

FCC Radio Test Report

FCC ID: 2AVVT-CU413UCMPS1

: BTL-FCCP-7-2103T126B Report No.

Equipment : iTraMS CCU : CU-41-3U-CM-PS1 **Model Name**

Brand Name : Bosch

Applicant : Bosch Global Software Technologies Private Limited

: MS/PAC, Ban 601, Post Box No 3000 Hosur Road, Adugodi, Bengaluru, Address

Karnataka-560030, India

Radio Function : Bluetooth Low Energy (4.0)

FCC Rule Part(s) : FCC CFR Title 47, Part15, Subpart C (15.247) Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2022/7/27

Date of Test : 2022/7/27 ~ 2023/1/17

Issued Date : 2023/3/23

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Eric Lee, Engineer

Approved by

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2103T126B Page 1 of 50 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2103T126B Page 2 of 50 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 7 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 **DESCRIPTION OF EUT** 2.1 10 2.2 **TEST MODES** 12 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13 2.4 SUPPORT UNITS 14 3 RADIATED EMISSIONS TEST 15 3.1 LIMIT 15 **TEST PROCEDURE** 3.2 16 3.3 **DEVIATION FROM TEST STANDARD** 16 **TEST SETUP** 3.4 16 **EUT OPERATING CONDITIONS** 3.5 18 3.6 TEST RESULT - BELOW 30 MHZ 18 3.7 TEST RESULT - 30 MHZ TO 1 GHZ 18 TEST RESULT - ABOVE 1 GHZ 3.8 18 4 **BANDWIDTH TEST** 19 4.1 APPLIED PROCEDURES / LIMIT 19 4.2 TEST PROCEDURE 19 4.3 **DEVIATION FROM STANDARD** 19 4.4 **TEST SETUP** 19 4.5 **EUT OPERATION CONDITIONS** 19 4.6 **TEST RESULTS** 19 **OUTPUT POWER TEST** 5 20 5.1 APPLIED PROCEDURES / LIMIT 20 5.2 TEST PROCEDURE 20 **DEVIATION FROM STANDARD** 5.3 20 5.4 **TEST SETUP** 20 **EUT OPERATION CONDITIONS** 5.5 20 5.6 TEST RESULTS 20 6 POWER SPECTRAL DENSITY TEST 21 APPLIED PROCEDURES / LIMIT 6.1 21 6.2 TEST PROCEDURE 21 6.3 **DEVIATION FROM STANDARD** 21 **TEST SETUP** 21 6.4 6.5 21 **EUT OPERATION CONDITIONS** TEST RESULTS 6.6 21 7 ANTENNA CONDUCTED SPURIOUS EMISSION 22 7.1 APPLIED PROCEDURES / LIMIT 22 TEST PROCEDURE 7.2 22 7.3 **DEVIATION FROM STANDARD** 22 7.4 **TEST SETUP** 22

7.5	EUT C	PERATION CONDITIONS	22
7.6	TEST	RESULTS	22
8	MEASURING EQUIPMENTS	23	
9	EUT TES	ST PHOTO	25
10	EUT PHO	DTOS	25
APPEND	IX A	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	26
APPEND	IX B	RADIATED EMISSIONS - ABOVE 1 GHZ	31
APPEND	IX C	BANDWIDTH	43
APPEND	IX D	OUTPUT POWER	45
APPEND	IX E	POWER SPECTRAL DENSITY TEST	47
APPEND	IX F	ANTENNA CONDUCTED SPURIOUS EMISSION	49

Project No.: 2103T126B Page 4 of 50 Report Version: R01

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-7-2103T126	R00	Original Report.	2021/9/17	Invalid
BTL-FCCP-7-2103T126	R01	Revised Typo.	2021/9/27	Valid
BTL-FCCP-7-2103T126B	R00	 Added the fourth antenna. (MA173. A. LBI.001) Modified applicant and address. 	2022/11/22	Invalid
BTL-FCCP-7-2103T126B	R01	Revised report to address TAF Audit's comments.	2023/3/23	Valid

Project No.: 2103T126B Page 5 of 50 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions		N/A	Note(3)
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX A APPENDIX B	Pass	
15.247(a)(2)	Bandwidth	APPENDIX C	Pass	
15.247(b)(3)	Output Power	APPENDIX D	Pass	
15.247(e)	Power Spectral Density	APPENDIX E	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX F	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
 (2) The report format version is TP.1.1.1.
 (3) This is a DC input device.

