

**CFR 47 FCC PART 15 SUBPART C
ISED RSS-210 ISSUE 10**

TEST REPORT

For

Remote Control Car

FCC MODEL NUMBER: 100299, 111037

ISED MODEL NUMBER: 100299

FCC ID: 2AVX3RCCCAR02

IC: 25990-RCCCAR02

REPORT NUMBER: 4789998887-1

ISSUE DATE: June 25, 2021

Prepared for

ZURU INC

**FLAT/RM 1201-04, 06-07 12/F ENERGY PLAZA 92 GRANVILLE ROAD TSIM SHA
TSUI EAST HONG KONG**

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

Tel: +86 769 22038881

Fax: +86 769 33244054

Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/25/2021	Initial Issue	

Summary of Test Results			
Clause	Test Items	FCC/ISED Rules	Test Results
1	20 dB Bandwidth and 99 % Occupied Bandwidth	CFR 47 FCC §15.215 (c) ISED RSS-Gen Clause 6.7	Pass
2	Radiated Emission	CFR 47 FCC §15.205 and §15.209 CFR 47 FCC §15.249 (a)(d)(c)(e) ISED RSS-210 Issue 10 Annex B B.10 RSS-GEN Clause 8.9	Pass
3	Conducted Emission Test for AC Power Port	CFR 47 FCC §15.207 RSS-GEN Clause 8.8	Not Applicable (Note 3)
4	Antenna Requirement	CFR 47 FCC §15.203 ISED RSS-Gen Clause 6.8	Pass

Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

Note 2: The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C, ISED RSS-210 Issue 10 and ISED RSS-GEN Issue 5 > when <Accuracy Method> decision rule is applied.

Note 3: The EUT was power by battery and can't be charged.

TABLE OF CONTENTS

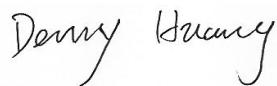
1. ATTESTATION OF TEST RESULTS	5
2. TEST METHODOLOGY	6
3. FACILITIES AND ACCREDITATION	6
4. CALIBRATION AND UNCERTAINTY	7
4.1. <i>MEASURING INSTRUMENT CALIBRATION</i>	<i>7</i>
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	<i>7</i>
5. EQUIPMENT UNDER TEST	8
5.1. <i>DESCRIPTION OF EUT</i>	<i>8</i>
5.2. <i>MAXIMUM FIELD STRENGTH.....</i>	<i>8</i>
5.3. <i>CHANNEL LIST.....</i>	<i>8</i>
5.4. <i>DESCRIPTION OF AVAILABLE ANTENNAS</i>	<i>8</i>
5.5. <i>TEST CHANNEL CONFIGURATION.....</i>	<i>8</i>
5.6. <i>THE WORSE CASE POWER SETTING PARAMETER.....</i>	<i>9</i>
5.7. <i>TEST ENVIRONMENT</i>	<i>9</i>
5.8. <i>DESCRIPTION OF TEST SETUP.....</i>	<i>10</i>
5.9. <i>MEASURING INSTRUMENT AND SOFTWARE USED.....</i>	<i>11</i>
6. ANTENNA PORT TEST RESULTS	12
6.1. <i>ON TIME AND DUTY CYCLE.....</i>	<i>12</i>
6.2. <i>20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH</i>	<i>14</i>
7. RADIATED TEST RESULTS.....	16
7.1. <i>LIMITS AND PROCEDURE</i>	<i>16</i>
7.2. <i>RESTRICTED BANDEdge AND FIELD STRENGTH OF INTENTIONAL EMISSIONS</i> 23	
7.3. <i>SPURIOUS EMISSIONS (1 ~ 3 GHz).....</i>	<i>25</i>
7.4. <i>SPURIOUS EMISSIONS (3 ~ 18 GHz).....</i>	<i>27</i>
7.5. <i>SPURIOUS EMISSIONS (18 ~ 26 GHz).....</i>	<i>29</i>
7.6. <i>SPURIOUS EMISSIONS BELOW 30 MHz</i>	<i>31</i>
7.7. <i>SPURIOUS EMISSIONS BELOW 1 GHz AND ABOVE 30 MHz.....</i>	<i>34</i>
8. ANTENNA REQUIREMENTS.....	36

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: ZURU INC
Address: 3/F, Tower A, Port Building, 1006 Dongmen South Rd Luohu, Shenzhen, China

Manufacturer Information


Company Name: ZURU INC
Address: 3/F, Tower A, Port Building, 1006 Dongmen South Rd Luohu, Shenzhen, China

EUT Information

EUT Name: Remote Control Car
FCC Model: 100299, 111037
ISED Model: 100299
Model Difference: All the same except for the model name.
Sample Received Date: May 24, 2021
Sample Status: Normal
Sample ID: 4024482
Date of Tested: May 24, 2021 ~ June 29, 2021

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C	PASS
ISED RSS-210 ISSUE 10	PASS
ISED RSS-GEN Issue 5	PASS

Prepared By:

Denny Huang
Project Engineer
Approved By:

Stephen Guo
Laboratory Manager

Checked By:

Shawn Wen
Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 Issue 10 and RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	<p>A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules</p> <p>ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046.</p> <p>VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.</p> <p>Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011</p>
---------------------------	--

Note:

1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
3. For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiation Emission test (include Fundamental emission) (9 kHz-30 MHz)	2.2 dB
Radiation Emission test (include Fundamental emission) (30 MHz-1 GHz)	4.00 dB
Radiation Emission test (1 GHz to 26 GHz) (include Fundamental emission)	5.78 dB (1 GHz-18 GHz)
	5.23 dB (18 GHz-26 GHz)
Duty Cycle	±0.028%
20 dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Remote Control Car	
FCC Model	100299, 111037	
ISED Model	100299	
Model Difference	All the same except for the model name.	
Product Description	Operation Frequency	2465 MHz
	Modulation Type	GFSK
Battery	DC 6 V	

5.2. MAXIMUM FIELD STRENGTH

Frequency (MHz)	Channel Number	Max AVG field strength (dB μ V/m)
2465	1 [1]	70.71

5.3. CHANNEL LIST

Channel	Frequency (MHz)						
1	2465	/	/	/	/	/	/
/	/	/	/	/	/	/	/

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2465	Wire Antenna	0

Test Mode	Transmit and Receive Mode	Description
GFSK	<input checked="" type="checkbox"/> 1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 1	2465 MHz

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2465 MHz Band				
Test Software Version		/		
Modulation Type	Transmit Antenna Number	Test Channel		
		CH 1	/	/
GFSK	1	Default	/	/

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests	
Relative Humidity	55 ~ 65 %	
Atmospheric Pressure:	1025 Pa	
Temperature	TN	22 ~ 28 °C
Voltage:	VL	/
	VN	DC 6 V
	VH	/

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

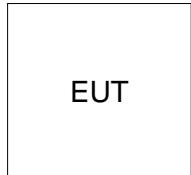
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

No support equipment.

I/O CABLES

No I/O cable.


ACCESSORY

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
/	/	/	/	/	/

TEST SETUP

The EUT have an engineer mode inside.

SETUP DIAGRAM FOR TEST

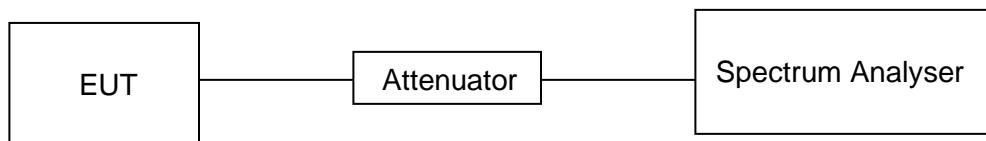
Note: New battery was used during all tests.

5.9. MEASURING INSTRUMENT AND SOFTWARE USED

Radiated Emissions						
Instrument						
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
<input checked="" type="checkbox"/>	MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021
<input checked="" type="checkbox"/>	Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug. 11, 2018	Aug. 10, 2021
<input checked="" type="checkbox"/>	Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021
<input checked="" type="checkbox"/>	EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021
<input checked="" type="checkbox"/>	Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021
<input checked="" type="checkbox"/>	Preamplifier	TDK	PA-02-0118	TRS-305-00067	Nov. 20, 2020	Nov. 19, 2021
<input checked="" type="checkbox"/>	Horn Antenna	Schwarzbeck	BBHA9170	#691	Aug. 11, 2018	Aug. 11, 2021
<input checked="" type="checkbox"/>	Preamplifier	TDK	PA-02-2	TRS-307-00003	Nov. 12, 2020	Nov. 11, 2021
<input checked="" type="checkbox"/>	Preamplifier	TDK	PA-02-3	TRS-308-00002	Nov. 12, 2020	Nov. 11, 2021
<input checked="" type="checkbox"/>	Loop antenna	Schwarzbeck	1519B	00008	Jan.17, 2019	Jan.17,2022
<input checked="" type="checkbox"/>	Preamplifier	TDK	PA-02-001-3000	TRS-302-00050	Nov. 12, 2020	Nov. 11, 2021
<input checked="" type="checkbox"/>	Preamplifier	Mini-Circuits	ZX60-83LN-S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021
<input checked="" type="checkbox"/>	High Pass Filter	Wi	WHKX10-2700-3000-18000-40SS	23	Nov. 12, 2020	Nov. 11, 2021
<input checked="" type="checkbox"/>	Band Reject Filter	Wainwright	WRCJV8-2350-2400-2483.5-2533.5-40SS	4	Nov. 12, 2020	Nov. 11, 2021
Software						
Used	Description		Manufacturer	Name		Version
<input checked="" type="checkbox"/>	Test Software for Radiated disturbance		Farad	EZ-EMC		Ver. UL-3A1

