

FCC Radio Test Report

FCC ID: 2AVVT-CU413UCMPS1

: BTL-FCCP-6-2103T126B Report No.

Equipment : iTraMS CCU : CU-41-3U-CM-PS1 **Model Name**

Brand Name : Bosch

: Bosch Global Software Technologies Private Limited Applicant

: MS/PAC, Ban 601, Post Box No 3000 Hosur Road, Adugodi, Bengaluru, Address

Karnataka-560030, India

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC CFR Title 47, Part15, Subpart C (15.247) : ANSI C63.10-2013

Measurement Procedure(s)

Date of Receipt : 2022/7/27

Date of Test : 2022/7/27 ~ 2023/1/17

Issued Date : 2023/3/23

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Eric Lee, Engineer

Approved by

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2103T126B Page 1 of 74 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2103T126B Page 2 of 74 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 OTHER REQUIREMENTS FOR FREQUENCY HOPPING SYSTEM (FHSS) 1.6 **EQUIPMENT UNDER SECTION 15.247** 10 2 **GENERAL INFORMATION** 12 2.1 **DESCRIPTION OF EUT** 12 2.2 **TEST MODES** 14 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 15 2.4 SUPPORT UNITS 16 RADIATED EMISSIONS TEST 17 3 LIMIT 17 3.1 **TEST PROCEDURE** 3.2 18 **DEVIATION FROM TEST STANDARD** 3.3 18 3.4 **TEST SETUP** 18 3.5 **EUT OPERATING CONDITIONS** 19 TEST RESULT - BELOW 30 MHZ 3.6 20 3.7 TEST RESULT - 30 MHZ TO 1 GHZ 20 3.8 TEST RESULT - ABOVE 1 GHZ 20 NUMBER OF HOPPING CHANNEL 4 21 4.1 **APPLIED PROCEDURES** 21 4.2 TEST PROCEDURE 21 **DEVIATION FROM STANDARD** 4.3 21 4.4 **TEST SETUP** 21 4.5 **EUT OPERATION CONDITIONS** 21 4.6 TEST RESULTS 21 5 AVERAGE TIME OF OCCUPANCY 22 APPLIED PROCEDURES / LIMIT 22 5.1 **TEST PROCEDURE** 5.2 22 5.3 **DEVIATION FROM STANDARD** 22 5.4 **TEST SETUP** 22 5.5 **EUT OPERATION CONDITIONS** 22 5.6 TEST RESULTS 22 HOPPING CHANNEL SEPARATION MEASUREMENT 6 23 APPLIED PROCEDURES / LIMIT 23 6.1 6.2 TEST PROCEDURE 23 6.3 **DEVIATION FROM STANDARD** 23 **TEST SETUP** 23 6.4 6.5 TEST RESULTS 23 7 **BANDWIDTH TEST** 24 APPLIED PROCEDURES 7.1 24 7.2 **TEST PROCEDURE** 24 7.3 **DEVIATION FROM STANDARD** 24

7.4	TEST	SETUP	24
7.5	EUT (OPERATION CONDITIONS	24
7.6	TEST	RESULTS	24
8	OUTPUT	FPOWER TEST	25
8.1	APPL	IED PROCEDURES / LIMIT	25
8.2	TEST	PROCEDURE	25
8.3	DEVIA	ATION FROM STANDARD	25
8.4	TEST	SETUP	25
8.5	EUT (OPERATION CONDITIONS	25
8.6	TEST	RESULTS	25
9	ANTENN	NA CONDUCTED SPURIOUS EMISSION	26
9.1	APPL	IED PROCEDURES / LIMIT	26
9.2	TEST	PROCEDURE	26
9.3	DEVI	ATION FROM STANDARD	26
9.4	TEST	SETUP	26
9.5	EUT (OPERATION CONDITIONS	26
9.6	TEST	RESULTS	26
10	LIST OF	MEASURING EQUIPMENTS	27
11	EUT TES	ST PHOTO	29
12	EUT PHO	OTOS	29
APPEND	IX A	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	30
APPEND	IX B	RADIATED EMISSIONS - ABOVE 1 GHZ	35
APPEND	IX C	NUMBER OF HOPPING CHANNEL	55
APPEND	IX D	AVERAGE TIME OF OCCUPANCY	57
APPEND	IX E	HOPPING CHANNEL SEPARATION MEASUREMENT	62
APPEND	IX F	BANDWIDTH	65
APPEND	IX G	OUTPUT POWER	68
APPEND	IX H	ANTENNA CONDUCTED SPURIOUS EMISSION	70

Project No.: 2103T126B Page 4 of 74 Report Version: R01

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2103T126	R00	Original Report.	2021/9/17	Invalid
BTL-FCCP-6-2103T126	R01	Revised Typo.	2021/9/27	Invalid
BTL-FCCP-6-2103T126	R02	Revised report to address TCB's comments.	2021/10/6	Invalid
BTL-FCCP-6-2103T126	R03	Revised report to address TCB's comments.	2021/10/14	Invalid
BTL-FCCP-6-2103T126	R04	Revised report to address TCB's comments.	2021/10/15	Valid
BTL-FCCP-6-2103T126B	R00	 Added the fourth antenna. (MA173. A. LBI.001) Modified applicant and address. 	2022/11/22	Invalid
BTL-FCCP-6-2103T126B	R01	Revised report to address TAF Audit's comments.	2023/3/21	Valid

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions		N/A	Note(3)
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX A APPENDIX B	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX C	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX D	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX E	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX F	Pass	
15.247 (b)(1)	Output Power	APPENDIX G	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.(3) This is a DC input device.

Project No.: 2103T126B Page 6 of 74 Report Version: R01

1.1 TEST FACILITY

Test Firm Location: No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan.

TAF Accreditation Number is 0659; FCC Designation Number is TW0659.

The satellite facilities under the test firm used to collect the test data in this report are:

No. 66, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

□ CB15
 □ CB16

No. 68-2, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

□ CB12 ⊠ SR05

Spot check test:

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

□ C06 ⊠ CB21 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
CB15 CB21	0.2 GHz ~ 1 GHz	4.72
	1 GHz ~ 6 GHz	5.21
	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

B. Conducted test:

a 1001 .	
Test Item	U,(dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Project No.: 2103T126B Page 7 of 74 Report Version: R01

1.3 TEST ENVIRONMENT CONDITIONS

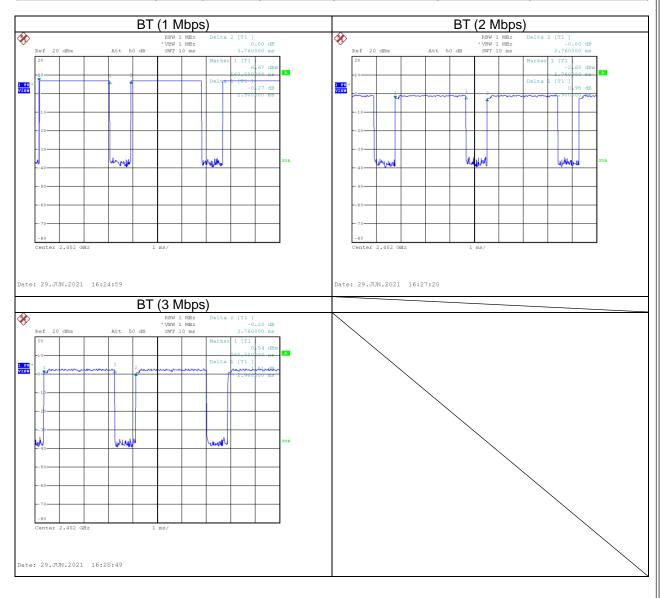
Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	23 °C, 54 %	DC 32V	Jay Kao
Radiated emissions above 1 GHz	23 °C, 54 %	DC 32V	Jay Kao
Number of Hopping Frequency	25.9 °C, 34 %	DC 32V	Vincent Lee
Average Time of Occupancy	25.9 °C, 34 %	DC 32V	Vincent Lee
Hopping Channel Separation	25.9 °C, 34 %	DC 32V	Vincent Lee
Bandwidth	25.9 °C, 34 %	DC 32V	Vincent Lee
Output Power	25.9 °C, 34 %	DC 32V	Vincent Lee
Antenna conducted Spurious Emission	25.9 °C, 34 %	DC 32V	Vincent Lee