Project No.: 2103T126B Page 6 of 50 Report Version: R01

1.1 TEST FACILITY

Test Firm Location: No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan.

TAF Accreditation Number is 0659; FCC Designation Number is TW0659.

The satellite facilities under the test firm used to collect the test data in this report are:

No. 66, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

□ CB15 □ CB16

No. 68-2, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

☐ CB12 ⊠ SR05

Spot check test:

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

 \square C06 \boxtimes CB21 \square CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

B. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.5334
Output power	0.3669
Power Spectral Density	0.6591
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

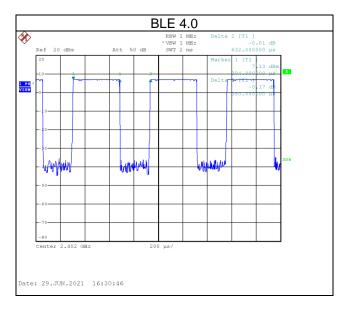
Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	23 °C, 54 %	DC 32V	Jay Kao
Radiated emissions above 1 GHz	23 °C, 54 %	DC 32V	Jay Kao
Bandwidth	25.9 °C, 34 %	DC 32V	Vincent Lee
Output Power	25.9 °C, 34 %	DC 32V	Vincent Lee
Power Spectral Density	25.9 °C, 34 %	DC 32V	Vincent Lee
Antenna conducted Spurious Emission	25.9 °C, 34 %	DC 32V	Vincent Lee

Spot check test:

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	Refer to data	DC 32V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	DC 32V	Mark Wang

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software		Tera Ter	m V4.80	
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate
BLE 4.0	8	8	8	1 Mbps


Project No.: 2103T126B Page 8 of 50 Report Version: R01

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE 4.0	0.380	1	0.380	0.632	60.13%	2.21

Project No.: 2103T126B Page 9 of 50 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	iTraMS CCU
Model Name	CU-41-3U-CM-PS1
Brand Name	Bosch
Model Difference	N/A
Power Source	DC Voltage supplied from DC Source.
Power Rating	DC 9-32V (12V or 24V)
Products Covered	N/A
Hardware Version/Test Model	AD00 A10 062
Software Version	1277401063
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	GFSK
Transfer Rate	1 Mbps
Output Power Max.	2.03 dBm (0.0016 W)
Test Model	CU-41-3U-CM-PS1
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2103T126B Page 10 of 50 Report Version: R01

(3) Table for Filed Antenna:

Group I:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
External antenna	TAOGLAS.	MA250.A.LBI.001	Dipole	SMA(M)ST	2400-2500	2.72

Group II:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
Stubby antenna	TAOGLAS.	TG.08.0723	Dipole	SMA(M)ST	2400-2500	3.29

Group III:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
Wi-Fi 2.4GHz antenna	taoglas antenna solutions	MA240.LBI.001	Dipole	SMA(M)	2400-2500	2.70

Group IV:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
External antenna	TAOGLAS.	MA173. A. LBI.001	N/A	SMA(M)ST	2400-2500	1.31

NOTE: The EUT includes four groups of antennas, the Stubby antenna is the worst and recorded.