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

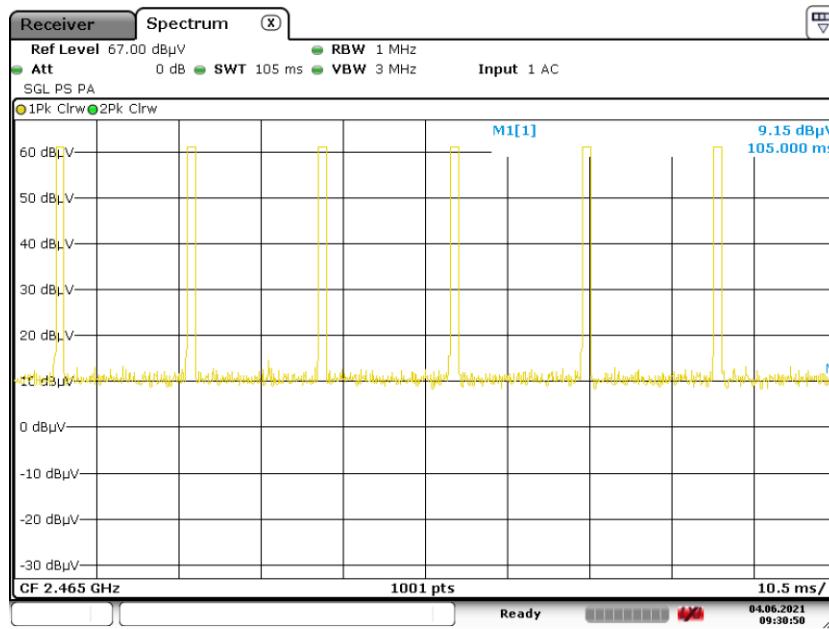
PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

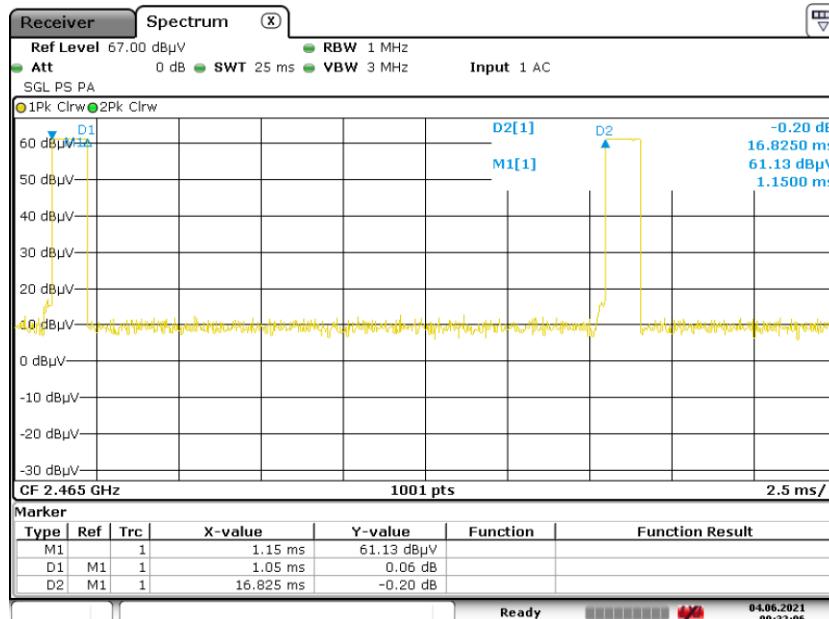
TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	48 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 6.0 V


RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)
GFSK	6.3	100	0.063	6.3	-24.01

Note: Duty Cycle Correction Factor=20log(x).


Where: x is Duty Cycle

ON TIME AND DUTY CYCLE CH PLOT

Date: 4.JUN.2021 09:30:50

ON TIME AND DUTY CYCLE PLOT-2

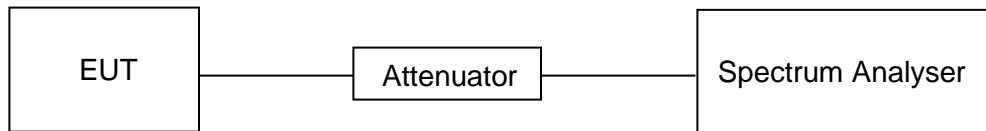
Date: 4.JUN.2021 09:32:06

Note: All the modes had been tested, but only the worst duty cycle recorded in the report.

6.2. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.249) Subpart C RSS-Gen Issue 5			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.215 (c)	20 dB Bandwidth	for reporting purposes only	2400-2483.5
ISED RSS-Gen Clause 6.7 Issue 5	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5

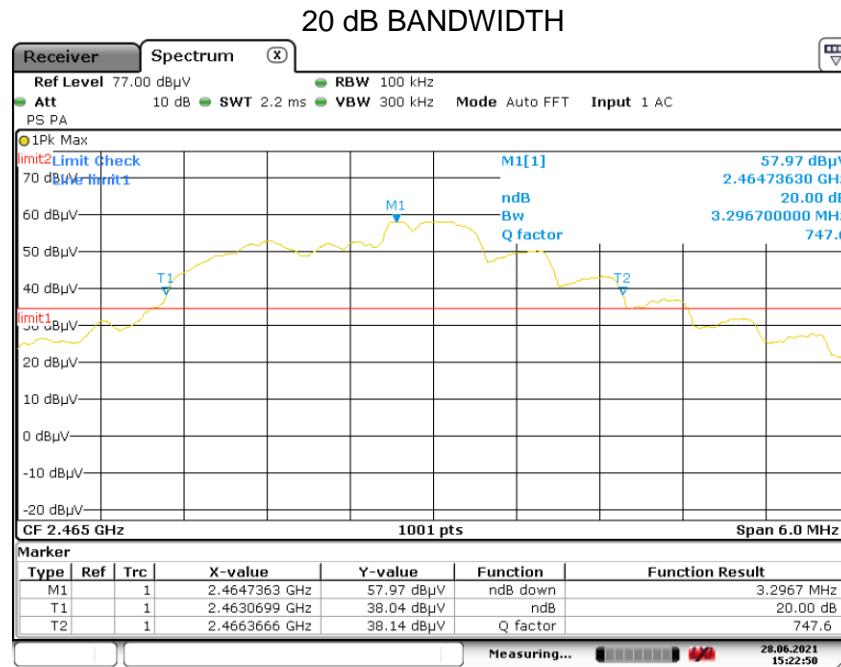

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

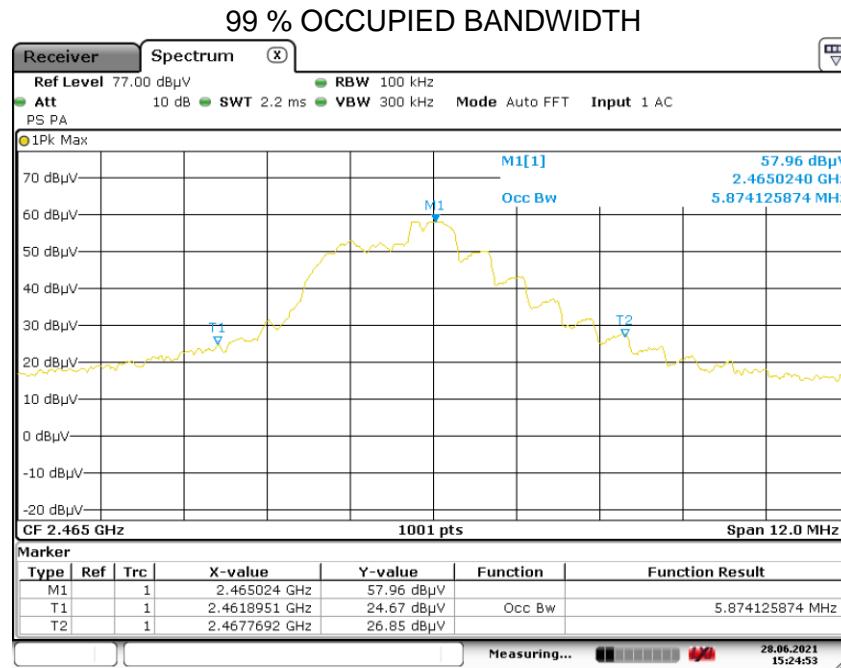
Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 % to 5 % of the occupied bandwidth
VBW	approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB / 99 % relative to the maximum level measured in the fundamental emission.

