

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 Issue 2

CERTIFICATION TEST REPORT

For

CONSUMER CAMERA

MODEL NUMBER: IPC-A43P

ADDTIONAL MODEL NUMBER: IPC-A43P-imou; IPC-A43N-imou; IPC-A43N;

IPC-TA43-LC; LC-TA3-4M

PROJECT NUMBER: 4790015544-3

REPORT NUMBER: 4790015544-3-5

FCC ID: 2AVYF-IPC-A3X

ISSUE DATE: Jul.19, 2021

Prepared for

Hangzhou Huacheng Network Technology Co.,Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: + 86-512-6808 6400 Fax: + 86-512-6808 4099 Website: www.ul.com

Page 2 of 150

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	07/19/2021	Initial Issue	

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	9
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE WORSE CASE CONFIGURATIONS	11
	5.8.	TEST ENVIRONMENT	12
	5.9.	DESCRIPTION OF TEST SETUP	13
	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED	14
6.	ME	ASUREMENT METHODS	15
7.	AN	TENNA PORT TEST RESULTS	16
	7.1.	ON TIME AND DUTY CYCLE	16
	7.2.	6 dB BANDWIDTH	19
	7.3.	CONDUCTED POWER	27
	7.4.	POWER SPECTRAL DENSITY	29
	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	37
	7.6	RADIATED TEST RESULTS	68
		RESTRICTED BANDEDGE SPURIOUS EMISSIONS	
8.	AC	POWER LINE CONDUCTED EMISSIONS	147
9.	ΔN	TENNA REQUIREMENTS	150

Page 4 of 150

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Hangzhou Huacheng Network Technology Co., Ltd.

Address: No.2930, Nanhuan Road, Binjiang District, Hangzhou, China

Manufacturer Information

Company Name: Hangzhou Huacheng Network Technology Co., Ltd.

Address: No.2930, Nanhuan Road, Binjiang District, Hangzhou, China

EUT Description

Product Name CONSUMER CAMERA

Model Name IPC-A43P

Additional No. IPC-A43P-imou; IPC-A43N-imou; IPC-A43N; IPC-TA43-LC;

LC-TA3-4M

Sample Number 4060126
Data of Receipt Sample Jul.11,2021

Test Date Jul.11,2021~ Jul.18,2021

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

Page 5 of 150

	Summary of Test Results							
Clause	Test Items	FCC Rules	Test Results					
1	6db DTS Bandwidth	FCC 15.247 (a) (2)	PASS					
2	Conducted Power	FCC 15.247 (b) (3)	PASS					
3	Power Spectral Density	FCC 15.247 (e)	PASS					
4	Conducted Band edge And Spurious emission	FCC 15.247 (d)	PASS					
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	PASS					
6	Conducted Emission Test For AC Power Port	FCC 15.207	PASS					
7	Antenna Requirement	FCC 15.203	PASS					

Remark:

Prepared By:	Reviewed By:			
Tom Tang	Leon Wu			
Tom Tang Project Engineer	Leon Wu Senior Project Engineer			
Authorized By:				
Chris Zhong				
Chris Zhong Laboratory Leader				

¹⁾ The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C> when <Accuracy Method> decision rule is applied.

Page 6 of 150

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	---

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

REPORT No.: 4790015544-3-5 Page 7 of 150

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.1dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.4dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.4dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.9dB (1GHz-18Gz)
Note: This was estaints assume that a surrounded by	4.2dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 150

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	CONSUMER CAMERA			
Model No.:	IPC-A43P			
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz			
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)			
Channels Step:	Channels with 5MHz step			
Sample Type:	Fixed production			
Test software of EUT:	Secure CRT (manufacturer declare)			
Antenna Type:	Monopole Antenna			
	2.4 dBi			
Antenna Gain:	Remark: This data is provided by customer and our lab isn't responsible for this data			
Adapter	NAME: AC Adapter MODEL: NBS05B050100VUU INPUT:100-240V,50/60Hz, 0.2A OUTPUT:5.0V 1.0A			

Remark:

Model No.:

Number:	Name:	Number:	Name:	Number:	Name:
1	IPC-A43P	2	IPC-A43P-imou	3	IPC-A43N-imou
4	IPC-A43N	5	IPC-TA43-LC	6	LC-TA3-4M

Only the main model IPC-A22EP-D was tested and only the data of this model is shown in this test report.

Since Their electrical circuit design, layout, components used and internal wiring are identical, only the name of the models.

Page 9 of 150

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max AV Conducted Power (dBm)
1	IEEE 802.11B SISO	1-11[11]	15.96
1	IEEE 802.11G SISO	1-11[11]	13.79
1	IEEE 802.11nHT20	1-11[11]	13.70
1	IEEE 802.11nHT40	3-9[7]	12.07

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452		

	Channel List for 802.11n (40 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

Page 10 of 150

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare		EspRFtestTool					
	Transmit		Test Channel					
Modulation Mode	Antenna		NCB: 20MHz			NCB: 40MHz		
Mode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	N/A	N/A	N/A				
802.11g	1	N/A	N/A N/A N/A			/		
802.11n HT20	1	N/A N/A N/A						
802.11n HT40	1		/			54	54	

Page 11 of 150

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	Monopole Antenna	2.4

Test Mode Transmit and Receive Mode		Description		
IEEE 802.11b	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11g	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N (HT20)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N (HT20)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there two transmission antennas, and pre-testing both of them, only the worse data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 12 of 150

