Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... GTS20200323004-1-2

FCC ID.....: 2AVY9-XP2020

Compiled by

(position+printed name+signature)..: File administrators Peter Xiao

Supervised by

(position+printed name+signature)..: Test Engineer Moon Tan

Approved by

(position+printed name+signature)..: Manager Simon Hu

Date of issue...... Mar.28, 2020

Representative Laboratory Name: Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address...... Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name...... SHENZHEN C-DIGI TECHLONOGY CO.,LTD

NO.68 Xianan, Baoan District, Shenzhen, China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF...... Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Face recognition thermometer

Trade Mark N/A

Manufacturer Shenzhen Gibbs Tec Co,Ltd

Model/Type reference..... XP2020

Listed Models CS2020, VS2020

Operation Frequency...... From 2412MHz to 2462MHz

Hardware Version C-SH31-V3.0

Software Version rk3288-userdebug 7.1.2.NHG47K eng.yangshenglong.

20190924.104814 test-keys

Rating DC 12.0V by Adapter

Result..... PASS

Report No.: GTS20200323004-1-2 Page 2 of 45

TEST REPORT

Test Report No. :	GTS20200323004-1-2	Mar.28, 2020
	G1020200020004-1-2	Date of issue

Equipment under Test : Face recognition thermometer

Model /Type : XP2020

Listed Models : CS2020, VS2020

Applicant : SHENZHEN C-DIGI TECHLONOGY CO.,LTD

Address : Room 302-304, Xiagu, Meisheng Chuanggu, NO.10 Longchang RD,

NO.68 Xianan, Baoan District, Shenzhen, China

Manufacturer : Shenzhen Gibbs Tec Co,Ltd

Address : B103, QiDi KeJi Yuan, Nan Wan Jie Dao Ban, LongGang District,

Shenzhen City, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	
2.3. Equipment Under Test	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. EUT operation mode	
2.6. Block Diagram of Test Setup	6
2.7. Related Submittal(s) / Grant (s)	6
2.8. Special Accessories	6
2.9. Modifications	6
3. TEST ENVIRONMENT	7
3.1. Address of the test laboratory	7
3.2. Test Facility	7
3.3. Environmental conditions	7
3.4. Test Description	8
3.5. Statement of the measurement uncertainty	9
3.6. Equipments Used during the Test	10
4. TEST CONDITIONS AND RESULTS	11
4.1. AC Power Conducted Emission	11
4.2. Radiated Emission	13
4.3. Maximum Peak Output Power	19
4.4. Power Spectral Density	20
4.5. 6dB Bandwidth	
4.6. Band Edge Compliance of RF Emission	
4.7. Antenna Requirement	31
5. TEST SETUP PHOTOS OF THE EUT	32
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	34

Report No.: GTS20200323004-1-2 Page 4 of 45

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB558074 D01 DTS Meas Guidance v05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

Report No.: GTS20200323004-1-2 Page 5 of 45

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Mar.24, 2020
Testing commenced on	:	Mar.24, 2020
Testing concluded on	:	Mar.28, 2020

2.2. Product Description

Product Name	Face recognition thermometer
Trade Mark	N/A
Model/Type reference	XP2020
List Models	CS2020, VS2020
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested.
Power supply:	DC 12.0V by Adapter
WIFI(2.4G Band)	
Frequency Range	2412MHz ~ 2462MHz
Channel Spacing	5MHz
Channel Number	11 Channel for 20MHz bandwidth(2412~2462MHz) 7 channels for 40MHz bandwidth(2422~2452MHz)
Modulation Type	802.11b: DSSS; 802.11g/n: OFDM
Antenna Description	Internal Antenna , 0.80dBi(Max.)

Report No.: GTS20200323004-1-2 Page 6 of 45

2.3. Equipment Under Test

Power supply system utilised

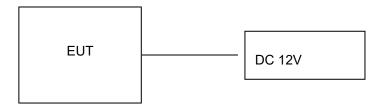
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		•	12 V DC	0	24 V DC
		0	Other (specified in blank bel	ow	

DC 12V

2.4. Short description of the Equipment under Test (EUT)

This is a Face recognition thermometer.

For more details, refer to the user's manual of the EUT.


2.5. EUT operation mode

The application provider specific test software to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AVY9-XP2020** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen Mingxin Power Technologies Co., Ltd.	Adapter	MX24W1- 1202000U		SDOC

2.9. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20200323004-1-2 Page 7 of 45

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

Report No.: GTS20200323004-1-2 Page 8 of 45

3.4. Test Description

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	802.11b	☑ Lowest☑ Middle☑ Highest	802.11b	□ Lowest □ Middle □ Highest					complies
§15.247(e)	Power spectral density	802.11b 802.11g 802.11n HT20 802.11n HT40		802.11b 802.11g 802.11n HT20 802.11n HT40	□ Lowest □ Middle □ Highest	\boxtimes				complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	802.11b 802.11g 802.11n HT20 802.11n HT40	□ Lowest □ Middle □ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	✓ Lowest✓ Middle✓ Highest					complies
§15.247(b)(1)	Maximum output power	802.11b 802.11g 802.11n HT20 802.11n HT40	□ Lowest □ Middle □ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	□ Lowest □ Middle □ Highest					complies
§15.247(d)	Band edge compliance conducted	802.11b 802.11g 802.11n HT20 802.11n HT40	⊠ Lowest ⊠ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	⊠ Lowest ⊠ Highest					complies
§15.205	Band edge compliance radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	⊠ Lowest ⊠ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Highest					complies
§15.247(d)	TX spurious emissions conducted	802.11b 802.11g 802.11n HT20 802.11n HT40		802.11b 802.11g 802.11n HT20 802.11n HT40	□ Lowest □ Middle □ Highest					complies
§15.247(d)	TX spurious emissions radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	□ Lowest □ Middle □ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	□ Lowest □ Middle □ Highest	\boxtimes				complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-			\boxtimes		complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	802.11b	-/-	802.11b	-/-					complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	802.11b	-/-	802.11b	-/-			\boxtimes		complies

Report No.: GTS20200323004-1-2 Page 9 of 45

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11n(40MHz)/OFDM	13.5Mbps	3/6/09
	11b/DSSS	1 Mbps	1/11
D. J.F.L.	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

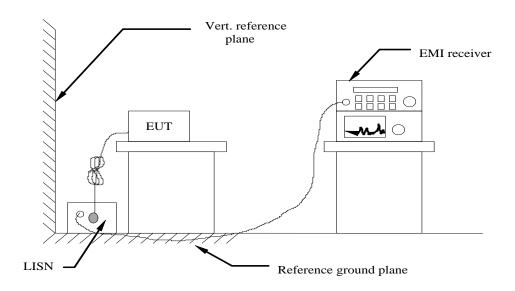
Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

