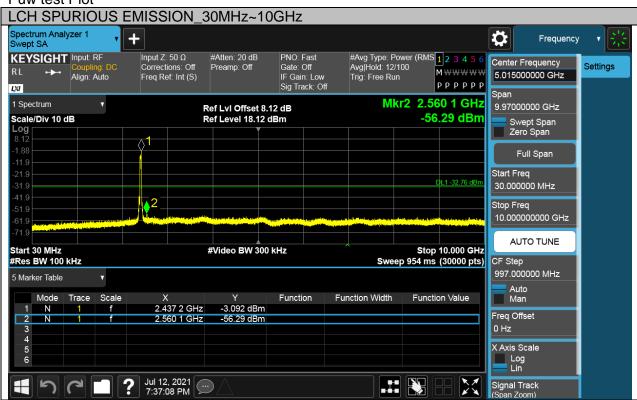
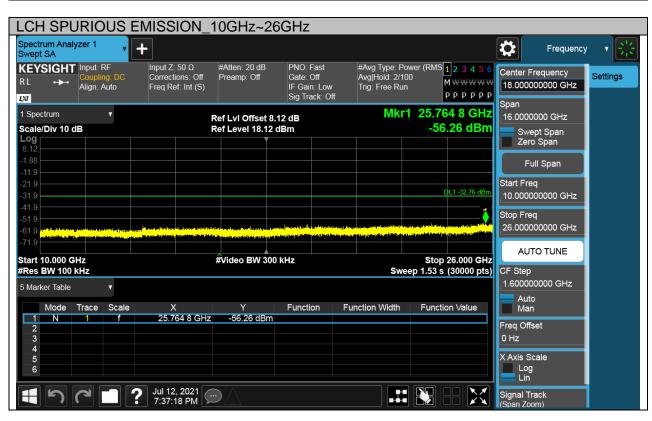


Puw test Plot

Page 62 of 150

Test Mode	Channel	Verdict	
11N HT40	LCH	PASS	


Pref test Plot

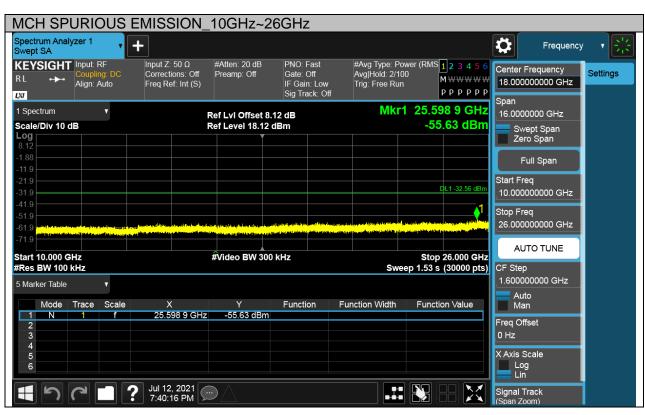


REPORT No.: 4790015544-3-5 Page 63 of 150

Puw test Plot

Page 64 of 150

Test Mode	Channel	Verdict	
11N HT40	MCH	PASS	


Pref test Plot

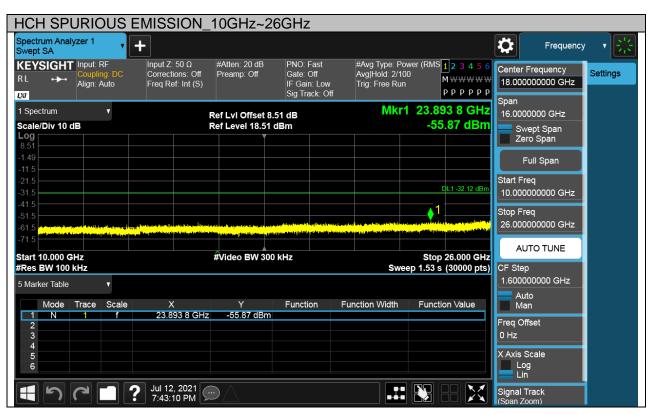
Page 65 of 150

Puw test Plot MCH SPURIOUS EMISSION_30MHz~10GHz Spectrum Analyzer 1 Swept SA Ö Frequency #Avg Type: Power (RMS 1 2 3 4 5 (Avg|Hold: 12/100 Input Z: 50 Ω #Atten: 20 dB KEYSIGHT Input: RF PNO: Fast Center Frequency Corrections: Off Preamp: Off Gate: Off Settings MWWWW Align: Auto 5.015000000 GHz Freq Ref: Int (S) IF Gain: Low Trig: Free Run PPPPP LXI Sig Track: Off Mkr2 2.560 1 GHz 1 Spectrum 9.97000000 GHz Ref Lvi Offset 8.12 dB Ref Level 18.12 dBm -56.15 dBm Scale/Div 10 dB Swept Span Zero Span Log Full Span Start Freq DL1 -32.56 dB 30.000000 MHz 2 Stop Freq 10.000000000 GHz 61.9 AUTO TUNE Start 30 MHz #Video BW 300 kHz Stop 10.000 GHz #Res BW 100 kHz Sweep 954 ms (30000 pts) 997.000000 MHz 5 Marker Table Function Function Width Function Value Mode Trace Scale 2.425 9 GHz -3.311 dBm Freq Offset 2.560 1 GHz -56.15 dBm N 0 Hz X Axis Scale Log Lin 6 Jul 12, 2021 7:40:06 PM Signal Track

Page 66 of 150

Test Mode	Channel	Verdict	
11N HT40	HCH	PASS	


Pref test Plot



REPORT No.: 4790015544-3-5 Page 67 of 150

Puw test Plot

Page 68 of 150

7.6. RADIATED TEST RESULTS

7.6.1.LIMITS AND PROCEDURE

LIMITS

Please refer to FCC §15.205 and §15.209 (Transmitter)
Please refer to FCC KDB 558074
Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

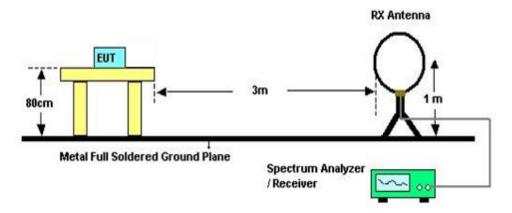
Page 69 of 150

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
Frequency (Miriz)	Peak	Average	
Above 1000	74	54	

Restricted bands of operation

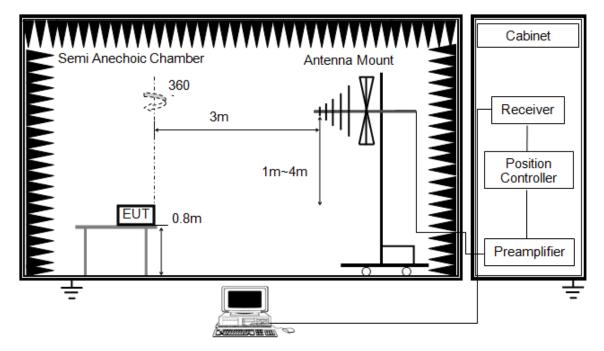
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

REPORT No.: 4790015544-3-5 Page 70 of 150

TEST SETUP AND PROCEDURE

Below 30MHz

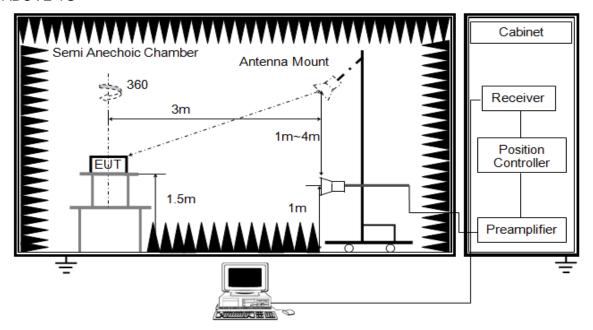

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Page 71 of 150

Below 1G

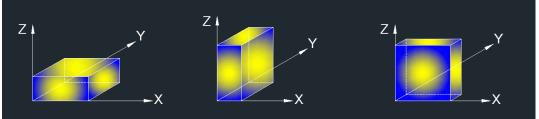


The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

ABOVE 1G

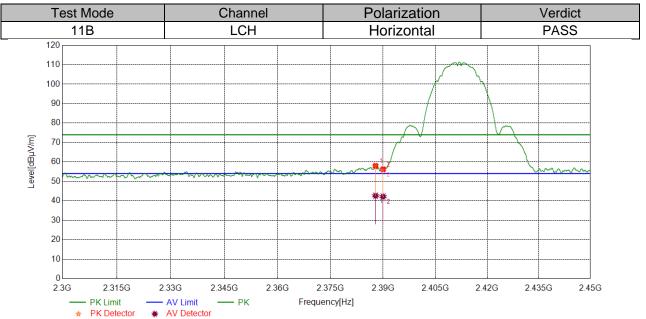

The setting of the spectrum analyser

RBW	1M
IVBW	PEAK:3M AVG: See note6
Sweep	Auto
Detector	Peak/Average(10Hz)
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz, the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements; and 1 MHz resolution bandwidth with video bandwidth ≥1/T but not less than the setting list in section 7.1 when use peak detector, max hold to be run for at least [50*(1/Duty Cycle)] traces for average measurements. For the Duty Cycle need to refer the results in section 7.1.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (Z axis) data recorded in the report.

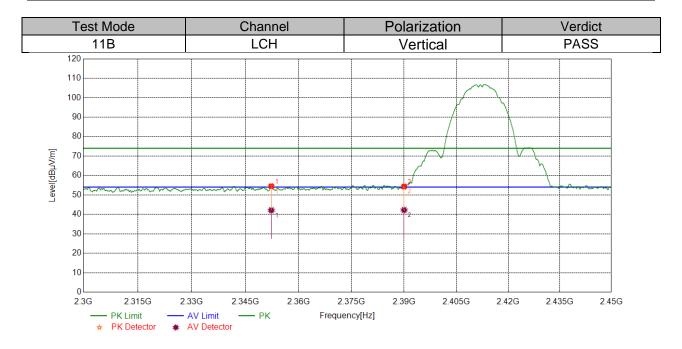

7.6.2. RESTRICTED BANDEDGE

Test Result Table

Test Mode	Channel	Puw(dBm)	Verdict
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

REPORT No.: 4790015544-3-5 Page 74 of 150

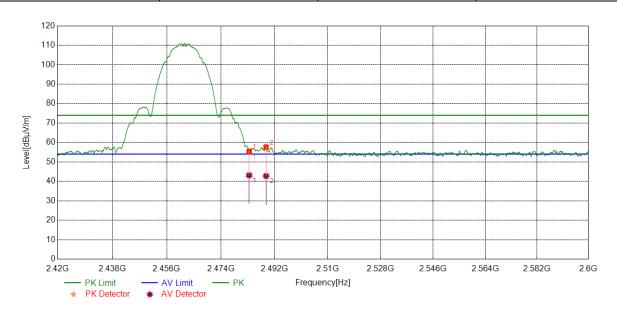
Test Graphs:



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.8547	44.92	13.07	57.99	74.00	-16.01	peak
'	2307.0347	29.56	13.07	42.63	54.00	-11.37	average
2	2390.0000	43.14	13.07	56.21	74.00	-17.79	peak
~	2390.0000	29.13	13.07	42.20	54.00	-11.8	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

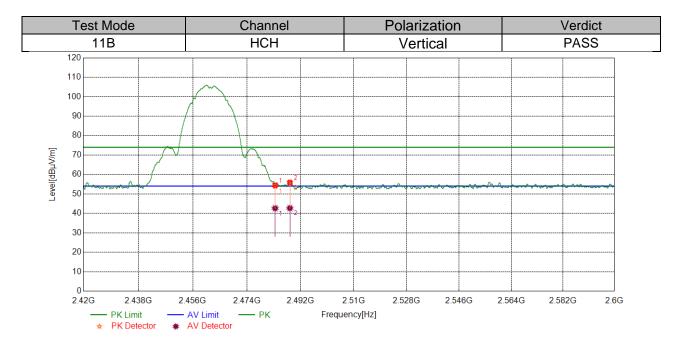
REPORT No.: 4790015544-3-5 Page 75 of 150


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2352.3190	41.76	12.71	54.47	74.00	-19.53	peak
'	2332.3190	29.41	12.71	42.12	54.00	-11.88	average
2	2390.0000	41.21	13.07	54.28	74.00	-19.72	peak
~	2390.0000	29.17	13.07	42.24	54.00	-11.76	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 76 of 150

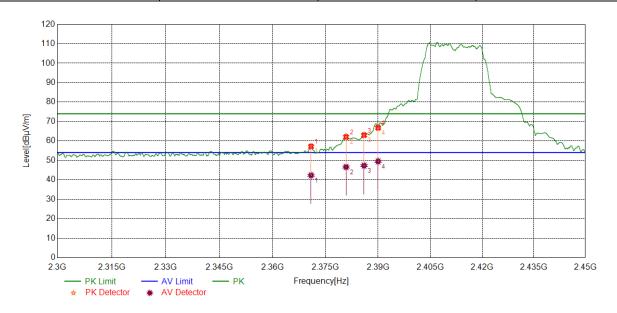
Test Mode	Channel	Polarization	Verdict
11B	HCH	Horizontal	PASS



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1 2483.5000	42.43	12.97	55.40	74.00	-18.6	peak
		30.15	12.97	43.12	54.00	-10.88	average
2	2 2489.1962	44.62	12.99	57.61	74.00	-16.39	peak
	2409.1902	29.78	12.99	42.77	54.00	-11.23	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

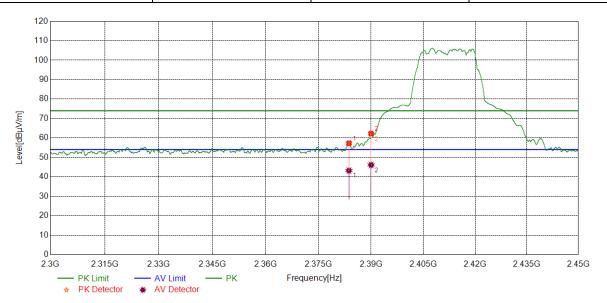
REPORT No.: 4790015544-3-5 Page 77 of 150


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	41.50	12.97	54.47	74.00	-19.53	peak
'	2483.5000	29.66	12.97	42.63	54.00	-11.37	average
2	2 2488.4536	42.83	12.99	55.82	74.00	-18.18	peak
2		29.71	12.99	42.70	54.00	-11.3	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

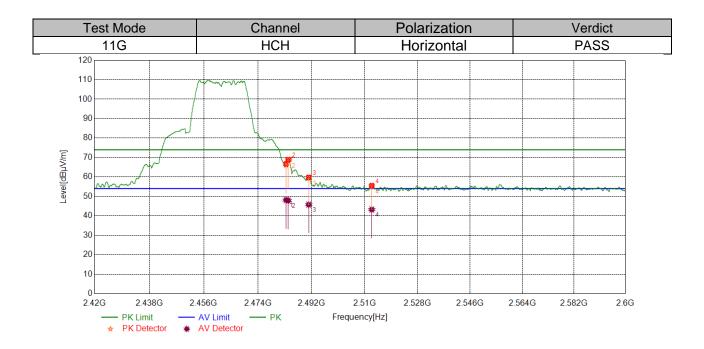
REPORT No.: 4790015544-3-5 Page 78 of 150

Test Mode	Channel	Polarization	Verdict
11G	LCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2270 0026	44.21	12.94	57.15	74.00	-16.85	peak
1 2370.9026	29.41	12.94	42.35	54.00	-11.65	average	
2	0 0000 0004	48.98	13.06	62.04	74.00	-11.96	peak
	2380.8601	33.54	13.06	46.60	54.00	-7.4	average
2	2205 0002	49.92	13.06	62.98	74.00	-11.02	peak
3 2385.9983	34.27	13.06	47.33	54.00	-6.67	average	
4 2390.0000	53.69	13.07	66.76	74.00	-7.24	peak	
	36.43	13.07	49.50	54.00	-4.5	average	

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

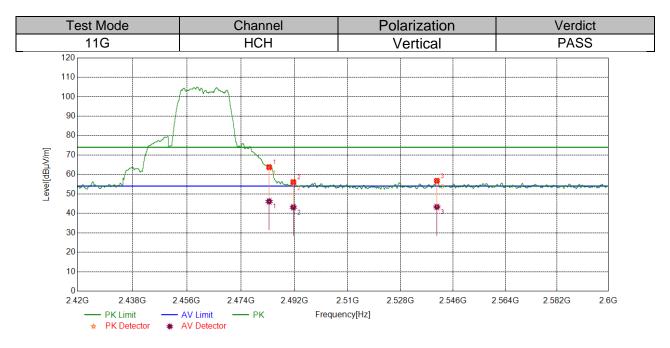
REPORT No.: 4790015544-3-5 Page 79 of 150


Test Mode	Channel	Polarization	Verdict
11G	LCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1 2383.6730	44.20	13.06	57.26	74.00	-16.74	peak
		30.17	13.06	43.23	54.00	-10.77	average
2	2 2390.0000	49.18	13.07	62.25	74.00	-11.75	peak
		33.05	13.07	46.12	54.00	-7.88	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

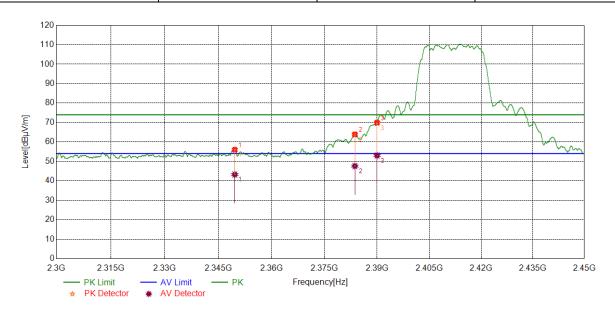
Page 80 of 150



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	53.70	12.97	66.67	74.00	-7.33	peak
	2463.3000	35.17	12.97	48.14	54.00	-5.86	average
2	2 2404 2005	55.90	12.97	68.87	74.00	-5.13	peak
	2484.2005	34.89	12.97	47.86	54.00	-6.14	average
3	2491.0864	46.76	13.01	59.77	74.00	-14.23	peak
3	3 2491.0004	32.75	13.01	45.76	54.00	-8.24	average
4 2512.3966	2512.3966	42.33	13.21	55.54	74.00	-18.46	peak
4	2012.3900	30.02	13.21	43.23	54.00	-10.77	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 81 of 150

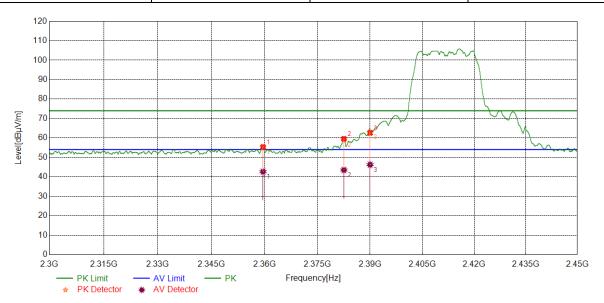

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2492 5000	50.85	12.97	63.82	74.00	-10.18	peak
'	1 2483.5000	33.17	12.97	46.14	54.00	-7.86	average
2	2 2491.6265	43.12	13.02	56.14	74.00	-17.86	peak
		30.11	13.02	43.13	54.00	-10.87	average
3 2540.4126	43.39	13.41	56.80	74.00	-17.2	peak	
	29.89	13.41	43.30	54.00	-10.7	average	

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 82 of 150

Test Mode	Channel	Polarization	Verdict
11N HT20	LCH	Horizontal	PASS

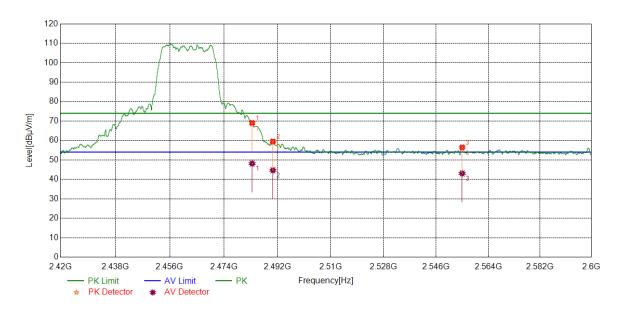
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
-1	2349.6375	43.29	12.69	55.98	74.00	-18.02	peak
'	1 2349.6375	30.56	12.69	43.25	54.00	-10.75	average
	2202 GE 42	50.84	13.06	63.90	74.00	-10.10	peak
	2 2383.6542	34.55	13.06	47.61	54.00	-6.39	average
3	2 2200 0000	56.86	13.07	69.93	74.00	-4.07	peak
3	2390.0000	39.96	13.07	53.03	54.00	-0.97	average


Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 83 of 150

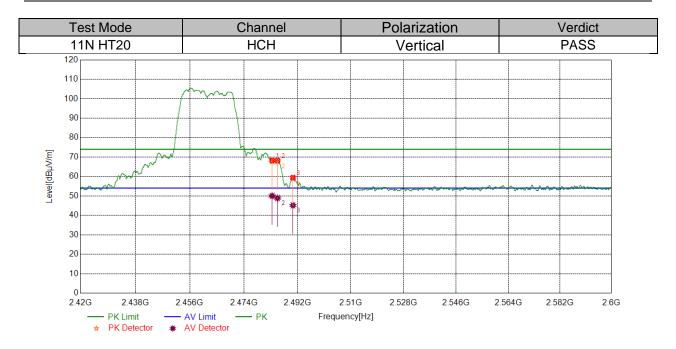
Test Mode	Channel	Polarization	Verdict
11N HT20	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1 2359.5762	42.60	12.77	55.37	74.00	-18.63	peak
'		29.89	12.77	42.66	54.00	-11.34	average
2	2202 5204	46.51	13.06	59.57	74.00	-14.43	peak
	2 2382.5291	30.46	13.06	43.52	54.00	-10.48	average
3 2390.0000	49.52	13.07	62.59	74.00	-11.41	peak	
3	2390.0000	33.17	13.07	46.24	54.00	-7.76	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 84 of 150

