1 ccupied BW Ö Frequency Atten: 40 dB Preamp: Off Center Freq: 2.437000000 GHz Avg|Hold: 10/10 Radio Std: None Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Settings 2.437000000 GHz LXI 1 Graph Mkr1 2.4345 GHz 40.000 MHz Ref Lvl Offset 14.62 dB 2.49 dBn Scale/Div 10.0 dB Ref Value 30.00 dBm CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Center 2.437 GHz #Res BW 100.00 kHz #Video BW 300.00 kHz Span 40 MHz Sweep Time 4.27 ms (8001 pts) 2 Metrics Occupied Bandwidth 16.464 MHz Total Power 22.6 dBm % of OBW Power 99.00 % -6.00 dB -27.720 kHz 16.55 MHz Transmit Freq Error x dB x dB Bandwidth Peb 01, 2021 9:09:11 PM X # 1 1 5 6 1

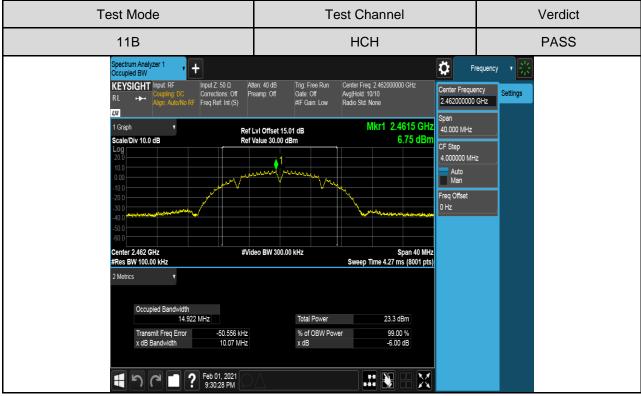


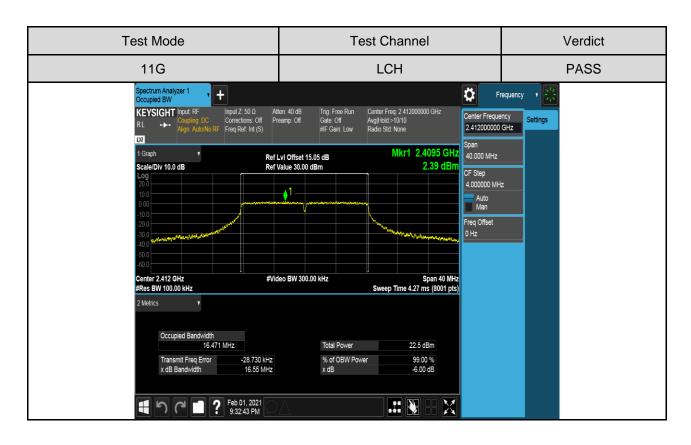
Page 24 of 192

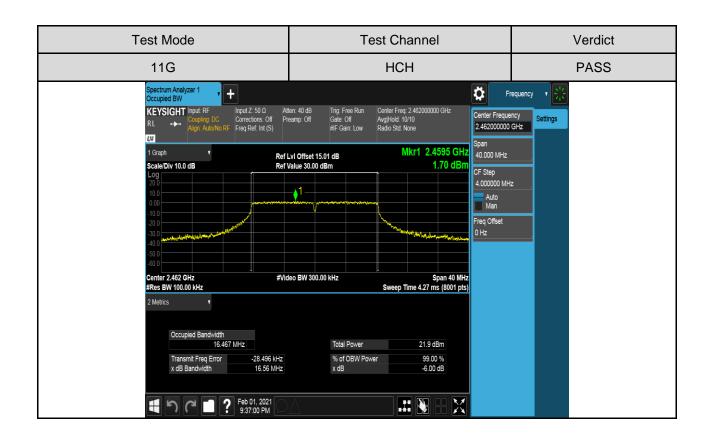


Test Mode Test Channel Verdict **PASS** 11N40 MIMO **MCH** pectrum Analyzer 1 ccupied BW Ö Frequency Atten: 40 dB Preamp: Off Center Freq: 2.437000000 GHz Avg|Hold: 10/10 Radio Std: None Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Settings 2.437000000 GHz LXI 1 Graph Mkr1 2.4514 GHz 80.000 MHz Ref Lvl Offset 14.62 dB 0.49 dBn Scale/Div 10.0 dB CF Step 8.000000 MHz Auto Man Freq Offset 0 Hz Span 80 MHz Sweep Time 8.00 ms (8001 pts) Center 2.437 GHz #Res BW 100.00 kHz #Video BW 300.00 kHz 2 Metrics 36 020 MHz Total Power 23.3 dBm % of OBW Power 99.00 % -6.00 dB -16.014 kHz 36.42 MHz Transmit Freq Error x dB Bandwidth x dB Feb 01, 2021 9:21:18 PM X # 1