				0 111	0 111 11
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2019/09/20	2020/09/19
LISN	R&S	ESH2-Z5	893606/008	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESPI3	101841-cd	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESCI7	101102	2019/09/20	2020/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2019/09/20	2020/09/19
Spectrum Analyzer	R&S	FSV40	100019	2019/09/20	2020/09/19
Vector Signal generator	Agilent	N5181A	MY49060502	2019/09/20	2020/09/19
Signal generator	Agilent	E4421B	3610AO1069	2019/09/20	2020/09/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2019/09/20	2020/09/19
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2019/09/23	2020/09/22
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2019/10/12	2020/10/11
Bilog Antenna	Schwarzbeck	VULB9163	000976	2019/05/26	2020/05/25
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV9179	9719-025	2019/09/20	2020/09/19
Amplifier	EMCI	EMC051845B	980355	2019/09/20	2020/09/19
Temperature/Humidit y Meter	Gangxing	CTH-608	02	2019/09/20	2020/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2019/09/20	2020/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2019/09/20	2020/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2019/09/20	2020/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2019/09/20	2020/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2019/09/20	2020/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2019/09/20	2020/09/19
Test Control Unit	Tonscend	JS0806-1	178060067	2019/06/20	2020/06/19
Automated filter bank	Tonscend	JS0806-F	19F8060177	2019/06/20	2020/06/19
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	1	1
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	1	1
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	1	1
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	1	1


Note: The Cal.Interval was one year.

Report No.: GTS20200323004-1-2 Page 11 of 45

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (IVII IZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the freque	ncy.				

TEST RESULTS

Remark: We measured Conducted Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode in AC 120V/60Hz, the worst case was recorded.

PASS

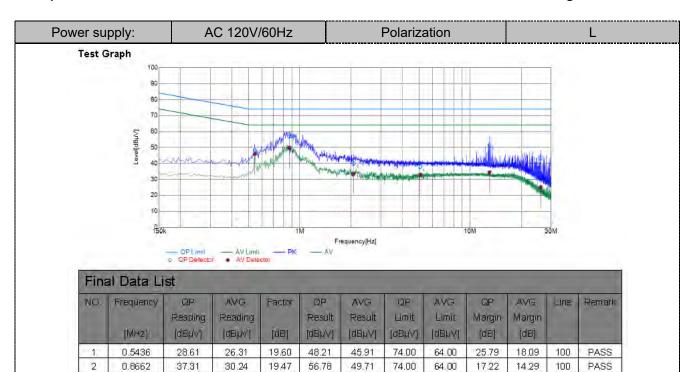
PASS

PASS

PASS

PASS

N


31.01

100

100

100

100

Note: 1. Result (dBµV) = Reading (dBµV) + Factor (dB).

20.44

18.56

31.91

23.75

3

4

5

6

2.0725

5.0926

13.0091

26.0155

22.5731

11.98

Note: 1. Result (dB μ V) = Reading (dB μ V) + Factor (dB). 2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

7.51

11.48

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB)

14.20

13.50.

14.90

5.57

19.47

19.32

19.47

19.50

39.91

37.88

51.38

43.25

33.67

32.82

34.37

25.07

74.00

74.00

74.00

74.00

64.00

64.00

64.00

64.00

34.09

36.12

22.62

30.75

30.33

31.18

29.63

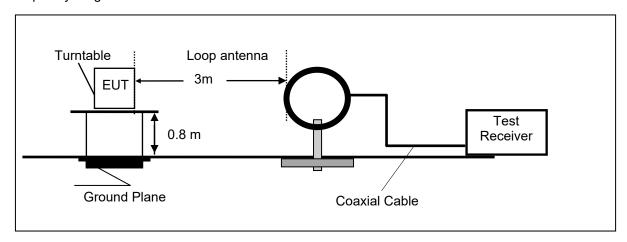
38.93

wer sup	ply:	Α	C 120V	/60Hz			Polariz	ation				Ν
Test Gr	iph											
	100										7	
	90											
	70 -											
	Fevel[dBµV]											
	9 40 H	44		Jhy.								
	30	To Maria	Van Jahran	The state of the s	COLUMBA STATE OF THE STATE OF T	Add Property and						
	20	A MAN	- Aller	13/4/2	CARLO MARIO MAN	The state of the s	-	-		PRO		
	10					2 (8)	1		,		N .	
	150				M				OM		BOM	
	130	`		,		equency[Hz]			i din		DOM	
		- PK Limit	- OF Limit	- AVI	mit — P	K - AV						
		n QP Detecto	AV Dete	ctor								
Final	Data Li		r 🐧 AV Dete	ctor								
	Data Li Frequency		AVG.	Factor	QP	AVG	QP	AVG:	QF	AVG.	Line	Remark
		st			QP Result	AVG. Result	QP Limit	AVG.	QP Margin	AVG Margin	Line	Remark
		st QP	AVG.								Line	Remark
	Frequency	St QP Reading	AVG. Reading	Factor	Result	Result	Limit	Limit	Margin	Margin	Line	Remark
NO.	Frequency [MHz]	St QP Reading [dBpV]	AVG. Reading [dBµV]	Factor [dB]	Result [dBµV]	Result [dBµV]	Limit [dBµV]	Limit [dBµV]	Margin [dB]	Margin [dB]		
NO.	Frequency [MHz] 0:1759	St QP Reading [dBpV] 31.77	AVG: Reading [dBµV] 21.76	Factor [dB]	Result [dBµV] 42.00	Result [dBµV] 31.99	Limit [dBµV] 64.68	Limit [dBµ√] 54.68	Margin [dB] 22.68	Margin [dB] 22.69	N	PASS
NO. 1	[MHz] 0.1759 0.6137	QP Reading [dBpV] 31.77 26.91	AVG. Reading [dBµV] 21.76 20.22	Factor [dB] 10.23 10.20	Result [dBµV] 42.00 37.11	Result [dBµV] 31.99 30.42	Limit [dBµ√] 64.68 56.00	Limit [dBµV] 54.68 46.00	Margin [dB] 22.68 18.89	Margin [dB] 22.69 15.58	N N	PASS PASS

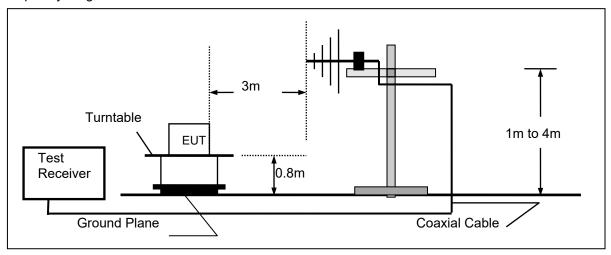
18.99

60.00

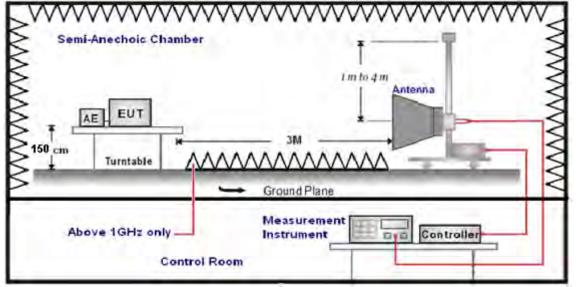
50.00


36.54

Report No.: GTS20200323004-1-2 Page 13 of 45


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTS20200323004-1-2 Page 14 of 45