5.8. **TEST ENVIRONMENT**

Environment Parameter	Selected Values During Tests			
Relative Humidity	55 ~ 65%			
Atmospheric Pressure:	1010Pa			
Temperature	TN	23 ~ 28°C		
	VL	N/A		
Voltage :	VN	AC 120V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 13 of 150

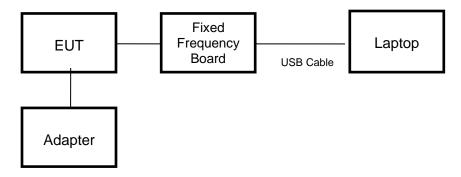
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E550c	N/A
2	Fixed Frequency Board	N/A	N/A	Supply by UL Lab

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB	USB-VGA	100cm Length (Supply by UL Lab)	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Micro SD card	Kingston	32GB	Supply by UL lab

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

Remark: The EUT has been built one SD card during the testing

Page 14 of 150

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	J. IV. IVIL	Conducted Emissions (Instrument)						
		Cor	iauctea	Emis:	sions (instrur			
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
$\overline{\checkmark}$	EMI Test Receiver	R&S	ESR:	3	126700	2019-12-12	2020-12-05	2021-12-04
$\overline{\mathbf{V}}$	Two-Line V-Network	R&S	ENV2	16	126701	2019-12-12	2020-12-05	2021-12-04
V	Artificial Mains Networks	R&S	ENY8	31	126711	2019-12-12	2020-12-05	2021-12-04
				Soft	ware			
Used	Des	cription		Ма	ınufacturer	Name	Version	
V	Test Software for 0	Conducted distur	bance		R&S	EMC32	Ver. 9.25	
		Ra	diated E	miss	ions (Instrum	ent)		
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
	Spectrum Analyzer	Keysight	N9010)B	MY57110128	2020-05-10	2021-05-09	2022-05-08
	EMI test receiver	R&S	ESR2	26	1267603	2019-12-12	2020-12-05	2021-12-04
	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1513		513-265	2018-06-15	2021-06-03	2022-06-02
	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		177821	N/A	2019-01-28	2022-01-27
	Receiver Antenna (1GHz-18GHz)	R&S	HF907		126705	2018-01-29	2019-01-28	2022-01-27
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9	170	126706	2019-02-06	2020-12-05	2021-12-04
V	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G1	18-50	14140-13467	2019-03-18	2020-12-05	2021-12-04
V	Pre-amplification (To 26.5GHz)	R&S	SCU-2		134668	2019-02-06	2020-09-27	2021-09-26
V	Band Reject Filter	Wainwright	WRCJ\ 2350-24 2483.5-25 40S\$	400- 533.5-	1	2020-05-10	2021-05-09	2022-05-08
V	Highpass Filter	Wainwright	WHKX 2700-30 18000-4	000-	2	2020-05-10	2021-05-09	2022-05-08
				Soft	ware			
Used	Desci	ription	Ma	nufac	turer	Name	Version	
$\overline{\mathbf{V}}$	Test Software for R	adiated disturbar	nce Tonsce		end	JS32	V1.0	
			Oth	er ins	truments			
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
	Spectrum Analyzer	Keysight	N9010	OB	MY57110128	2020-05-10	2021-05-09	2022-05-08
	Power Meter	Keysight	U2021	XA	MY57110002	2020-05-10	2021-05-09	2022-05-08

Page 15 of 150

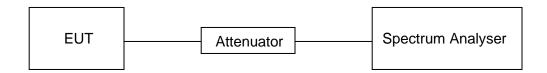
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Conducted Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 150

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

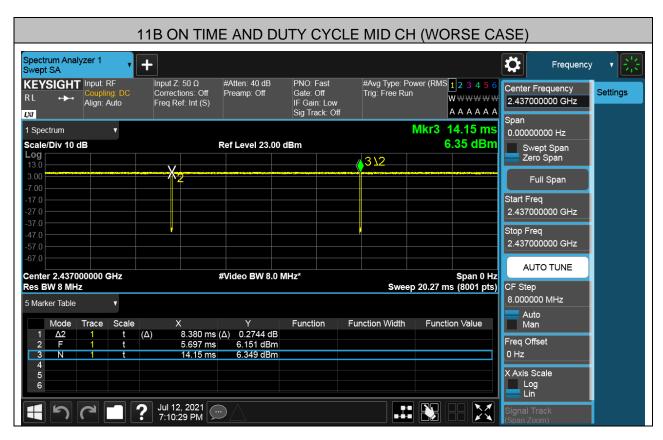
PROCEDURE

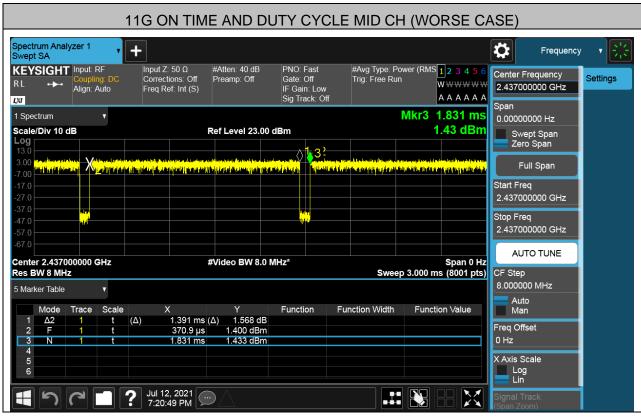
FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