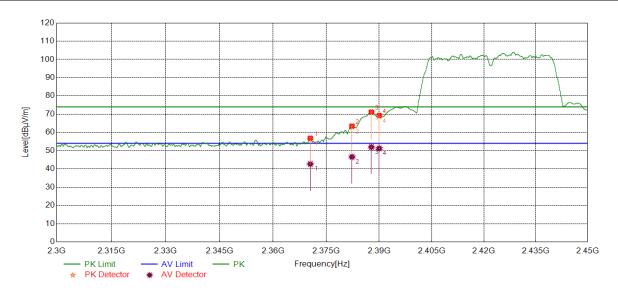
Test Mode	Test Mode Channel		Verdict
11N HT20	HCH	Horizontal	PASS



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1 2483.5000	56.07	12.97	69.04	74.00	-4.96	peak
'		35.15	12.97	48.12	54.00	-5.88	average
2	2400 4700	46.50	13.00	59.50	74.00	-14.5	peak
	2 2490.4788	31.68	13.00	44.68	54.00	-9.32	average
3 2554.9719	43.08	13.38	56.46	74.00	-17.54	peak	
3	2554.97 19	29.68	13.38	43.06	54.00	-10.94	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

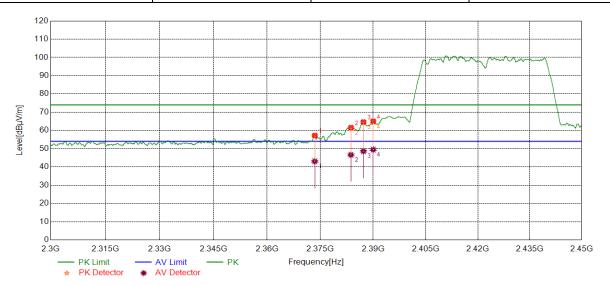
REPORT No.: 4790015544-3-5 Page 85 of 150


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	55.25	12.97	68.22	74.00	-5.78	peak
	2403.3000	37.02	12.97	49.99	54.00	-4.01	average
2	2495 2022	55.23	12.98	68.21	74.00	-5.79	peak
	2 2485.3032	35.89	12.98	48.87	54.00	-5.13	average
2 2400 5042	46.39	13.00	59.39	74.00	-14.61	peak	
3	2490.5013	32.17	13.00	45.17	54.00	-8.83	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 86 of 150

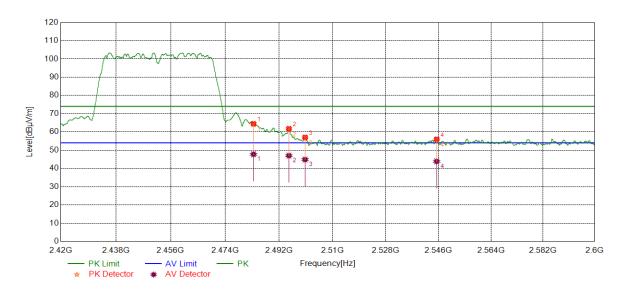
Test Mode	Test Mode Channel		Verdict
11N HT40	LCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4	2370.4901	43.90	12.93	56.83	74.00	-17.17	peak
'	2370.4901	29.77	12.93	42.70	54.00	-11.30	average
_	2202 2052	50.43	13.06	63.49	74.00	-10.51	peak
2	2382.2853	33.53	13.06	46.59	54.00	-7.41	average
3	2227 7727	58.14	13.07	71.21	74.00	-2.79	peak
3	2387.7797	38.89	13.07	51.96	54.00	-2.04	average
4 0000 0000	56.24	13.07	69.31	74.00	-4.69	peak	
4	2390.0000	38.18	13.07	51.25	54.00	-2.75	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 87 of 150

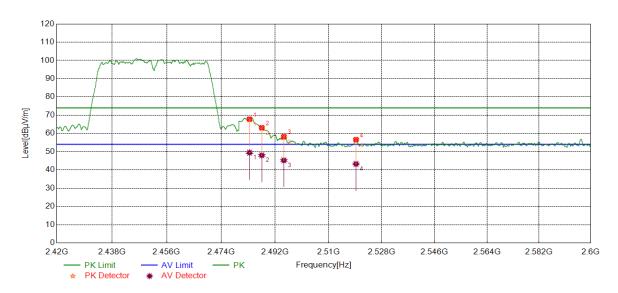
Test Mode	Channel	Polarization	Verdict
11N HT40	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4	2272 4242	44.27	12.97	57.24	74.00	-16.76	peak
'	1 2373.4342	30.11	12.97	43.08	54.00	-10.92	average
2	2202 6720	48.51	13.06	61.57	74.00	-12.43	peak
	2383.6730	33.56	13.06	46.62	54.00	-7.38	average
2	2387.2359	51.57	13.06	64.63	74.00	-9.37	peak
3	2367.2339	35.57	13.06	48.63	54.00	-5.37	average
4 0000 0000	51.97	13.07	65.04	74.00	-8.96	peak	
4	4 2390.0000	36.44	13.07	49.51	54.00	-4.49	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 88 of 150

Test Mode	Test Mode Channel		Verdict
11N HT40	HCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2492 5000	51.51	12.97	64.48	74.00	-9.52	peak
'	1 2483.5000	34.78	12.97	47.75	54.00	-6.25	average
2	0 0405 0004	48.72	13.07	61.79	74.00	-12.21	peak
	2495.3394	33.95	13.07	47.02	54.00	-6.98	average
3	2500.7626	43.89	13.14	57.03	74.00	-16.97	peak
3	2500.7626	31.72	13.14	44.86	54.00	-9.14	average
4 2545.3632	42.61	13.38	55.99	74.00	-18.01	peak	
4	2040.3032	30.5	13.38	43.88	54.00	-10.12	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 89 of 150

Test Mode	Channel	Polarization	Verdict
11N HT40	HCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2492 5000	54.85	12.97	67.82	74.00	-6.18	peak
'	1 2483.5000	36.49	12.97	49.46	54.00	-4.54	average
2	2497 5095	50.16	12.99	63.15	74.00	-10.85	peak
2	2487.5985	35.05	12.99	48.04	54.00	-5.96	average
3	2404.0704	45.20	13.07	58.27	74.00	-15.73	peak
3	2494.9794	32.18	13.07	45.25	54.00	-8.75	average
4 0540,0004	43.39	13.22	56.61	74.00	-17.39	peak	
4	2519.2824	30.07	13.22	43.29	54.00	-10.71	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Page 90 of 150

7.6.3. SPURIOUS EMISSIONS

Test Result Table:

1) For 1GHz~3GHz

Test Mode	Channel	Puw(dBm)	Verdict
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11B SISO	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11G SISO	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

2) For 3GHz~18GHz

Test Mode	Channel	Puw(dBm)	Verdict
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11B SISO	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11G SISO	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

Page 91 of 150

3) For 18GHz~26.5GHz

Test Mode	Channel	Puw(dBm)	Verdict
11B	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

Remark:

1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.

4) For 30MHz~1GHz

Test Mode	Channel	Puw(dBm)	Verdict
11B	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

Remark:

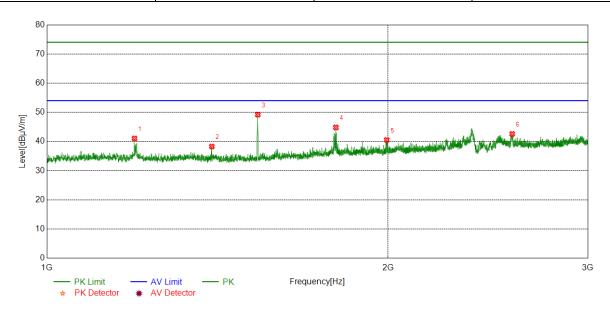
1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.

5) For 9KHz~30MHz

Test Mode	Channel	Puw(dBm)	Verdict
11B	HCH	<limit< th=""><th>PASS</th></limit<>	PASS

Remark:

1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.



Page 92 of 150

Part I: 1GHz~3GHz

HARMONICS AND SPURIOUS EMISSIONS

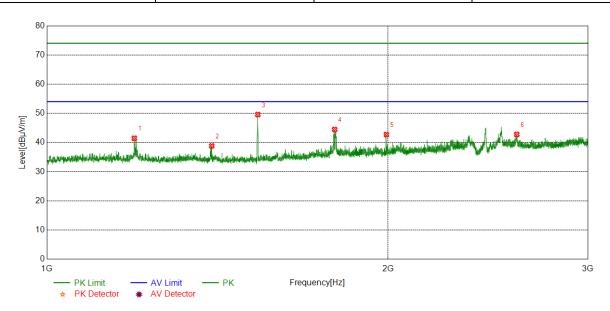
Test Mode	Channel	Polarization	Verdict
11B	LCH	Horizontal	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.0244	46.60	-5.57	41.03	74.00	-32.97	peak
2	1398.0498	43.96	-5.68	38.28	74.00	-35.72	peak
3	1534.8169	54.96	-5.76	49.20	74.00	-24.80	peak
4	1798.5998	48.64	-3.83	44.81	74.00	-29.19	peak
5	1994.1243	43.57	-3.05	40.52	74.00	-33.48	peak
6	2572.9466	43.42	-0.84	42.58	74.00	-31.42	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 93 of 150

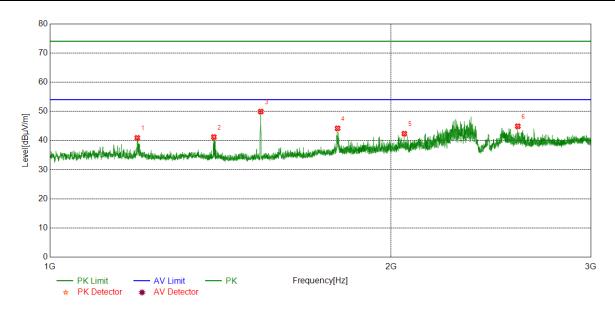
Test Mode Channel Polarization		Polarization Verd	
11B	LCH	Vertical	PASS
80			
70			
60			
, 50	3 **	5 \$\$	
40	2		6
40	راد المسلمة الأسماريون و تساعله على منظلات المسلمة المسلمان المسلمة المسلمان المسلمان المسلمان المسلمان المسلم	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	M. Alexander Property of the Party of the Pa
30			
20			
10			
0		20	20
1G —— PK Limit —— ,	AV/Limit — DV Frequ	2G iency[Hz]	3G


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1194.7743	47.50	-5.57	41.93	74.00	-32.07	peak
2	1397.2997	43.78	-5.69	38.09	74.00	-35.91	peak
3	1534.8169	55.45	-5.76	49.69	74.00	-24.31	peak
4	1795.0994	50.41	-3.79	46.62	74.00	-27.38	peak
5	2252.6566	50.52	-2.08	48.44	74.00	-25.56	peak
6	2793.4742	43.08	-0.30	42.78	74.00	-31.22	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 94 of 150