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 30MHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 30MHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	1 Cak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

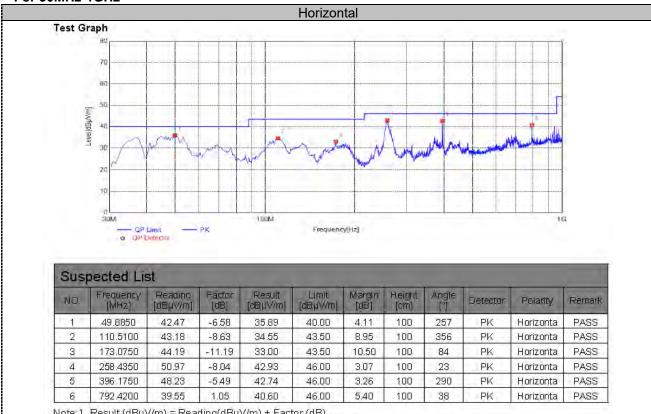
FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.


The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode from 30 MHz to 25GHz in AC 120V/60Hz and the worst case was recorded.

For 30MHz-1GHz

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical Test Graph AC. Lever[dBµV/m] 10 OP Detector Frequency[Hz]

Sus	Suspected List												
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµWm]	Limit [dBµV/m]	Margin [dB]	Height.	Angle	Detector	Polarity	Remark		
1	38.2450	43.65	-7.85	35.80	40.00	4.20	100	304	PK	Vertical	PASS		
2	47.4600	42.72	-6.51	36.21	40.00	3.79	100	352	PK	Vertical	PASS		
3	82.3800	49.16	-12.26	36.90	40.00	3,10	100	52	PK	Vertical	PASS		
4	125.5450	50.48	-11.67	38.81	43.50	4.69	100	80	PK	Vertical	PASS		
5	135.7300	52.70	-12.27	40.43	43.50	3.07	100	31	PK	Vertical	PASS		
6	256.4950	49.37	-8.12	41.25	46.00	4.75	100	57	PK	Vertical	PASS		

Note: 1. Result (dBµV/m) = Reading(dBµV/m) + Factor (dB)

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: GTS20200323004-1-2 Page 16 of 45

For 1GHz to 25GHz

IEEE 802.11b

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	50.70	32.44	30.25	7.95	60.84	74.00	-13.16	Peak	Horizontal
4824.00	35.82	32.44	30.25	7.95	45.96	54.00	-8.04	Average	Horizontal
4824.00	53.66	32.44	30.25	7.95	63.80	74.00	-10.20	Peak	Vertical
4824.00	35.67	32.44	30.25	7.95	45.81	54.00	-8.19	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	50.85	32.52	30.31	8.12	61.18	74.00	-12.82	Peak	Horizontal
4874.00	36.04	32.52	30.31	8.12	46.37	54.00	-7.63	Average	Horizontal
4874.00	51.60	32.52	30.31	8.12	61.93	74.00	-12.07	Peak	Vertical
4874.00	35.11	32.52	30.31	8.12	45.44	54.00	-8.56	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	50.43	32.68	30.27	7.88	60.72	74.00	-13.28	Peak	Horizontal
4924.00	35.91	32.68	30.27	7.88	46.20	54.00	-7.80	Average	Horizontal
4924.00	50.33	32.68	30.27	7.88	60.62	74.00	-13.38	Peak	Vertical
4924.00	31.72	32.68	30.27	7.88	42.01	54.00	-11.99	Average	Vertical

IEEE 802.11g

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	51.27	32.44	30.25	7.95	61.41	74.00	-12.59	Peak	Horizontal
4824.00	36.22	32.44	30.25	7.95	46.36	54.00	-7.64	Average	Horizontal
4824.00	53.01	32.44	30.25	7.95	63.15	74.00	-10.85	Peak	Vertical
4824.00	35.52	32.44	30.25	7.95	45.66	54.00	-8.34	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	49.49	32.52	30.31	8.12	59.82	74.00	-14.18	Peak	Horizontal
4874.00	37.23	32.52	30.31	8.12	47.56	54.00	-6.44	Average	Horizontal
4874.00	52.04	32.52	30.31	8.12	62.37	74.00	-11.63	Peak	Vertical
4874.00	36.21	32.52	30.31	8.12	46.54	54.00	-7.46	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	50.47	32.68	30.27	7.88	60.76	74.00	-13.24	Peak	Horizontal
4924.00	36.87	32.68	30.27	7.88	47.16	54.00	-6.84	Average	Horizontal
4924.00	48.53	32.68	30.27	7.88	58.82	74.00	-15.18	Peak	Vertical
4924.00	30.65	32.68	30.27	7.88	40.94	54.00	-13.06	Average	Vertical

IEEE802.11 n HT20 Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	49.64	32.44	30.25	7.95	59.78	74.00	-14.22	Peak	Horizontal
4824.00	35.94	32.44	30.25	7.95	46.08	54.00	-7.92	Average	Horizontal
4824.00	54.47	32.44	30.25	7.95	64.61	74.00	-9.39	Peak	Vertical
4824.00	35.62	32.44	30.25	7.95	45.76	54.00	-8.24	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	50.85	32.52	30.31	8.12	61.18	74.00	-12.82	Peak	Horizontal
4874.00	37.21	32.52	30.31	8.12	47.54	54.00	-6.46	Average	Horizontal
4874.00	51.73	32.52	30.31	8.12	62.06	74.00	-11.94	Peak	Vertical
4874.00	36.39	32.52	30.31	8.12	46.72	54.00	-7.28	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	51.48	32.68	30.27	7.88	61.77	74.00	-12.23	Peak	Horizontal
4924.00	36.82	32.68	30.27	7.88	47.11	54.00	-6.89	Average	Horizontal
4924.00	49.34	32.68	30.27	7.88	59.63	74.00	-14.37	Peak	Vertical
4924.00	31.56	32.68	30.27	7.88	41.85	54.00	-12.15	Average	Vertical

IEEE802.11 n HT40 Channel 3 / 2422 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4844.00	50.21	32.44	30.25	7.95	60.35	74.00	-13.65	Peak	Horizontal
4844.00	36.01	32.44	30.25	7.95	46.15	54.00	-7.85	Average	Horizontal
4844.00	54.55	32.44	30.25	7.95	64.69	74.00	-9.31	Peak	Vertical
4844.00	36.25	32.44	30.25	7.95	46.39	54.00	-7.61	Average	Vertical