- (4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- (5) In this report, the test results of below items refer to BTL-FCCP-7-2103T126 report due to the device is identical to the original device of the referencing report, except modified applicant and address and added the fourth antenna (MA173. A. LBI.001) with spot checks.
 - a. Radiated Emissions
 - b. Bandwidth
 - c. Output Power
 - d. Power Spectral Density
 - e. Antenna conducted Spurious Emission

Spot checks are applied to below items:

a. Radiated Emissions

Project No.: 2103T126B Page 11 of 50 Report Version: R01

2.2 TEST MODES

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1 Mbps	00/39	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmonic
Bandwidth	1 Mbps	00/19/39	-
Output Power	1 Mbps	00/19/39	-
Power Spectral Density	1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1 Mbps	00/19/39	-

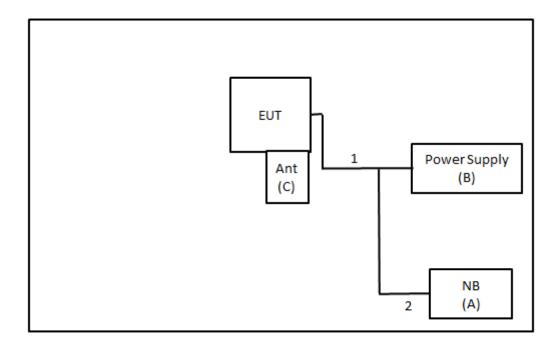
NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

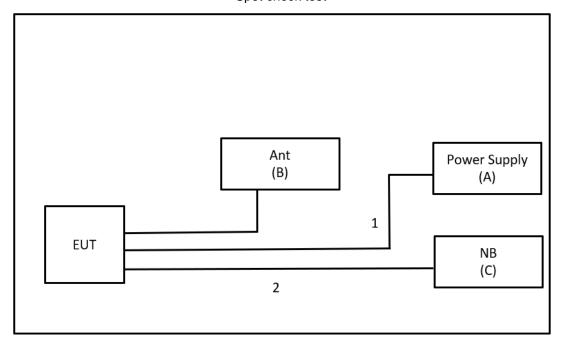
Spot check test:

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1 Mbps	39	Bandedge
(above 1GHz)	1 Mbps	39	Harmonic

NOTE:


- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.

Project No.: 2103T126B Page 12 of 50 Report Version: R01



2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

Spot check test

Project No.: 2103T126B Page 13 of 50 Report Version: R01

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.
В	Power Supply	Twintex	TDS-60-15	N/A	Furnished by test lab.
С	Stubby antenna	Taoglas	TG.08.0723	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	2m	Power Cord	Supplied by test requester
2	N/A	N/A	2.1m	RS 232 to USB	Supplied by test requester

Spot check test:

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Power Supply	TWINTEX	Power Supply	N/A	Furnished by test lab.
В	Antenna	TAOGLAS.	MA173. A. LBI.001	N/A	Supplied by test requester
С	NB	Asus	X555LN-0021B42 10U	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	2m	Power Cord	Supplied by test requester
2	N/A	N/A	2.1m	RS 232 to USB	Supplied by test requester

Project No.: 2103T126B Page 14 of 50 Report Version: R01

3 RADIATED EMISSIONS TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

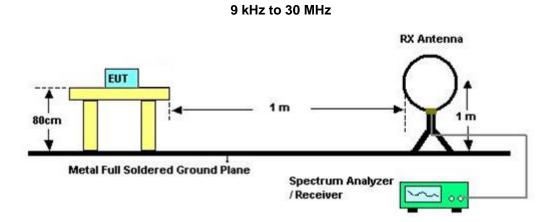
Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	=	33.55

Measurement Value	Limit Value		Margin Level
33.55	43.50	=	-9.95

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

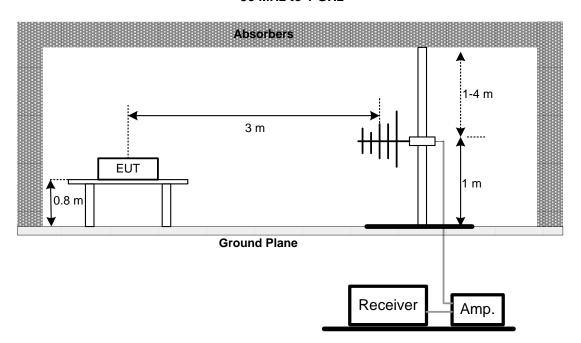
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2103T126B Page 15 of 50 Report Version: R01