TEST SETUP



TEST ENVIRONMENT


Temperature	24.8 °C	Relative Humidity	48 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 6.0 V

RESULTS

Frequency (MHz)	20 dB bandwidth (MHz)	99 % bandwidth (MHz)	Result
2465	3.2967	5.8741	PASS

Date: 28.JUN.2021 15:22:50

Date: 28.JUN.2021 15:24:53

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

CFR 47 FCC §15.205 and §15.209

CFR 47 FCC §15.249 (a)(d)(c)(e)

ISED RSS-210 Issue 10 Annex B B.10

RSS-GEN Clause 8.9

The field strength of emissions from intentional radiators operated within these frequency bands			
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)
902 - 928	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3
2400 – 2483.5	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3
5725 – 5875	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3

Emissions radiated outside of the specified frequency bands above 30MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m	
		Quasi-Peak	
30 - 88	100		40
88 - 216	150		43.5
216 - 960	200		46
Above 960	500		54
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H-Field) (μ A/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

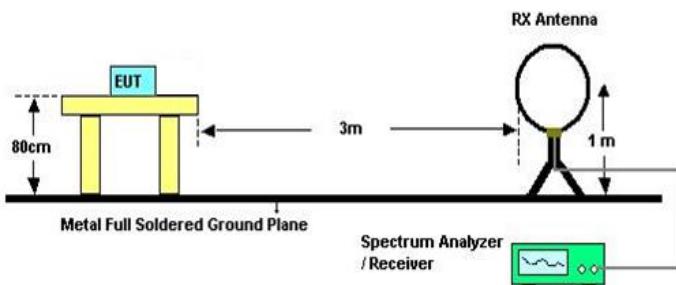
ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

Table 7 – Restricted frequency bands^{Note 1}

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.8 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation:

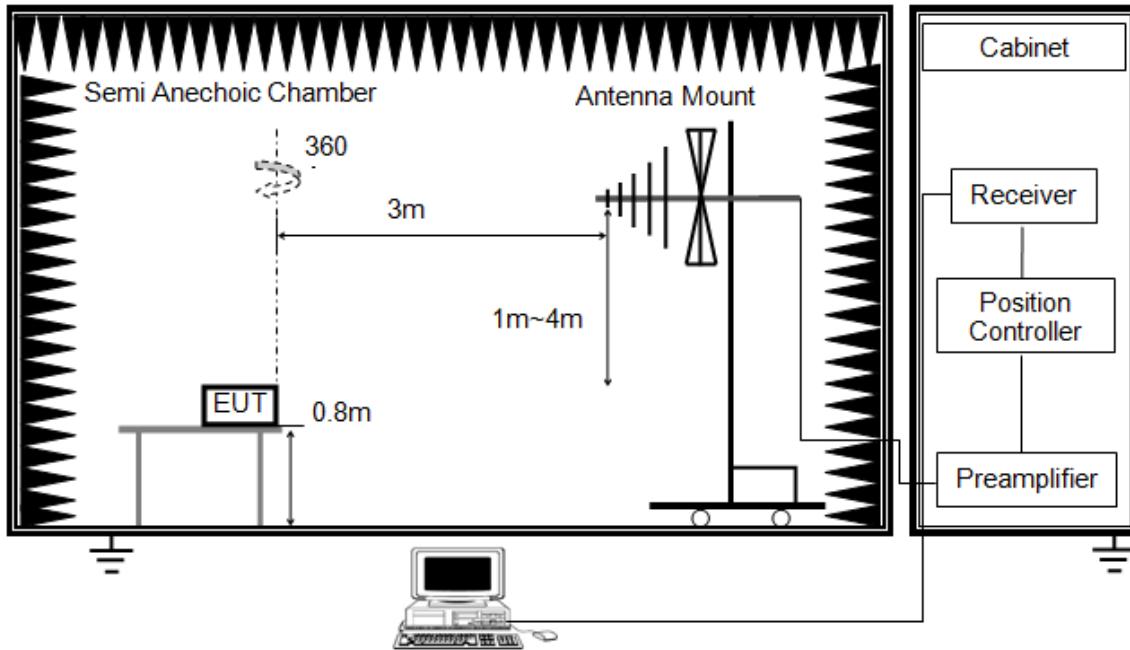

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

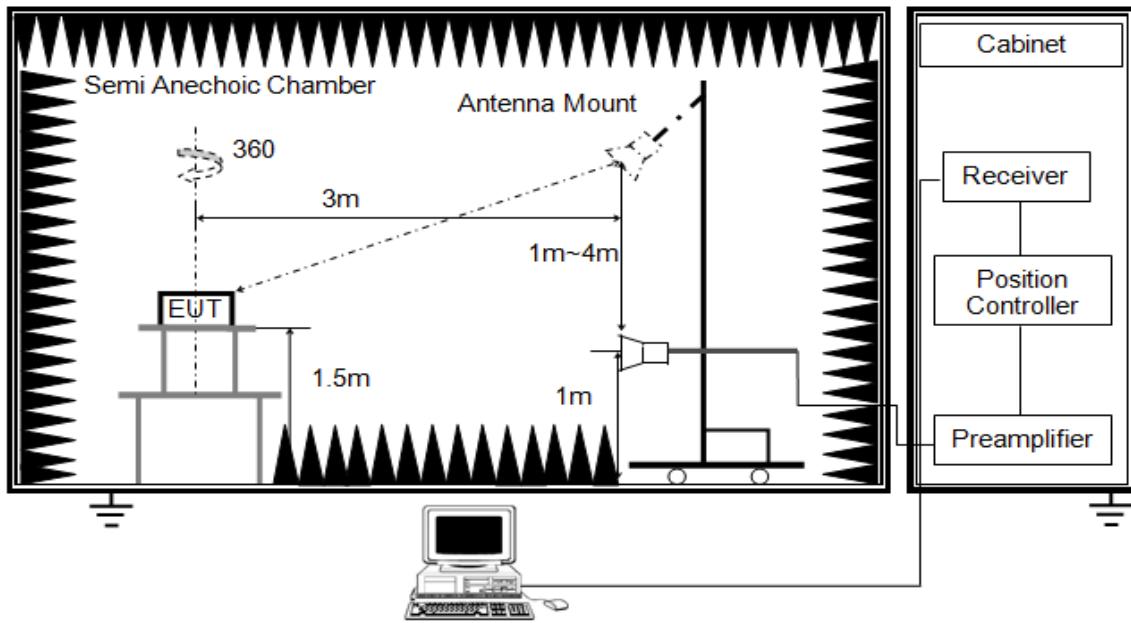


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80 cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dB V/m , which is equivalent to $Y-51.5 = Z$ dB A/m , which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and Above 30 MHz



The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

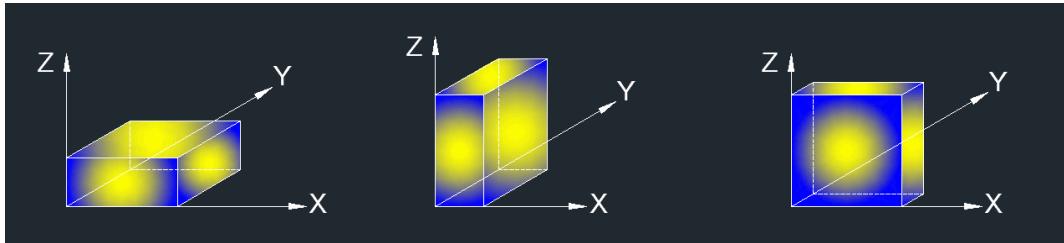
1. The testing follows the guidelines in ANSI C63.10-2013.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured

Above 1 GHz

The setting of the spectrum analyser. (For Bandedge and Field strength)

RBW	\geq OBW (3MHz)
VBW	PEAK: $\geq 3 \times$ RBW AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

The setting of the spectrum analyser. (For Spurious emissions)