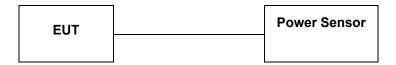
Report No.: GTS20200323004-1-2 Page 18 of 45

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	49.76	32.52	30.31	8.12	60.09	74.00	-13.91	Peak	Horizontal
4874.00	37.79	32.52	30.31	8.12	48.12	54.00	-5.88	Average	Horizontal
4874.00	51.29	32.52	30.31	8.12	61.62	74.00	-12.38	Peak	Vertical
4874.00	35.07	32.52	30.31	8.12	45.40	54.00	-8.60	Average	Vertical

Channel 9 / 2452 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m			Remark	Pol.
4904.00	50.14	32.68	30.27	7.88	60.43	74.00	-13.57	Peak	Horizontal
4904.00	36.43	32.68	30.27	7.88	46.72	54.00	-7.28	Average	Horizontal
4904.00	49.77	32.68	30.27	7.88	60.06	74.00	-13.94	Peak	Vertical
4904.00	31.31	32.68	30.27	7.88	41.60	54.00	-12.40	Average	Vertical


REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
 Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.
 The other emission levels were very low against the limit.

Report No.: GTS20200323004-1-2 Page 19 of 45

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2. and Average conducted output power, 9.2.3.1.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

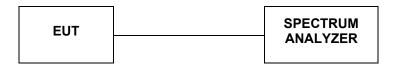
The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Туре	Channel	Output power PK (dBm)	Output power AV (dBm)	Limit (dBm)	Result	
	01	15.14	12.41			
802.11b	06	15.74	12.53	30.00	Pass	
	11	15.69	12.25			
	01	15.14	12.12			
802.11g	06	15.10	12.33	30.00	Pass	
	11	15.92	12.59			
	01	15.28	11.14			
802.11n(HT20)	06	15.24	11.32	30.00	Pass	
	11	15.43	11.25			
802.11n(HT40)	03	14.67	9.57			
	06	14.83	9.63	30.00	Pass	
,	09	14.67	9.58			


Note: 1.The test results including the cable lose.

Duty cycle used in all test items: 100%

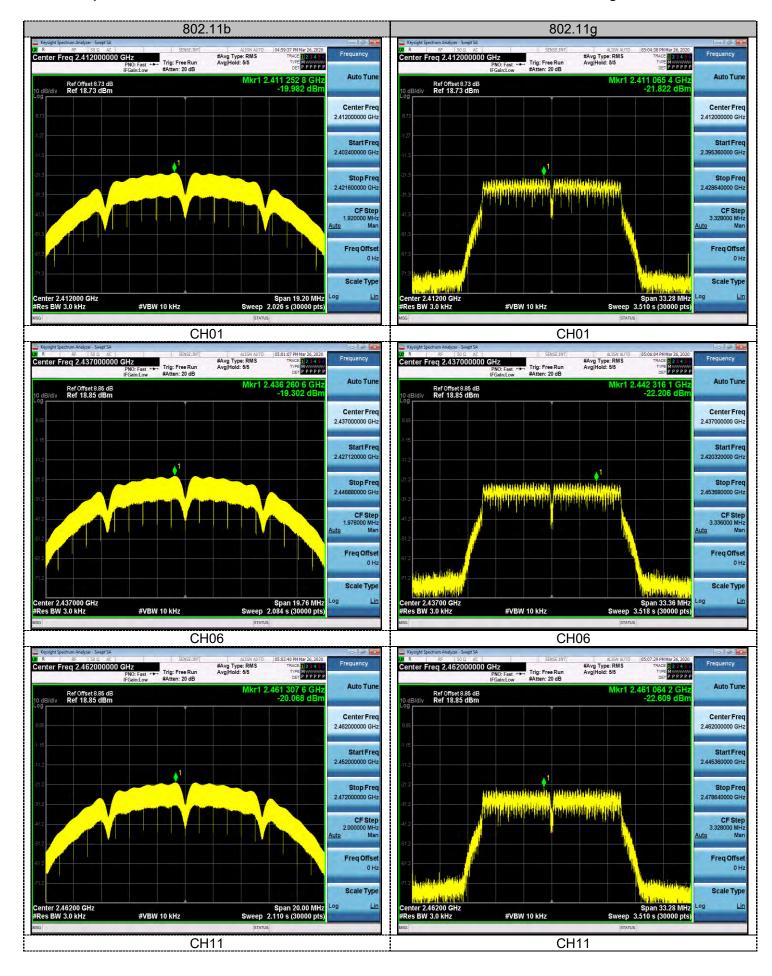
Report No.: GTS20200323004-1-2 Page 20 of 45

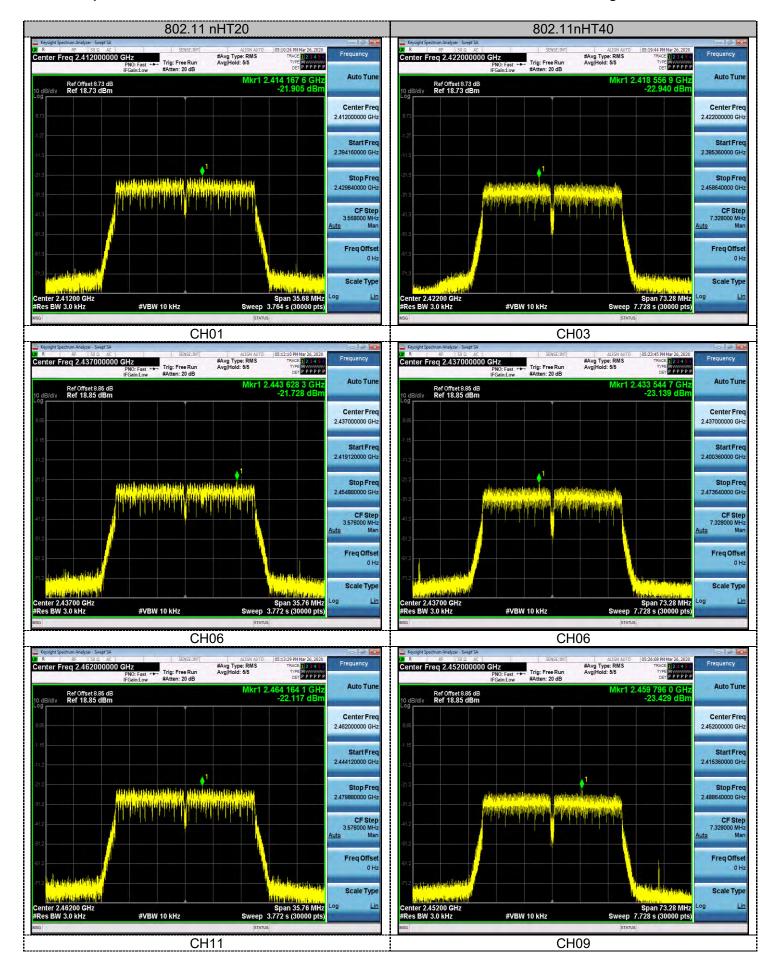
4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 Method PKPSD (peak PSD) This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