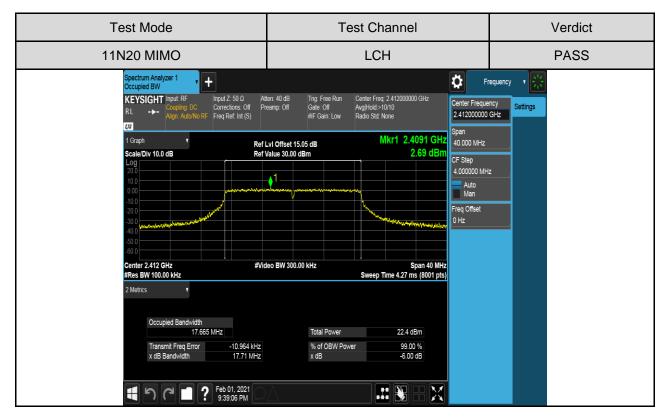


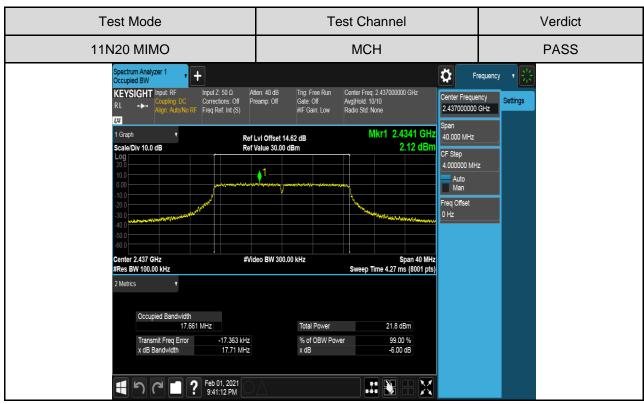

Antenna2




Test Mode Test Channel Verdict **PASS** 11G **MCH** pectrum Analyzer 1 ccupied BW Ö Frequency Atten: 40 dB Preamp: Off Center Freq: 2.437000000 GHz Avg|Hold: 10/10 Radio Std: None Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Settings 2.437000000 GHz LXI 1 Graph Mkr1 2.4345 GHz 40.000 MHz Ref Lvl Offset 14.62 dB 1.84 dBn Scale/Div 10.0 dB Ref Value 30.00 dBm CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz #Video BW 300.00 kHz Center 2.437 GHz #Res BW 100.00 kHz Span 40 MHz Sweep Time 4.27 ms (8001 pts) 2 Metrics Occupied Bandwidth 16.459 MHz Total Power 22.0 dBm % of OBW Power 99.00 % -6.00 dB -31.118 kHz 16.55 MHz Transmit Freq Error x dB Bandwidth x dB