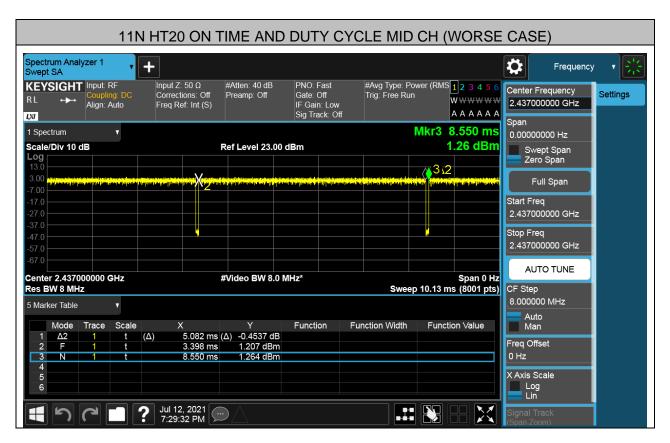
RESULTS

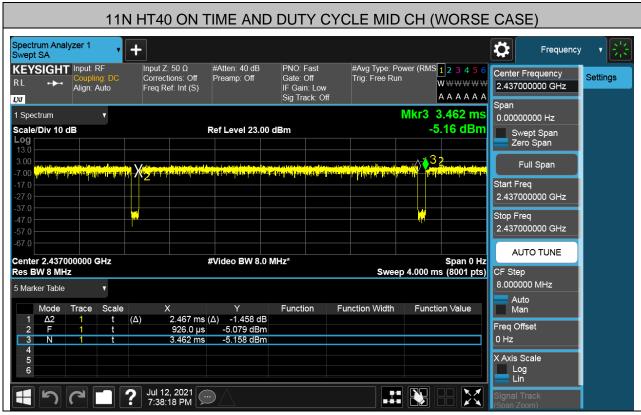
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final Minimum VBW (KHz)
11B	8.380	8.453	0.991	99.1	0.04	0.12	0.01(Note 4)
11G	1.391	1.4601	0.953	95.3	0.21	0.72	1
11N HT20	5.082	5.152	0.986	98.6	0.06	0.20	0.01(Note 4)
11N HT40	2.467	2.536	0.973	97.3	0.12	0.41	1


Note: 1) Duty Cycle Correction Factor=10log(1/x).


2) Where: x is Duty Cycle(Linear)

3) Where: T is On Time (transmit duration)


4) The minimum VBW should be 10Hz if the duty cycle is over 98%.

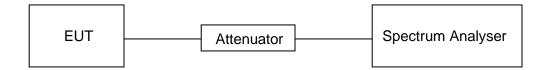


Page 19 of 150

7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)		
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5		


TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6dB Bandwidth :100K
VBW	For 6dB Bandwidth : ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

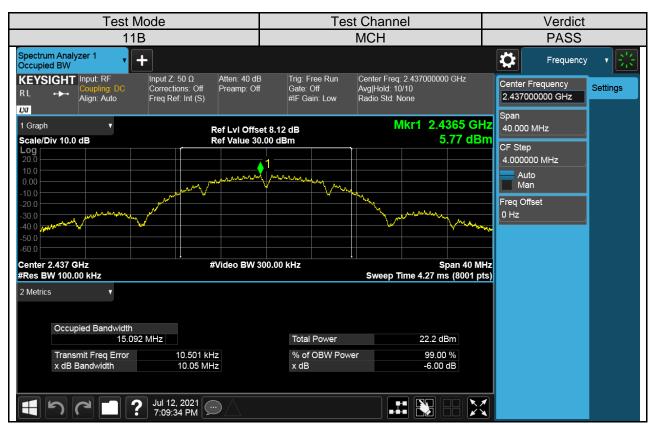
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 20 of 150