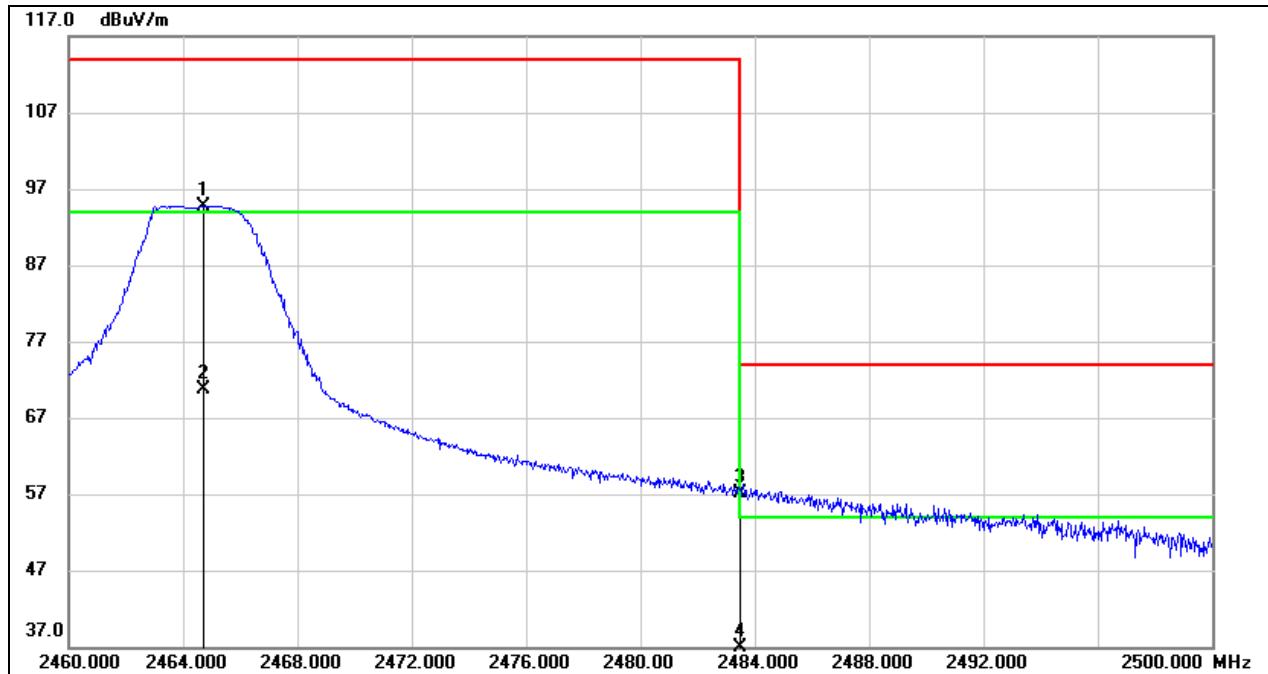

RBW	1MHz
VBW	PEAK: 3MHz AVG: see note 5
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.
2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter or band reject filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 150cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. Where necessary, average emission are determined by applying the Duty Cycle Correction Factor to the peak measurements. For the Duty Cycle and Correction Factor please refer to clause 6.1. ON TIME AND DUTY CYCLE.

6. For measurements Bandedge above 1 GHz, the resolution bandwidth is set to 3 MHz, then the video bandwidth is set to $\geq 3 \times \text{RBW}$ for peak measurements. This test results are worse than using 1MHz resolution bandwidth, so if the result is pass, the test is considered to meet the standard requirements.

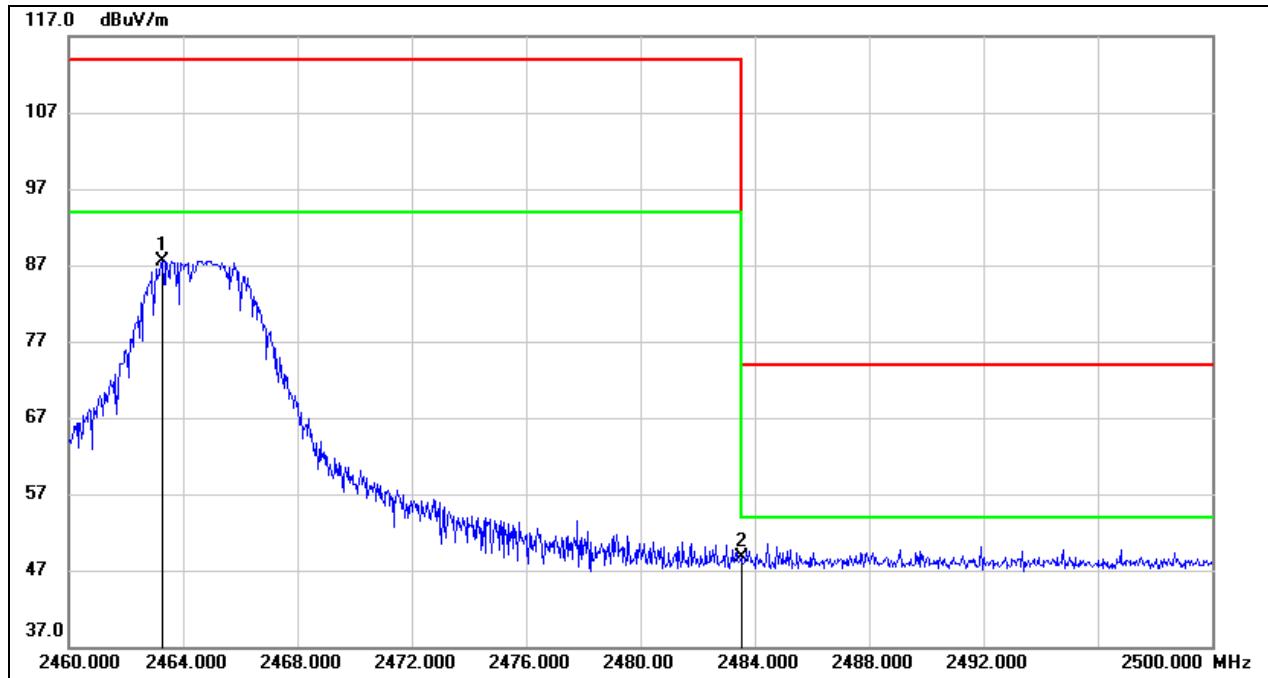
X axis, Y axis, Z axis positions:


Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	48 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 6.0 V

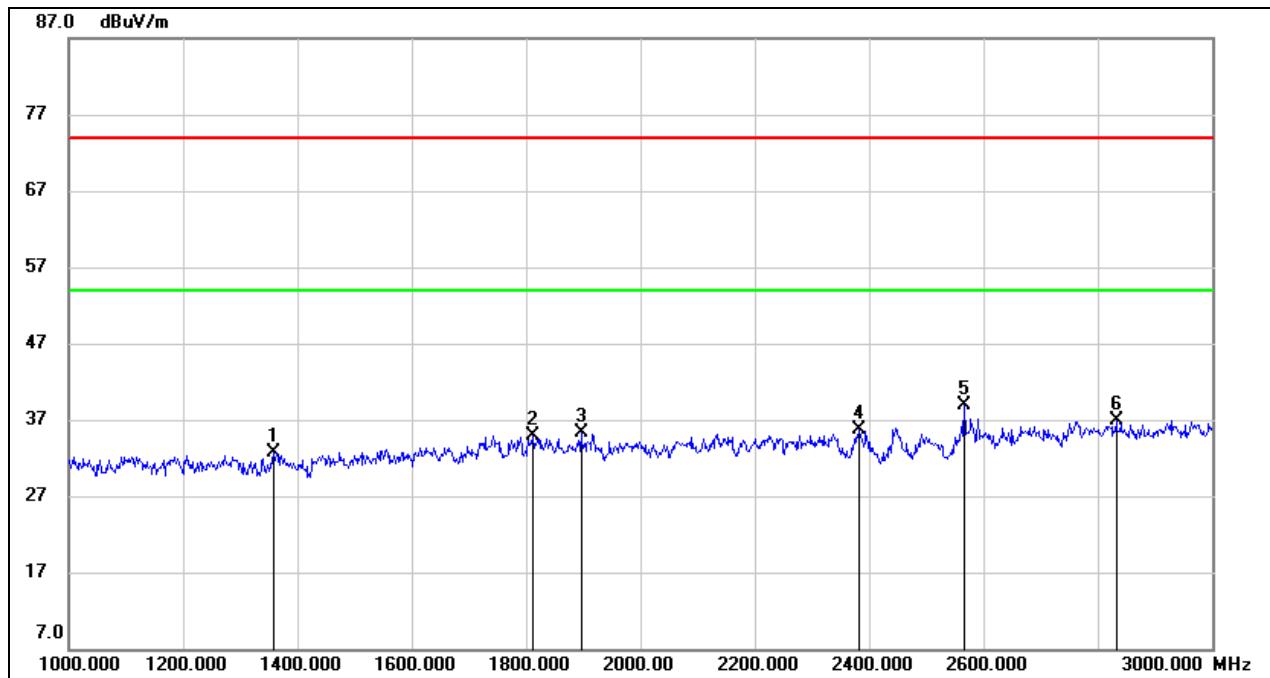
7.2. RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS


RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HORIZONTAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	2464.720	61.07	33.65	94.72	114.00	-19.28	peak
2	2464.720	37.06	33.65	70.71	94.00	-23.29	AVG
3	2483.500	23.30	33.71	57.01	74.00	-16.99	peak
4	2483.500	-0.71	33.71	33.00	54.00	-21.00	AVG

Note:

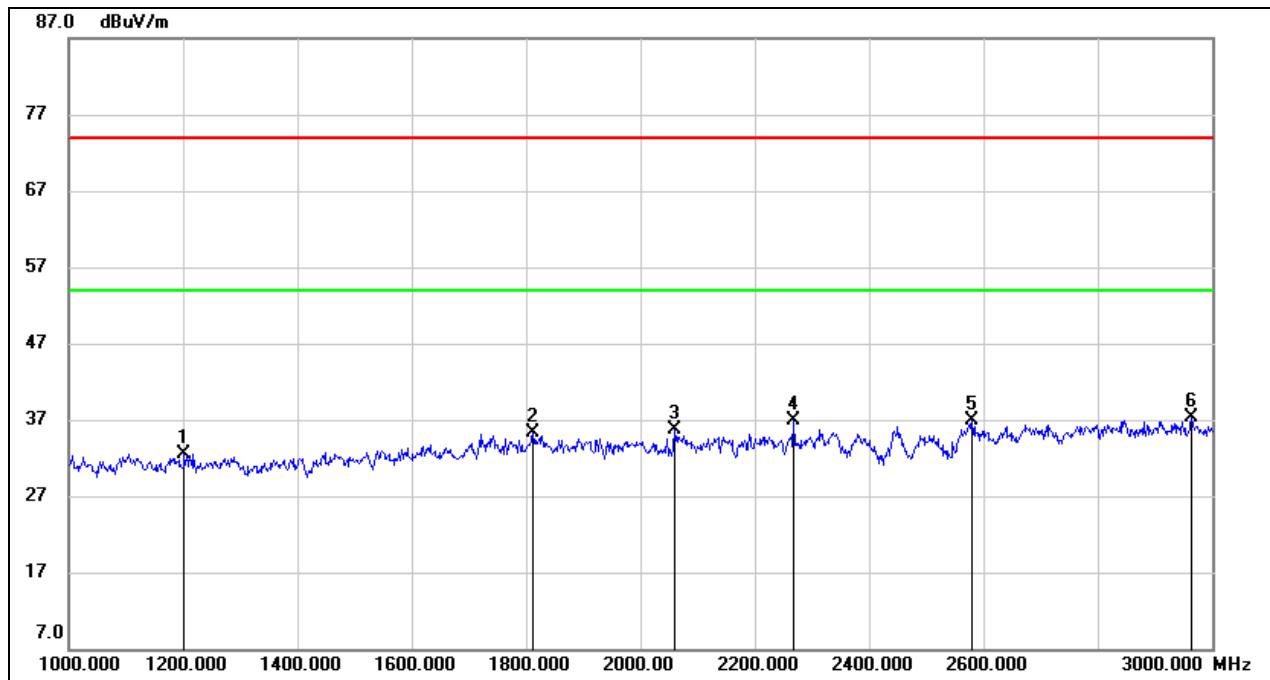
1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.
4. AVG Result=Peak Result + Duty Cycle Correction Factor.
5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
6. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit


RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (VERTICAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	2463.280	53.93	33.63	87.56	114.00	-26.44	peak
2	2483.500	14.96	33.71	48.67	74.00	-25.33	peak

Note: 1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.
4. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

7.3. SPURIOUS EMISSIONS (1 ~ 3 GHz)

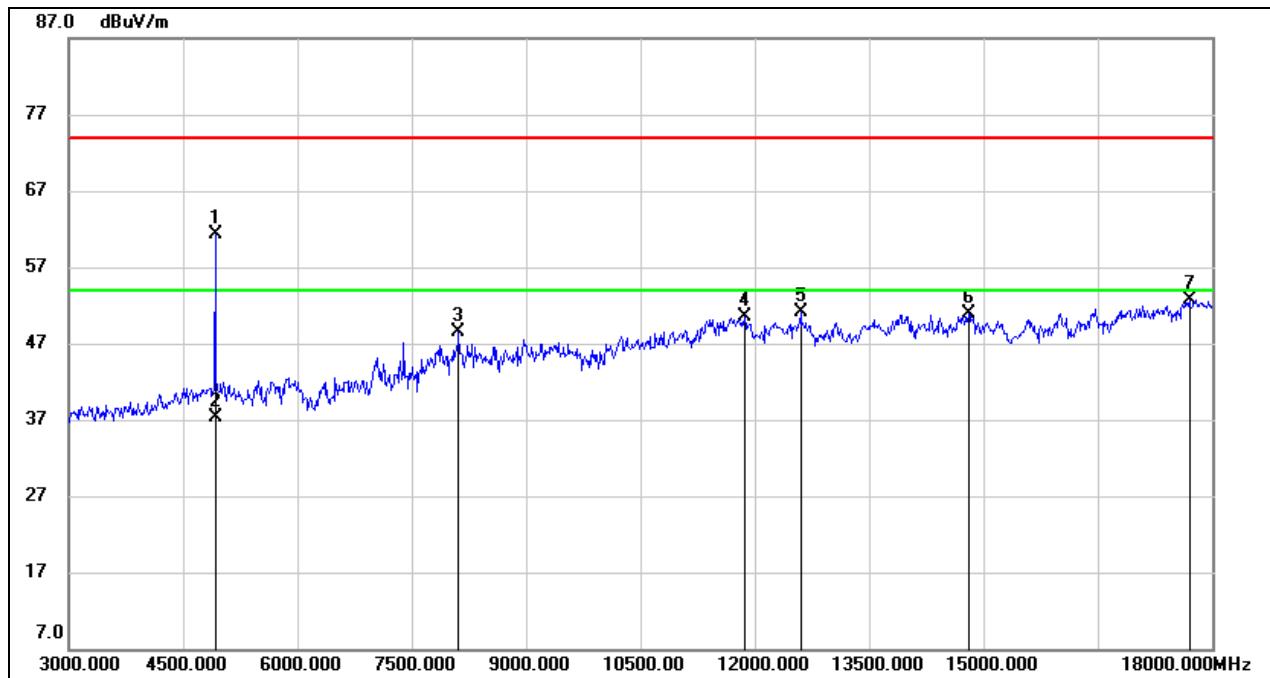

HARMONICS AND SPURIOUS EMISSIONS (HORIZONTAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	1358.000	45.46	-12.77	32.69	74.00	-41.31	peak
2	1812.000	44.94	-10.05	34.89	74.00	-39.11	peak
3	1896.000	45.39	-10.12	35.27	74.00	-38.73	peak
4	2382.000	44.10	-8.45	35.65	74.00	-38.35	peak
5	2566.000	46.96	-7.99	38.97	74.00	-35.03	peak
6	2832.000	43.35	-6.40	36.95	74.00	-37.05	peak

Note:

1. Peak Result = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BRF losses.
5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

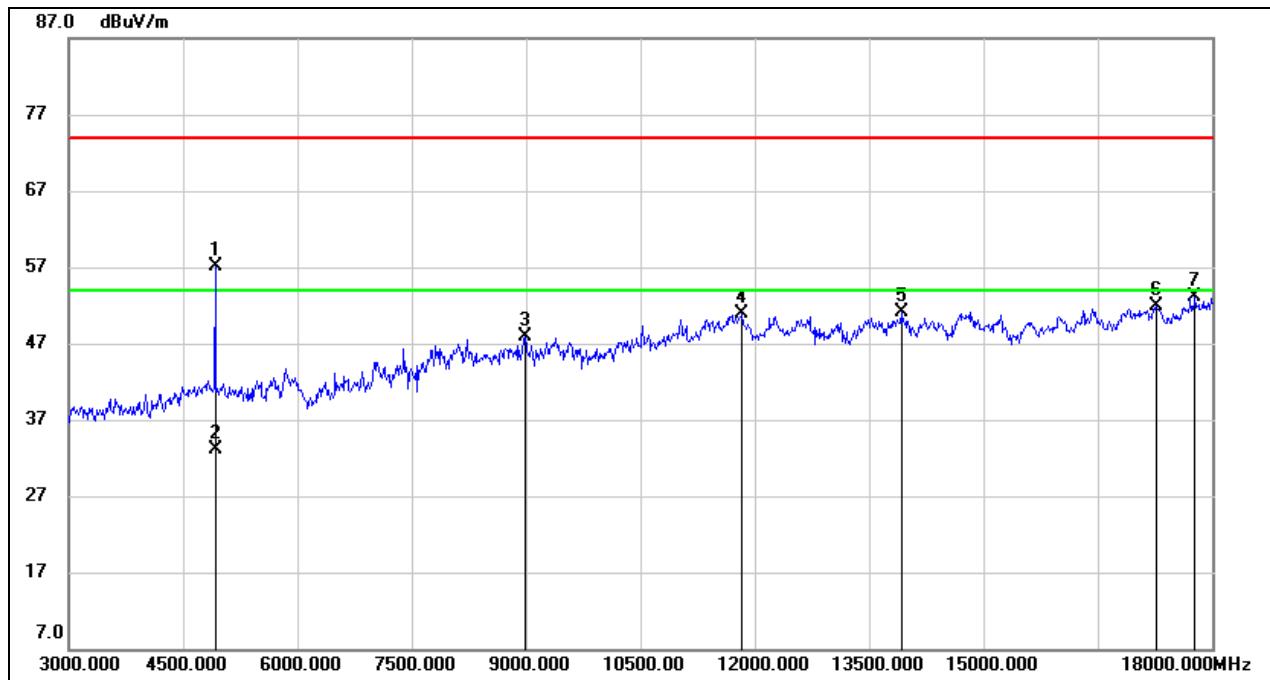
HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	1202.000	45.47	-12.99	32.48	74.00	-41.52	peak
2	1812.000	45.36	-10.05	35.31	74.00	-38.69	peak
3	2060.000	45.47	-9.84	35.63	74.00	-38.37	peak
4	2268.000	45.65	-8.83	36.82	74.00	-37.18	peak
5	2580.000	44.89	-7.93	36.96	74.00	-37.04	peak
6	2964.000	42.98	-5.76	37.22	74.00	-36.78	peak