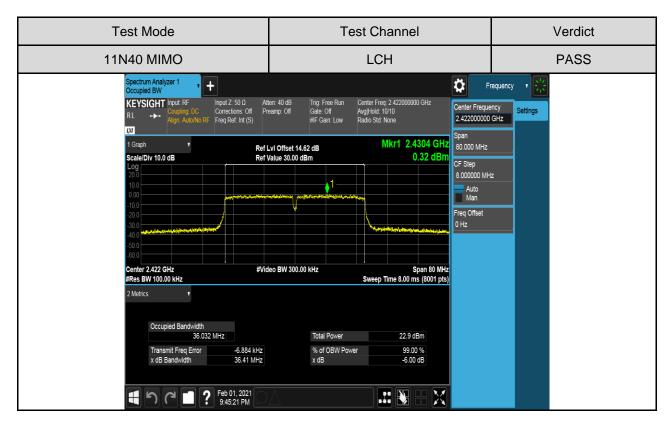
X

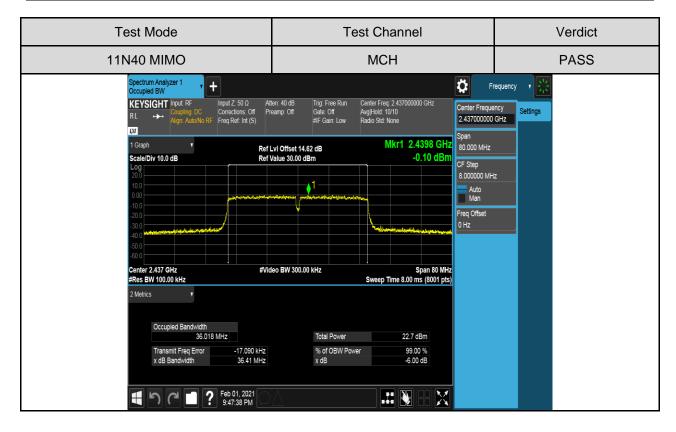

1


Peb 01, 2021 9:34:50 PM

1 5 6 1







Page 32 of 192

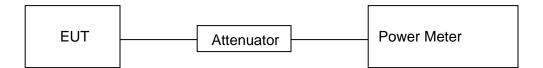
7.3. CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247) , Subpart C					
Section Test Item Limit Frequency Range (MHz)					
FCC 15.247(b)(3)	Conducted Output Power	1 watt or 30dBm	2400-2483.5		

^{1.} If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

AVG Detector use for AVG result.

TEST SETUP

Page 34 of 192

RES	U	L.	T	S

Test Mode	Test Antenna	Test Channel	Maximum Average Conducted Output Power (dBm)	Result
		LCH	17.66	Pass
	Antenna 1	MCH	17.02	Pass
11B		HCH	16.88	Pass
IID		LCH	17.72	Pass
	Antenna 2	MCH	17.16	Pass
		HCH	16.56	Pass
		LCH	16.46	Pass
	Antenna 1	MCH	16.57	Pass
11G		HCH	16.51	Pass
IIG		LCH	16.52	Pass
	Antenna 2	MCH	15.93	Pass
		HCH	15.86	Pass
	Antenna 1	LCH	16.31	Pass
		MCH	16.44	Pass
		HCH	16.37	Pass
	Antenna 2	LCH	16.45	Pass
11N20MIMO		MCH	15.87	Pass
		HCH	15.79	Pass
	Antenna 1+2	LCH	19.39	Pass
		MCH	19.17	Pass
		HCH	19.10	Pass
	Antenna 1	LCH	16.15	Pass
		MCH	16.61	Pass
		HCH	16.73	Pass
	Antenna 2	LCH	16.19	Pass
11N40MIMO		MCH	16.02	Pass
		HCH	16.14	Pass
		LCH	19.18	Pass
	Antenna 1+2	MCH	19.34	Pass
	1 +2	HCH	19.46	Pass

Remark:

¹⁾ For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical.

²⁾ Through pre-testing all the test modes of 11N 20 and 11N40, including SISO and MIMO, but only the data if worse case is included in this test report.

Page 35 of 192

7.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247) , Subpart C					
Section Test Item Limit Frequency Range (MHz)					
FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5		

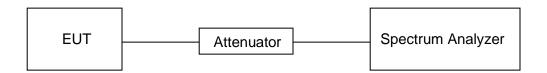
^{1.} If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.


If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

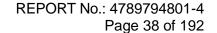
TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST SETUP