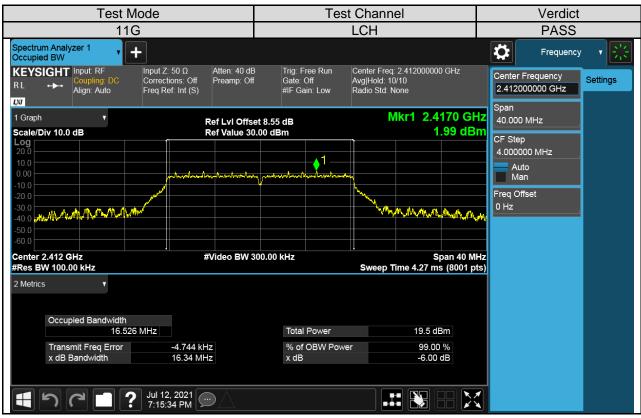
RESULTS

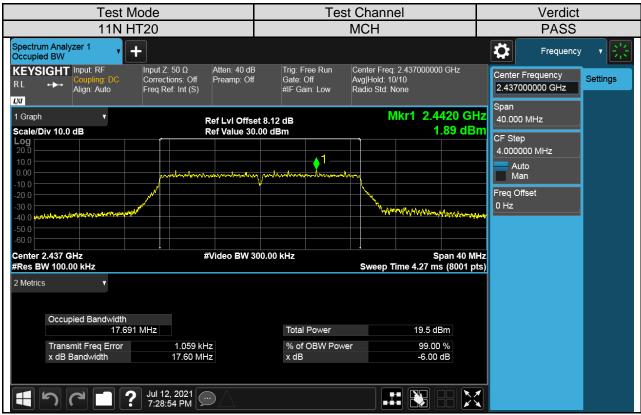
Test Mode	Test Channel	6dB bandwidth (MHz)	Result
	LCH	10.02	Pass
11B	MCH	10.05	Pass
	HCH	10.06	Pass
11G	LCH	16.34	Pass
	MCH	16.35	Pass
	HCH	16.35	Pass
11N HT20	LCH	17.60	Pass
	MCH	17.60	Pass
	HCH	17.60	Pass
11N HT40	LCH	36.31	Pass
	MCH	36.30	Pass
	HCH	36.32	Pass



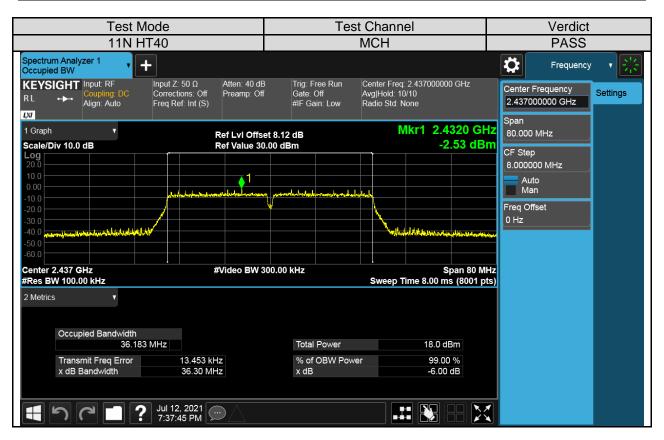
REPORT No.: 4790015544-3-5 Page 21 of 150

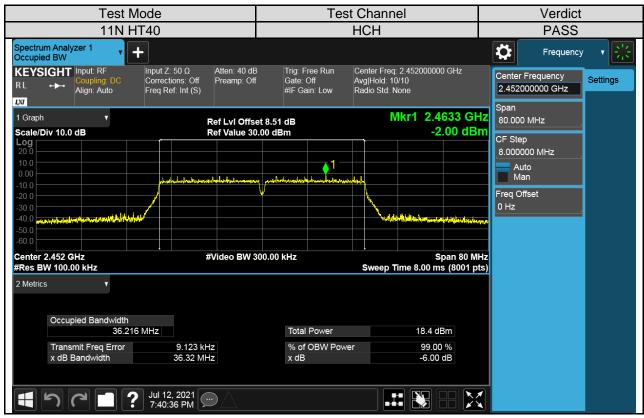
<u>Test Graphs</u>


For 6dB Bandwidth part:



Test Channel Test Mode Verdict 11G MCH **PASS** Spectrum Analyzer 1 Occupied BW Ö Frequency KEYSIGHT Input: RF Atten: 40 dB Input Z: 50 Ω Trig: Free Run Center Freq: 2.437000000 GHz Center Frequency Corrections: Off Freq Ref: Int (S) Avg|Hold:>10/10 Radio Std: None Settings Preamp: Off Gate: Off Align: Auto 2.437000000 GHz #IF Gain: Low ĻXI Mkr1 2.4383 GHz 1 Graph Ref Lvi Offset 8.12 dB Ref Value 30.00 dBm 40.000 MHz Scale/Div 10.0 dB 2.18 dBm CF Step _og 4.000000 MHz Auto Man Freq Offset 0 Hz <u>~_^_^__</u> The track was a few and the second #Video BW 300.00 kHz Center 2.437 GHz Span 40 MHz #Res BW 100.00 kHz Sweep Time 4.27 ms (8001 pts) 2 Metrics Occupied Bandwidth 16.509 MHz Total Power 19.8 dBm Transmit Freq Error -8.625 kHz % of OBW Power 99.00 % 16.35 MHz -6 00 dB x dB Bandwidth x dB Jul 12, 2021 7:18:36 PM





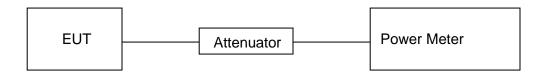
Page 27 of 150

7.3. CONDUCTED POWER

LIMITS

FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

AVG Detector use for AVG result.

TEST SETUP

Page 28 of 150

RESULTS

Test Mode	Test Channel	Maximum Conducted Output Power (AV) dBm	Result
11B	LCH	15.38	Pass
	MCH	15.55	Pass
	HCH	15.96	Pass
11G	LCH	13.21	Pass
	MCH	13.36	Pass
	HCH	13.79	Pass
11N HT20	LCH	13.13	Pass
	MCH	13.32	Pass
	HCH	13.70	Pass
11N HT40	LCH	11.47	Pass
	MCH	11.69	Pass
	HCH	12.07	Pass

Remark:

- For all the test results has been adjusted the duty cycle factor.
 For Correction Factor is refer to the result in section 7.1