Spot check test:

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	Refer to data	DC 32V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	DC 32V	Mark Wang

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	Tera Term V4.80					
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate		
GFSK	10.5	10.5	10.5	1 Mbps		
π/4-DQPSK	8	8	8	2 Mbps		
8DPSK	8	8	8	3 Mbps		


Project No.: 2103T126B Page 8 of 74 Report Version: R01

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (2 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (3 Mbps)	2.900	1	2.900	3.760	77.13%	1.13

1.6 OTHER REQUIREMENTS FOR FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT UNDER SECTION 15.247

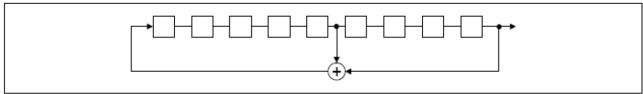
Refer to section 9. c) of FCC KDB 558074 D01 15.247 Meas Guidance v05r02,

The following items must also be addressed in FHSS device filings.

1) Section 15.247(a)(1):

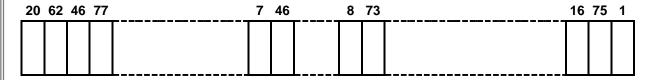
According to 15.247(a)(1): The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

i) Pseudorandom frequency hopping sequence


The EUT generated hopping sequence by below method:

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels.

The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is dividing into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The normal hop is 1600 hops/s.


The pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

ii) Equal hopping frequency use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode:

35, 27, 6, 44, 14, 61, 74, 32, 1, 11, 23, 2, 55, 65, 29, 3, 9, 52, 78, 58, 40, 25, 0, 7, 18, 26, 76, 60, 47, 50, 2, 5, 16, 37, 70, 63, 66, 54, 20, 13, 4, 8, 15, 21, 26, 10, 73, 77, 67, 69, 43, 24, 57, 39, 46, 72, 48, 33, 17, 31, 75, 19, 41, 62, 68, 28, 51, 66, 30, 56, 34, 59, 71, 22, 49, 64, 38, 45, 36, 42, 53

Each Frequency used equally on the average by each transmitter

iii) System receiver input bandwidth

The Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

iv) System receiver hopping capability

The Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

2) Section 15.247(g):

According to 15.247(g): Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

3) Section 15.247(h):

According to 15.247(h): The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The Bluetooth system is designed not have the ability to coordinate with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Project No.: 2103T126B Page 11 of 74 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

<u> </u>		
Equipment	iTraMS CCU	
Model Name	CU-41-3U-CM-PS1	
Brand Name	Bosch	
Model Difference	N/A	
Power Source	DC Voltage supplied from DC Source.	
Power Rating	DC 9-32V (12V or 24V)	
Products Covered	N/A	
Hardware Version/Test Model	AD00 A10 062	
Software Version	1277401063	
Operation Band	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz	
Modulation Type	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology	FHSS	
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps	
	1 Mbps: 6.82 dBm (0.0048 W)	
Output Power Max.	2 Mbps: 3.03 dBm (0.0020 W)	
	3 Mbps: 3.28 dBm (0.0021 W)	
Test Model	CU-41-3U-CM-PS1	
Sample Status	Engineering Sample	
EUT Modification(s)	N/A	

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel List.	Frequency		Fraguency		Erogueney
Channel	(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Project No.: 2103T126B Page 12 of 74 Report Version: R01

(3) Table for Filed Antenna:

Group I:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
External antenna	TAOGLAS.	MA250.A.LBI.001	Dipole	SMA(M)ST	2400-2500	2.72

Group II:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
Stubby antenna	TAOGLAS.	TG.08.0723	Dipole	SMA(M)ST	2400-2500	3.29

Group III:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
Wi-Fi 2.4GHz antenna	taoglas antenna solutions	MA240.LBI.001	Dipole	SMA(M)	2400-2500	2.70

Group IV:

Antenna	Manufacture	Part No.	Type	Connector	Frequency (MHz)	Gain (dBi)
External antenna	TAOGLAS.	MA173. A. LBI.001	N/A	SMA(M)ST	2400-2500	1.31

NOTE: The EUT includes four groups of antennas, the Stubby antenna is the worst and recorded.

- (4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- (5) In this report, the test results of below items refer to BTL-FCCP-6-2103T126 report due to the device is identical to the original device of the referencing report, except modified applicant and address and added the fourth antenna (MA173. A. LBI.001) with spot checks.
 - a. Radiated Emissions
 - b. Bandwidth
 - c. Output Power
 - d. Power Spectral Density
 - e. Antenna conducted Spurious Emission

Spot checks are applied to below items:

a. Radiated Emissions

Project No.: 2103T126B Page 13 of 74 Report Version: R01

2.2 TEST MODES

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	00	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

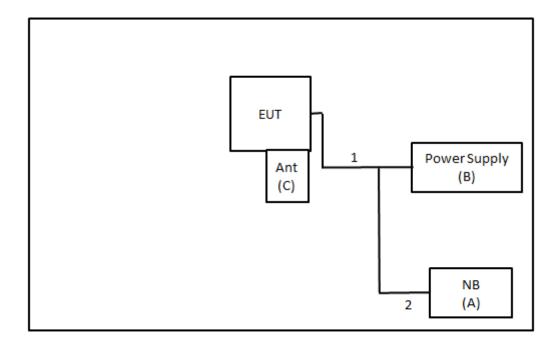
NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

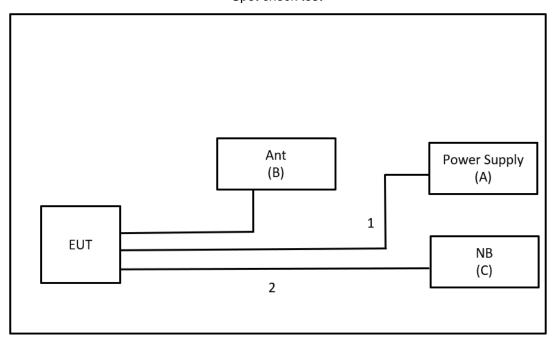
Spot check test:

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	00	-
Transmitter Radiated Emissions	1 Mbps	00	Bandedge
(above 1GHz)	1 Mbps	00	Harmonic

NOTE:


- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.