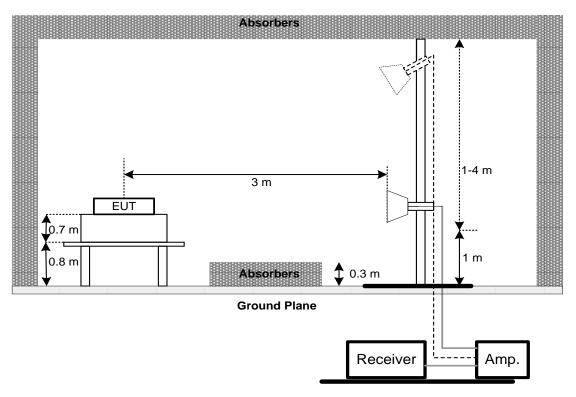

3.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

3.3 DEVIATION FROM TEST STANDARD


No deviation.

3.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

3.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX A.

3.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX B.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2103T126B Page 18 of 50 Report Version: R01

4 BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item Limit Frequency Range (MHz) Result						
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

4.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

Please refer to the APPENDIX C.

Project No.: 2103T126B Page 19 of 50 Report Version: R01

5 OUTPUT POWER TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item Limit Frequency Range (MHz)						
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS		

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter
	1 ower weter

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2103T126B Page 20 of 50 Report Version: R01

6 POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2103T126B Page 21 of 50 Report Version: R01

7 ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2103T126B Page 22 of 50 Report Version: R01

8 LIST OF MEASURING EQUIPMENTS

	Radiated Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7	
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7	
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7	
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7	
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7	
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7	
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26	
8	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24	
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31	
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1	
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8	
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/7/23	2022/7/22	
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/7/23	2022/7/22	
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Bandwidth							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7		

	Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25	
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25	

	Power Spectral Density									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7				

	Antenna conducted Spurious Emission										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7					

Project No.: 2103T126B Page 23 of 50 Report Version: R01

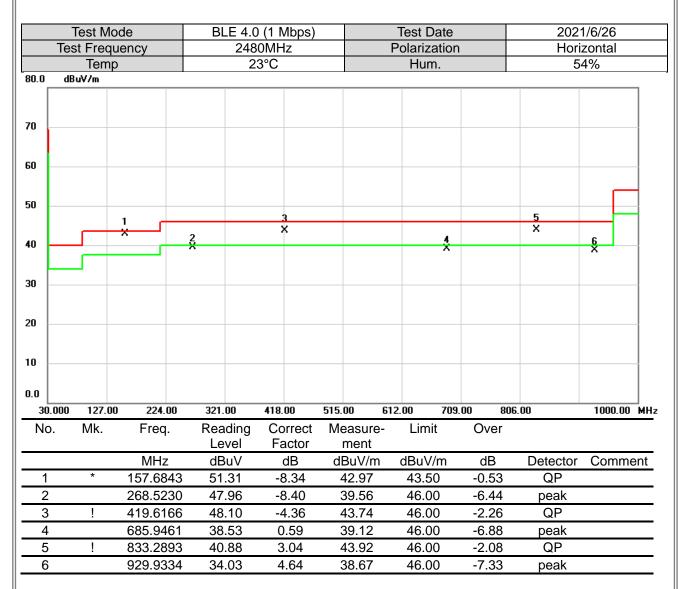
Spot check test:

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7
3	Preamplifier	EMCI	EMC184045SE	980882	2022/2/9	2023/2/8
4	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2022/6/16	2023/6/15
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

"N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year. Remark:

9 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2103T126B-FCCP-3 (APPENDIX-TEST PHOTOS).
10 EUT PHOTOS
Please refer to document Appendix No.: EP-2103T126B-3 (APPENDIX-EUT PHOTOS).