Note:

1. Peak Result = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BRF losses.
5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.4. SPURIOUS EMISSIONS (3 ~ 18 GHz)

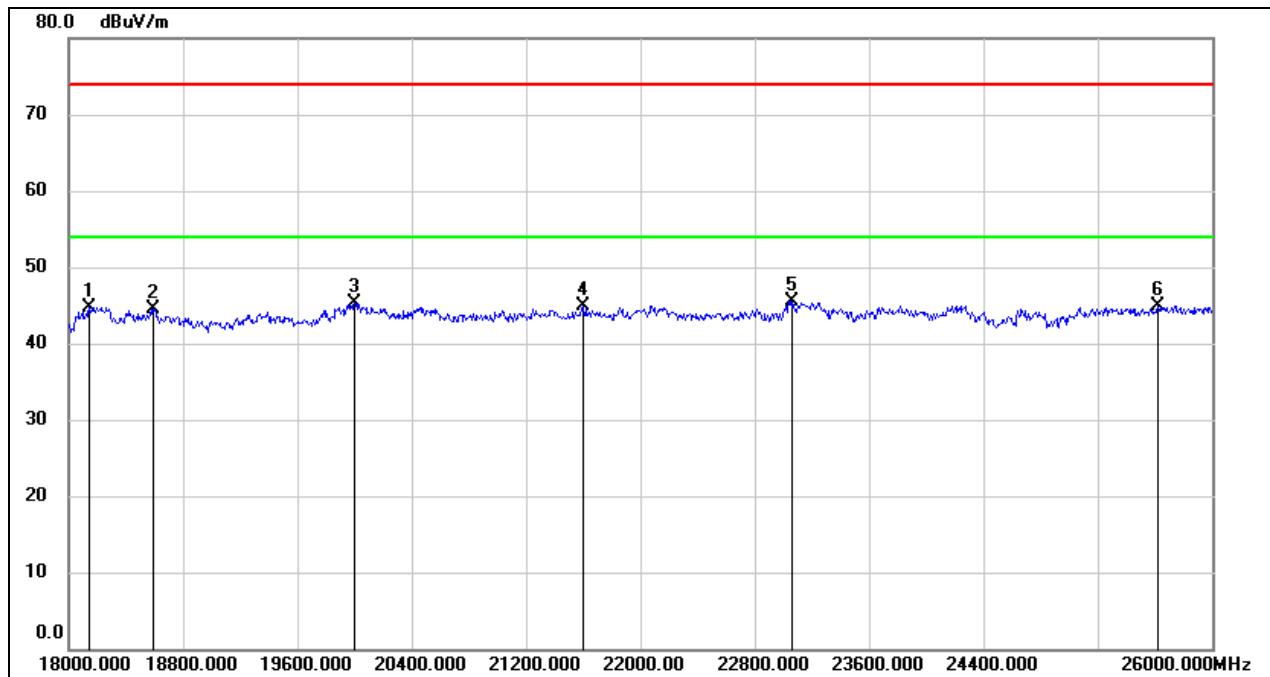

HARMONICS AND SPURIOUS EMISSIONS (HORIZONTAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4930.000	59.88	1.45	61.33	74.00	-12.67	peak
2	4930.000	35.87	1.45	37.32	54.00	-16.68	AVG
3	8115.000	38.39	10.13	48.52	74.00	-25.48	peak
4	11865.000	35.03	15.42	50.45	74.00	-23.55	peak
5	12600.000	35.23	15.78	51.01	74.00	-22.99	peak
6	14805.000	32.84	18.00	50.84	74.00	-23.16	peak
7	17700.000	29.16	23.47	52.63	74.00	-21.37	peak

Note:

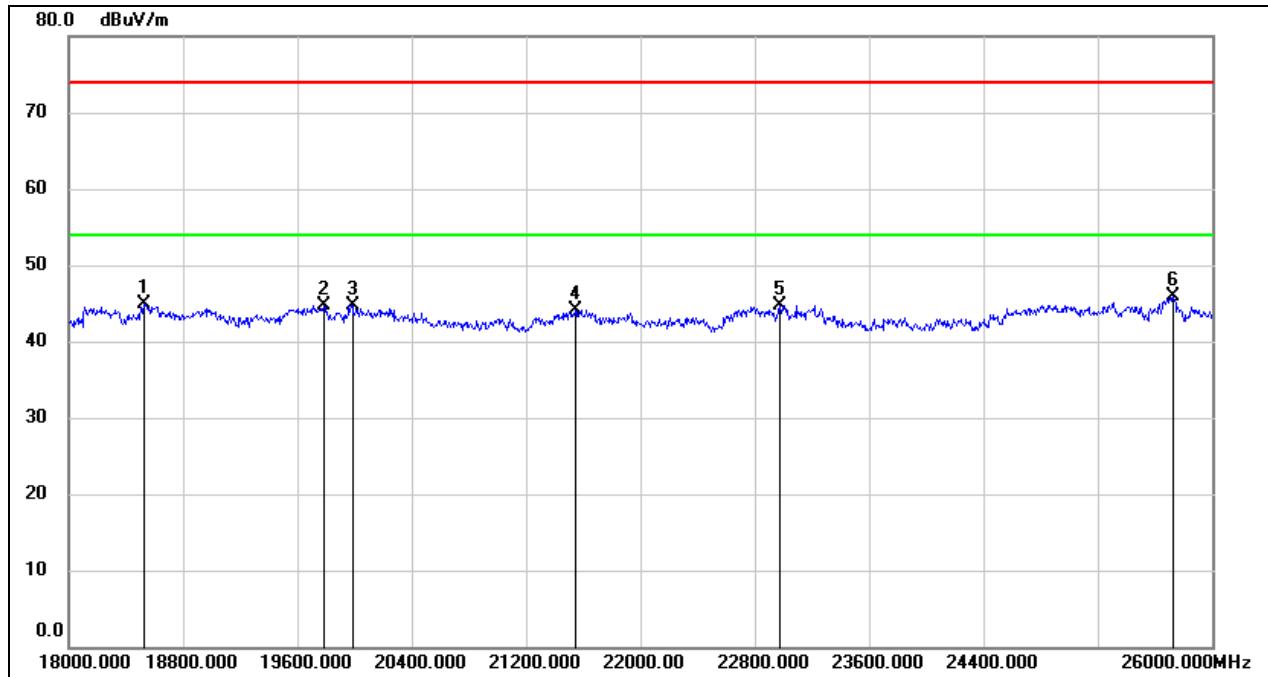
1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.
4. AVG Result=Peak Result + Duty Cycle Correction Factor.
5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
6. The High Pass filter loss factor already add into the correct factor.
7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4930.000	55.64	1.45	57.09	74.00	-16.91	peak
2	4930.000	31.63	1.45	33.08	54.00	-20.92	AVG
3	8985.000	36.98	10.99	47.97	74.00	-26.03	peak
4	11835.000	35.65	15.34	50.99	74.00	-23.01	peak
5	13920.000	33.61	17.55	51.16	74.00	-22.84	peak
6	17265.000	29.46	22.39	51.85	74.00	-22.15	peak
7	17775.000	29.22	23.91	53.13	74.00	-20.87	peak

Note:

1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.
4. AVG Result=Peak Result + Duty Cycle Correction Factor.
5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
6. The High Pass filter loss factor already add into the correct factor.
7. Proper operation of the transmitter prior to adding the filter to the measurement chain.