Project No.: 2103T126B Page 14 of 74 Report Version: R01



2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

Spot check test

Project No.: 2103T126B Page 15 of 74 Report Version: R01

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.
В	Power Supply	Twintex	TDS-60-15	N/A	Furnished by test lab.
С	Stubby antenna	Taoglas	TG.08.0723	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	2m	Power Cord	Supplied by test requester
2	N/A	N/A	2.1m	RS 232 to USB	Supplied by test requester

Spot check test:

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Power Supply	TWINTEX	Power Supply	N/A	Furnished by test lab.
В	Antenna	TAOGLAS.	MA173. A. LBI.001	N/A	Supplied by test requester
С	NB	Asus	X555LN-0021B42 10U	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	2m	Power Cord	Supplied by test requester
2	N/A	N/A	2.1m	RS 232 to USB	Supplied by test requester

Project No.: 2103T126B Page 16 of 74 Report Version: R01

3 RADIATED EMISSIONS TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

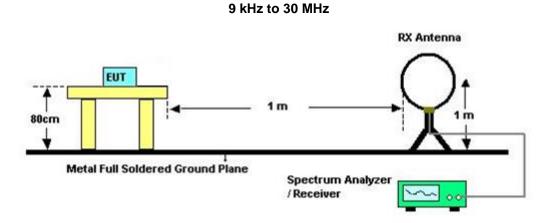
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	-	40	-	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

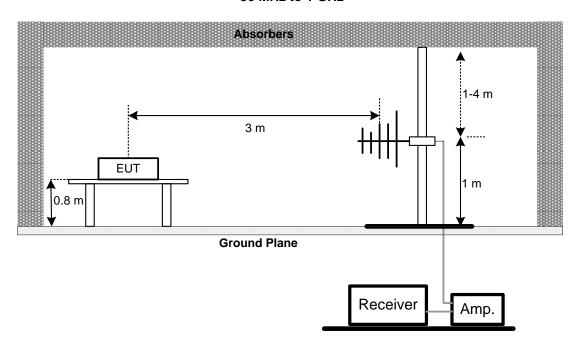
Spectrum Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector		
Start ~ Stop Frequency	90KHz~110KHz for QP detector		
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector		
Start ~ Stop Frequency	490KHz~30MHz for QP detector		
Start ~ Stop Frequency	30MHz~1000MHz for QP detector		

Project No.: 2103T126B Page 17 of 74 Report Version: R01

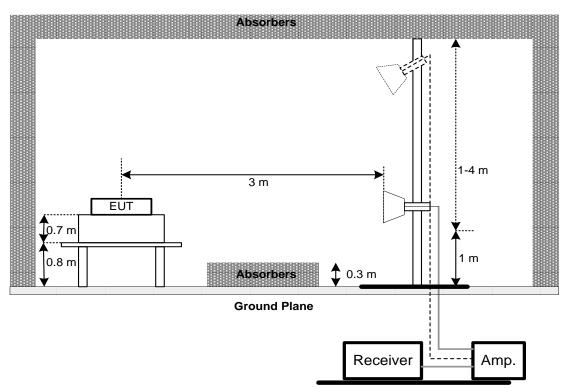

3.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

3.3 DEVIATION FROM TEST STANDARD


No deviation.

3.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

3.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX A.

3.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX B.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2103T126B Page 20 of 74 Report Version: R01

4 NUMBER OF HOPPING CHANNEL

4.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C				
Section	Test Item	Frequency Range (MHz)	Result	
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS	

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

Please refer to the APPENDIX C.

Project No.: 2103T126B Page 21 of 74 Report Version: R01

AVERAGE TIME OF OCCUPANCY

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

5.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/2)/79 * (0.4 * 79)

DH3 Time Solt: Reading * (1600/4)/79 * (0.4 * 79)

DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/2)/20 * (0.4 * 20) DH3 Time Solt: Reading * (800/4)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

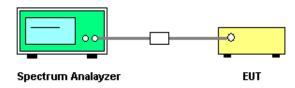
Project No.: 2103T126B Page 22 of 74 Report Version: R01

6 Hopping Channel Separation Measurement

6.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


6.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2103T126B Page 23 of 74 Report Version: R01

7 BANDWIDTH TEST

7.1 APPLIED PROCEDURES

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Frequency Range (MHz)		
15.247(a)(2)	Bandwidth	2400-2483.5		

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

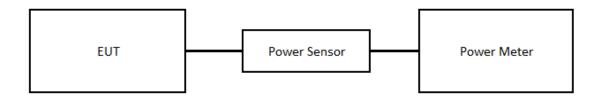
Please refer to the APPENDIX F.

Project No.: 2103T126B Page 24 of 74 Report Version: R01

8 OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2103T126B Page 25 of 74 Report Version: R01

9 ANTENNA CONDUCTED SPURIOUS EMISSION

9.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT SPECTRUM ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2103T126B Page 26 of 74 Report Version: R01

10 LIST OF MEASURING EQUIPMENTS

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26
8	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/7/23	2022/7/22
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/7/23	2022/7/22
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	(Version N/A		N/A

	Number of Hopping Frequency									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7				

	Average Time of Occupancy									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7				

	Hopping Channel Separation									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7				

	Bandwidth									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7				

	Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Power Meter	r Anritsu ML2495A 1128008		2021/5/26	2022/5/25					
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25				

Project No.: 2103T126B Page 27 of 74 Report Version: R01

	Antenna conducted Spurious Emission									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2021/6/8	2022/6/7				

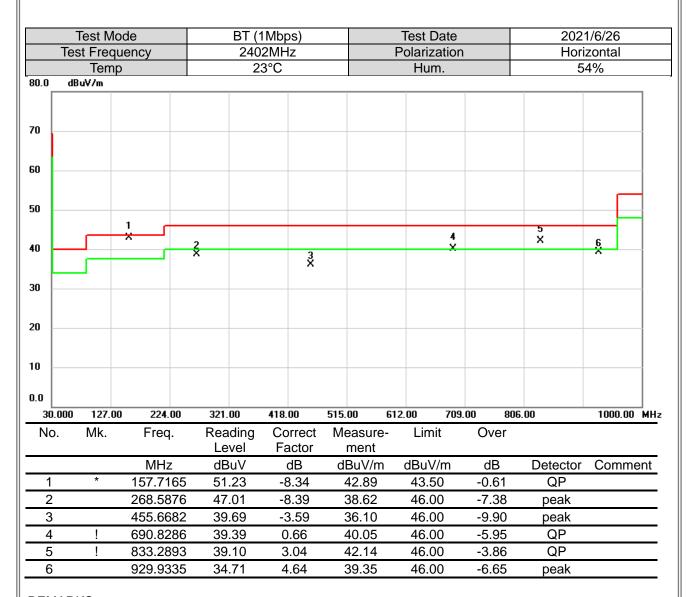
Spot check test:

	oriook toot.		Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7
3	Preamplifier	EMCI	EMC184045SE	980882	2022/2/9	2023/2/8
4	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2022/6/16	2023/6/15
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

11 EUT TEST PHOTO							
Please refer to document Appendix No.: TP-2103T126B-FCCP-3 (APPENDIX-TEST PHOTOS).							
12 EUT PHOTOS							
Please refer to document Appendix No.: EP-2103T126B-3 (APPENDIX-EUT PHOTOS).							