Project No.: 2103T126B Page 25 of 50 Report Version: R01


APPENDIX A RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2103T126B Page 26 of 50 Report Version: R01

_	Test Mo	de	BL	E 4.0	(1 Mbps)		Test Date		202 ⁻	1/6/26	
Tes	st Frequ	ency		2480	OMHz .		Polarization		Vertical		
	Temp			23	3°C		Hum.		5	4%	
80.0 dB	uV/m										٦
70											-
60											
50		1									
40		2 X	3		*				5 X	6 X	
30											
20											
10											-
0.0											
30.000	127.00	224.00	321.0	0	418.00	515.00 6	12.00 709	0.00 806	5.00	1000.00	_мн
No.	Mk.	Freq.	Read Lev		Correct Factor	Measure- ment	Limit	Over			
		MHz	dBı	ιV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	157.6520	51.2	25	-8.34	42.91	43.50	-0.59	QP		
2	!	228.7530	50.	52	-10.37	40.15	46.00	-5.85	QP		
3		265.8070			-8.57	39.12	46.00	-6.88	peak		
4		455.6360			-3.59	39.33	46.00	-6.67	peak		
5	!	833.2893	38.	52	3.04	41.56	46.00	-4.44	QP		
6		921.0420	34.	53	4.49	39.02	46.00	-6.98	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

-	Temp	:y			(1 Mbps) Test Date 20					2020	, .,			
			Test Frequency 248			Z		F	Polariza	ation		Ver	tical	
80.0 dBuV				23	°C				Hun	า.		59	9%	
	/m													٦
70														-
60														
50														
10 1		_	2 X		\dashv	X X			4 X		5 X		6	1
30														
20														
10														1
0.0														
	127.00	224.00	321.		418.0		515.00		2.00	709.		.00	1000.00	М
No. N	Λk.	Freq.	Le	iding vel	Fa	rrect ctor		sure- ent	Limi		Over			
		MHz		BuV		B B		ıV/m	dBuV		dB	Detector	Comme	∍nt
1		9.9262		.43		1.93		.50	40.0		-1.50	peak		
2		8.6200		.08		2.31		.77	46.0		-4.23	peak		
3 4		60.5183 06.9560		.39 .52		.08		.17	46.0 46.0		-7.83 -10.56	peak peak		_

REMARKS:

5

6

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

40.32

39.04

-1.45

0.54

38.87

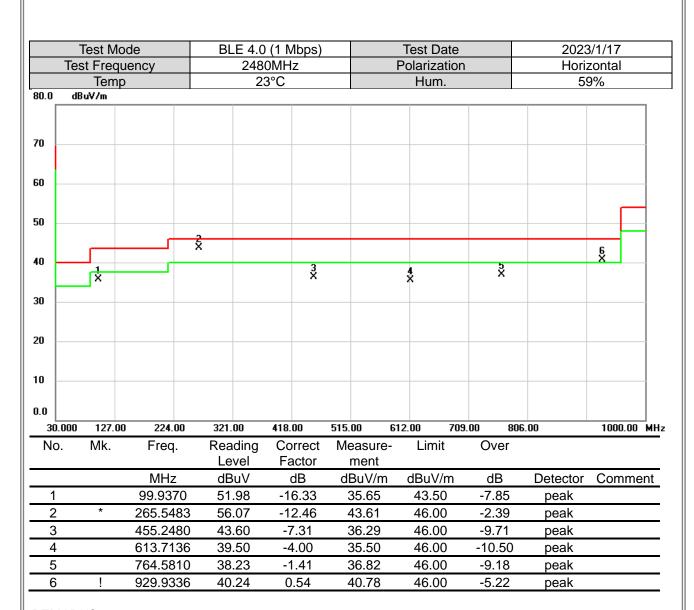
39.58

46.00

46.00

-7.13

-6.42


peak

peak

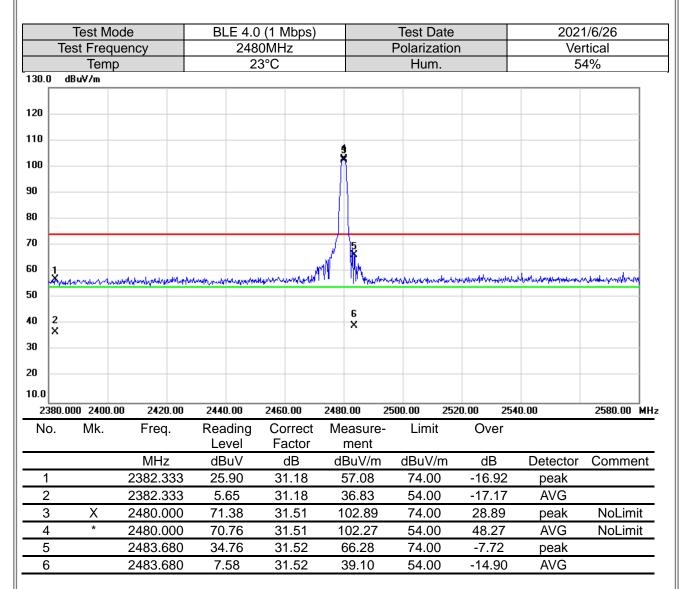
759.5692

929.9337

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



APPENDIX B	RADIATED EMISSIONS - ABOVE 1 GHZ


Project No.: 2103T126B Page 31 of 50 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1 Mbps)		Test Date			1/6/26
	Test Freq			2MHz		Polarization	1		rtical
	Tem	0	2	23°C		Hum.		54	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 ½ ×							
40		×							
30									
20									
10.0									
	0.000 3550.			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	57.35	-9.84	47.51	74.00	-26.49	peak	
2	*	4804.000	52.42	-9.84	42.58	54.00	-11.42	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M			0 (1 Mbps)		Test Date			1/6/26
	Test Freq)2MHz		Polarization	า		zontal
	Tem	p	2	23°C		Hum.		54	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1							
40		1 X 2 X							
30									
20									
10.0									
	0.000 3550.			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	53.34	-9.84	43.50	74.00	-30.50	peak	
2	*	4804.000	45.65	-9.84	35.81	54.00	-18.19	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo) (1 Mbps)		Test Date			1/6/26
	Test Frequ			0MHz		Polarization	n		rtical
	Temp)	2	3°C		Hum.		5-	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X 2							
40		×							
30									
20									
10.0									
	0.000 3550.0		8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	57.67	-9.77	47.90	74.00	-26.10	peak	
2	*	4880.000	50.95	-9.77	41.18	54.00	-12.82	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1 Mbps)		Test Date			1/6/26
	Test Frequency Temp			10MHz		Polarization	n		zontal
			2	23°C		Hum.			4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1							
40		1 2 X							
30		×							
20									
10.0									
	0.000 3550.			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	52.22	-9.77	42.45	74.00	-31.55	peak	
2	*	4880.000	45.77	-9.77	36.00	54.00	-18.00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test M) (1 Mbps)		Test Date			1/6/26
	Test Freq			0MHz		Polarizatio	n		rtical
130.0	Tem dBuV/m	ρ		3°C		Hum.		54	4%
130.0	UDU¥7III								
120									
110									
100									
90									
80									
70									
60									
50		1 2 ×							
40									
30									
20									
10.0									
100	0.000 3550.	00 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	60.77	-9.68	51.09	74.00	-22.91	peak	
2	*	4960.000	56.35	-9.68	46.67	54.00	-7.33	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo) (1 Mbps)		Test Date	_		1/6/26
	Test Frequ			80MHz		Polarization			zontal
130.0	Temp dBuV/m)	2	3°C		Hum.		54	4%
Г									
20 _									
10									
00									
.									
30 L									
_									
0									
iO -									
50		1.							
io		1 2 2							
:0									
20									
0.0									
	0.000 3550.0	00 6100.00	8650.00	11200.00	13750.00	16300.00 188	350.00 21 4	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment	.=			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		-9.68	45.48	74.00	-28.52	peak	
2	*	4960.000	48.43	-9.68	38.75	54.00	-15.25	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Report No.: BTL-FCCP-7-2103T126B

