

RF Exposure Evaluation for SoClean 3.0/EzClean

FCC ID: 2AVU3-SC1400

ph 401.461.1484

fax 401.461.1218

web www.baycomp.com

email info@baycomp.com

Bay Computer Associates, Inc.

software development & electronics design

136 Frances Avenue ▶ Cranston, RI 02910

c o n f i d e n t i a l

BLE RF exposure evaluation

The following information provides the minimum separation distance for the antenna as part of the design for the SoClean 3.0 and EzClean as calculated from the FCC OET Bulletin 65, Appendix A, Table (B) Limits for General Population/Uncontrolled Exposure. This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1.0mW/cm² uncontrolled exposure limit for the frequency range of 1500MHz – 100,000MHz. The power density formula used was:

$$S = \frac{P * G}{4\pi R^2}$$

Measured Conducted Power = 5.09 dBm

Manufacturer Output Power Rating = 4 dBm

Maximum Rated output Power = 6 dBm

Max Antenna gain is 0 dBi

R = 20.0cm

EIRP = 6 dBm

Converting 6 dBm to mW = 3.98 mW

$$S = \frac{3.98mW}{4\pi 20^2} = 0.00079 \frac{mW}{cm^2}$$

In the frequency range of 1500 – 100,000 MHz, the MPE limit is 1.0 mWcm⁻² for general population and uncontrolled exposure. As the measured conducted power density is below this limit at a distance of 20cm², SAR testing is not required for this device.

ph 401.461.1484

fax 401.461.1218

web www.baycomp.com

email info@baycomp.com

Bay Computer Associates, Inc.

RFID RF exposure evaluation

The following information provides the minimum separation distance for the antenna as part of the design for the SoClean 3.0 and EzClean as calculated from the FCC OET Bulletin 65, Appendix A, Table (B) Limits for General Population/Uncontrolled Exposure. This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $(180/f^2)$ mW/cm² uncontrolled exposure limit for the frequency range of 3MHz – 30MHz. The power density formula used was:

$$S = \frac{P * G}{4\pi R^2}$$

13.56 MHz RFID module:

Frequency range for RFID: 13.553 MHz to 13.567 MHz

Measured Field Strength is 62.59 dBuV/m

Assumed Field Strength tolerance = ± 3 dB

Antenna gain is 0dBi

The maximum allowed field strength with tolerance is 65.59 dBuV/m at 3m in frequency 13.56 MHz

The EIRP = $[(FS^2 * D)^2 * 1000 / 30] = 0.0011$ mW

The power density at 20cm = 0.0011 mW * $1.00/(4\pi R^2) = 0.00000022$ mWcm⁻²

$(180/f^2) = (180/13.56^2) = 0.979$ mWcm⁻²

In the frequency range of 1.34 MHz – 30 MHz, the MPE limit is $(180/f^2)$ mW/cm² for general population and uncontrolled exposure. As the measured conducted power density is below this limit at 20cm², SAR testing is not required for this device.

ph 401.461.1484

fax 401.461.1218

web www.baycomp.com

email info@baycomp.com

Bay Computer Associates, Inc.

Combined RF Exposure Evaluation

Using the calculated power densities for the BLE transmitter and RFID transmitter above, this section calculates and evaluates the simultaneous transmission exposure.

$$\text{Combined Exposure} = \frac{S_{BLE}}{1.0 \frac{mW}{cm^2}} + \frac{S_{RFID}}{\frac{180 mW}{f^2 cm^2}} = 0.00079$$

The 0.079% simultaneous exposure falls underneath the 100% exposure limit for simultaneous transmission. Thus, SAR testing is not required for this device.

ph 401.461.1484

fax 401.461.1218

web www.baycomp.com

email info@baycomp.com

Bay Computer Associates, Inc.