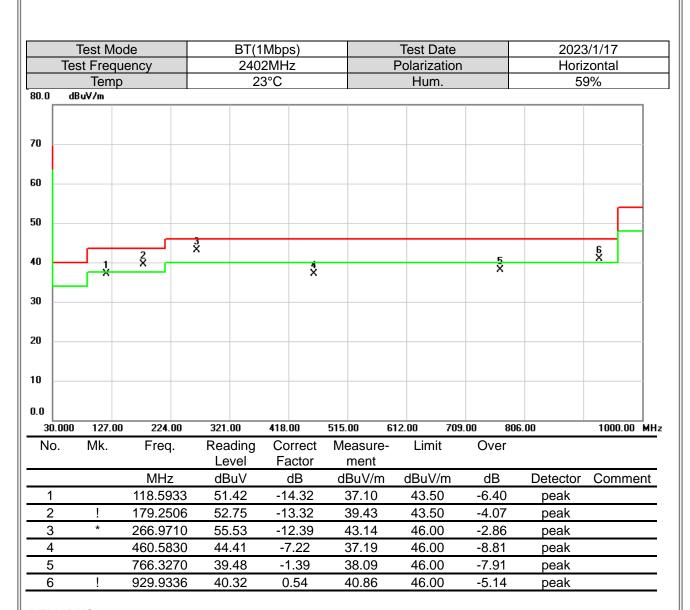
Project No.: 2103T126B Page 29 of 74 Report Version: R01


APPENDIX A RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2103T126B Page 30 of 74 Report Version: R01

-	Test Mo	ode	BT (1Mbps)		Test Date		202	1/6/26	
Tes	st Frequ	iency)2MHz						
	Temp)	2	23°C			54%			
80.0 dB	uV/m									٦
70										
60										
50		1								1
40		2 ×		×			* *	5 X	Š X	
30										
20										
10										
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 6	12.00 709	0.00 806	5.00	1000.00	_мн
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	*	157.6843	51.19	-8.34	42.85	43.50	-0.65	QP		
2	!	230.2726	50.65	-10.30	40.35	46.00	-5.65	QP		
3		460.5505	41.48	-3.51	37.97	46.00	-8.03	peak		
4		759.4400	36.06	1.98	38.04	46.00	-7.96	peak		
5	!	833.2893	38.45	3.04	41.49	46.00	-4.51	QP		
6		919.3283	33.24	4.46	37.70	46.00	-8.30	peak		

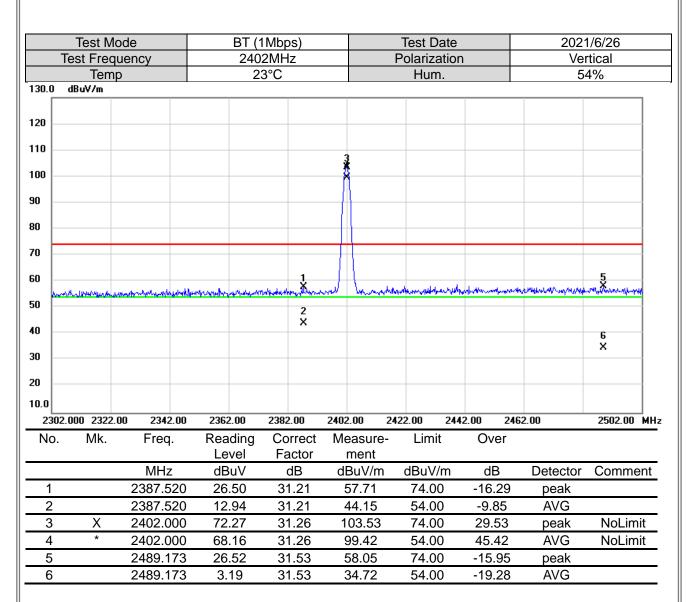
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.



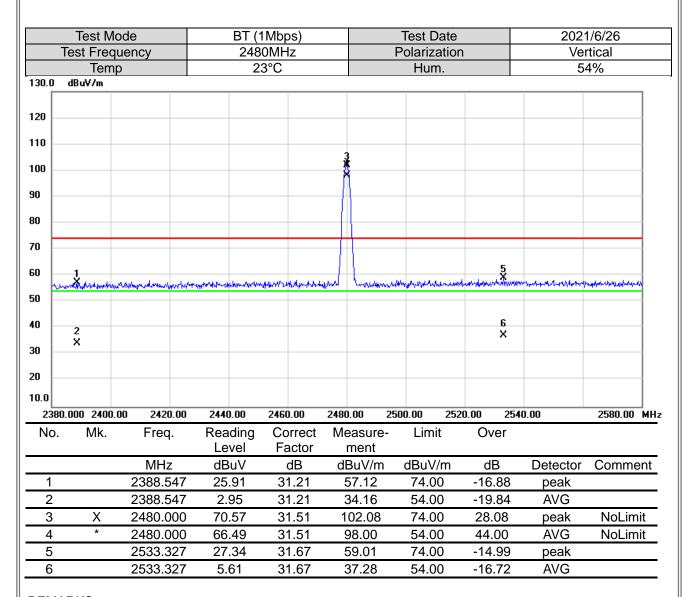
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

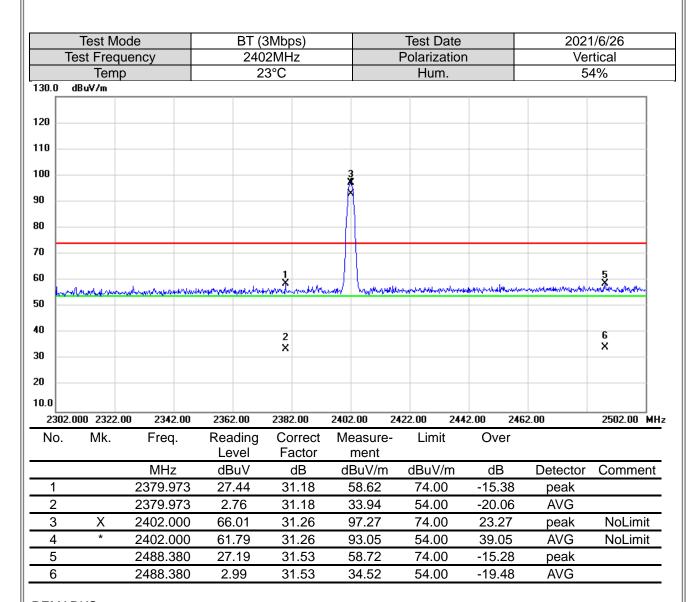
		k test: est Mo				BT(1	Mbp	s)			Tes	t Date			2023/1/17 Vertical		
-	Test	Frequ	iency				2MH				Pola	rization					
		Temp)			2	23°C Hum.							59	9%		
BO.O	dBu	V/m															\neg
70																	_
60 —																	-
50																	
40 1				Ś	?			3 X			4 ×	5 X	Š				-
30		<u> </u>															-
20																	-
10																	-
0.0																	
30.0		127.00			321.		418.		515.00		2.00	709		806.00		1000.00) MI
No.		Mk.	Fred	} .	Rea Le	ding vel		rrect	Meas		L	.imit	Over	•			
			MH	Z		uV		dB	dBu		dB	uV/m	dB	Dete	ector	Comm	ent
1		*	41.47	83			-1	1.73	38.	95	4	0.00	-1.05		eak		
2		!	265.64	153	54	.05	-1	2.46	41.	59	4	6.00	-4.41	ре	eak		
3			455.37	773	42			7.30	35.			6.00	-10.3		eak		
4			607.02		40		-4.08		35.			6.00	-10.03		eak		
5			682.93		40			3.11	37.			6.00	-8.19		eak		
6			767.7	173	38	91	-1	.38	37.	53	11	6.00	-8.47	ne	eak		