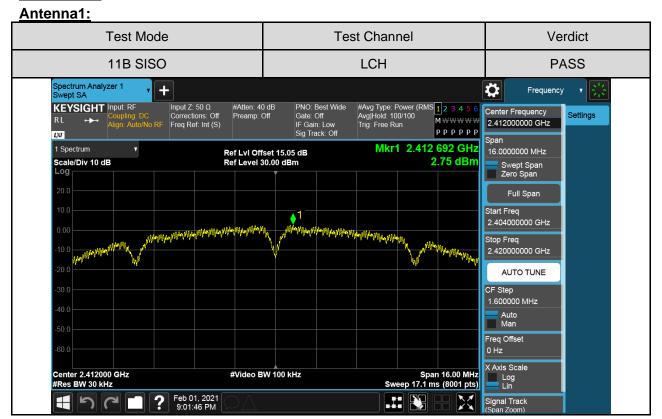
REPORT No.: 4789794801-4

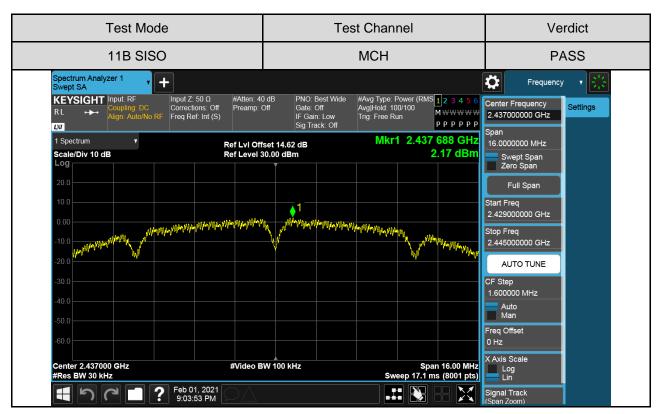
Page 37 of 192

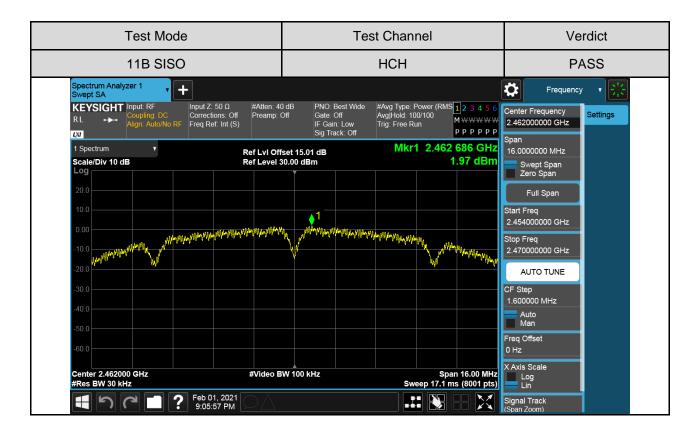

RESULTS

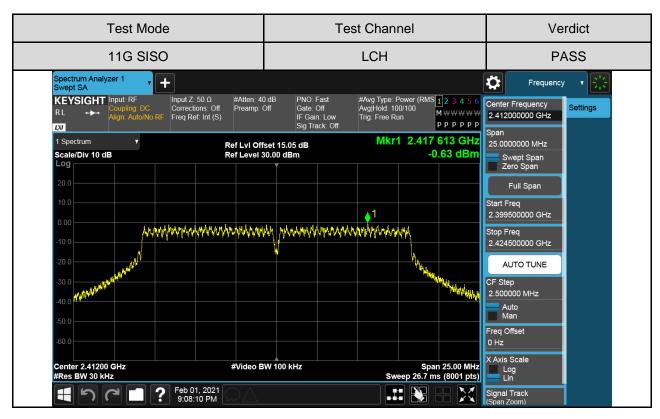
Test Mode	Test Antenna	Test Channel	Maximum Peak power spectral density(dBm/30kHz)	Result
11B	rest Antenna	LCH	2.75	Pass
	Antenna 1	MCH	2.17	Pass
		HCH	1.97	Pass
		LCH	2.88	Pass
	Antenna 2	MCH	2.32	Pass
		HCH	1.72	Pass
		LCH	-0.63	Pass
	Antenna 1	MCH	-0.58	Pass
110		HCH	-0.67	Pass
11G		LCH	-0.72	Pass
	Antenna 2	MCH	-1.20	Pass
		HCH	-1.32	Pass
		LCH	-0.65	Pass
	Antenna 1	MCH	-0.50	Pass
		HCH	-0.63	Pass
		LCH	-0.54	Pass
11N20MIMO	Antenna 2	MCH	-0.92	Pass
		HCH	-1.00	Pass
	Antenna 1+2	LCH	2.42	Pass
		MCH	2.31	Pass
		HCH	2.20	Pass
		LCH	-2.67	Pass
	Antenna 1	MCH	-1.99	Pass
		HCH	-1.97	Pass
11N40MIMO	Antenna 2	LCH	-3.09	Pass
		MCH	-3.39	Pass
		HCH	-2.46	Pass
		LCH	0.14	Pass
	Antenna 1+2	MCH	0.38	Pass
		HCH	0.80	Pass

Remark:

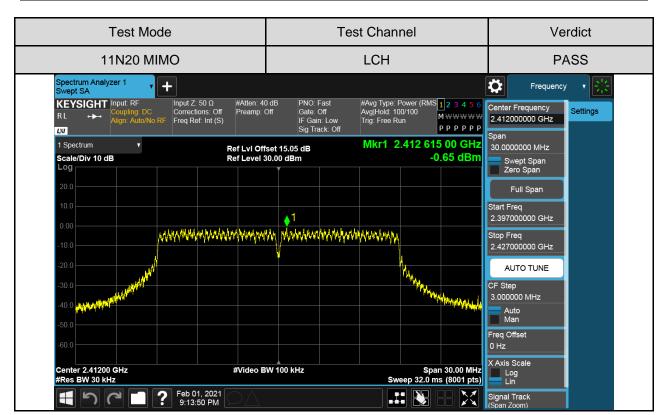

¹⁾ For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical.