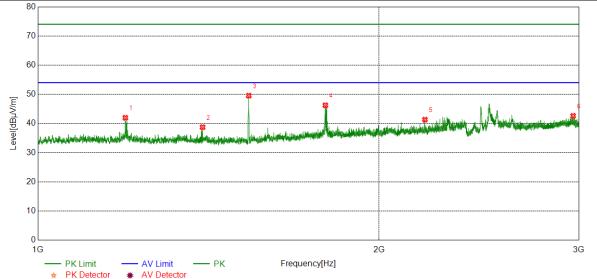
Test Mode	Channel	Polarization	Verdict
11B	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1194.5243	47.00	-5.57	41.43	74.00	-32.57	peak
2	1397.7997	44.49	-5.68	38.81	74.00	-35.19	peak
3	1534.8169	55.34	-5.76	49.58	74.00	-24.42	peak
4	1794.0993	48.22	-3.78	44.44	74.00	-29.56	peak
5	1992.8741	45.76	-3.06	42.70	74.00	-31.30	peak
6	2596.9496	43.49	-0.74	42.75	74.00	-31.25	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 95 of 150

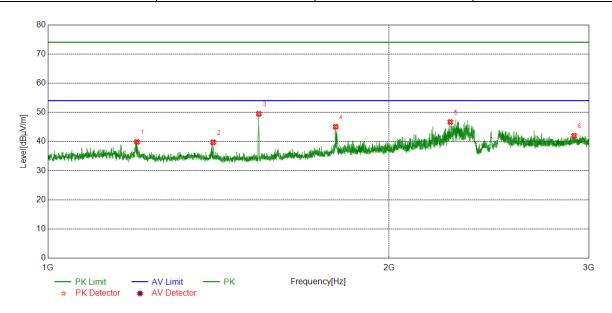
Test Mode	Channel	Polarization	Verdict
11B	MCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1194.2743	46.45	-5.57	40.88	74.00	-33.12	peak
2	1395.2994	46.88	-5.71	41.17	74.00	-32.83	peak
3	1534.8169	55.67	-5.76	49.91	74.00	-24.09	peak
4	1793.8492	47.93	-3.78	44.15	74.00	-29.85	peak
5	2054.3818	44.82	-2.49	42.33	74.00	-31.67	peak
6	2586.6983	45.70	-0.84	44.86	74.00	-29.14	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 96 of 150

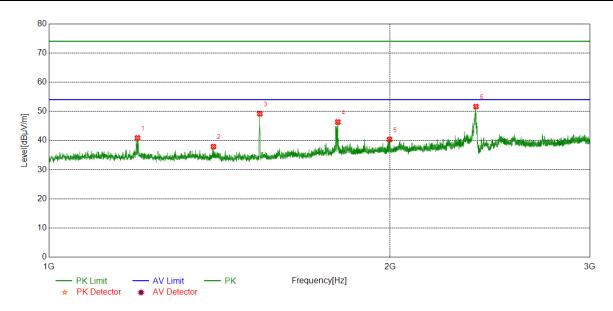
Test Mode	Channel	Polarization	Verdict
11B	HCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1194.5243	47.52	-5.57	41.95	74.00	-32.05	peak
2	1397.2997	44.41	-5.69	38.72	74.00	-35.28	peak
3	1534.8169	55.30	-5.76	49.54	74.00	-24.46	peak
4	1793.0991	50.01	-3.77	46.24	74.00	-27.76	peak
5	2194.8994	43.64	-2.33	41.31	74.00	-32.69	peak
6	2965.7457	41.55	1.05	42.60	74.00	-31.40	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 97 of 150

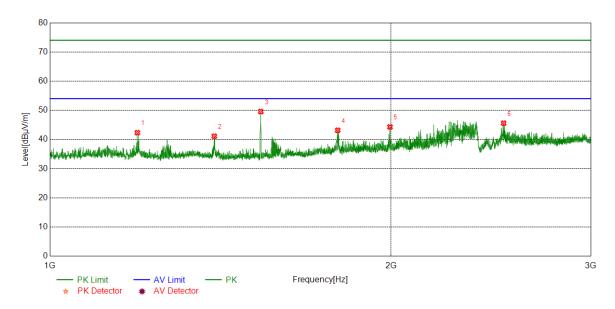
Test Mode	Channel	Polarization	Verdict
11B	HCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1198.2748	45.42	-5.56	39.86	74.00	-34.14	peak
2	1398.7999	45.36	-5.67	39.69	74.00	-34.31	peak
3	1534.8169	55.25	-5.76	49.49	74.00	-24.51	peak
4	1794.0993	48.82	-3.78	45.04	74.00	-28.96	peak
5	2264.4081	48.78	-2.11	46.67	74.00	-27.33	peak
6	2911.7390	41.48	0.47	41.95	74.00	-32.05	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 98 of 150

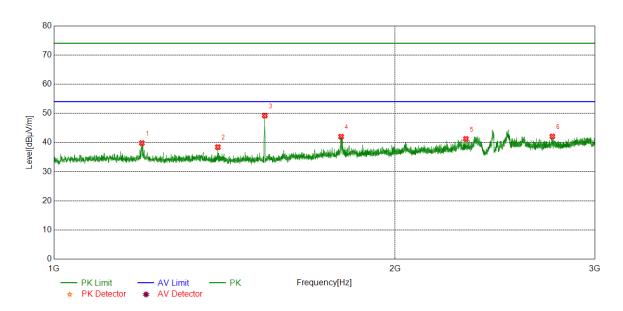
Test Mode	Channel	Polarization	Verdict
11G	LCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1197.2747	46.42	-5.56	40.86	74.00	-33.14	peak
2	1397.0496	43.58	-5.69	37.89	74.00	-36.11	peak
3	1534.8169	54.93	-5.76	49.17	74.00	-24.83	peak
4	1798.3498	50.14	-3.83	46.31	74.00	-27.69	peak
5	1997.6247	43.34	-3.01	40.33	74.00	-33.67	peak
6	2380.9226	52.68	-1.07	51.61	74.00	-22.39	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 99 of 150

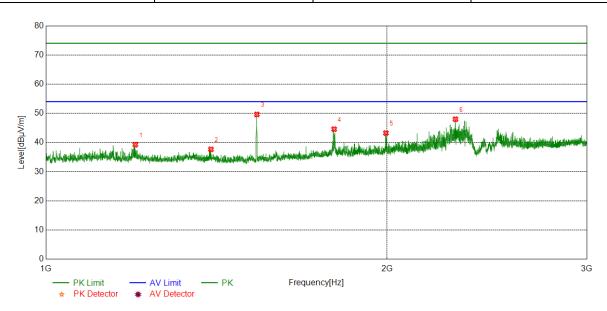
Test Mode	Test Mode Channel		Verdict
11G	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1194.5243	47.90	-5.57	42.33	74.00	-31.67	peak
2	1396.5496	46.81	-5.70	41.11	74.00	-32.89	peak
3	1534.8169	55.33	-5.76	49.57	74.00	-24.43	peak
4	1794.3493	46.93	-3.78	43.15	74.00	-30.85	peak
5	1995.3744	47.34	-3.04	44.30	74.00	-29.70	peak
6	2513.1891	45.94	-0.37	45.57	74.00	-28.43	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 100 of 150

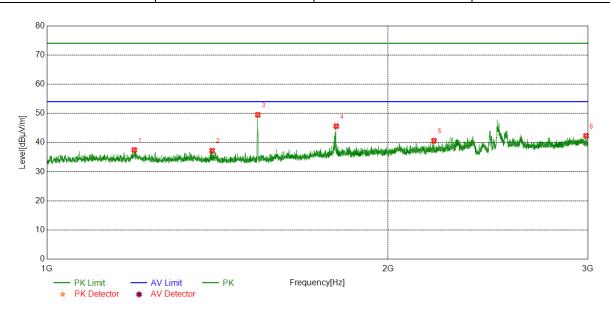
Test Mode	Test Mode Channel		Verdict
11G	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.7745	45.36	-5.56	39.80	74.00	-34.20	peak
2	1395.2994	44.11	-5.71	38.40	74.00	-35.60	peak
3	1534.8169	54.96	-5.76	49.20	74.00	-24.80	peak
4	1792.0990	45.76	-3.76	42.00	74.00	-32.00	peak
5	2308.9136	42.88	-1.67	41.21	74.00	-32.79	peak
6	2752.2190	42.46	-0.40	42.06	74.00	-31.94	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 101 of 150

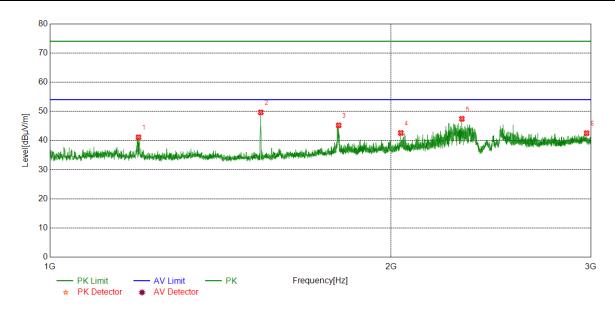
Test Mode	Test Mode Channel		Verdict
11G	MCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1199.2749	44.81	-5.56	39.25	74.00	-34.75	peak
2	1398.2998	43.32	-5.68	37.64	74.00	-36.36	peak
3	1535.0669	55.38	-5.76	49.62	74.00	-24.38	peak
4	1795.8495	48.35	-3.80	44.55	74.00	-29.45	peak
5	1994.8744	46.26	-3.04	43.22	74.00	-30.78	peak
6	2297.6622	49.84	-1.87	47.97	74.00	-26.03	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 102 of 150

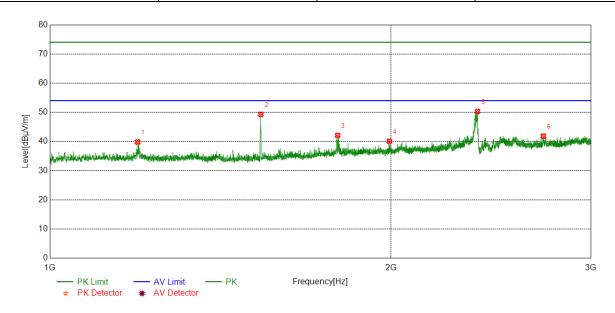
Test Mode	Channel	Polarization	Verdict
11G	HCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1197.2747	46.42	-5.56	40.86	74.00	-33.14	peak
2	1397.0496	43.58	-5.69	37.89	74.00	-36.11	peak
3	1534.8169	54.93	-5.76	49.17	74.00	-24.83	peak
4	1798.3498	50.14	-3.83	46.31	74.00	-27.69	peak
5	1997.6247	43.34	-3.01	40.33	74.00	-33.67	peak
6	2380.9226	52.68	-1.07	51.61	74.00	-22.39	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 103 of 150