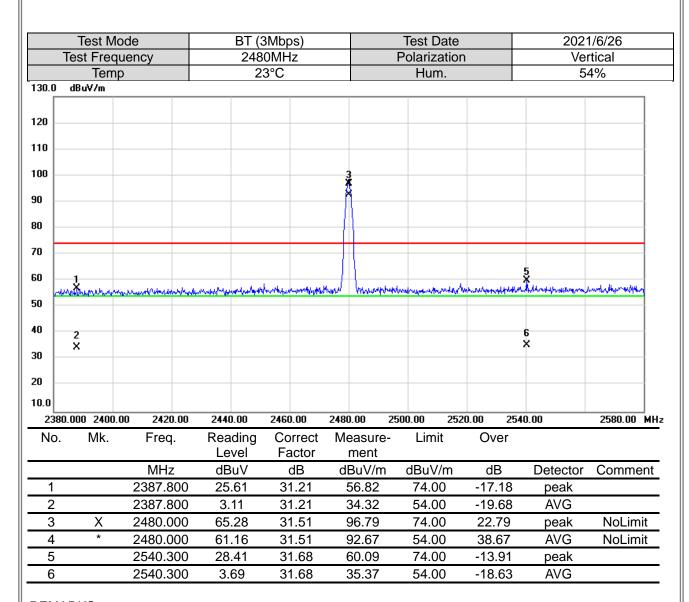
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - ABOVE 1 GHZ


Project No.: 2103T126B Page 35 of 74 Report Version: R01


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mode			1Mbps)		Test Date		2021/6/26		
	Test Fred			2MHz		Polarization	n		rtical	
	Tem	p	2	3°C		Hum.		54	4%	
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50		1 X								
40		2 X								
30		^								
10.0										
100	0.000 3550	.00 6100.00	8650.00	11200.00	13750.00 1	6300.00 188	350.00 214	00.00	26500.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000	54.18	-9.84	44.34	74.00	-29.66	peak		
2	*	4804.000	41.42	-9.84	31.58	54.00	-22.42	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode			T (1Mbps)		Test Date		2021	1/6/26
	Test Freq	uency	2	2402MHz		Polarizatio	n		zontal
	Tem	р		23°C		Hum.		54	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1							
40		*							
30		2 X							
20									
10.0									
	0.000 3550.							00.00	26500.00 MHz
No.	Mk.	Freq.	Readir Leve	ng Correct I Factor	Measure- ment	Limit	Over		
		MHz	dBu√	/ dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	0 52.72	-9.84	42.88	74.00	-31.12	peak	
2	*	4804.00	0 41.22	-9.84	31.38	54.00	-22.62	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode			1Mbps)		Test Date		2021/6/26		
	Test Freq			1MHz		Polarization	1		rtical	
	Tem	р	2	3°C		Hum.		54	4%	
130.0	dBuV/m									
120 _										
110										
100										
90										
80										
70										
60 <u> </u>										
50		1 ×								
1 0										
30		2 X								
20										
10.0										
	0.000 3550.			11200.00				00.00	26500.00 MH	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4882.000	55.14	-9.77	45.37	74.00	-28.63	peak		
2	*	4882.000	41.31	-9.77	31.54	54.00	-22.46	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode Test Frequency			1Mbps) 1MHz		Test Date Polarization			1/6/26 zontal
	Temp			3°C		Hum.	1		2011(a) 4%
130.0	dBuV/m			3 0		Huiii.		<u>J.</u>	1 /0
Г									
120									
110									
100									
90									
80									
70									
60									
50		4							
40		*							
30		2 X							
20									
10.0									
100	0.000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 188	50.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	53.65	-9.77	43.88	74.00	-30.12	peak	
2	*	4882.000	41.41	-9.77	31.64	54.00	-22.36	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode			1Mbps)		Test Date			1/6/26
	Test Freq			80MHz		Polarization	n		rtical
	Tem	р	2	3°C		Hum.		5-	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		X							
30		2 X							
20									
10.0									
	0.000 3550.			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	53.84	-9.68	44.16	74.00	-29.84	peak	
2	*	4960.000	41.36	-9.68	31.68	54.00	-22.32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode			1Mbps)		Test Date			1/6/26
	Test Freq			0MHz		Polarization	n		zontal
	Tem	р	2	3°C		Hum.		5-	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60 _									
50		1 X							
40		X							
30		2 X							
20									
10.0									
	0.000 3550.		8650.00	11200.00	13750.00 1			00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	53.62	-9.68	43.94	74.00	-30.06	peak	
2	*	4960.000	41.52	-9.68	31.84	54.00	-22.16	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode			3Mbps)		Test Date		2021/6/26		
	Test Freq	uency		2MHz		Polarization	า		rtical	
	Tem	p	2	3°C		Hum.		5-	4%	
130.0	dBuV/m									
120 _										
110										
100										
90										
80										
70										
60										
50		1 X								
40										
30		2 X								
20										
10.0										
	0.000 3550.		8650.00	11200.00				00.00	26500.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000	53.70	-9.84	43.86	74.00	-30.14	peak		
2	*	4804.000	41.62	-9.84	31.78	54.00	-22.22	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode Test Frequency Temp			BT (3Mbps) 2402MHz 23°C			Pola	st Date arizatio	า	2021/6/26 Horizontal	
130.0	Ten dBuV/m	np		23	°C			Hum.		54	1%
120											
110											
100											
90											
80											
70											
60											
50		1 X									
30		2 X									
20											
10.0											
	.000 3550				11200.00	13750.00	16300.			00.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor	Measure ment	e- I	Limit	Over		
		MHz		BuV	dB	dBuV/m	n dE	3uV/m	dB	Detector	Comment
1		4804.00		3.85	-9.84	44.01		4.00	-29.99	peak	
2	*	4804.00	00 41	.52	-9.84	31.68	5	54.00	-22.32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

•	Test Mode Test Frequency		244	3Mbps) 1MHz		Test Date Polarization			1/6/26 rtical
130.0	Temp dBuV/m		2	3°C		Hum.		54	4%
120									
110 100									
90									
BO									
70 <u> </u>									
50		1 *							
10 <u> </u>		2 X							
20									
1000	0.000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH:
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	53.24	-9.77	43.47	74.00	-30.53	peak	
2	*	4882.000	41.28	-9.77	31.51	54.00	-22.49	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode			3Mbps)		Test Date		2021/6/26		
	Test Freq			1MHz		Polarization	1		zontal	
	Tem	ρ	2	3°C		Hum.		54	4%	
130.0	dBuV/m									
120 _										
110										
100										
90										
BO _										
70										
50 <u> </u>										
50		1								
40 L		*								
30		2 X								
20										
10.0										
	0.000 3550.			11200.00				00.00	26500.00 MH	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4882.000	53.67	-9.77	43.90	74.00	-30.10	peak		
2	*	4882.000	41.37	-9.77	31.60	54.00	-22.40	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode			3Mbps)		Test Date			1/6/26
	Test Freq			0MHz		Polarizatio	n		rtical
	Tem	0	2	3°C		Hum.		54	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		2 X							
30		^							
20 10.0									
	0.000 3550.	00 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 21 4	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		-9.68	43.66	74.00	-30.34	peak	
2	*	4960.000	41.59	-9.68	31.91	54.00	-22.09	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode			3Mbps)		Test Date		2021/6/26		
	Test Freq			80MHz		Polarization	1		zontal	
	Tem	р	2	3°C		Hum.		54	4%	
130.0	dBuV/m									
120 _										
110										
100										
90										
80										
70										
60 —										
50		1 *								
40		2								
30		×								
20										
10.0										
	0.000 3550.			11200.00				00.00	26500.00 MH	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000	53.60	-9.68	43.92	74.00	-30.08	peak		
2	*	4960.000	41.23	-9.68	31.55	54.00	-22.45	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

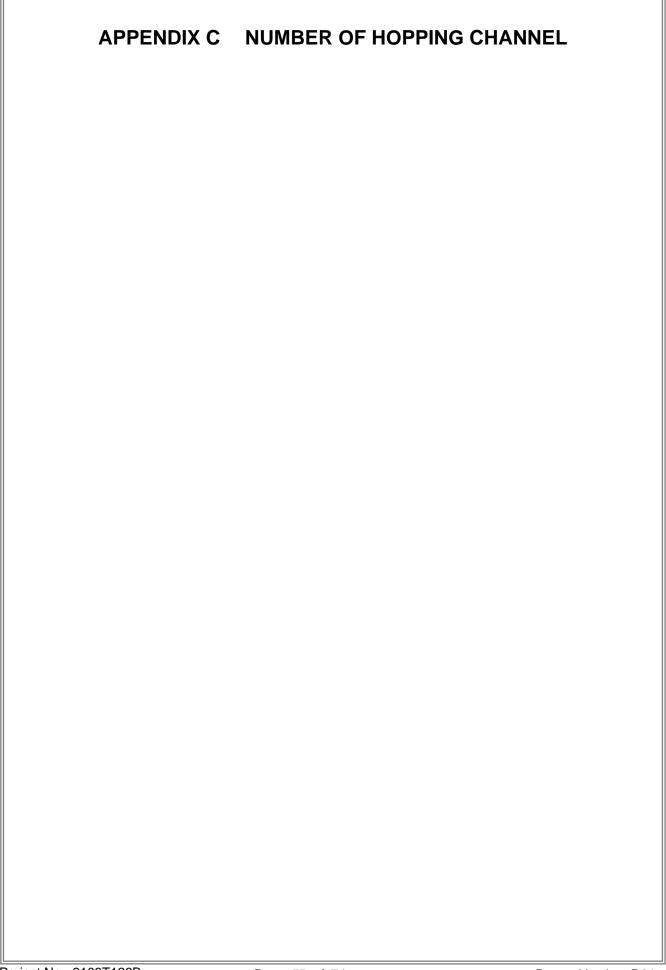
Spot check test:

Test Mode	BT(1Mbps)	Test Date	2022/8/25
Test Frequency	2402MHz	Polarization	Horizontal
Temp	24°C	Hum.	58%
130.0 dBuV/m			
120			
10			
00	3		
0			
0			
0			
0			
0 1	hypromental growth washing by the formation of the format	water president and the manufacturery and the second and the secon	5
0 2 X	V		8 8
30			
0			
0.0 2302.000 2322.00 2342.00	0 2362.00 2382.00 2402	.00 2422.00 2442.00 2	2462.00 2502.00 MI
No. Mk. Freq.		asure- Limit Over	462.UU 25U2.UU MI

		•	_						
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2344.073	53.22	-5.83	47.39	74.00	-26.61	peak	
2		2344.073	40.86	-5.83	35.03	54.00	-18.97	AVG	
3	Χ	2402.000	100.70	-5.75	94.95	74.00	20.95	peak	
4	*	2402.000	100.11	-5.75	94.36	54.00	40.36	AVG	
5		2499.373	53.23	-5.62	47.61	74.00	-26.39	peak	
6		2499.373	40.75	-5.62	35.13	54.00	-18.87	AVG	

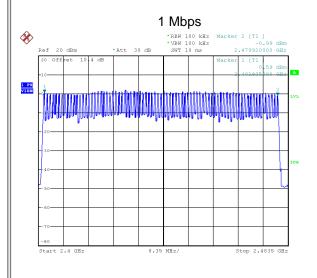
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

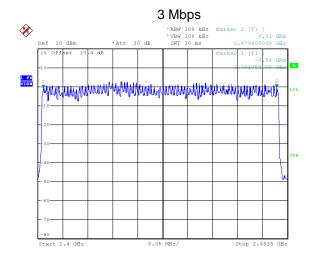
T/	Test Mest Freq				Mbps) 2MHz		Test Date Polarization	2		2/8/25
10	Tem				4°C		Hum.	<u> </u>	Vertical 58%	
130.0	dBuV/m	iP			- 0		Tiuiii.			370
120										
110										
100										
90										
30										
80										
70										
60										
50										
		1								
40		1 × 2								
30		×								
20										
10.0	000 3550	.00 6100		8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq		Reading	Correct	Measure-		Margin	100.00	20000.00 MH2
INO.	IVIN.	rieq	•	Level	Factor	ment	LIIIII	Marylli		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		38.77	0.65	39.42	74.00	-34.58	peak	
2	*	4804.0		30.22	0.65	30.87	54.00	-23.13	AVG	-


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				Test Da				2/8/24	
16	est Freq			2402N				Polarization			Horizontal 58%				
130.0	Temj dBuV/m	р			24	l _o C				Hum.	•		58	3%	
130.0	JUGTAIN														1
120															
110															
100															
90															
80															
70															
60															
50															
40		1 X													
30		2 X													
20															
10.0															
	000 3550.			8650.00		11200.0		3750.00		300.00	18850		1400.00	26500.00	МН
No.	Mk.	Freq		Readii Leve		Corre Facto		Measui ment		Limit		Margin	l		
		MHz	<u> </u>	dBu\		dB		dBuV/		dBuV/ı	m	dB	Detector	Commer	nt
1		4804.0		38.37		0.65		39.02		74.00		-34.98			_
2	*	4804.0	000	29.18	3	0.65		29.83	}	54.00)	-24.17	AVG		_

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.





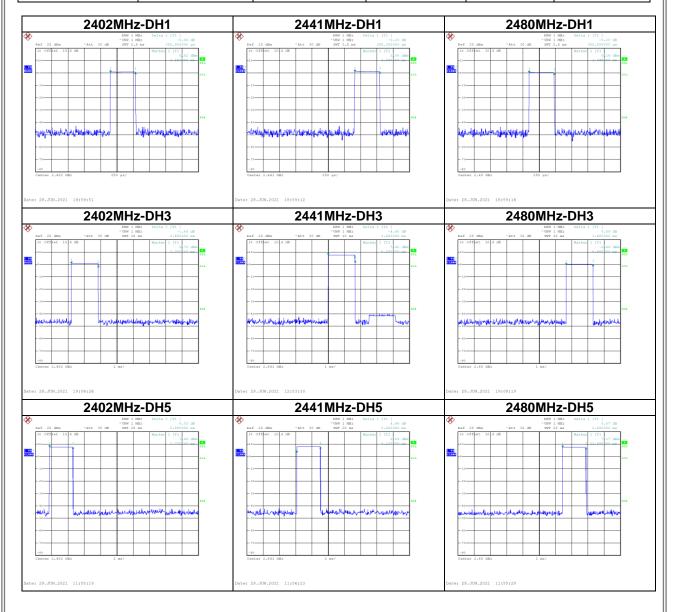
Project No.: 2103T126B Page 55 of 74 Report Version: R01

Test Mode	1/3Mbps

Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

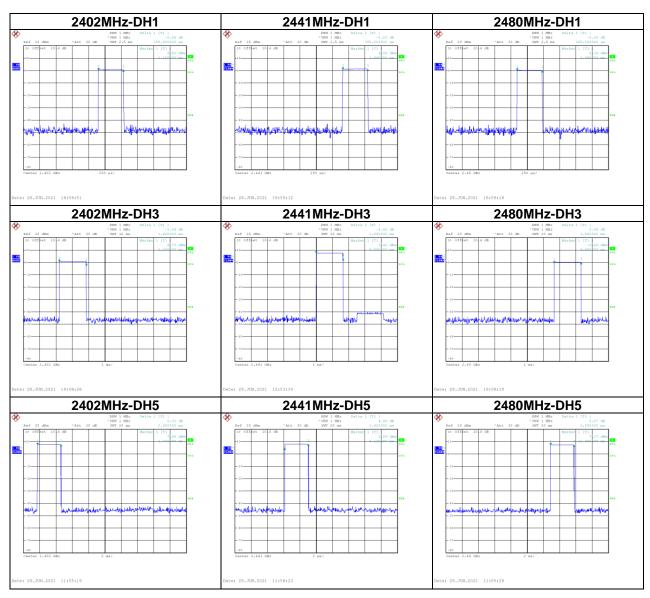
Date: 28.JUN.2021 19:04:21 Date: 29.JUN.2021 12:36:00

	APPENDIX D	AVERAGE TIME OF OCCUPANC	Υ
Project No. 221			

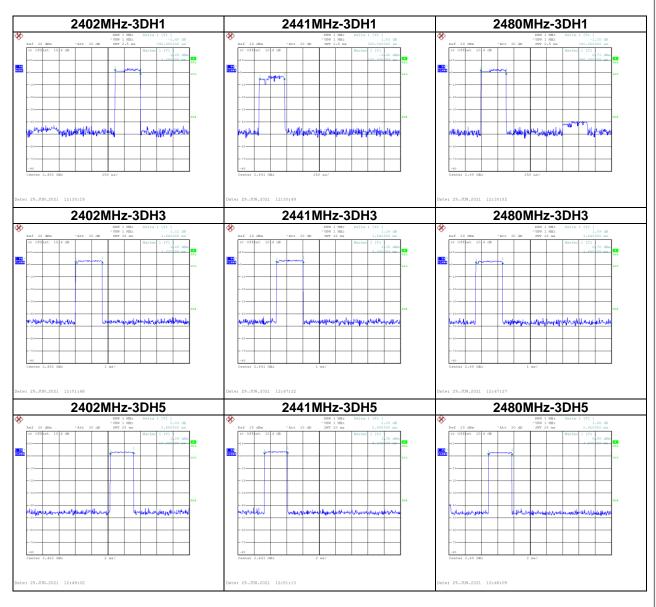

Project No.: 2103T126B Page 57 of 74 Report Version: R01

Test Mode: 1Mbps

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.8800	0.3072	0.4000	Pass
DH3	2402	1.6600	0.2656	0.4000	Pass
DH1	2402	0.3850	0.1232	0.4000	Pass
DH5	2441	2.9200	0.3115	0.4000	Pass
DH3	2441	1.6600	0.2656	0.4000	Pass
DH1	2441	0.3850	0.1232	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass
DH3	2480	1.6600	0.2656	0.4000	Pass
DH1	2480	0.3850	0.1232	0.4000	Pass

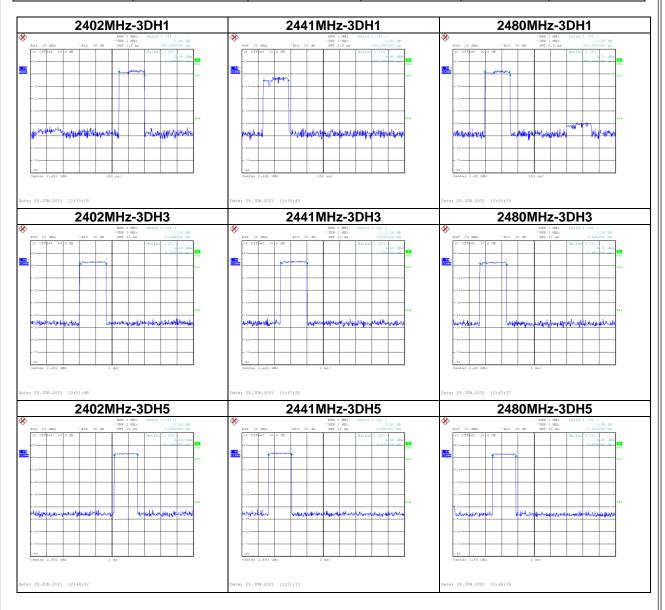


Test Mode : 1Mbps_AFH Mode


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.8800	0.1536	0.4000	Pass
DH3	2402	1.6600	0.0885	0.4000	Pass
DH1	2402	0.3850	0.0205	0.4000	Pass
DH5	2441	2.9200	0.1557	0.4000	Pass
DH3	2441	1.6600	0.0885	0.4000	Pass
DH1	2441	0.3850	0.0205	0.4000	Pass
DH5	2480	2.8800	0.1536	0.4000	Pass
DH3	2480	1.6600	0.0885	0.4000	Pass
DH1	2480	0.3850	0.0205	0.4000	Pass

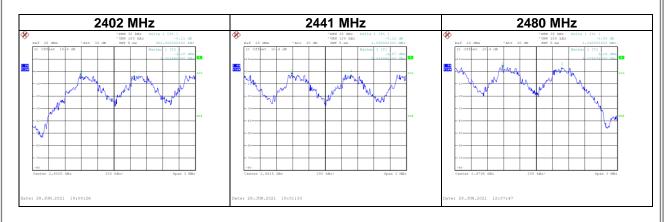
Test Mode: 3Mbps

Data Packet	Frequency (MHz)	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH3	2402	1.6400	0.2624	0.4000	Pass
3DH1	2402	0.3900	0.1248	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH1	2441	0.3800	0.1216	0.4000	Pass
3DH5	2480	2.9200	0.3115	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	0.3900	0.1248	0.4000	Pass



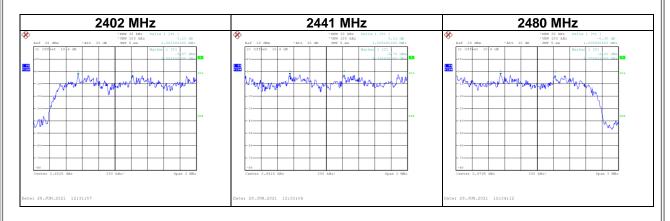
Test Mode : 3Mbps_AFH Mode

Data Packet	Frequency (MHz)	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.0389	0.4000	Pass
3DH3	2402	1.6400	0.0221	0.4000	Pass
3DH1	2402	0.3900	0.0053	0.4000	Pass
3DH5	2441	2.8800	0.0389	0.4000	Pass
3DH3	2441	1.6400	0.0221	0.4000	Pass
3DH1	2441	0.3800	0.0051	0.4000	Pass
3DH5	2480	2.9200	0.0394	0.4000	Pass
3DH3	2480	1.6400	0.0221	0.4000	Pass
3DH1	2480	0.3900	0.0053	0.4000	Pass


APPENDIX E	HOPPING CHANNEL SEPARATION MEASUREMENT

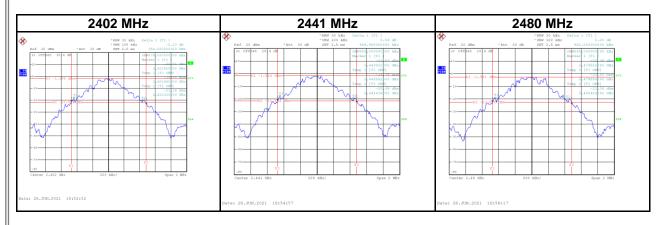
Project No.: 2103T126B Page 62 of 74 Report Version: R01

Test Mode :	Hopping on	_1Mbps


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.982	0.639	Pass
2441	1.098	0.640	Pass
2480	1.098	0.641	Pass

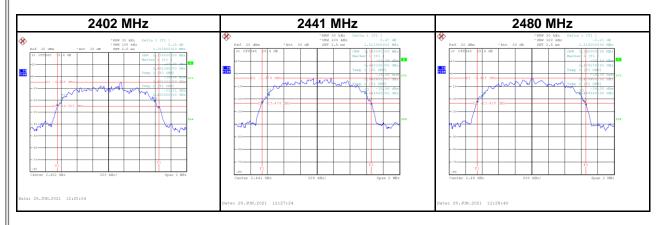
Test Mode : Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.002	0.869	Pass
2441	1.005	0.881	Pass
2480	1.006	0.879	Pass


Report No.: BTL-FCCP-6-2103T126B APPENDIX F BANDWIDTH

Project No.: 2103T126B Page 65 of 74 Report Version: R01

Test Mode: 1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0.958	0.876	Pass
2441	0.960	0.884	Pass
2480	0.962	0.868	Pass

Test Mode: 3Mbps

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.304	1.176	Pass
2441	1.322	1.180	Pass
2480	1.318	1.188	Pass

Project No.: 2103T126B Page 68 of 74 Report Version: R01

Test Mode :	1Mbps	1Mbps -		d Date 2	2021/6/30
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	6.52	0.0045	21.00	0.1250	Pass
2441	6.82	0.0048	21.00	0.1250	Pass
2480	6.06	0.0040	21.00	0.1250	Pass

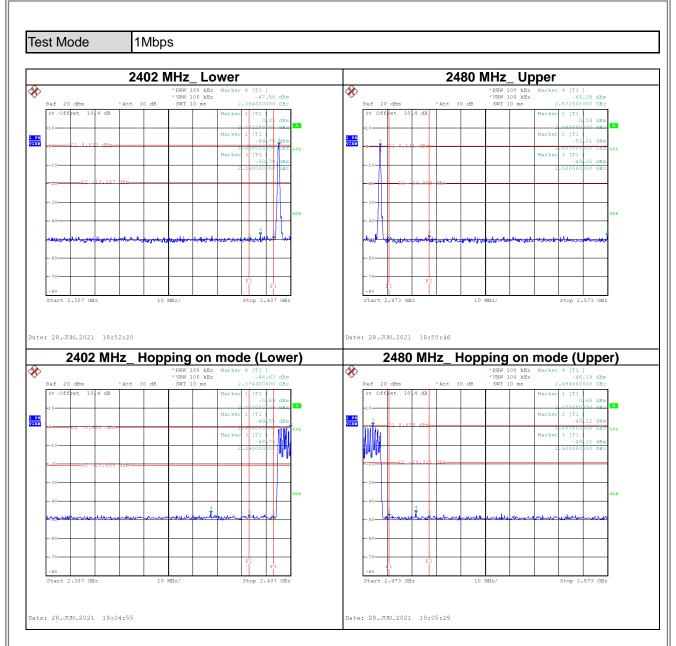
Test Mode :	2Mbps	Tested Date	2021/6/30

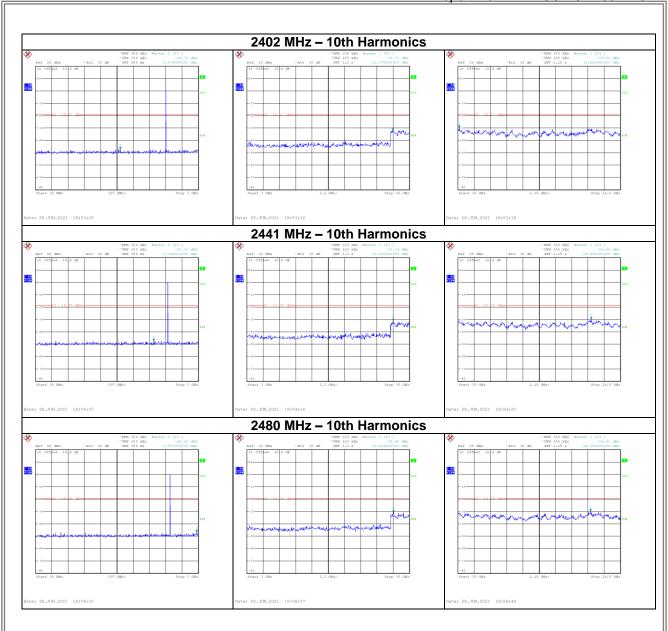
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	2.95	0.0020	21.00	0.1250	Pass
2441	3.03	0.0020	21.00	0.1250	Pass
2480	3.01	0.0020	21.00	0.1250	Pass

Test Mode :	3Mbps	Tested Date	2021/6/30
-------------	-------	-------------	-----------

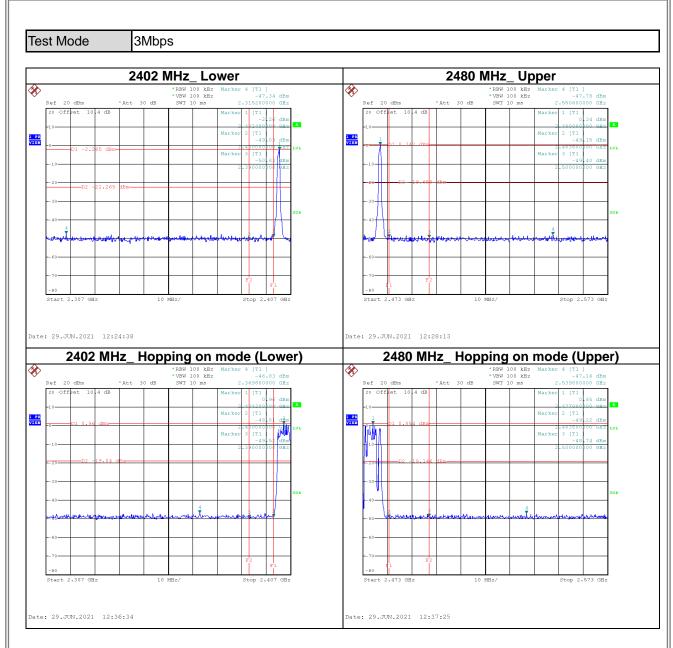
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	3.28	0.0021	21.00	0.1250	Pass
2441	3.25	0.0021	21.00	0.1250	Pass
2480	3.21	0.0021	21.00	0.1250	Pass

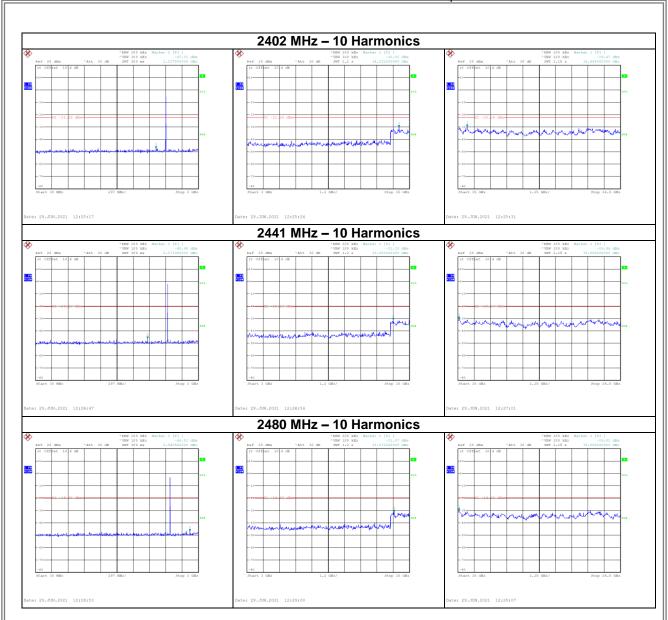
Project No.: 2103T126B Page 69 of 74 Report Version: R01




APPENDIX H	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2103T126B Page 70 of 74 Report Version: R01





End of Test Report