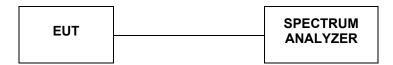

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW ≥ 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
	01	-19.98			
802.11b	06	-19.30	8.00	Pass	
	11	-20.07			
	01	-21.82			
802.11g	06	-22.21	8.00	Pass	
	11	-22.61			
	01	-21.91			
802.11n(HT20)	06	-21.73	8.00	Pass	
	11	-22.12			
	03	-22.94			
802.11n(HT40)	06 -23.14		8.00		
	09	-23.43			



Report No.: GTS20200323004-1-2 Page 23 of 45

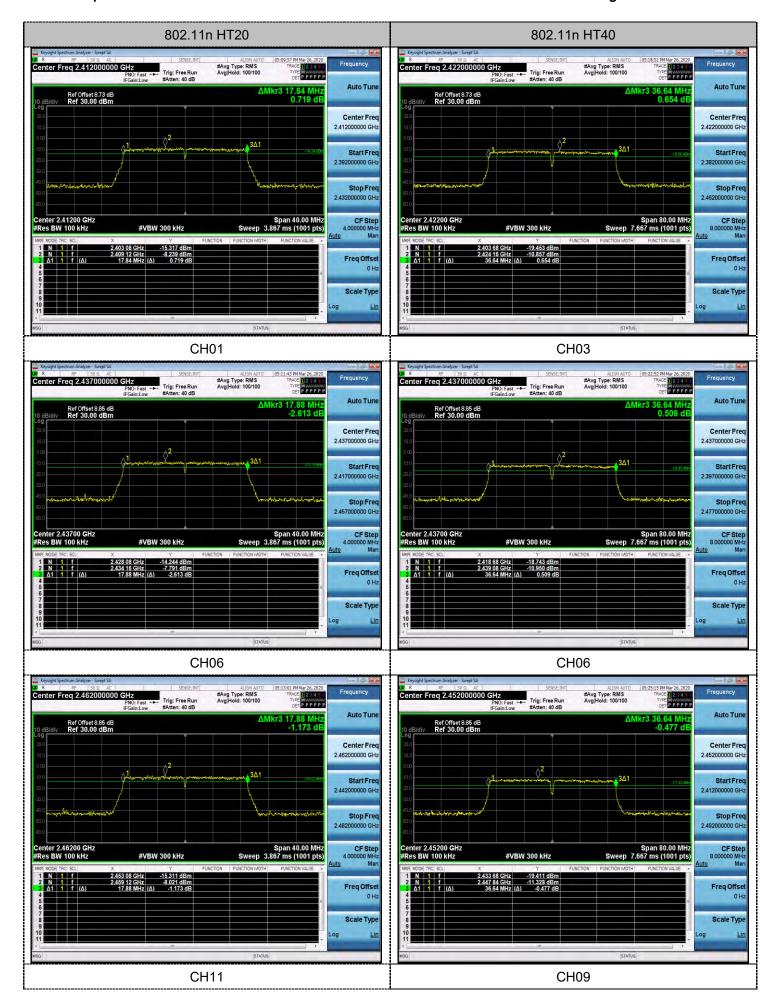
4.5. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	9.600		
802.11b	06	9.880	≥500	Pass
	11	10.000		
	01	16.640		
802.11g	06	16.680	≥500	Pass
	11	16.640		
	01	17.840		
802.11nHT20	06	17.880	≥500	Pass
	11	17.880		
802.11nHT40	03	36.640		
	06	36.640	≥500	Pass
	09	36.640		

Report No.: GTS20200323004-1-2 Page 26 of 45

4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a
 EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low
 Channel and High Channel within its operating range, and make sure the instrument is operated in its
 linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=10Hz for average detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8. Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship: E = EIRP 20log D + 104.8

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test dures until all measured frequencies were complete.

<u>LIMIT</u>

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

TEST RESULTS

4.6.1 For Radiated Bandedge Measurement

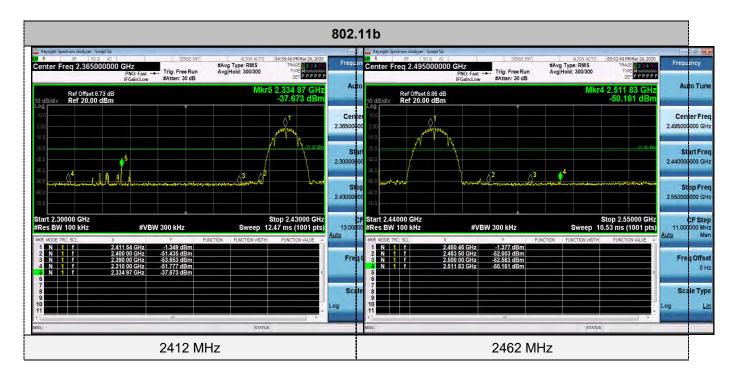
Report No.: GTS20200323004-1-2

802.11b

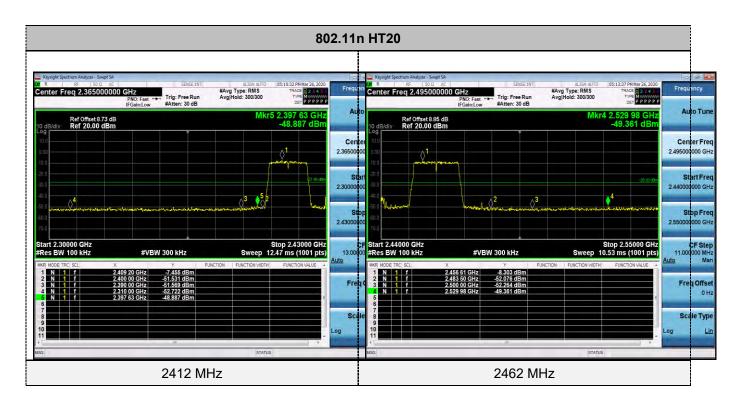
Frequenc	y(MHz):			2412			Polarity:		ŀ	HORIZO	NTAL	
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	45.57	PK	74.00	-28.43	1	225	50.88	27.49	3.32	36.12	-5.31	
2390.00	33.82	ΑV	54.00	-20.18	1	225	39.13	27.49	3.32	36.12	-5.31	
Frequency(MHz):				2412			Polarity:			VERTI	CAL	
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	45.14	PK	74.00	-28.86	1	136	50.45	27.49	3.32	36.12	-5.31	
2390.00	34.75	AV	54.00	-19.25	1	136	40.06	27.49	3.32	36.12	-5.31	
Frequenc	y(MHz):			2462			Polarity:		H	HORIZONTAL		
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	49.48	PK	74.00	-24.52	1	289	55.20	27.45	3.38	36.55	-5.72	
2483.50	36.38	ΑV	54.00	-17.62	1	289	42.10	27.45	3.38	36.55	-5.72	
Frequenc	y(MHz):			2462			Polarity:			VERTI	CAL	
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	48.44	PK	74.00	-25.56	1	120	54.16	27.45	3.38	36.55	-5.72	
2483.50	36.02	ΑV	54.00	-17.98	1	120	41.74	27.45	3.38	36.55	-5.72	