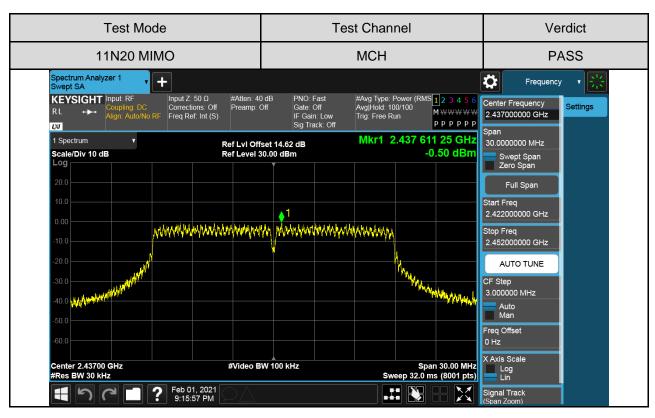

²⁾ Through pre-testing all the test modes of 11N 20 and 11N40, including SISO and MIMO, but only the data if worse case is included in this test report.



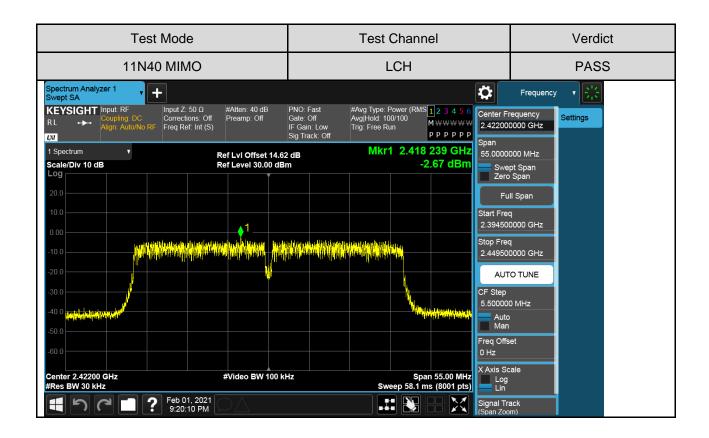

Test Graphs:







Test Mode Test Channel Verdict 11G SISO **MCH PASS** Spectrum Analyzer 1 Swept SA + **Ö** Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) #Atten: 40 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig: Free Run PNO: Fast KEYSIGHT Input: RF Center Frequency Gate: Off IF Gain: Low Settings M WWWWW 2.437000000 GHz PPPPPP LXI Mkr1 2.433 863 GHz 1 Spectrum Ref LvI Offset 14.62 dB 25.0000000 MHz -0.58 dBm Scale/Div 10 dB Ref Level 30.00 dBm Swept Span Zero Span Start Freq 2.424500000 GHz MANANA MA 2.449500000 GHz **AUTO TUNE** CF Step 2.500000 MHz Auto Man Freq Offset X Axis Scale Center 2.43700 GHz #Video BW 100 kHz Span 25.00 MHz Log Lin #Res BW 30 kHz Sweep 26.7 ms (8001 pts) Feb 01, 2021 9:10:16 PM 丽 ? Signal Track (Span Zoom)



Test Mode Test Channel Verdict 11N20 MIMO **HCH PASS** Spectrum Analyzer 1 Swept SA + Ö Frequency KEYSIGHT Input: RF #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig. Free Run Input Z: 50 Ω #Atten: 40 dB Center Frequency Gate: Off IF Gain: Low Sig Track: Off Settings Corrections: Off Freq Ref: Int (S) Preamp: Off M₩₩₩₩₩ 2.462000000 GHz PPPPPP ĻXI Mkr1 2.462 615 00 GHz Ref LvI Offset 15.01 dB Ref Level 30.00 dBm 30.0000000 MHz -0.63 dBm Scale/Div 10 dB Full Span Start Freq <u>↓</u>1 pulovindany1/m/hylpothm/1/m/m/m/p 2.447000000 GHz ARAMANIANA MANAKANAAN MAMAANAAN Stop Freq 2.477000000 GHz AUTO TUNE 3.000000 MHz Auto Man Freq Offset X Axis Scale Center 2.46200 GHz #Video BW 100 kHz Span 30.00 MHz Log Lin #Res BW 30 kHz Sweep 32.0 ms (8001 pts) ? Signal Track

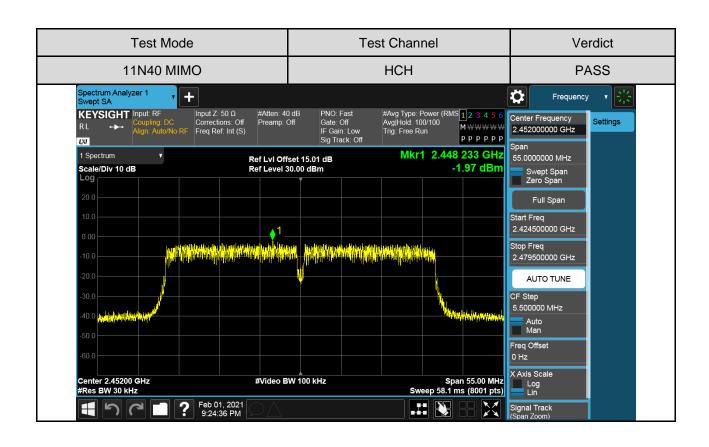
Center 2.43700 GHz

#Res BW 30 kHz

Test Mode Test Channel Verdict 11N40 MIMO **MCH PASS** Spectrum Analyzer 1 Swept SA + **Ö** Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) #Atten: 40 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig: Free Run PNO: Fast KEYSIGHT Input: RF Center Frequency Gate: Off IF Gain: Low Settings MWWWW 2.437000000 GHz PPPPPP LXI Mkr1 2.433 239 GHz 1 Spectrum Ref LvI Offset 14.62 dB 55.0000000 MHz -1.99 dBm Scale/Div 10 dB Ref Level 30.00 dBm Swept Span Zero Span Start Freq 2.409500000 GHz 2.464500000 GHz AUTO TUNE CF Step 5.500000 MHz Auto Man Freq Offset X Axis Scale

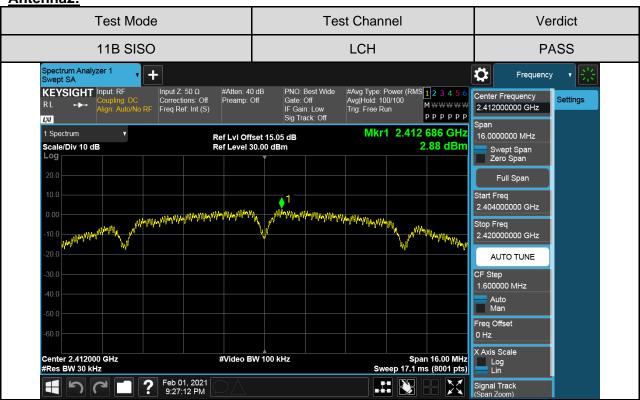
Span 55.00 MHz

Sweep 58.1 ms (8001 pts)


丽

Log Lin

#Video BW 100 kHz


Feb 01, 2021 9:22:27 PM

?

Antenna2:

Center 2.462000 GHz

#Res BW 30 kHz

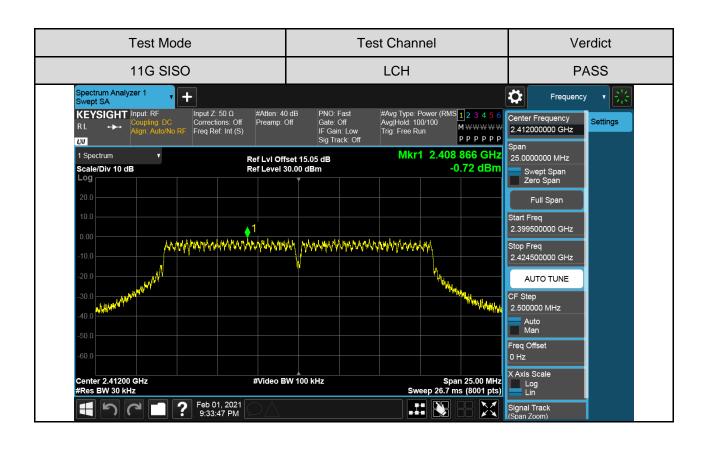
REPORT No.: 4789794801-4 Page 45 of 192

AUTO TUNE

CF Step
1.600000 MHz
Auto
Man
Freq Offset
0 Hz
X Axis Scale

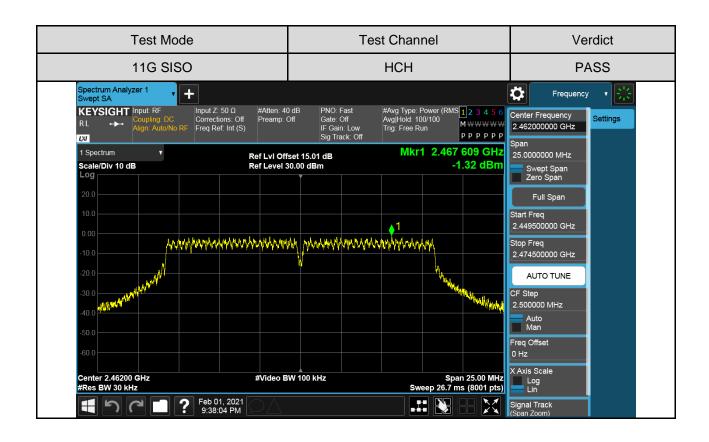
Log Lin

ignal Track


Span 16.00 MHz Sweep 17.1 ms (8001 pts)

Test Channel Test Mode Verdict 11B SISO **HCH PASS** + ***** Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 #Atten: 40 dB KEYSIGHT Input: RF Center Frequency Settings MWWWW 2.462000000 GHz Trig: Free Run PPPPPP LXI Mkr1 2.462 688 GHz 1 Spectrum 16.0000000 MHz Ref LvI Offset 15.01 dB Ref Level 30.00 dBm 1.72 dBm Scale/Div 10 dB Swept Span Zero Span Full Span Start Freq 2.454000000 GHz 2.470000000 GHz

#Video BW 100 kHz


Feb 01, 2021 9:31:32 PM

?

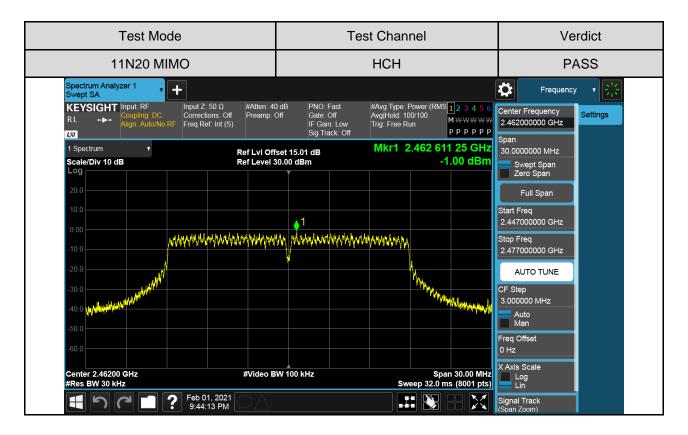
Test Mode Test Channel Verdict 11G SISO **MCH PASS** Spectrum Analyzer 1 Swept SA + **Ö** Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) #Atten: 40 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig: Free Run PNO: Fast KEYSIGHT Input: RF Center Frequency Gate: Off IF Gain: Low Settings M WWWWW 2.437000000 GHz PPPPPP LXI Mkr1 2.433 863 GHz 1 Spectrum Ref LvI Offset 14.62 dB 25.0000000 MHz -1.20 dBm Scale/Div 10 dB Ref Level 30.00 dBm Swept Span Zero Span Start Freq 2.424500000 GHz MAYANA MAYANA MAYANA MAYANA MA 2.449500000 GHz **AUTO TUNE** CF Step 2.500000 MHz Auto Man Freq Offset X Axis Scale Center 2.43700 GHz #Video BW 100 kHz Span 25.00 MHz Log Lin #Res BW 30 kHz Sweep 26.7 ms (8001 pts) Feb 01, 2021 9:35:54 PM 丽 ? Signal Track (Span Zoom)

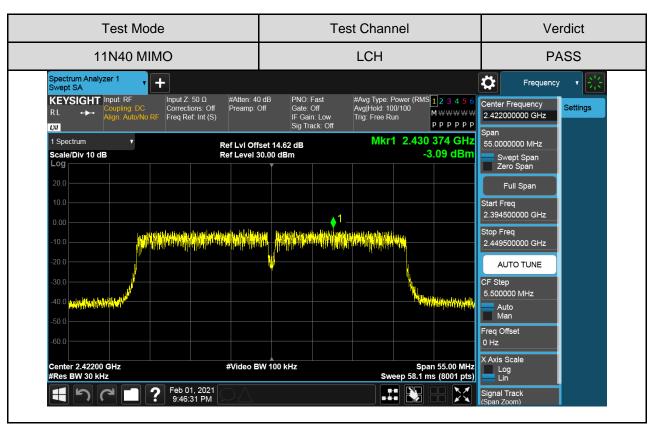
Center 2.41200 GHz

#Res BW 30 kHz

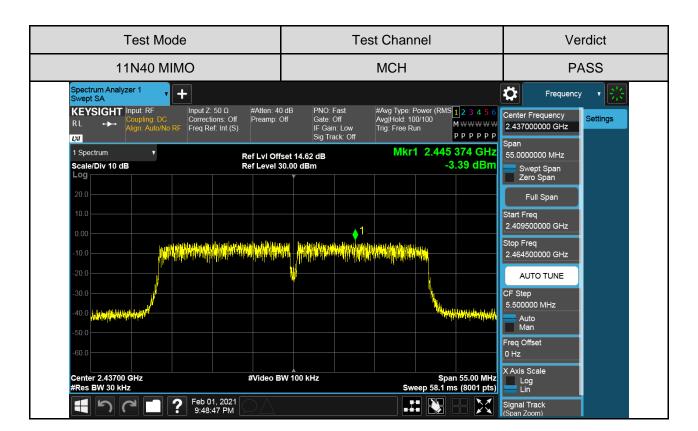
Test Mode Test Channel Verdict 11N20 MIMO LCH **PASS** Spectrum Analyzer 1 Swept SA + **Ö** Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) #Atten: 40 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig: Free Run PNO: Fast KEYSIGHT Input: RF Center Frequency Gate: Off IF Gain: Low Settings M WWWWW 2.412000000 GHz PPPPPP LXI Mkr1 2.412 607 50 GHz 1 Spectrum Ref LvI Offset 15.05 dB 30.0000000 MHz -0.54 dBm Scale/Div 10 dB Ref Level 30.00 dBm Swept Span Zero Span Start Freq ↑1 phyhyhinthlyvlkhyrthlyvinnyhyy 2.397000000 GHz _ለፈላላያለማለያቀለ ተፈስላጸላትሲስተለስዓምናላትላቸስላ 2.427000000 GHz **AUTO TUNE** CF Step 3.000000 MHz Auto Man Freq Offset X Axis Scale

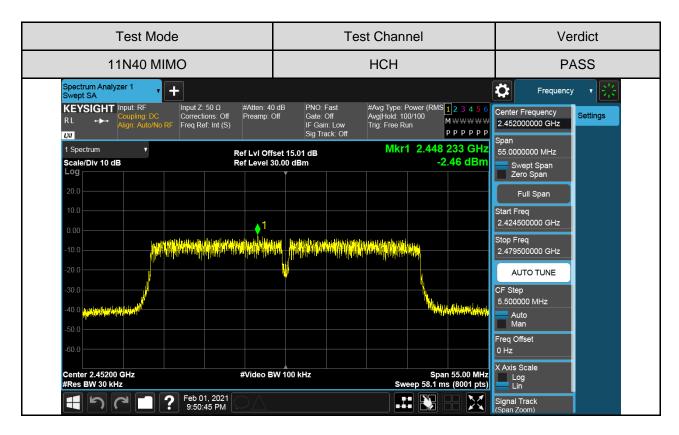
Span 30.00 MHz


Sweep 32.0 ms (8001 pts)


Log Lin

#Video BW 100 kHz





7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

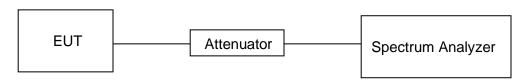
LIMITS

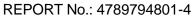
FCC Part15 (15.247) , Subpart C			
Section Test Item		Limit	
FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	At least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyzer and use the following

Center Frequency	The centre frequency of the channel under test		
Detector	Peak		
RBW	100K		
VBW	≥3 × RBW		
Span	1.5 x DTS bandwidth		
Trace	Max hold		
Sweep time	Auto couple.		


settings:


Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

Page 51 of 192

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

REPORT No.: 4789794801-4

Page 52 of 192

Part I: Conducted Bandedge

RESULTS TABLE

Test Mode	Test Antenna	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11B	Antenna 1	LCH	7.853	-34.96	-22.15	PASS
		HCH	7.111	-34.16	-22.89	PASS
	Antenna 2	LCH	7.957	-34.53	-22.04	PASS
		HCH	6.815	-34.44	-23.19	PASS
11G	Antenna 1	LCH	2.334	-35.75	-27.67	PASS
		HCH	2.378	-34.94	-27.62	PASS
	Antenna 2	LCH	2.254	-34.84	-27.75	PASS
		HCH	1.670	-35.14	-28.33	PASS
11N20MIMO	Antenna 1	LCH	2.214	-34.58	-27.79	PASS
		HCH	2.297	-33.92	-27.7	PASS
	Antenna 2	LCH	1.856	-34.88	-28.14	PASS
		HCH	1.957	-34.54	-28.04	PASS
11N40MIMO	Antenna 1	LCH	0.193	-34.81	-29.81	PASS
		HCH	0.571	-34.03	-29.43	PASS
	Antenna 2	LCH	0.506	-35.03	-29.49	PASS
		HCH	0.083	-34.32	-29.92	PASS

Remark:

- 1) For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical.
- 2) Through pre-testing all the test modes of 11N 20 and 11N40, including SISO and MIMO, but only the data if worse case is included in this test report.