<u> Ορυι</u>	pot check test: Test Mode BLE 4.0 (1 Mbp			DIE 4 O	(1 Mbpc)		Test Date		2022/8/25			
		t Frequ			0MHz		Polarization					
		Temp			4°C		Hum.				8%	
130.0	dBu	.V/m									_	
120												
110											-	
100											-	
90											-	
30												
'o												
io						-					-	
50	1 X	- 1 44 -	a trace and	Anne Marie Variable			Wheney anyther physical a		no de ser de al consta	. على مناه		
10	миин 2 Х	er-egered/des	unterpression of the advisor to the formation of	And the second of the second o	and the seather some	9 	a north dather than to the thing	the office of the state of	AA-A-PAILANTINENINE, NA "AN	ld Arvand Prof. Daru Dalam	7	
30 ´											-	
20											-	
10.0												
		2400.		2440.00	2460.00				10.00	2580.00	MH	
No	•	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt	
1			2382.200	52.26	-5.78	46.48	74.00	-27.52	peak			
_			2382.200	41.58	-5.78	35.80	54.00	-18.20	AVG			
2			2302.200	41.50	-5.70	33.60	34.00	-10.20	AVG			

REMARKS:

4

5

6

(1) Measurement Value = Reading Level + Correct Factor.

93.49

54.62

42.34

-5.65

-5.64

-5.64

87.84

48.98

36.70

54.00

74.00

54.00

33.84

-25.02

-17.30

AVG

peak

AVG

NoLimit

(2) Margin Level = Measurement Value - Limit Value.

2480.000

2484.707

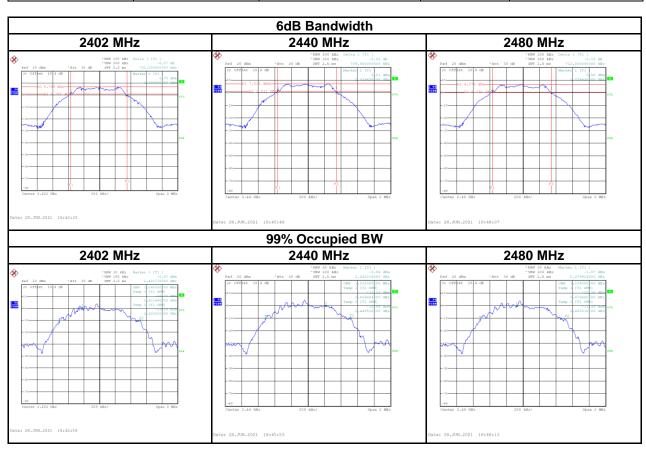
2484.707

	Test Mo				(1 Mbps)		Test Da			2/8/25
Т	est Frequ				0MHz		Polariza		rtical	
100.0	Temp)		2	4°C		Hum	5	8%	
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		X X								
30		2 X								
20										
10.0										
	.000 3550.0			650.00	11200.00	13750.00	16300.00		21400.00	26500.00 MHz
No.	Mk.	Freq.		eading Level	Correct Factor	Measure ment	e- Limit	d Over		
		MHz		dBuV	dB	dBuV/m	n dBuV/	m dB	Detector	Comment
1		4960.00	00 -	40.98	1.18	42.16	74.00			
2	*	4960.00	00	30.15	1.18	31.33	54.00) -22.67	' AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			BL		(1 M					Test Da					2/8/25	
16	est Frequ					0MHz	<u> </u>		Polarization					Horizontal 58%			
130.0	Temp dBuV/m)			2	4°C					Hum				50	3%	
	abat7iii																٦
120																	
110																	
110																	
100 -																	-
90																	-
BO																	
70																	1
60 <u> </u>																	-
50																	-
40		1 X															
		2															
30		×															1
20 —																	-
10.0																	
1000.	000 3550.0	00 6100	.00	8650	.00	1120		1375	50.00	163	00.00		50.00		0.00	26500.00	0 MH
No.	Mk.	Freq	•	Rea Le			rrect ctor		easure ment) -	Limit	İ	Ove	er			
		MHz		dB			IB		3uV/m	1	dBuV/	m	dB		Detector	Comme	ent
1		4960.0	00	41.	52	1.	18	4	12.70		74.00)	-31.3	30	peak		
2	*	4960.0	00	29.	51	1.	18	- (30.69		54.00)	-23.3	31	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Report No.: BTL-FCCP-7-2103T126B APPENDIX C BANDWIDTH