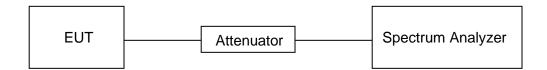
Page 29 of 150

7.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE


Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

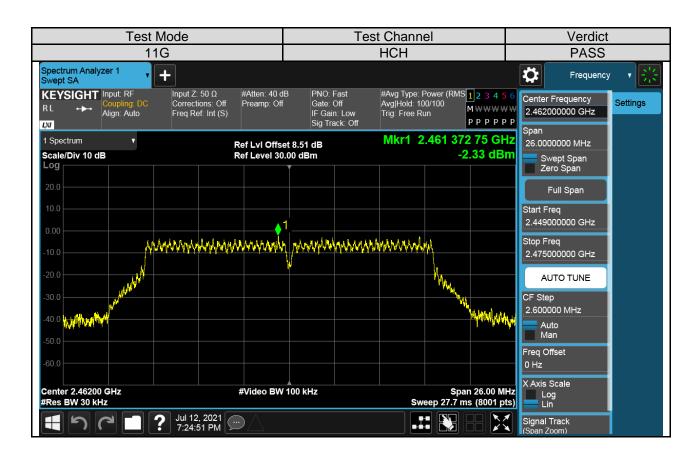
TEST SETUP

Page 30 of 150

RESULTS

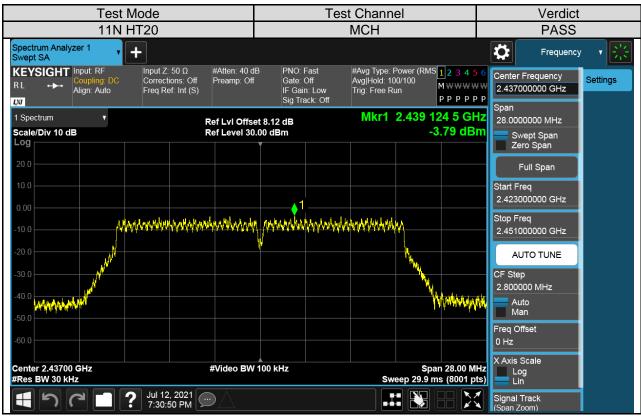
Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	0.61	Pass
11B	MCH	0.83	Pass
	HCH	1.16	Pass
11G	LCH	-2.40	Pass
	MCH	-2.22	Pass
	HCH	-2.33	Pass
11N HT20	LCH	-2.81	Pass
	MCH	-3.79	Pass
	HCH	-3.11	Pass
11N HT40	LCH	-7.69	Pass
	MCH	-7.89	Pass
	HCH	-7.23	Pass

Test Graphs:



Test Channel Test Mode Verdict 11B **HCH PASS** Spectrum Analyzer 1 Swept SA Ö Frequency #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 M www.ww KEYSIGHT Input: RF Input Z: 50 Ω #Atten: 40 dB PNO: Best Wide Center Frequency Corrections: Off Freq Ref: Int (S) Gate: Off IF Gain: Low Sig Track: Off Settings Preamp: Off M + W + W + WAlign: Auto Trig: Free Run 2.462000000 GHz PPPPPP ĻXI Mkr1 2.462 700 GHz 1 Spectrum 16.0000000 MHz Ref Lvl Offset 8.51 dB Scale/Div 10 dB Ref Level 30.00 dBm 1.16 dBm Swept Span Zero Span Log Full Span Start Freq **(1**) 2.454000000 GHz 2.470000000 GHz **AUTO TUNE** CF Step 1.600000 MHz Auto Man Freq Offset 0 Hz X Axis Scale Span 16.00 MHz Center 2.462000 GHz #Video BW 100 kHz Log Lin #Res BW 30 kHz Sweep 17.1 ms (8001 pts) Jul 12, 2021 7:14:23 PM Signal Track





Test Channel Test Mode Verdict 11G MCH **PASS** Spectrum Analyzer 1 Swept SA + Ö Frequency #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 KEYSIGHT Input: RF Input Z: 50 Ω #Atten: 40 dB PNO: Fast Center Frequency Corrections: Off Freq Ref: Int (S) Gate: Off IF Gain: Low Sig Track: Off Settings Preamp: Off M + W + W + WAlign: Auto 2.437000000 GHz Trig: Free Run PPPPPP ĻXI Mkr1 2.444 484 75 GHz 1 Spectrum 26.0000000 MHz Ref Lvl Offset 8.12 dB Scale/Div 10 dB Ref Level 30.00 dBm -2.22 dBm Swept Span Zero Span Log Full Span Start Freq 2.424000000 GHz nyanananananananananana 2.450000000 GHz **AUTO TUNE** CF Step 2.600000 MHz Auto Man Freq Offset 0 Hz X Axis Scale Center 2.43700 GHz #Res BW 30 kHz Span 26.00 MHz #Video BW 100 kHz Log Lin Sweep 27.7 ms (8001 pts) Jul 12, 2021 7:22:04 PM ÷ Signal Track





7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

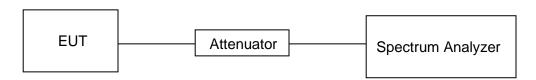
LIMITS

FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
FCC §15.247 (d) Conducted Bandedge and Spurious Emissions At least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power			

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


settings:

Use the peak marker function to determine the maximum PSD level.

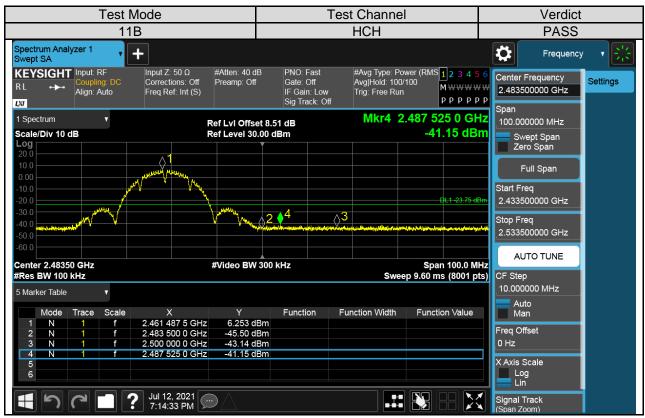
Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

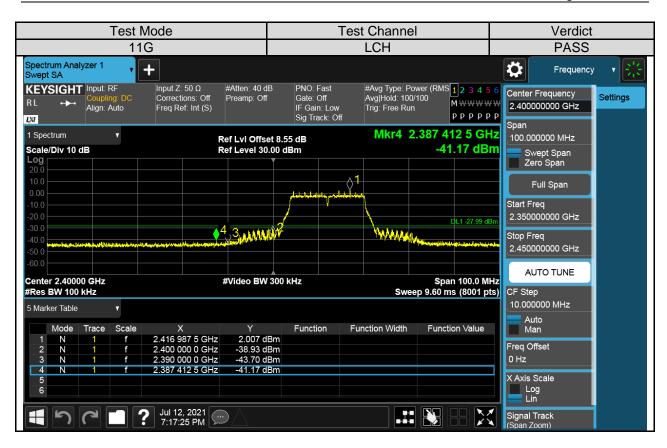
TEST SETUP

Page 38 of 150

Part I: Conducted Bandedge


RESULTS TABLE

Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11D	LCH	5.648	-41.60	-24.35	PASS
11B	HCH	6.253	-41.15	-23.75	PASS
110	LCH	2.007	-41.17	-27.99	PASS
11G	HCH	2.658	-37.74	-27.34	PASS
11N UT20	LCH	1.422	-40.38	-28.58	PASS
11N HT20	HCH	2.158	-38.58	-27.84	PASS
11N UT10	LCH	-2.901	-39.11	-32.90	PASS
11N HT40	HCH	-2.045	-36.98	-32.05	PASS



TEST GRAPHS

Page 43 of 150

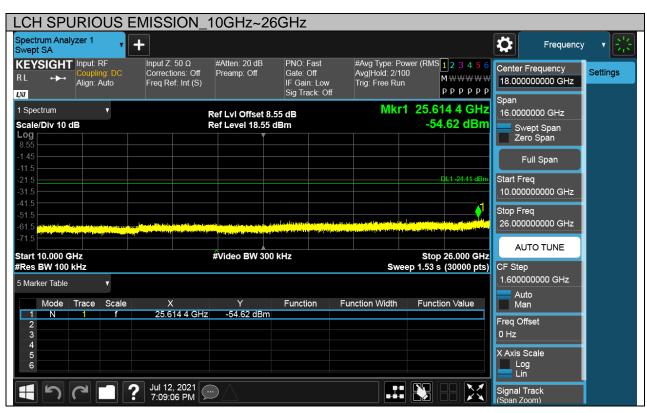
Part II : Conducted Emission

Test Result Table

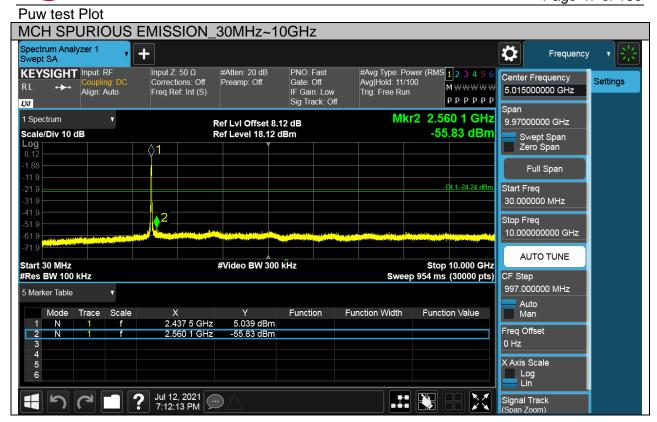
Test Mode	Test Antenna	Channel	Pref(dBm)	Puw(dBm)	Verdict
		LCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
11B	Antenna 1	MCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
		LCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
11G	Antenna 1	MCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
110		HCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
		LCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	Antenna 1	MCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
111111120		HCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
		LCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	Antenna 1	MCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS
1111111140		HCH	See the test graphs	<limit< td=""><td>PASS</td></limit<>	PASS

Page 44 of 150

Test Plots

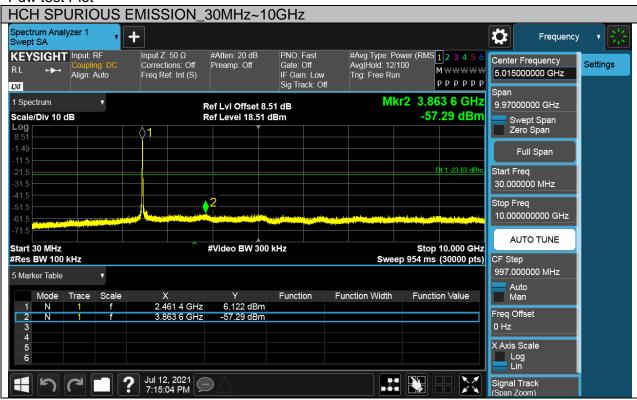

Test Mode	Channel	Verdict
11B	LCH	PASS

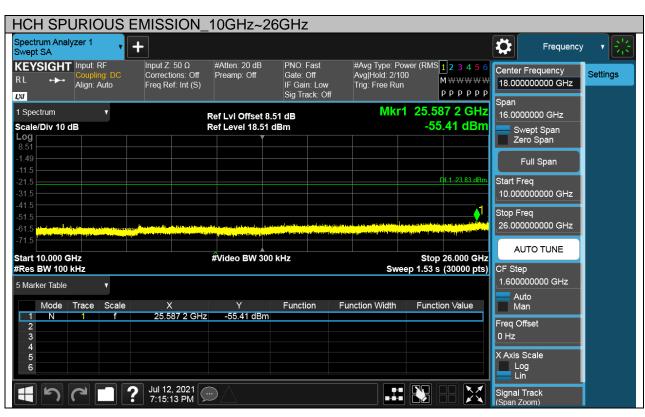
REPORT No.: 4790015544-3-5 Page 45 of 150


Page 46 of 150

Test Mode	Channel	Verdict
11B	MCH	PASS

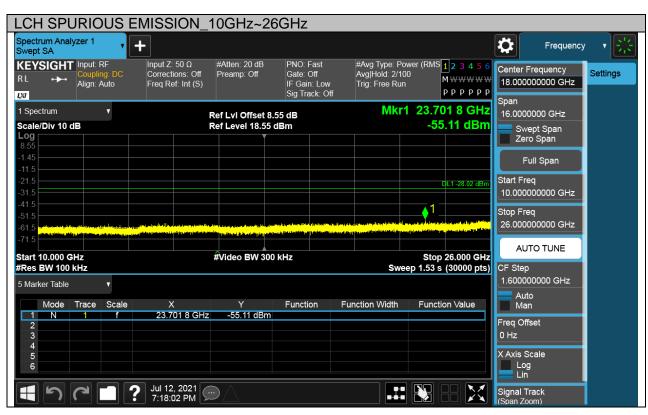
Page 47 of 150


Page 48 of 150


Test Mode	Channel	Verdict
11B	HCH	PASS

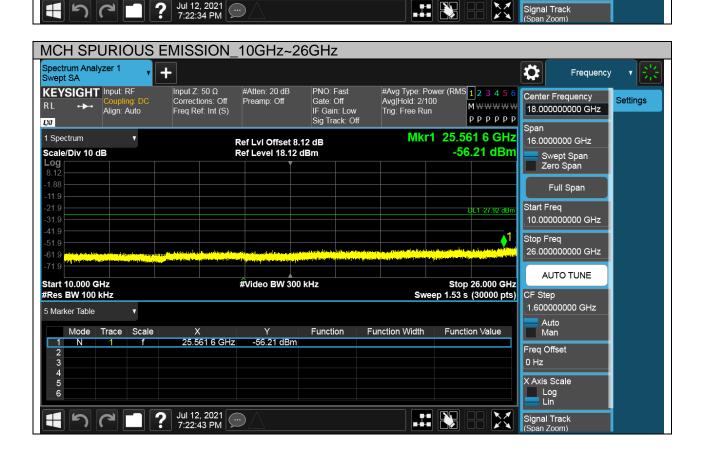
Page 49 of 150


Page 50 of 150

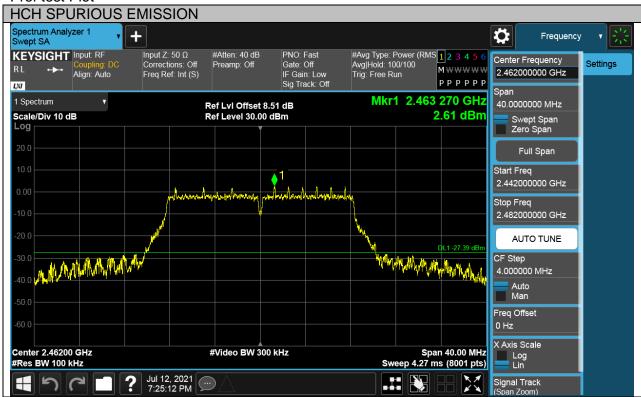

Test Mode	Channel	Verdict
11G	LCH	PASS

REPORT No.: 4790015544-3-5 Page 51 of 150

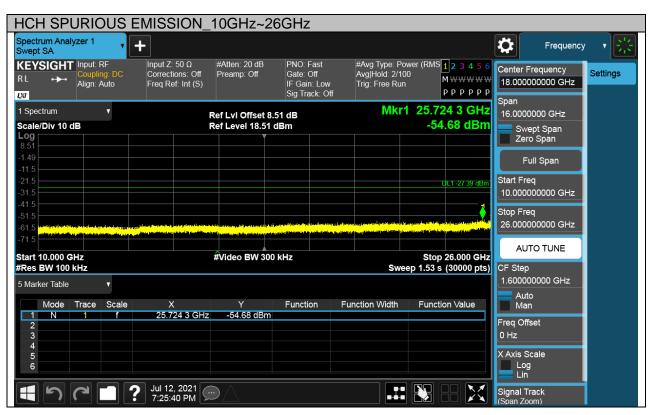
Page 52 of 150


Test Mode	Channel	Verdict
11G	MCH	PASS

Page 53 of 150

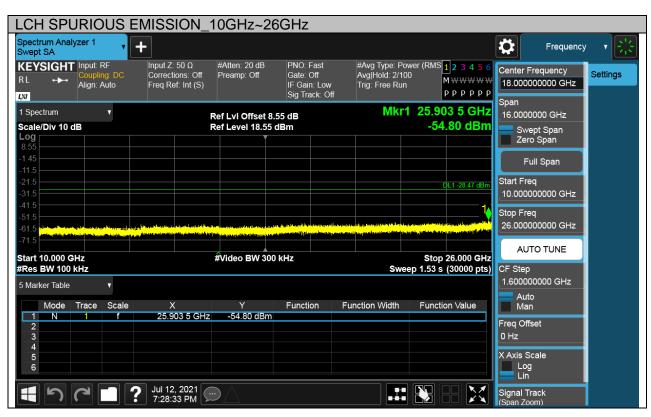

Puw test Plot MCH SPURIOUS EMISSION_30MHz~10GHz Spectrum Analyzer 1 Swept SA Ö Frequency #Avg Type: Power (RMS 1 2 3 4 5 (Avg|Hold: 12/100 Input Z: 50 Ω #Atten: 20 dB KEYSIGHT Input: RF PNO: Fast Center Frequency Corrections: Off Preamp: Off Gate: Off Settings MWWWW Align: Auto 5.015000000 GHz Freq Ref: Int (S) IF Gain: Low Trig: Free Run PPPPP LXI Sig Track: Off Mkr2 2.560 1 GHz 1 Spectrum 9.97000000 GHz Ref Lvi Offset 8.12 dB Ref Level 18.12 dBm -55.91 dBm Scale/Div 10 dB Swept Span Zero Span Log Full Span Start Freq 30.000000 MHz 2 Stop Freq 10.000000000 GHz 61.9 AUTO TUNE Start 30 MHz #Video BW 300 kHz Stop 10.000 GHz #Res BW 100 kHz Sweep 954 ms (30000 pts) 997.000000 MHz 5 Marker Table Function Function Width Function Value Mode Trace Scale 2.041 dBm 2.442 2 GHz Freq Offset 2.560 1 GHz -55.91 dBm N 0 Hz X Axis Scale Log Lin 6

Page 54 of 150


Test Mode	Channel	Verdict
11G	HCH	PASS

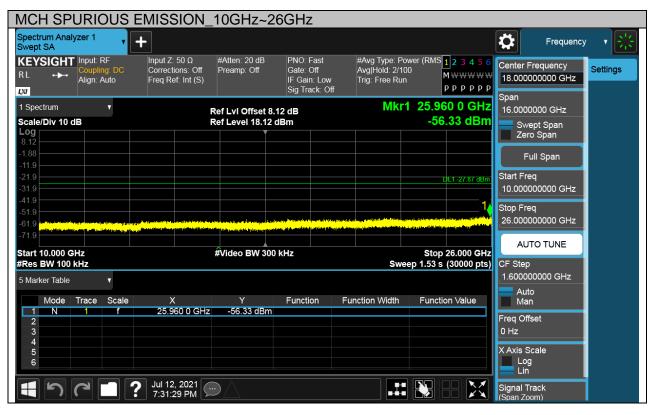
REPORT No.: 4790015544-3-5 Page 55 of 150

Page 56 of 150


Test Mode	Channel	Verdict
11N HT20	LCH	PASS

REPORT No.: 4790015544-3-5 Page 57 of 150

Page 58 of 150


Test Mode	Channel	Verdict
11N HT20	MCH	PASS

Page 59 of 150

Puw test Plot MCH SPURIOUS EMISSION_30MHz~10GHz Spectrum Analyzer 1 Swept SA Ö Frequency #Avg Type: Power (RMS 1 2 3 4 5 (Avg|Hold: 12/100 Input Z: 50 Ω #Atten: 20 dB KEYSIGHT Input: RF PNO: Fast Center Frequency Corrections: Off Preamp: Off Gate: Off Settings MWWWW Align: Auto 5.015000000 GHz Freq Ref: Int (S) IF Gain: Low Trig: Free Run PPPPP LXI Sig Track: Off Mkr2 5.134 1 GHz 1 Spectrum 9.97000000 GHz Ref Lvi Offset 8.12 dB Ref Level 18.12 dBm -56.92 dBm Scale/Div 10 dB Swept Span Zero Span Log Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz 619 AUTO TUNE Start 30 MHz #Video BW 300 kHz Stop 10.000 GHz #Res BW 100 kHz Sweep 954 ms (30000 pts) 997.000000 MHz 5 Marker Table Function Function Width Function Value Mode Trace Scale -1.509 dBm -56.92 dBm 2.439 8 GHz Freq Offset 5.134 1 GHz N 0 Hz X Axis Scale Log Lin 6 Jul 12, 2021 7:31:20 PM Signal Track

Page 60 of 150

Test Mode	Channel	Verdict
11N HT20	HCH	PASS