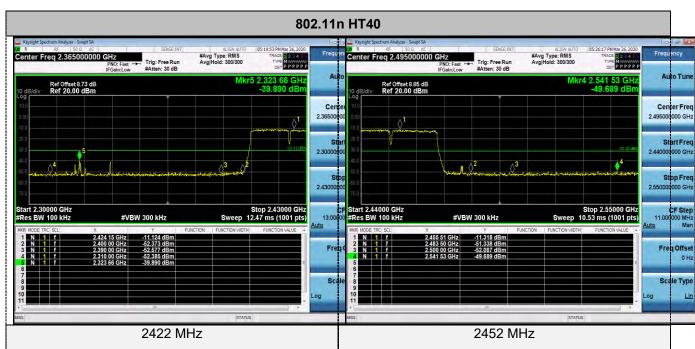
802.11g

Frequency(MHz):			2412			Polarity:			HORIZONTAL				
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)		
2390.00	46.05	PK	74.00	-27.95	1	230	51.36	27.49	3.32	36.12	-5.31		
2390.00	34.22	ΑV	54.00	-19.78	1	230	39.53	27.49	3.32	36.12	-5.31		
Frequency	Frequency(MHz):			2412			Polarity:			VERTI	RTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)		
2390.00	45.58	PK	74.00	-28.42	1	78	50.89	27.49	3.32	36.12	-5.31		
2390.00	34.88	AV	54.00	-19.12	1	78	40.19	27.49	3.32	36.12	-5.31		
Frequency(MHz):			0.400			,		HORIZONTAL					
Frequency	y(MHZ):			2462			Polarity:		ŀ	HORIZO	NTAL		
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable		Correction		
Frequency	Emiss Leve	el		Margin	Height		Raw Value	Factor	Cable Factor	Pre- amplifi	Correction Factor		
Frequency (MHz)	Emiss Leve (dBuV	el /m)	(dBuV/m)	Margin (dB)	Height	Angle (Degree)	Raw Value (dBuV)	Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)		
Frequency (MHz) 2483.50	Emiss Leve (dBuV/ 48.65 36.48	el /m) PK	(dBuV/m) 74.00	Margin (dB)	Height (m)	Angle (Degree) 117	Raw Value (dBuV) 54.37	Factor (dB/m) 27.45	Cable Factor (dB) 3.38	Pre- amplifi er 36.55	Correction Factor (dB/m) -5.72 -5.72		
Frequency (MHz) 2483.50 2483.50	Emiss Leve (dBuV/ 48.65 36.48	PK AV	(dBuV/m) 74.00	Margin (dB) -25.35 -17.52	Height (m)	Angle (Degree) 117 117 Table Angle	Raw Value (dBuV) 54.37 42.20	Factor (dB/m) 27.45	Cable Factor (dB) 3.38 3.38 Cable	Pre- amplifi er 36.55 36.55 VERTI	Correction Factor (dB/m) -5.72 -5.72 CAL Correction		
Frequency (MHz) 2483.50 2483.50 Frequency Frequency	Emiss Leve (dBuV) 48.65 36.48 y(MHz): Emiss Leve	PK AV	(dBuV/m) 74.00 54.00 Limit	Margin (dB) -25.35 -17.52 2462 Margin	Height (m) 1 1 Antenna Height	Angle (Degree) 117 117 Table	Raw Value (dBuV) 54.37 42.20 Polarity: Raw Value	Factor (dB/m) 27.45 27.45 Antenna Factor	Cable Factor (dB) 3.38 3.38 Cable Factor	Pre- amplifi er 36.55 36.55 VERTI Pre- amplifi	Correction Factor (dB/m) -5.72 -5.72 CAL Correction Factor		


802.11n HT20

Frequency(MHz):		2412			Polarity:			HORIZONTAL			
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	46.28	PK	74.00	-27.72	1	178	51.59	27.49	3.32	36.12	-5.31
2390.00	35.54	AV	54.00	-18.46	1	178	40.85	27.49	3.32	36.12	-5.31
	Frequency(MHz):			2412 Polarity:					VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	46.95	PK	74.00	-27.05	1	105	52.26	27.49	3.32	36.12	-5.31
2390.00	34.15	AV	54.00	-19.85	1	105	39.46	27.49	3.32	36.12	-5.31
Frequenc	y(MHz):			2462		Polarity: HORIZ			IORIZO	ONTAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	48.56	PK	74.00	-25.44	1	212	54.28	27.45	3.38	36.55	-5.72
2483.50	36.31	ΑV	54.00	-17.69	1	212	42.03	27.45	3.38	36.55	-5.72
Frequency(MHz):				2462		Polarity:			VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	49.81	PK	74.00	-24.19	1	228	55.53	27.45	3.38	36.55	-5.72
2483.50	35.89	ΑV	54.00	-18.11	1	228	41.61	27.45	3.38	36.55	-5.72


802.11n HT40


Frequency(MHz):		2422			Polarity:			HORIZONTAL				
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	45.45	PK	74.00	-28.55	1	135	50.76	27.49	3.32	36.12	-5.31	
2390.00	35.61	ΑV	54.00	-18.39	1	135	40.92	27.49	3.32	36.12	-5.31	
Frequenc	Frequency(MHz):			2422	Polarity: VEF				VERTI	ERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	47.12	PK	74.00	-26.88	1	268	52.43	27.49	3.32	36.12	-5.31	
2390.00	34.67	ΑV	54.00	-19.33	1	268	39.98	27.49	3.32	36.12	-5.31	
Frequenc	y(MHz):			2452	2452 Polarity: HO				HORIZO	ORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	48.72	PK	74.00	-25.28	1	144	54.44	27.45	3.38	36.55	-5.72	
2483.50	35.45	ΑV	54.00	-18.55	1	144	41.17	27.45	3.38	36.55	-5.72	
Frequency(MHz):				2452			Polarity:			VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	49.51	PK	74.00	-24.49	1	156	55.23	27.45	3.38	36.55	-5.72	
2483.50	36.19	AV	54.00	-17.81	1	156	41.91	27.45	3.38	36.55	-5.72	

4.6.2 For Conducted Bandedge Measurement

4.7. Antenna Requirement


Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The antenna is Internal Antenna, through the buckle stretched out, The directional gains of antenna used for transmitting is 0.8dBi.

5. TEST SETUP PHOTOS OF THE EUT

Photo of Radiated Emissions Measurement

Report No.: GTS20200323004-1-2

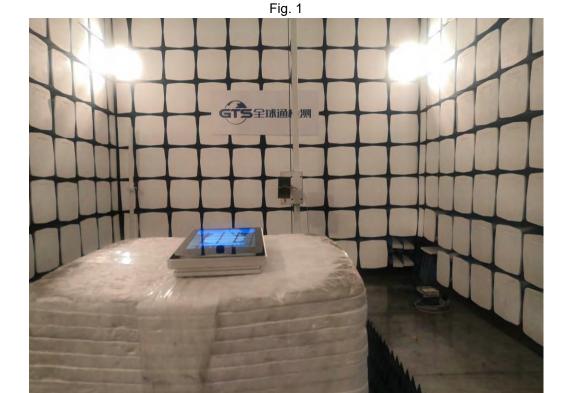


Fig. 2

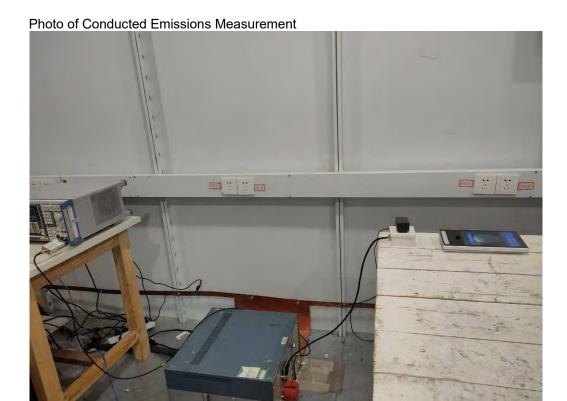


Fig. 3

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Report No.: GTS20200323004-1-2

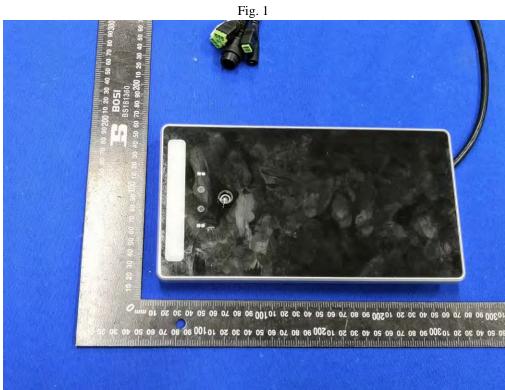


Fig. 2

Fig. 3

Fig. 4

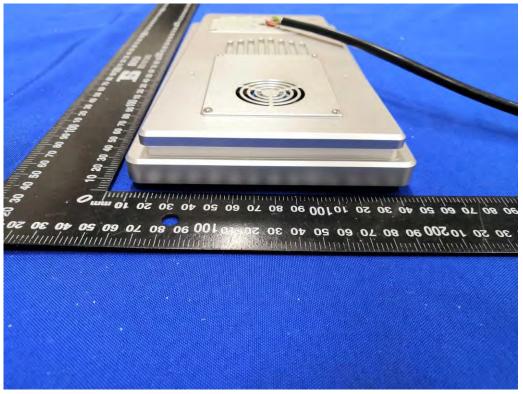


Fig. 5

Fig. 6

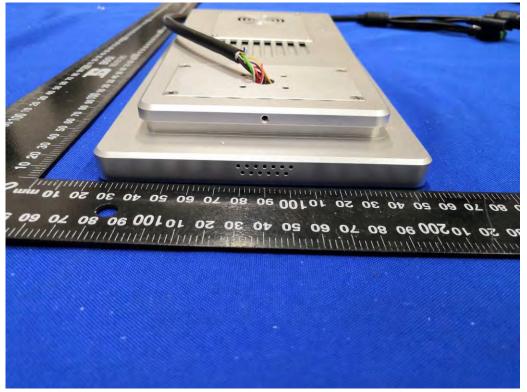


Fig. 7

Fig. 8

Fig. 9

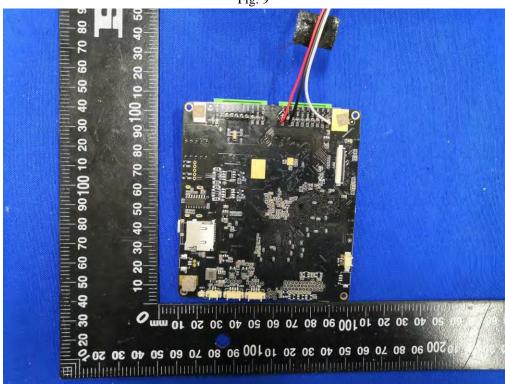


Fig. 10

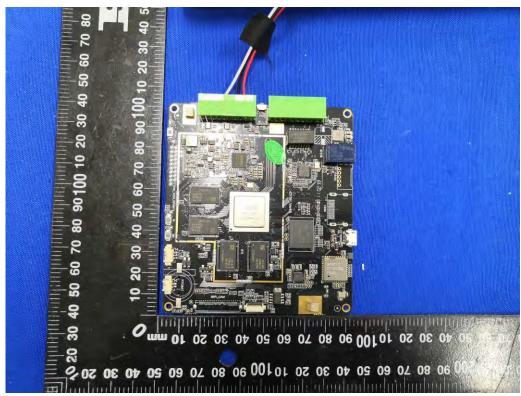


Fig. 11

Fig. 12



Fig. 13

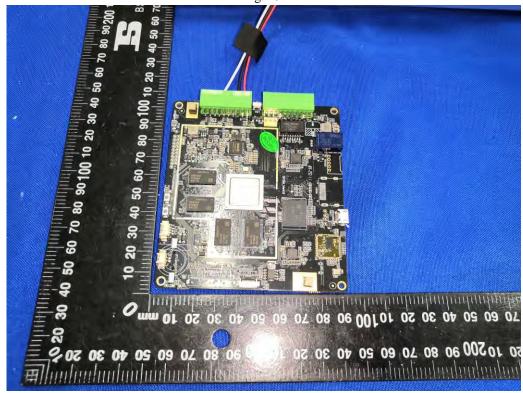


Fig. 14

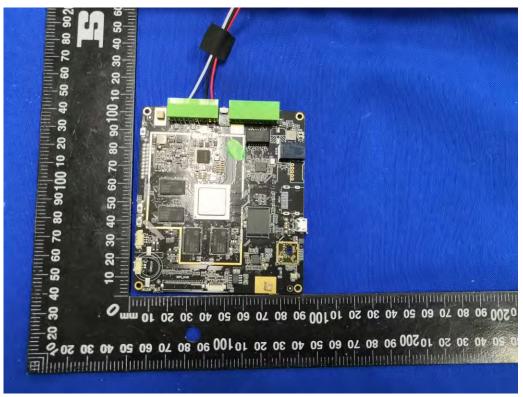


Fig. 15

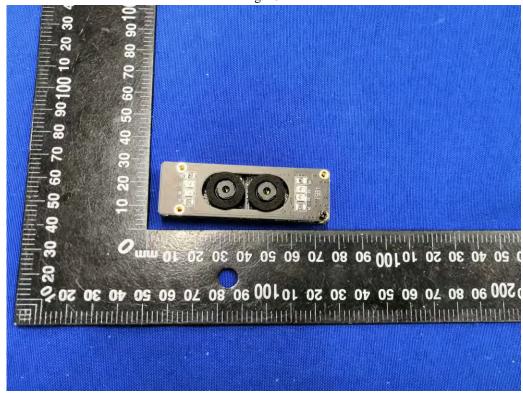


Fig. 16

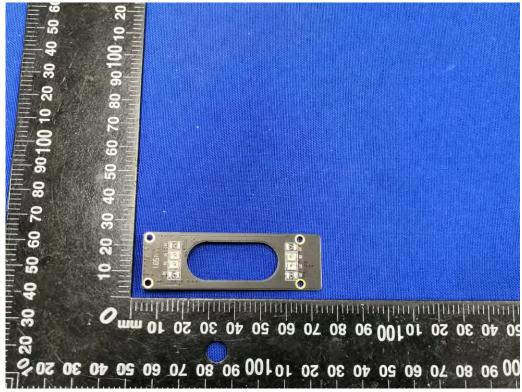


Fig. 17

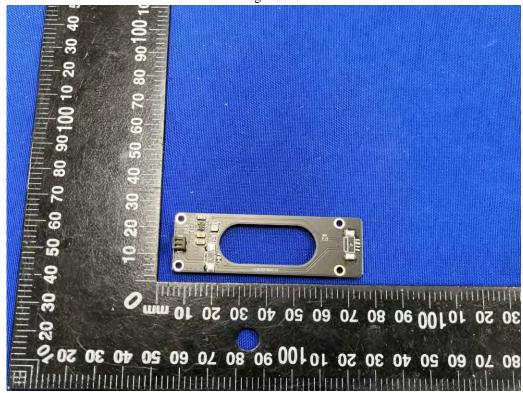


Fig. 18

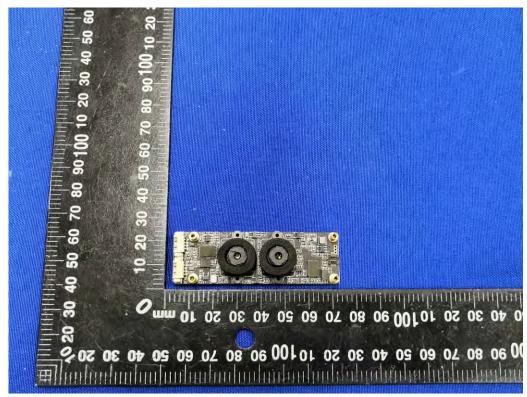


Fig. 19

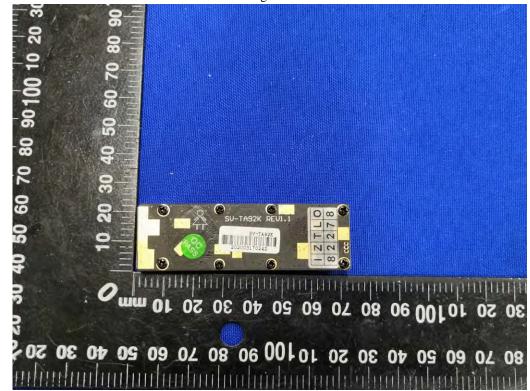


Fig. 20

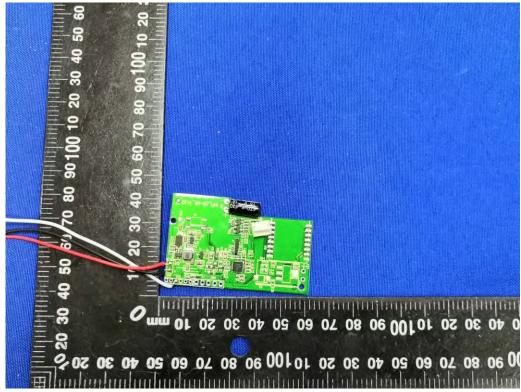


Fig. 21

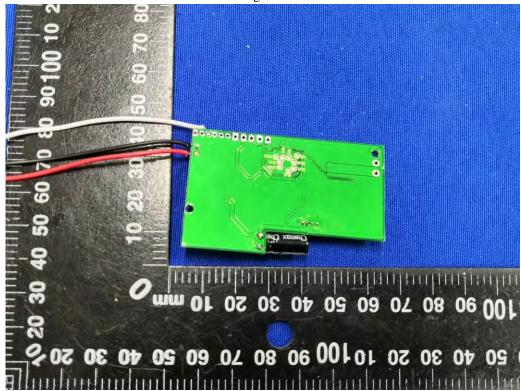


Fig. 22

Report No.: GTS20200323004-1-2

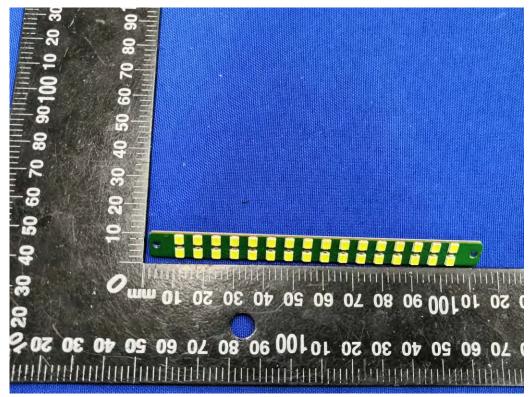


Fig. 23

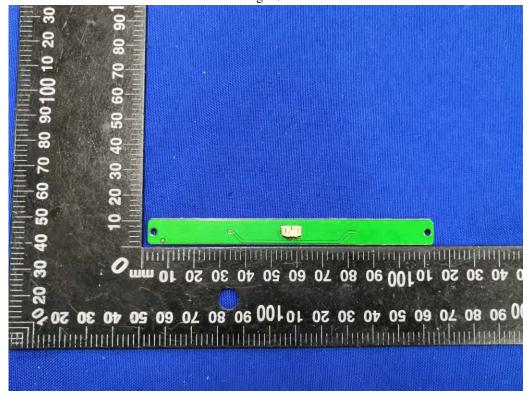


Fig. 24

.....End of Report.....