Project No.: 2103T126B Page 43 of 50 Report Version: R01

Test Mode:	1Mbps
resulvidde.	HVIDDS

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	0.72	1.04	500	Pass
2440	0.71	1.03	500	Pass
2480	0.71	1.04	500	Pass

APPENDIX D	OUTPUT POWER

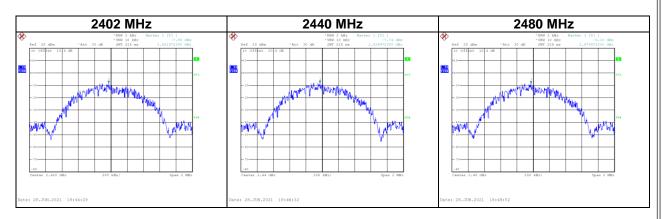
Project No.: 2103T126B Page 45 of 50 Report Version: R01

Report No.: BTL-FCCP-7-2103T126B

Test I	Mode :	1Mbps	Tested Date	2021/6/30
--------	--------	-------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.82	0.0015	30.00	1.0000	Pass
2440	2.03	0.0016	30.00	1.0000	Pass
2480	1.59	0.0014	30.00	1.0000	Pass

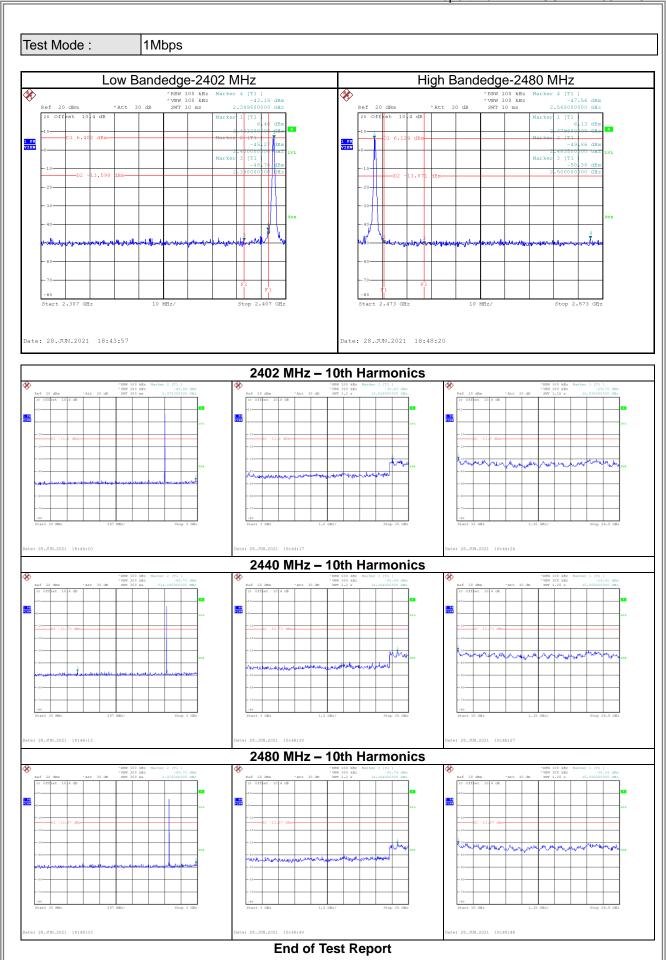
Project No.: 2103T126B Page 46 of 50 Report Version: R01


APPENDIX E	POWER SPECTRAL DENSITY TEST

Project No.: 2103T126B Page 47 of 50 Report Version: R01

Test Mode: 1Mbps

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-7.90	8	Pass
2440	-7.74	8	Pass
2480	-8.33	8	Pass



APPENDIX F	ANTENNA CONDUCTED SPURIOUS EMISSION		

Project No.: 2103T126B Page 49 of 50 Report Version: R01

Report No.: BTL-FCCP-7-2103T126B