7.5. SPURIOUS EMISSIONS (18 ~ 26 GHz)

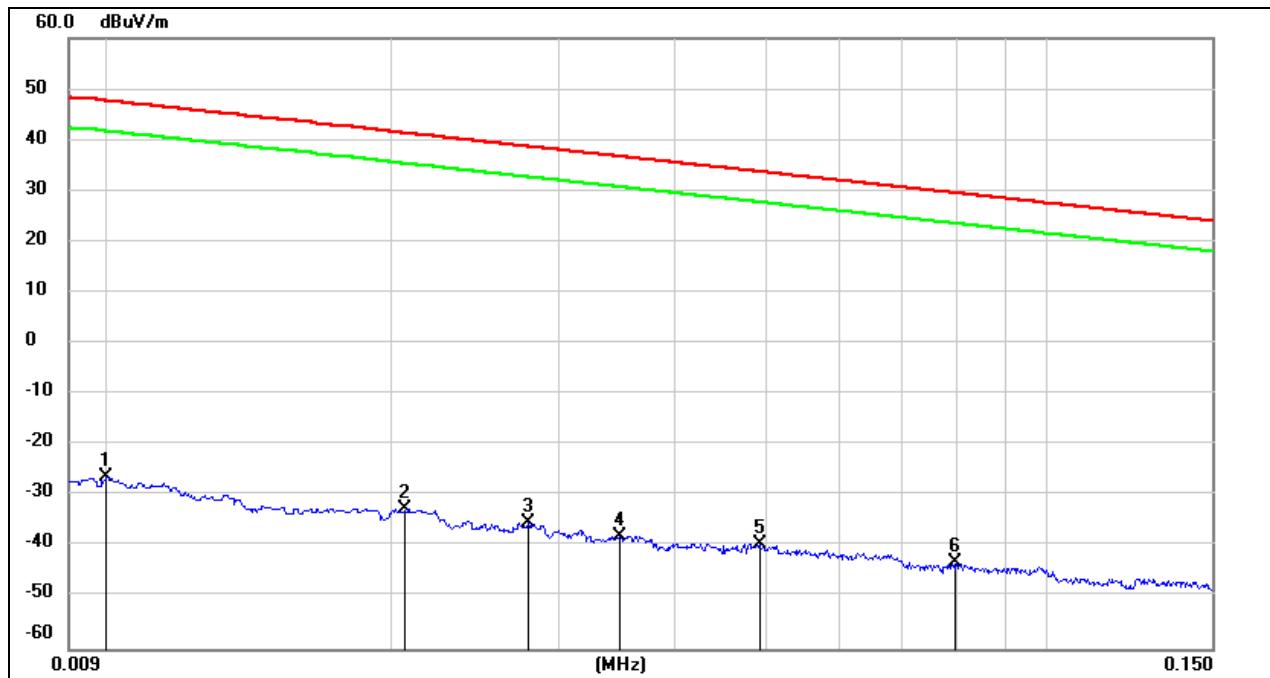
HARMONICS AND SPURIOUS EMISSIONS (HORIZONTAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	18144.000	50.27	-5.48	44.79	74.00	-29.21	peak
2	18592.000	49.75	-5.31	44.44	74.00	-29.56	peak
3	20000.000	50.81	-5.45	45.36	74.00	-28.64	peak
4	21600.000	49.52	-4.54	44.98	74.00	-29.02	peak
5	23064.000	48.99	-3.42	45.57	74.00	-28.43	peak
6	25616.000	46.18	-1.24	44.94	74.00	-29.06	peak

Note: 1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	18528.000	50.11	-5.26	44.85	74.00	-29.15	peak
2	19784.000	50.07	-5.28	44.79	74.00	-29.21	peak
3	19984.000	50.21	-5.44	44.77	74.00	-29.23	peak
4	21544.000	48.76	-4.63	44.13	74.00	-29.87	peak
5	22976.000	48.26	-3.46	44.80	74.00	-29.20	peak
6	25728.000	46.61	-0.72	45.89	74.00	-28.11	peak

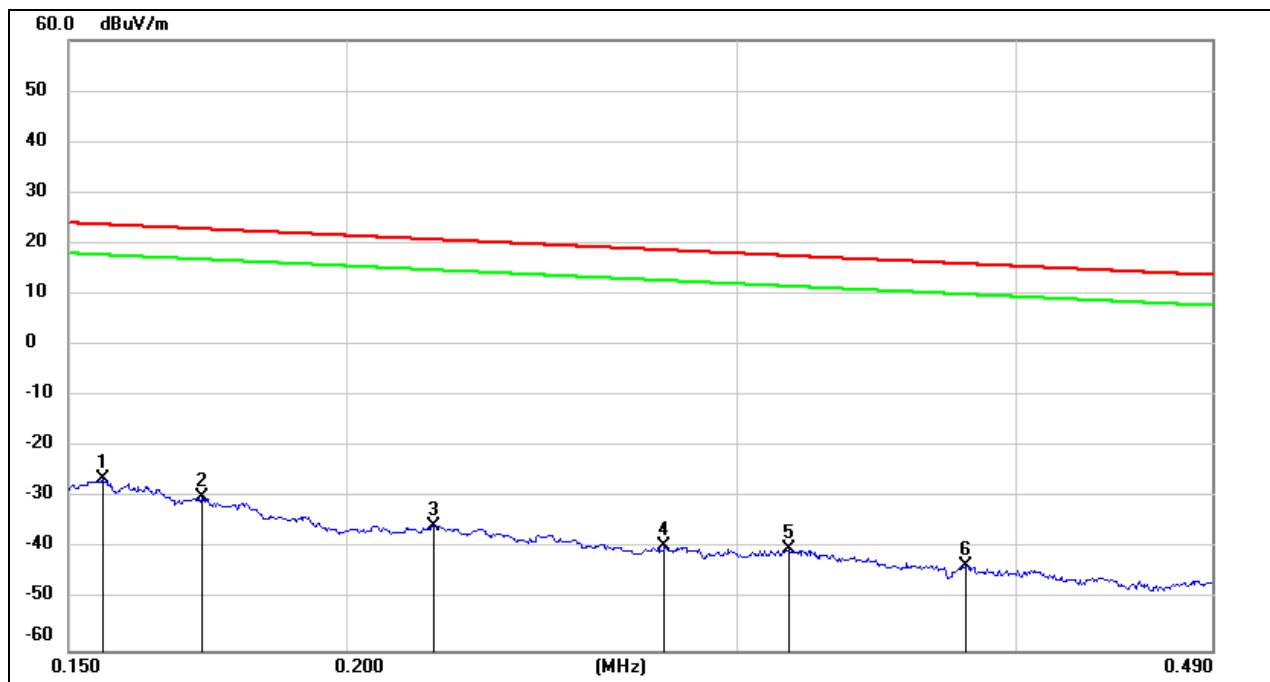

Note: 1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Peak: Peak detector.

Note: All test modes had been tested, only the worst data record in the report.

7.6. SPURIOUS EMISSIONS BELOW 30 MHz

SPURIOUS EMISSIONS (LOOP ANTENNA FACE ON TO THE EUT)

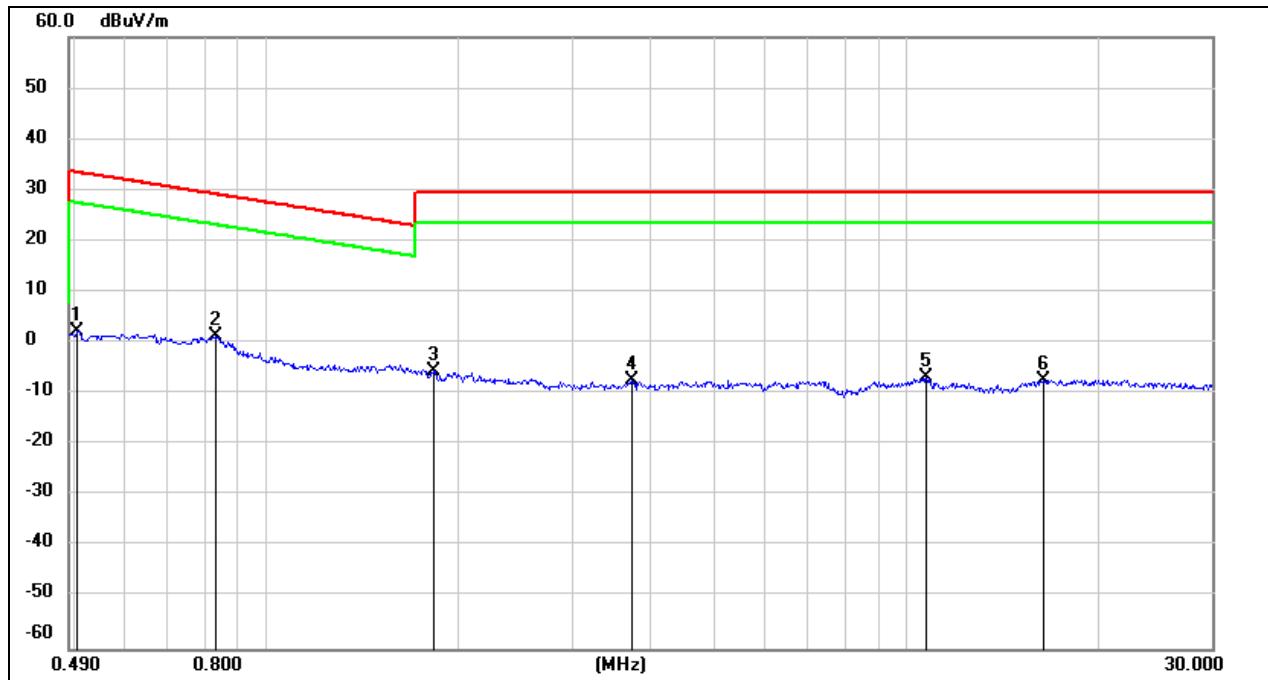
9 kHz~ 150 kHz


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Result (dBuA/m)	Limit (dBuV/m)	Limit (dBuA/m)	Margin (dB)	Remark
1	0.0100	75.22	-101.4	-26.18	-77.68	47.6	-3.90	-73.78	peak
2	0.0206	68.92	-101.35	-32.43	-83.93	41.32	-10.18	-73.75	peak
3	0.0279	66.17	-101.38	-35.21	-86.71	38.69	-12.81	-73.90	peak
4	0.0349	63.53	-101.41	-37.88	-89.38	36.75	-14.75	-74.63	peak
5	0.0492	62.05	-101.47	-39.42	-90.92	33.76	-17.74	-73.18	peak
6	0.0796	58.53	-101.63	-43.1	-94.60	29.58	-21.92	-72.68	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.