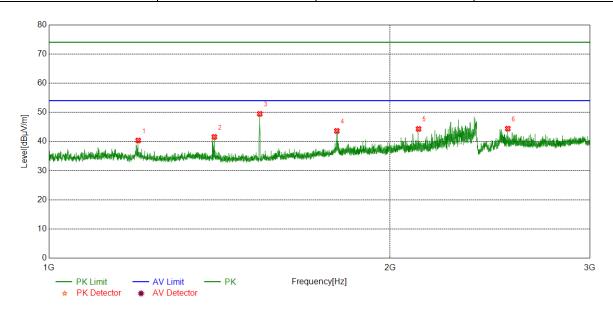
Test Mode	Channel	Polarization	Verdict
11G	HCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1194.5243	47.90	-5.57	42.33	74.00	-31.67	peak
2	1396.5496	46.81	-5.70	41.11	74.00	-32.89	peak
3	1534.8169	55.33	-5.76	49.57	74.00	-24.43	peak
4	1794.3493	46.93	-3.78	43.15	74.00	-30.85	peak
5	1995.3744	47.34	-3.04	44.30	74.00	-29.70	peak
6	2513.1891	45.94	-0.37	45.57	74.00	-28.43	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 104 of 150

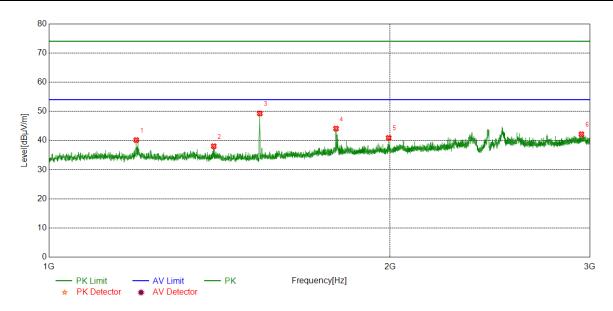
Test Mode	Channel	Polarization	Verdict
11N HT20	LCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.0244	45.39	-5.57	39.82	74.00	-34.18	peak
2	1534.8169	55.07	-5.76	49.31	74.00	-24.69	peak
3	1793.8492	45.86	-3.78	42.08	74.00	-31.92	peak
4	1992.8741	43.13	-3.06	40.07	74.00	-33.93	peak
5	2383.1729	51.36	-1.06	50.30	74.00	-23.70	peak
6	2724.2155	42.29	-0.42	41.87	74.00	-32.13	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 105 of 150

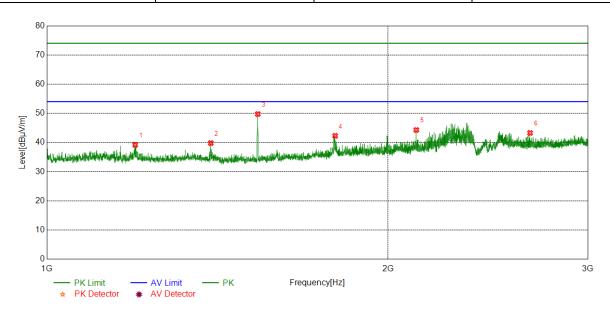
Test Mode	Channel	Polarization	Verdict
11N HT20	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1199.0249	45.90	-5.56	40.34	74.00	-33.66	peak
2	1399.5499	47.22	-5.66	41.56	74.00	-32.44	peak
3	1534.8169	55.23	-5.76	49.47	74.00	-24.53	peak
4	1794.8494	47.41	-3.79	43.62	74.00	-30.38	peak
5	2118.6398	46.70	-2.42	44.28	74.00	-29.72	peak
6	2539.6925	45.35	-0.96	44.39	74.00	-29.61	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 106 of 150

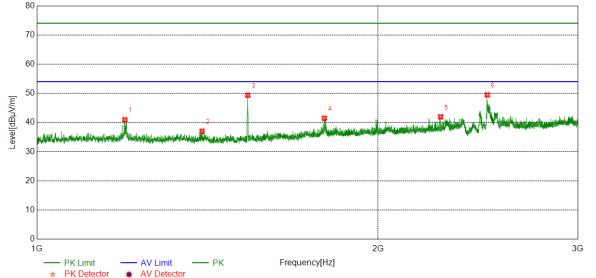
Test Mode	Channel	Polarization	Verdict
11N HT20	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.7745	45.36	-5.56	39.80	74.00	-34.20	peak
2	1395.2994	44.11	-5.71	38.40	74.00	-35.60	peak
3	1534.8169	54.96	-5.76	49.20	74.00	-24.80	peak
4	1792.0990	45.76	-3.76	42.00	74.00	-32.00	peak
5	2308.9136	42.88	-1.67	41.21	74.00	-32.79	peak
6	2752.2190	42.46	-0.40	42.06	74.00	-31.94	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 107 of 150

Test Mode	Channel	Polarization	Verdict
11N HT20	MCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1199.2749	44.81	-5.56	39.25	74.00	-34.75	peak
2	1398.2998	43.32	-5.68	37.64	74.00	-36.36	peak
3	1535.0669	55.38	-5.76	49.62	74.00	-24.38	peak
4	1795.8495	48.35	-3.80	44.55	74.00	-29.45	peak
5	1994.8744	46.26	-3.04	43.22	74.00	-30.78	peak
6	2297.6622	49.84	-1.87	47.97	74.00	-26.03	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 108 of 150

Test Mode	Channel	Polarization	Verdict
11N HT20	HCH	Horizontal	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.7745	46.48	-5.56	40.92	74.00	-33.08	peak
2	1398.7999	42.66	-5.67	36.99	74.00	-37.01	peak
3	1534.8169	55.09	-5.76	49.33	74.00	-24.67	peak
4	1793.0991	45.20	-3.77	41.43	74.00	-32.57	peak
5	2270.6588	44.02	-2.09	41.93	74.00	-32.07	peak
6	2496.1870	49.93	-0.47	49.46	74.00	-24.54	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 109 of 150

	Test Mode	Channel	Polai	rization	Verdict	
11N HT20		HCH	l Vei		PASS	
[m//m]	00	3				
[evel	30	Andrew Control of the		A CALLED AND A SECOND ASSESSMENT		
	40					
	16		2	G	36	

Frequency[Hz]

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1189.5237	46.30	-5.57	40.73	74.00	-33.27	peak
2	1393.5492	44.87	-5.74	39.13	74.00	-34.87	peak
3	1535.0669	55.42	-5.76	49.66	74.00	-24.34	peak
4	1795.3494	47.97	-3.79	44.18	74.00	-29.82	peak
5	2246.9059	46.74	-2.14	44.60	74.00	-29.40	peak
6	2622.4528	42.69	-0.31	42.38	74.00	-31.62	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- AV Limit

* AV Detector

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.

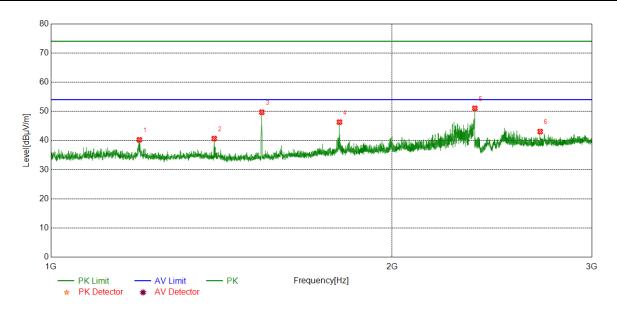
- PK Limit

★ PK Detector

- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 110 of 150

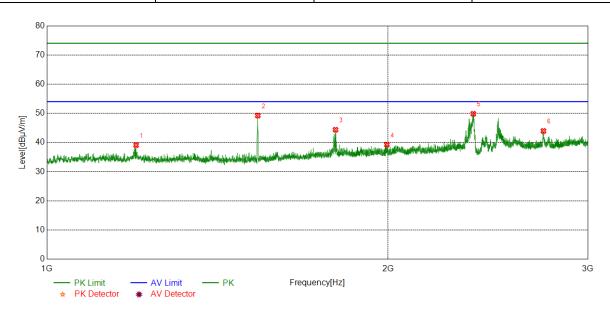
Test Mode	Channel	Polarization	Verdict
11N HT40	LCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1197.5247	44.24	-5.56	38.68	74.00	-35.32	peak
2	1395.2994	45.32	-5.71	39.61	74.00	-34.39	peak
3	1534.8169	54.98	-5.76	49.22	74.00	-24.78	peak
4	1793.3492	48.91	-3.77	45.14	74.00	-28.86	peak
5	2361.6702	53.87	-1.18	52.69	74.00	-21.31	peak
6	2724.7156	44.69	-0.43	44.26	74.00	-29.74	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 111 of 150

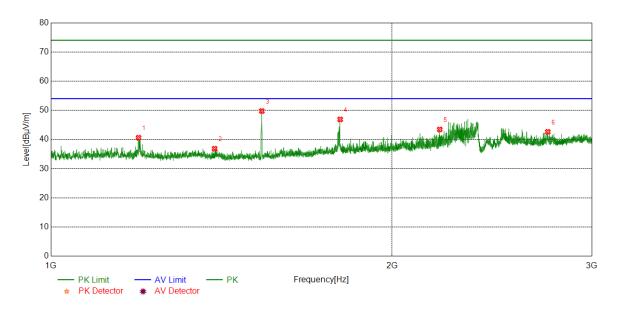
Test Mode	Channel	Polarization	Verdict
11N HT40	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1197.0246	45.79	-5.56	40.23	74.00	-33.77	peak
2	1393.5492	46.38	-5.74	40.64	74.00	-33.36	peak
3	1534.8169	55.44	-5.76	49.68	74.00	-24.32	peak
4	1797.0996	50.10	-3.81	46.29	74.00	-27.71	peak
5	2365.6707	52.17	-1.15	51.02	74.00	-22.98	peak
6	2701.4627	43.44	-0.39	43.05	74.00	-30.95	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 112 of 150

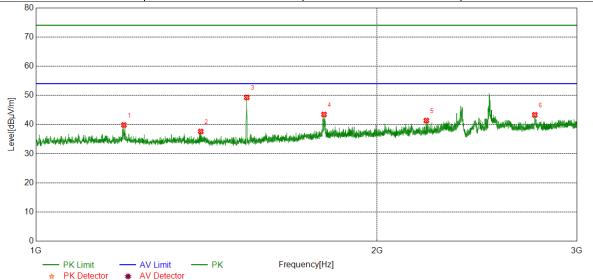
Test Mode	Channel	Polarization	Verdict
11N HT40	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1198.7748	44.63	-5.56	39.07	74.00	-34.93	peak
2	1534.8169	54.98	-5.76	49.22	74.00	-24.78	peak
3	1797.3497	48.18	-3.82	44.36	74.00	-29.64	peak
4	1994.8744	42.27	-3.04	39.23	74.00	-34.77	peak
5	2377.6722	50.93	-1.09	49.84	74.00	-24.16	peak
6	2741.4677	44.40	-0.46	43.94	74.00	-30.06	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 113 of 150

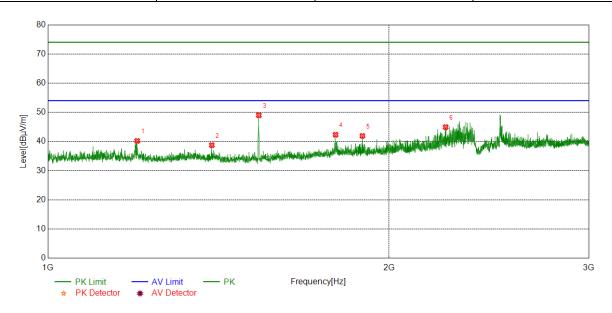
Test Mode	Channel	Polarization	Verdict
11N HT40	MCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.0244	46.17	-5.57	40.60	74.00	-33.40	peak
2	1394.5493	42.55	-5.72	36.83	74.00	-37.17	peak
3	1534.8169	55.51	-5.76	49.75	74.00	-24.25	peak
4	1799.6000	50.71	-3.84	46.87	74.00	-27.13	peak
5	2202.9004	45.76	-2.33	43.43	74.00	-30.57	peak
6	2743.4679	43.06	-0.45	42.61	74.00	-31.39	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 114 of 150

Test Mode	Channel	Polarization	Verdict
11N HT40	HCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.7745	45.37	-5.56	39.81	74.00	-34.19	peak
2	1397.7997	43.26	-5.68	37.58	74.00	-36.42	peak
3	1534.8169	55.03	-5.76	49.27	74.00	-24.73	peak
4	1795.3494	47.21	-3.79	43.42	74.00	-30.58	peak
5	2210.1513	43.67	-2.33	41.34	74.00	-32.66	peak
6	2754.7193	43.65	-0.36	43.29	74.00	-30.71	peak

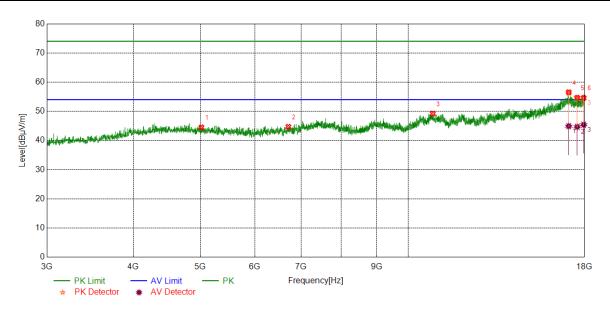
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 115 of 150

Test Mode	Channel	Polarization	Verdict
11N HT40	HCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Correct Factor Result		Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1199.0249	45.74	-5.56	40.18	74.00	-33.82	peak
2	1395.0494	44.45	-5.72	38.73	74.00	-35.27	peak
3	1534.8169	54.73	-5.76	48.97	74.00	-25.03	peak
4	1793.8492	46.09	-3.78	42.31	74.00	-31.69	peak
5	1894.3618	45.34	-3.44	41.90	74.00	-32.10	peak
6	2243.1554	47.15	-2.22	44.93	74.00	-29.07	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

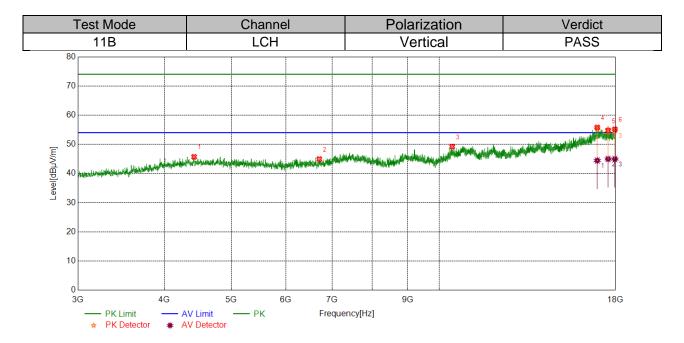

REPORT No.: 4790015544-3-5

Page 116 of 150

Part II: 3GHz~18GHz

HARMONICS AND SPURIOUS EMISSIONS

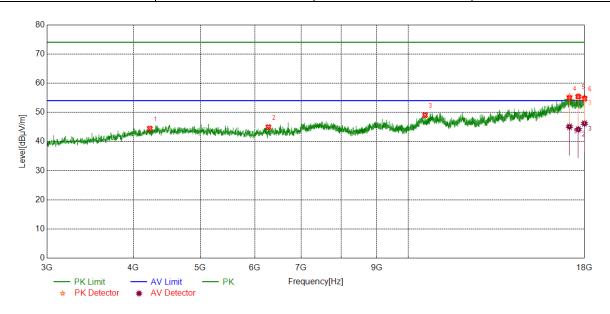
Test Mode	Channel	Polarization	Verdict
11B	LCH	Horizontal	PASS



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5021.5027	39.05	5.44	44.49	74.00	-29.51	peak
2	6709.2137	36.62	8.07	44.69	74.00	-29.31	peak
3	10857.2322	36.99	12.24	49.23	74.00	-24.77	peak
4	17077.3847	37.68	18.84	56.52	74.00	-17.48	peak
4	17077.3047	26.07	18.84	44.91	54.00	-9.09	average
5	17568.6961	36.54	18.10	54.64	74.00	-19.36	peak
5	17300.0901	26.58	18.10	44.68	54.00	-9.32	average
6	17949.3687	36.05	18.55	54.60	74.00	-19.40	peak
0	17949.3007	26.84	18.55	45.39	54.00	-8.61	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

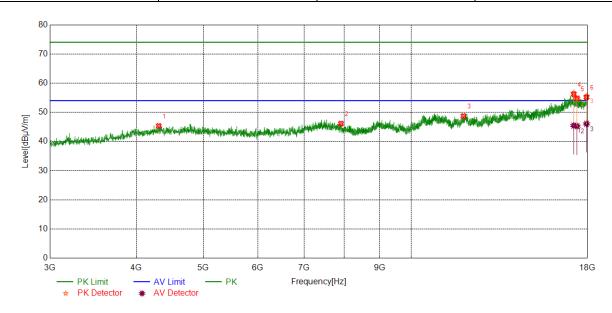
REPORT No.: 4790015544-3-5 Page 117 of 150


No.	Frequency	cy Reading Correct Factor		Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
1	4419.5524	40.42	5.28	45.70	74.00	-28.30	peak	
2	6707.3384	36.90	8.03	44.93	74.00	-29.07	peak	
3	10444.6806	37.89	11.33	49.22	74.00	-24.78	peak	
4	16936.7421	37.35	18.43	55.78	74.00	-18.22	peak	
4	10930.7421	26.00	18.43	44.43	54.00	-9.57	average	
5	17561.1951	36.77	17.92	54.69	74.00	-19.31	peak	
5	17301.1931	27.05	17.92	44.97	54.00	-9.03	average	
6	17962.4953	36.86	18.27	55.13	74.00	-18.87	peak	
0	17902.4900	26.69	18.27	44.96	54.00	-9.04	average	

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 118 of 150

Test Mode	Channel	Polarization	Verdict
11B	MCH	Horizontal	PASS


No.	Frequency	Frequency Reading Level		Correct Factor Result		Margin	Remark	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
1	4228.2785	39.63	4.79	44.42	74.00	-29.58	peak	
2	6277.9097	38.72	6.21	44.93	74.00	-29.07	peak	
3	10579.6975	37.20	11.83	49.03	74.00	-24.97	peak	
4	17116.7646	36.89	18.00	54.89	74.00	-19.11	peak	
4	17110.7040	27.05	18.00	45.05	54.00	-8.95	average	
5	17628.7036	38.11	17.28	55.39	74.00	-18.61	peak	
5	17020.7030	26.86	17.28	44.14	54.00	-9.86	average	
6	6 17006 2405	36.74	17.89	54.63	74.00	-19.37	peak	
0	17996.2495	28.27	17.89	46.16	54.00	-7.84	average	

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 119 of 150

Test Mode	Channel	Polarization	Verdict
11B	MCH	Vertical	PASS

No.	Frequency	Reading Level Correct Factor		Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
1	4312.6641	40.24	5.07	45.31	74.00	-28.69	peak	
2	7913.1141	38.35	7.78	46.13	74.00	-27.87	peak	
3	11905.4882	36.27	12.45	48.72	74.00	-25.28	peak	
4	17193.6492	37.96	18.24	56.20	74.00	-17.80	peak	
4	17 193.0492	27.19	18.24	45.43	54.00	-8.57	average	
5	17383.0479	36.39	18.35	54.74	74.00	-19.26	peak	
5	17303.0479	26.92	18.35	45.27	54.00	-8.73	average	
6	17020 1172	36.90	18.25	55.15	74.00	-18.85	peak	
0	17938.1173	27.79	18.25	46.04	54.00	-7.96	average	

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 120 of 150

18G

	Test Mode			Channe	l		Pol	ariza	tion		rdict	
	11B			HCH			Ho	rizor	ntal	P/	SS	
80	0											\neg
70	0											_
60	0											4 5
, 50	0						2		3			
4(O ad and hearth as before the play of the party of the pa	i Hariylaylay	ojida kanasan distribili	المناسب المناطق المناسبة	der de la company de la co	nderfredering	Marin		The second second	Market Andrews	*	* ₂ *
3(0											
3(
20	0											
1(0											
- 11												

No.	Frequency	Frequency Reading Level Correct Factor		Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
1	3961.9952	39.81	4.49	44.30	74.00	-29.70	peak	
2	8441.9302	38.68	6.53	45.21	74.00	-28.79	peak	
3	12046.1308	37.14	12.53	49.67	74.00	-24.33	peak	
4	16989.2487	36.62	18.78	55.40	74.00	-18.60	peak	
4	10909.2407	26.15	18.78	44.93	54.00	-9.07	average	
5	17347.4184	36.95	17.73	54.68	74.00	-19.32	peak	
5	17347.4104	26.05	17.73	43.78	54.00	-10.22	average	
6	17943.743	35.98	18.38	54.36	74.00	-19.64	peak	
0	17843.743	26.28	18.38	44.66	54.00	-9.34	average	

7G

Frequency[Hz]

9G

6G

5G

- PK

Note: 1. Measurement = Reading Level + Correct Factor.

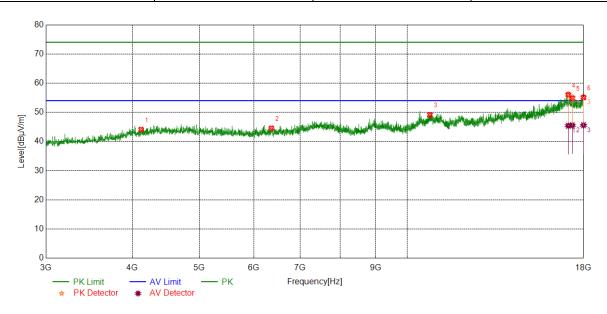
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.

4G

- AV Limit

* AV Detector

PK Limit


♠ PK Detector

- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 121 of 150

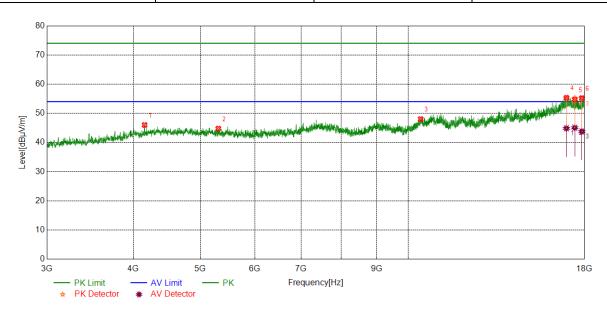
Test Mode	Channel	Polarization	Verdict
11B	HCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4121.3902	39.67	4.41	44.08	74.00	-29.92	peak
2	6360.4201	38.07	6.45	44.52	74.00	-29.48	peak
3	10789.7237	37.03	12.10	49.13	74.00	-24.87	peak
4	17109.2637	37.96	18.04	56.00	74.00	-18.00	peak
4	17 109.2037	27.35	18.04	45.39	54.00	-8.61	average
5	17343.668	37.12	17.69	54.81	74.00	-19.19	peak
5	17343.000	27.86	17.69	45.55	54.00	-8.45	average
6	18000	36.95	18.13	55.08	74.00	-18.92	peak
0	10000	27.45	18.13	45.58	54.00	-8.42	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 122 of 150

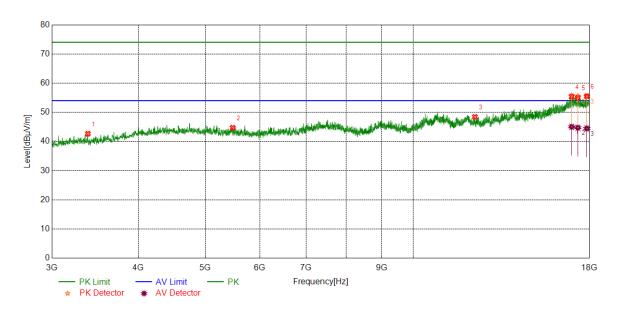
Test Mode			Channel			Polarization			Verdict		
	11G		LCH	H Horizontal PA		PASS					
80)										
70)										
60)									4 5	6
50)	"		2	o en mal tel	l.		ر بر بالغار ار عام الاسام			3
40	D Marin Mari	of April American Services of	والالها والمساولة والمالية	April of Mary Strategic St	NA PROPERTY OF THE PERSON NAMED IN	intribuekishin	A Principality			***	3
30)										
20)										
10)										
0	3G 40	G 5	G 6	G 70	G	9	G			180	G


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4498.3123	40.60	5.24	45.84	74.00	-28.16	peak
2	6384.7981	37.56	6.71	44.27	74.00	-29.73	peak
3	11277.2847	36.51	11.43	47.94	74.00	-26.06	peak
4	17073.6342	36.98	19.02	56.00	74.00	-18.00	peak
4	17073.0342	26.44	19.02	45.46	54.00	-8.54	average
5	17551.819	36.80	18.05	54.85	74.00	-19.15	peak
5	17551.619	26.90	18.05	44.95	54.00	-9.05	average
6	17911.864	36.63	18.19	54.82	74.00	-19.18	peak
0	1/911.004	26.39	18.19	44.58	54.00	-9.42	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 123 of 150

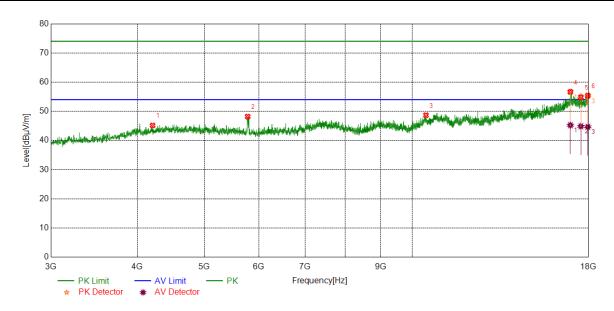
Test Mode	Channel	Polarization	Verdict
11G	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4155.1444	41.20	4.80	46.00	74.00	-28.00	peak
2	5312.1640	39.27	5.48	44.75	74.00	-29.25	peak
3	10427.8035	36.48	11.53	48.01	74.00	-25.99	peak
4	16946.1183	36.93	18.39	55.32	74.00	-18.68	peak
4	10940.1103	26.47	18.39	44.86	54.00	-9.14	average
5	17424.303	36.79	17.91	54.70	74.00	-19.30	peak
5	17424.303	27.13	17.91	45.04	54.00	-8.96	average
6	C 47040 C054	37.13	18.06	55.19	74.00	-18.81	peak
0	17840.6051	25.71	18.06	43.77	54.00	-10.23	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 124 of 150

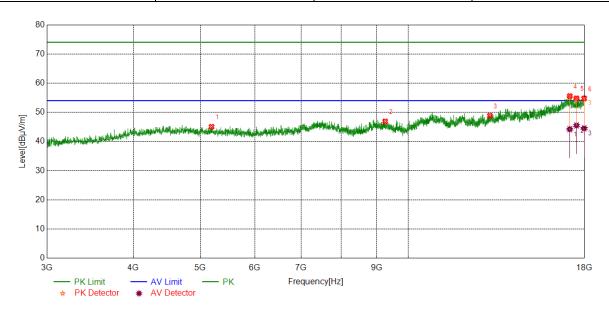
Test Mode	Channel	Polarization	Verdict
11G	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	3382.5478	41.29	1.36	42.65	74.00	-31.35	peak
2	5480.9351	39.26	5.43	44.69	74.00	-29.31	peak
3	12284.2855	36.53	11.88	48.41	74.00	-25.59	peak
4	16959.2449	36.73	18.64	55.37	74.00	-18.63	peak
4	10939.2449	26.38	18.64	45.02	54.00	-8.98	average
5	17315.5394	37.32	17.67	54.99	74.00	-19.01	peak
5	17315.5594	27.03	17.67	44.70	54.00	-9.30	average
6	17836.8546	37.40	18.10	55.50	74.00	-18.50	peak
0	17030.0340	26.35	18.10	44.45	54.00	-9.55	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 125 of 150

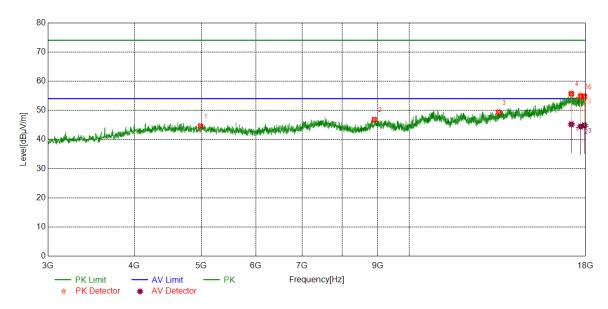
Test Mode	Channel	Polarization	Verdict
11G	MCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4211.4014	40.10	5.06	45.16	74.00	-28.84	peak
2	5780.9726	42.90	5.29	48.19	74.00	-25.81	peak
3	10470.9339	37.35	11.31	48.66	74.00	-25.34	peak
4	16944.243	38.28	18.41	56.69	74.00	-17.31	peak
4	10944.243	26.83	18.41	45.24	54.00	-8.76	average
5	17546.1933	36.99	17.82	54.81	74.00	-19.19	peak
5	17546.1955	27.06	17.82	44.88	54.00	-9.12	average
6	17960.6201	36.98	18.42	55.40	74.00	-18.60	peak
0	17900.0201	26.24	18.42	44.66	54.00	-9.34	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 126 of 150

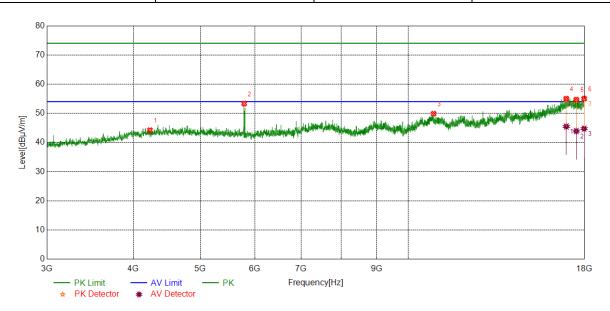
Test Mode	Channel	Polarization	Verdict
11G	HCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5194.0243	39.88	5.18	45.06	74.00	-28.94	peak
2	9263.2829	38.10	8.79	46.89	74.00	-27.11	peak
3	13130.0163	36.78	12.06	48.84	74.00	-25.16	peak
4	17135.5169	37.43	18.14	55.57	74.00	-18.43	peak
4	17 133.3109	26.07	18.14	44.21	54.00	-9.79	average
5	17525.5657	36.96	17.83	54.79	74.00	-19.21	peak
5	17323.3037	27.67	17.83	45.50	54.00	-8.50	average
6	17977.4972	36.73	18.01	54.74	74.00	-19.26	peak
0	11911.4912	26.49	18.01	44.50	54.00	-9.50	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 127 of 150

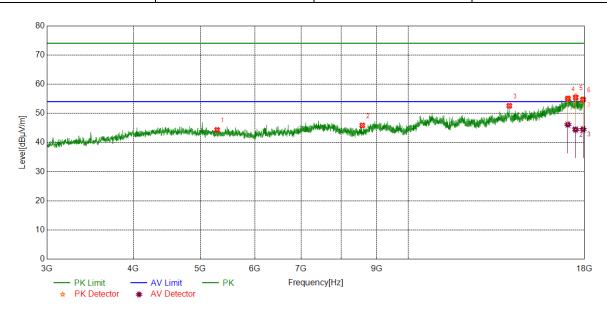
Test Mode	Channel	Polarization	Verdict
11G	HCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4989.6237	39.21	5.35	44.56	74.00	-29.44	peak
2	8905.1131	38.28	8.52	46.80	74.00	-27.20	peak
3	13473.1841	36.87	12.49	49.36	74.00	-24.64	peak
4	17169.2712	37.34	18.36	55.70	74.00	-18.30	peak
4	17 109.27 12	26.87	18.36	45.23	54.00	-8.77	average
5	17700 2207	37.16	17.63	54.79	74.00	-19.21	peak
Э	17709.3387	26.80	17.63	44.43	54.00	-9.57	average
6	17932.4916	36.58	18.18	54.76	74.00	-19.24	peak
6	17932.4916	26.63	18.18	44.81	54.00	-9.19	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 128 of 150

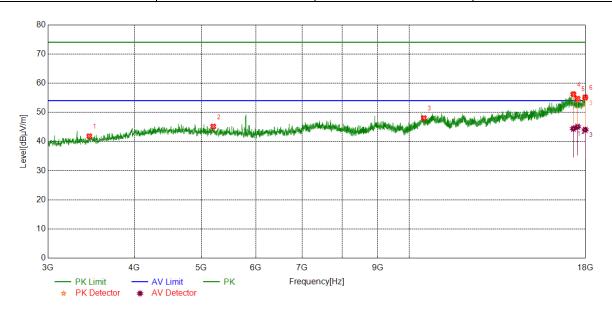
Test Mode	Channel	Polarization	Verdict
11N HT20	LCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4230.1538	39.44	4.77	44.21	74.00	-29.79	peak
2	5790.3488	48.10	5.23	53.33	74.00	-20.67	peak
3	10885.3607	37.62	12.24	49.86	74.00	-24.14	peak
4	16938.6173	36.57	18.45	55.02	74.00	-18.98	peak
4	10930.0173	27.03	18.45	45.48	54.00	-8.52	average
5	17514.3143	36.92	17.75	54.67	74.00	-19.33	peak
3	17514.5145	26.16	17.75	43.91	54.00	-10.09	average
6	17975.622	37.11	17.92	55.03	74.00	-18.97	peak
0	17973.022	26.82	17.92	44.74	54.00	-9.26	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 129 of 150

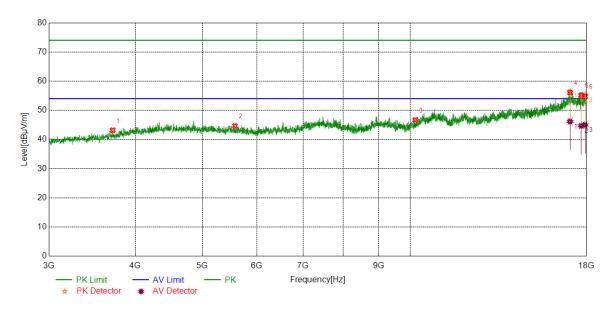
Test Mode	Channel	Polarization	Verdict
11N HT20	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	5291.5364	38.90	5.41	44.31	74.00	-29.69	peak
2	8582.5728	39.00	6.85	45.85	74.00	-28.15	peak
3	14009.5012	38.26	14.32	52.58	74.00	-21.42	peak
4	17028.6286	36.14	18.94	55.08	74.00	-18.92	peak
4	17020.0200	27.19	18.94	46.13	54.00	-7.87	average
5	17478.6848	37.56	17.82	55.38	74.00	-18.62	peak
5	17470.0040	26.58	17.82	44.40	54.00	-9.60	average
6	17911.864	36.54	18.19	54.73	74.00	-19.27	peak
O	1/911.004	26.32	18.19	44.51	54.00	-9.49	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 130 of 150

Test Mode	Channel	Polarization	Verdict
11N HT20	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	3444.4306	40.04	1.76	41.80	74.00	-32.20	peak
2	5205.2757	39.74	5.38	45.12	74.00	-28.88	peak
3	10504.6881	36.46	11.55	48.01	74.00	-25.99	peak
4	17285.5357	38.46	17.76	56.22	74.00	-17.78	peak
4	17205.5557	26.61	17.76	44.37	54.00	-9.63	average
5	17529.3162	36.76	17.91	54.67	74.00	-19.33	peak
3	17529.5162	27.13	17.91	45.04	54.00	-8.96	average
6	17983.1229	37.22	17.92	55.14	74.00	-18.86	peak
O	17903.1229	26.07	17.92	43.99	54.00	-10.01	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 131 of 150

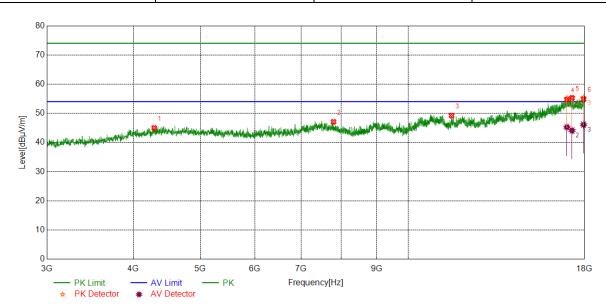
Test Mode	Channel	Polarization	Verdict
11N HT20	MCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	3710.7138	39.98	3.18	43.16	74.00	-30.84	peak
2	5578.4473	39.22	5.41	44.63	74.00	-29.37	peak
3	10170.8964	37.23	9.45	46.68	74.00	-27.32	peak
4	17036.1295	37.14	18.94	56.08	74.00	-17.92	peak
4	17030.1293	27.23	18.94	46.17	54.00	-7.83	average
5	17683.0854	37.23	17.97	55.20	74.00	-18.80	peak
3	17003.0034	26.70	17.97	44.67	54.00	-9.33	average
6	17911.864	36.59	18.19	54.78	74.00	-19.22	peak
0	1/911.004	26.80	18.19	44.99	54.00	-9.01	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 132 of 150

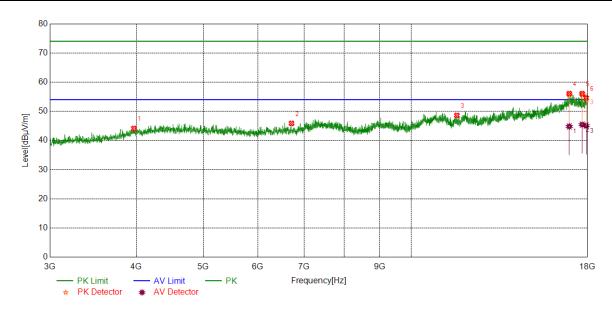
HCH	Horizontal	PASS
	3	4 5 6
	3	4 5 6
	3	4 5 6 38
	3	8.8.0
ited the health has been properly as the health and the second se		***2*3
5G 6G 7G	9G	18G
	V Limit — PK Frequ	


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4046.3808	39.88	4.21	44.09	74.00	-29.91	peak
2	5784.7231	38.79	5.26	44.05	74.00	-29.95	peak
3	11877.3597	36.69	12.39	49.08	74.00	-24.92	peak
4	16919.865	37.53	17.64	55.17	74.00	-18.83	peak
4	10919.000	27.29	17.64	44.93	54.00	-9.07	average
5	17375.5469	36.75	18.56	55.31	74.00	-18.69	peak
5	17375.5469	26.31	18.56	44.87	54.00	-9.13	average
6	17960.6201	36.17	18.42	54.59	74.00	-19.41	peak
0	17900.0201	26.70	18.42	45.12	54.00	-8.88	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 133 of 150

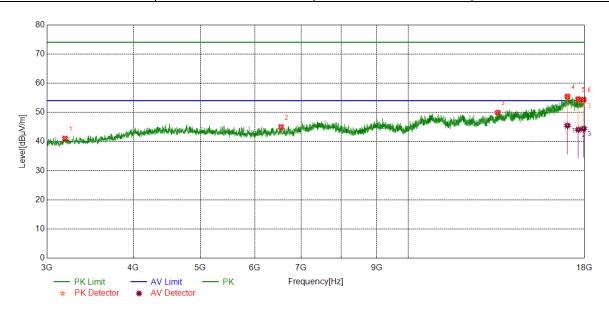
Test Mode	Channel	Polarization	Verdict
11N HT20	HCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4290.1613	40.06	4.91	44.97	74.00	-29.03	peak
2	7798.7248	38.99	8.08	47.07	74.00	-26.93	peak
3	11558.5698	37.83	11.38	49.21	74.00	-24.79	peak
4	16974.2468	36.07	18.58	54.65	74.00	-19.35	peak
4	4 16974.2468	26.67	18.58	45.25	54.00	-8.75	average
5	17266.7833	37.77	17.50	55.27	74.00	-18.73	peak
3	17200.7033	26.61	17.50	44.11	54.00	-9.89	average
6	17941.8677	36.50	18.33	54.83	74.00	-19.17	peak
0	17341.0077	27.75	18.33	46.08	54.00	-7.92	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 134 of 150

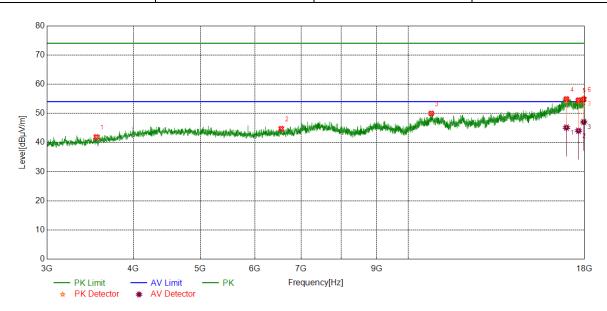
Test Mode	Channel	Polarization	Verdict
11N HT40	LCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	3969.4962	39.74	4.36	44.10	74.00	-29.90	peak
2	6712.9641	37.88	7.98	45.86	74.00	-28.14	peak
3	11646.7058	36.95	11.63	48.58	74.00	-25.42	peak
4	16936.7421	37.63	18.43	56.06	74.00	-17.94	peak
4	10930.7421	26.39	18.43	44.82	54.00	-9.18	average
5	17670 2240	38.08	17.95	56.03	74.00	-17.97	peak
3	5 17679.3349	27.50	17.95	45.45	54.00	-8.55	average
6	17913.7392	36.45	18.09	54.54	74.00	-19.46	peak
0	17913.7392	26.98	18.09	45.07	54.00	-8.93	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 135 of 150

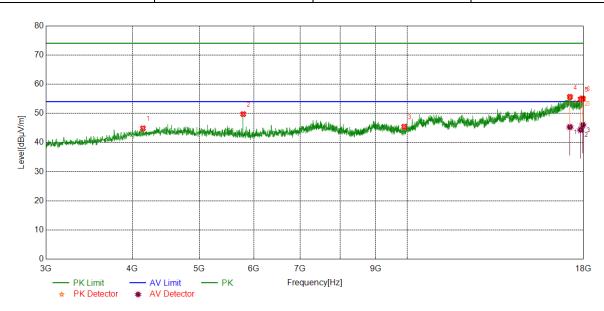
Test Mode	Channel	Polarization	Verdict
11N HT40	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	3187.5234	39.85	1.18	41.03	74.00	-32.97	peak
2	6547.9435	37.35	7.60	44.95	74.00	-29.05	peak
3	13478.8099	37.29	12.60	49.89	74.00	-24.11	peak
4	17004.2505	36.87	18.55	55.42	74.00	-18.58	peak
4	4 17004.2505	26.90	18.55	45.45	54.00	-8.55	average
5	17626.8284	37.16	17.35	54.51	74.00	-19.49	peak
ວ	5 1/626.8284	26.70	17.35	44.05	54.00	-9.95	average
6	17947.4934	35.83	18.50	54.33	74.00	-19.67	peak
Ö	17947.4934	25.86	18.50	44.36	54.00	-9.64	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 136 of 150

Test Mode	Channel	Polarization	Verdict
11N HT40	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	peak peak peak peak
1	3538.1923	40.00	1.86	41.86	74.00	-32.14	peak
2	6551.6940	37.07	7.64	44.71	74.00	-29.29	peak
3	10800.9751	37.89	12.06	49.95	74.00	-24.05	peak
4	16946.1183	36.50	18.39	54.89	74.00	-19.11	peak
4	4 10940.1163	26.70	18.39	45.09	54.00	-8.91	average
5	17641.8302	36.91	17.58	54.49	74.00	-19.51	peak
5	5 1/641.8302	26.44	17.58	44.02	54.00	-9.98	average
6	17954.9944	36.27	18.52	54.79	74.00	-19.21	peak
0	17954.9944	28.49	18.52	47.01	54.00	-6.99	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790015544-3-5 Page 137 of 150

Test Mode	Channel	Polarization	Verdict
11N HT40	MCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4145.7682	40.07	4.78	44.85	74.00	-29.15	peak
2	5790.3488	44.51	5.23	49.74	74.00	-24.26	peak
3	9900.8626	36.95	8.46	45.41	74.00	-28.59	peak
4	17203.0254	37.45	18.20	55.65	74.00	-18.35	peak
4	4 17203.0254	27.11	18.20	45.31	54.00	-8.69	average
5	17827.4784	36.75	18.02	54.77	74.00	-19.23	peak
ວ	5 1/82/.4/84	26.29	18.02	44.31	54.00	-9.69	average
6	17960.6201	36.62	18.42	55.04	74.00	-18.96	peak
Ö	17900.0201	27.58	18.42	46.00	54.00	-8.00	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW refer to section 7.1.
- 6. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses. The proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.