4. $\text{dBuA/m} = \text{dBuV/m} - 20\log_{10}(120\pi) = \text{dBuV/m} - 51.5$.

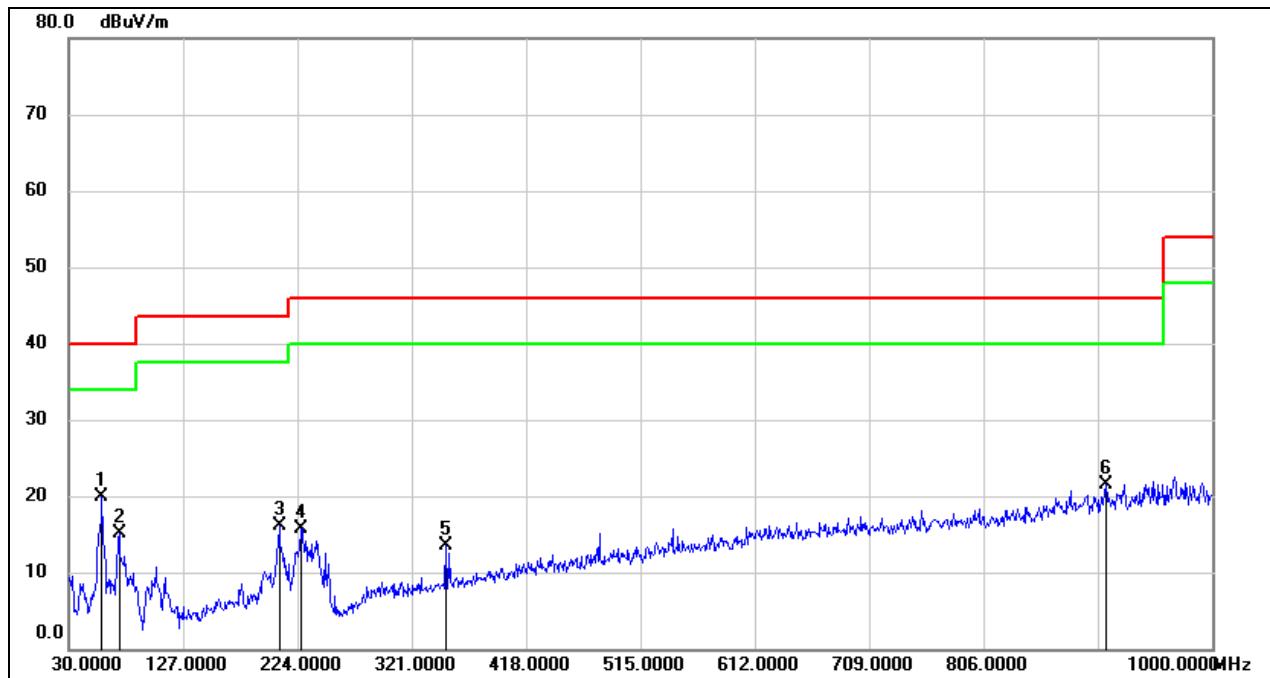
150 kHz ~ 490 kHz

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Result (dBuA/m)	Limit (dBuV/m)	Limit (dBuA/m)	Margin (dB)	Remark
1	0.1554	75.27	-101.65	-26.38	-77.88	23.77	-27.73	-50.15	peak
2	0.172	71.69	-101.67	-29.98	-81.48	22.9	-28.60	-52.88	peak
3	0.219	66.27	-101.75	-35.48	-86.98	20.79	-30.71	-56.27	peak
4	0.2782	62.29	-101.83	-39.54	-91.04	18.71	-32.79	-58.25	peak
5	0.3163	61.7	-101.87	-40.17	-91.67	17.6	-33.90	-57.77	peak
6	0.3800	58.52	-101.94	-43.42	-94.92	16.01	-35.49	-59.43	peak

Note:

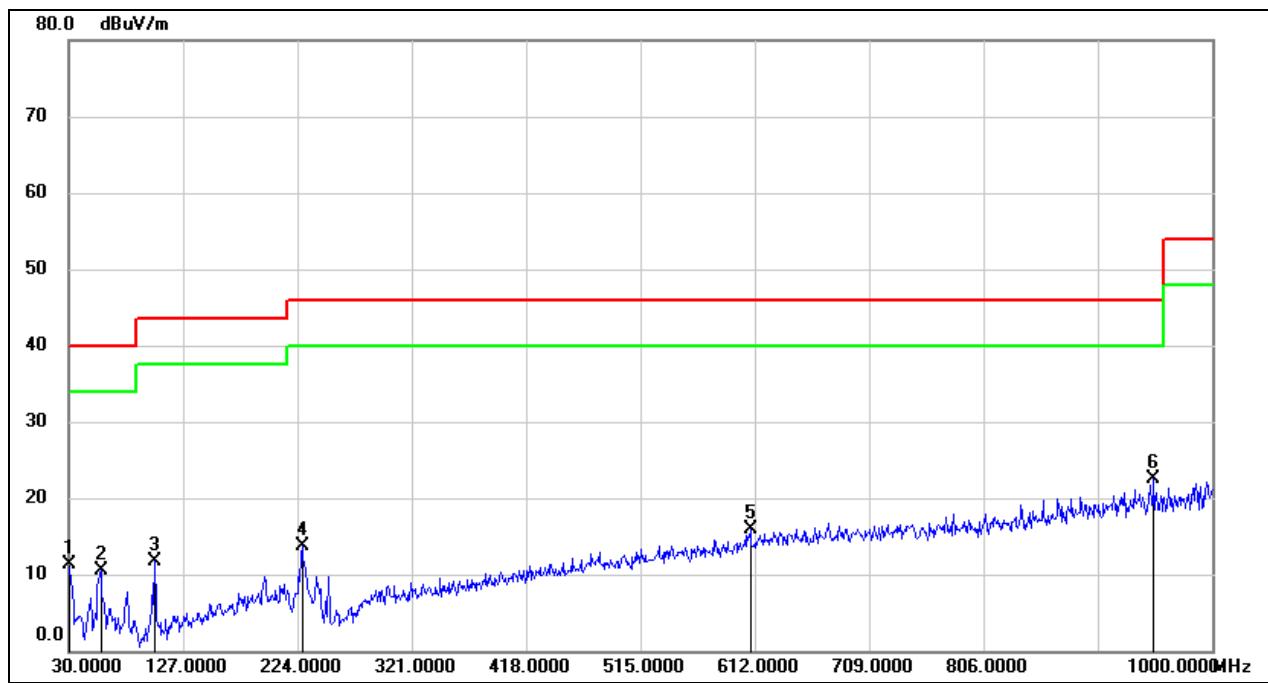
1. Measurement = Reading Level + Correct Factor.
2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
4. $\text{dBuA/m} = \text{dBuV/m} - 20\log_{10}(120\pi) = \text{dBuV/m} - 51.5$.

490 kHz ~ 30 MHz


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Result (dBuA/m)	Limit (dBuV/m)	Limit (dBuA/m)	Margin (dB)	Remark
1	0.5039	64.44	-62.07	2.37	-49.13	33.56	-17.94	-31.19	peak
2	0.8296	63.44	-62.17	1.27	-50.23	29.23	-22.27	-27.96	peak
3	1.8205	56.45	-61.9	-5.45	-56.95	29.54	-21.96	-34.99	peak
4	3.7100	54.2	-61.41	-7.21	-58.71	29.54	-21.96	-36.75	peak
5	10.7299	53.98	-60.83	-6.85	-58.35	29.54	-21.96	-36.39	peak
6	16.3959	53.67	-60.96	-7.29	-58.79	29.54	-21.96	-36.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.
 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
 4. $\text{dBuA/m} = \text{dBuV/m} - 20\log_{10}(120\pi) = \text{dBuV/m} - 51.5$.

Note: All test modes had been tested, only the worst data record in the report.


7.7. SPURIOUS EMISSIONS BELOW 1 GHz AND ABOVE 30 MHz

SPURIOUS EMISSIONS (HORIZONTAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	58.1300	40.52	-20.55	19.97	40.00	-20.03	QP
2	72.6800	35.91	-20.76	15.15	40.00	-24.85	QP
3	208.4800	33.18	-17.14	16.04	43.50	-27.46	QP
4	226.9100	34.22	-18.51	15.71	46.00	-30.29	QP
5	350.1000	27.91	-14.32	13.59	46.00	-32.41	QP
6	909.7900	26.53	-4.98	21.55	46.00	-24.45	QP

Note: 1. Result Level = Read Level + Correct Factor.
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (VERTICAL)

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	30.0000	30.15	-18.94	11.21	40.00	-28.79	QP
2	57.1600	31.16	-20.58	10.58	40.00	-29.42	QP
3	102.7500	32.62	-20.91	11.71	43.50	-31.79	QP
4	227.8800	32.23	-18.55	13.68	46.00	-32.32	QP
5	608.1200	25.33	-9.43	15.90	46.00	-30.10	QP
6	950.5300	26.91	-4.42	22.49	46.00	-23.51	QP

Note: 1. Result Level = Read Level + Correct Factor.
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All test modes had been tested, only the worst data record in the report.

8. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT