

SAR TEST REPORT

For

Hyundai Technology Group, Inc.

Tablet

Test Model: 10LA1

Additional Model No. : HT10LA1MSGNA02

Prepared for Address	 Hyundai Technology Group, Inc. 2601 Walnut Ave. Tustin, CA 92780, United States
Prepared by Address	 Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,
Tel Fax Web Mail	518000, China : (86)755-82591330 : (86)755-82591332 : www.LCS-cert.com : webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples Sample No. Serial number Date of Test Date of Report	 November 26, 2021 2 211103087A-1, 211103087A-2 Prototype November 26, 2021~December 10, 2021 December 24, 2021

SAR TEST REPORT				
Report Reference No	LCS211103087AEB			
Date Of Issue	December 24, 2021			
Testing Laboratory Name::	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Address :	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China			
Testing Location/ Procedure:	Full application of Harmonised standards <pre> </pre>			
	Partial application of Harmonised standards Other standard testing method			
Applicant's Name	Other standard testing method			
Applicant's Name:	Hyundai Technology Group, Inc. 2601 Walnut Ave. Tustin, CA 92780, United States			
Address				
Test Specification:				
	IEEE Std C95.1, 2019/ IEEE Std 1528™-2013/FCC Part 2.1093			
Test Report Form No	LCSEMC-1.0			
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Master TRF:	Dated 2011-03			
This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance	g Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes noresponsibility for and will not assume the reader's interpretation of the reproduced material due to its			
Test Item Description::				
	Tablet			
Test Item Description:	Tablet HYUNDAI			
Test Item Description: Trade Mark Model/Type Reference Operation Frequency	Tablet HYUNDAI 10LA1			
Test Item Description: Trade Mark Model/Type Reference Operation Frequency	Tablet HYUNDAI 10LA1 GSM 850,1900;WCDMA II,V;			
Test Item Description: Trade Mark Model/Type Reference Operation Frequency	Tablet HYUNDAI 10LA1 GSM 850,1900;WCDMA II,V; LTE2,4,5,7,12,17,41;WLAN2.4G,5.2G,5.8G			
Test Item Description: Trade Mark Model/Type Reference Operation Frequency	Tablet HYUNDAI 10LA1 GSM 850,1900;WCDMA II,V; LTE2,4,5,7,12,17,41;WLAN2.4G,5.2G,5.8G Input: 5V=2A			
Test Item Description	Tablet HYUNDAI 10LA1 GSM 850,1900;WCDMA II,V; LTE2,4,5,7,12,17,41;WLAN2.4G,5.2G,5.8G Input: 5V=2A For Adapter Input: 100-240V~, 50/60Hz, 0.5A			

Compiled by:

Supervised by:

Wang

Jin

Approved by:

Inmo limoz

Ping Li Ping Li/ File administrators

Jin Wang/ Technique principal

Gavin Liang/ Manager

SAR -- TEST REPORT

Test Report No. :	LCS211103087AEB	<u>December 24, 2021</u> Date of issue
		Date of issue

Type / Model	: 10LA1
EUT	: Tablet
Applicant	: Hyundai Technology Group, Inc.
Address	: 2601 Walnut Ave. Tustin, CA 92780, United States
Telephone	
Fax	: /
Manufacturer	: Hyundai Technology Group, Inc.
Address	: 2601 Walnut Ave. Tustin, CA 92780, United States
Telephone	
Fax	
Fax Factory Address	: / : /
Fax	: / : / : /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
000	December 24, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

	ST STANDARDS AND TEST DESCRIPTION	
1.1.	TEST STANDARDS	
1.2.		
1.3.		
1.4.	PRODUCT DESCRIPTION	6
1.5.	STATEMENT OF COMPLIANCE	9
2. TES	T ENVIRONMENT	10
2.1.	Test Facility	10
	ENVIRONMENTAL CONDITIONS	
	SAR LIMITS	
	EQUIPMENTS USED DURING THE TEST	
3. SAR	R MEASUREMENTS SYSTEM CONFIGURATION	12
3.1.	SARMEASUREMENT SET-UP	
3.2.		
3.3.	PHANTOMS	
3.4.		
3.5.		
3.6.		
3.7.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
3.8.	TISSUE EQUIVALENT LIQUID PROPERTIES	
3.9.	SYSTEM CHECK	
	. SAR MEASUREMENT PROCEDURE	
	POWER REDUCTION	
	TOWER DRI T	
		•••••••••••••••••••••••••••••••••••••••
4.1		
4.1. 4.2.	Conducted Power Results	27
4.2.	Conducted Power Results Transmit Antennas and SAR Measurement Position	27
	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results	
4.2. 4.3.	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations	
4.2. 4.3. 4.4.	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures	
4.2. 4.3. 4.4. 4.5.	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz)	27
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz) System Check Results	27
4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz) System Check Results	27
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9.	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz) System Check Results	27
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9.	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz) System Check Results SAR Test Graph Results	27 44 45 49 51 51 52 53 61 75
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL	CONDUCTED POWER RESULTS	27
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1	Conducted Power Results Transmit Antennas and SAR Measurement Position	27
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1 5.2 5.3 5.4	Conducted Power Results TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION SAR MEASUREMENT RESULTS SIMULTANEOUS TX SAR CONSIDERATIONS SAR MEASUREMENT VARIABILITY GENERAL DESCRIPTION OF TEST PROCEDURES MEASUREMENT UNCERTAINTY (450MHZ-6GHZ) SYSTEM CHECK RESULTS SAR TEST GRAPH RESULTS LIBRATION CERTIFICATES PROBE-EPGO324 CALIBRATION CERTIFICATE SID750DIPOLE CALIBRATION CERTIFICATE SID835DIPOLE CALIBRATION CERTIFICATE SID1800 DIPOLE CALIBRATION CERTIFICATE	27
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1 5.2 5.3 5.4 5.5	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz) System Check Results SAR Test Graph Results LIBRATION CERTIFICATES Probe-EPGO324 Calibration Certificate SID750Dipole Calibration Certificate SID835Dipole Calibration Certificate SID1800 Dipole Calibration Certificate	27 44 45 49 51 51 52 53 61 75 75 75 85 96 107 118
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1 5.2 5.3 5.4 5.5 5.6	Conducted Power Results. TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION. SAR MEASUREMENT RESULTS. SIMULTANEOUS TX SAR CONSIDERATIONS. SAR MEASUREMENT VARIABILITY. GENERAL DESCRIPTION OF TEST PROCEDURES. MEASUREMENT UNCERTAINTY (450MHZ-6GHZ). SYSTEM CHECK RESULTS. SAR TEST GRAPH RESULTS. LIBRATION CERTIFICATES. PROBE-EPGO324 CALIBRATION CERTIFICATE. SID750DIPOLE CALIBRATION CERTIFICATE. SID835DIPOLE CALIBRATION CERTIFICATE. SID1800 DIPOLE CALIBRATION CERTIFICATE. SID1900 DIPOLE CALIBRATION CERTIFICATE. SID1900 DIPOLE CALIBRATION CERTIFICATE. SID2450 DIPOLE CALIBRATION CERTIFICATE.	27 44 45 49 51 51 52 53 61 75 75 75 85 96 107 118 29
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Conducted Power Results TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION SAR MEASUREMENT RESULTS SIMULTANEOUS TX SAR CONSIDERATIONS SAR MEASUREMENT VARIABILITY GENERAL DESCRIPTION OF TEST PROCEDURES MEASUREMENT UNCERTAINTY (450MHZ-6GHZ) SYSTEM CHECK RESULTS SAR TEST GRAPH RESULTS LIBRATION CERTIFICATES PROBE-EPGO324 CALIBRATION CERTIFICATE SID750DIPOLE CALIBRATION CERTIFICATE SID835DIPOLE CALIBRATION CERTIFICATE SID1800 DIPOLE CALIBRATION CERTIFICATE SID1800 DIPOLE CALIBRATION CERTIFICATE SID1900 DIPOLE CALIBRATION CERTIFICATE SID1900 DIPOLE CALIBRATION CERTIFICATE SID1900 DIPOLE CALIBRATION CERTIFICATE SID2450 DIPOLE CALIBRATION CERTIFICATE SID2450 DIPOLE CALIBRATION CERTIFICATE SID2600 DIPOLE CALIBRATION CERTIFICATE SID2600 DIPOLE CALIBRATION CERTIFICATE SID2600 DIPOLE CALIBRATION CERTIFICATE	27 44 45 49 51 51 52 53 61 75 75 75 85 96 107 118 129 140
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz) System Check Results SAR Test Graph Results LIBRATION CERTIFICATES Probe-EPGO324 Calibration Certificate SID750Dipole Calibration Certificate SID835Dipole Calibration Certificate SID1800 Dipole Calibration Certificate SID1800 Dipole Calibration Certificate SID1900 Dipole Calibration Certificate SID2450 Dipole Calibration Certificate SID2600 Dipole Calibration Certificate SID5G-6G Dipole Calibration Certificate	27 44 45 49 51 51 52 53 61 75 75 75 85 96 107 118 129 140 151
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6. PHC	Conducted Power Results	27 44 45 49 51 51 52 53 61 75 75 85 96 107 118 29 140 151 164
4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 5. CAL 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6. PHC 7. PHC	Conducted Power Results Transmit Antennas and SAR Measurement Position SAR Measurement Results Simultaneous TX SAR Considerations SAR Measurement Variability General description of test procedures Measurement Uncertainty (450MHz-6GHz) System Check Results SAR Test Graph Results LIBRATION CERTIFICATES Probe-EPGO324 Calibration Certificate SID750Dipole Calibration Certificate SID835Dipole Calibration Certificate SID1800 Dipole Calibration Certificate SID1800 Dipole Calibration Certificate SID1900 Dipole Calibration Certificate SID2450 Dipole Calibration Certificate SID2600 Dipole Calibration Certificate SID5G-6G Dipole Calibration Certificate	27 44 45 49 51 51 52 53 61 75 75 85 96 107 118 129 140 151 164 168

TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528[™]-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance v06 : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB447498 D02 SAR Procedures for Dongle Xmtr v02r01: SAR Measurement Procedures For USB Dongle Transmitters.

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS KDB941225 D01 3G SAR Procedures: 3G SAR MEAUREMENT PROCEDURES

KDB 941225 D05 SAR for LTE Devices: SAR Evaluation Considerations For LTE Devices

KDB 616217 D04 SAR for laptop and tablets v01r02: SAR Evaluation procedures for umpc mini-tablet devices

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample		November 26, 2021
Testing commenced on	:	November 26, 2021
Testing concluded on	:	December 10, 2021

1.4. Product Description

The Hyundai Technology Group, Inc.'s Model: 10LA1 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
EUT :	Tablet	
Model/Type reference:	10LA1	
Additional Model No.	HT10LA1MSGNA02	
Model Declaration:	PCB board, structure and internal of these model(s) are the same, So no additional models were tested	
Hardware Version	G2071	
Firmware Version:	/	
Power supply: Power supply: Input: 5V=2A For Adapter Input: 100-240V~, 50/60Hz, 0.5A For Adapter Output: 5V=2A, 10W DC 3.8V by Rechargeable Li-ion Battery, 6000mAh		
Hotspot:	Supported	
Exposure category	General population/uncontrolled environment	
EUT Type	Production Unit	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 169

Portable Device

Device Type The EUT is Tablet. the Tablet is intended for WLAN transmission. It is equipped with WiFi2.4G,5.2G,5.8G; GSM 850,1900; WCDMA Band II,Band V; LTE 2,4,5,7,12,17,41. For more information see the following datasheet

Technical Characteristics			
LTE			
Operation Band:	LTE FDD band 2,4,5,7,12,17,41		
Modulation Type:	QPSK/16QAM		
Release Version:	R8		
Power Class:	Class 3		
	FPC Antenna		
	0.45dBi (max.) For E-UTRA Band 2		
	0.40dBi (max.) For E-UTRA Band 4		
Antenna Description:	0.45dBi (max.) For E-UTRA Band 5		
Antenna Description.	0.40dBi (max.) For E-UTRA Band 7		
	0.40dBi (max.) For E-UTRA Band 12		
	0.40dBi (max.) For E-UTRA Band 17		
	0.40dBi (max.) For E-UTRA Band 41		
Bluetooth			
Frequency Range:	2402MHz ~ 2480MHz		
Chanel Number:	79 channels for Bluetooth V4.2(DSS)		
Chanter Hamber.	40 channels for Bluetooth V4.2 (DTS)		
Chanel Spacing:	1MHz for Bluetooth V4.2 (DSS)		
Chanter Opacing.	2MHz for Bluetooth V4.2 (DTS)		
Modulation Type;	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.2(DSS)		
modulation Type,	GFSK for Bluetooth V4.2 (DTS)		
Bluetooth Version:	V4.2		
Antenna Description:	FPC Antenna, -0.29dBi (max.)		
WIFI 2.4G			
Supported Standards:	IEEE 802.11b/802.11g/802.11n(HT20 and HT40)		
Frequency Range:	2412MHz-2462MHz		
	2412-2462MHz for 11b/g/n(HT20)		
Operation frequency:	2422-2452MHz for 11n(HT40)		
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK);		
Type of Modulation:	IEEE 802.11g/n: OFDM(64QAM, 16QAM, QPSK, BPSK)		
	11 channels for 20MHz bandwidth (2412~2462MHz)		
Channel number:	7 channels for 40MHz bandwidth (2422~2452MHz)		
Channel separation:	5MHz		
Antenna Description:	FPC Antenna, -0.29dBi (max.)		
WIFI 5.2G			
Frequency Range:	5180MHz-5240MHz		
Type of Modulation:	IEEE 802.11a/n/ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)		
	4 channels for 20MHz bandwidth (5180-5240MHz)		
Channel number:	2 channels for 40MHz bandwidth (5190~5230MHz)		
	1 channels for 80MHz bandwidth (5210MHz)		
Channel separation:	5MHz		
Antenna Description:	FPC Antenna, 2.0dBi (max.)		
WIFI 5.8G			
Frequency Range:	5745-5825MHz		
Type of Modulation:			
~ ~ .	5 channels for 20MHz bandwidth(5745-5825MHz)		
Channel number:	2 channels for 40MHz bandwidth(5755~5795MHz)		
	1 channels for 80MHz bandwidth(5775MHz)		
Channel separation:	5MHz		
Antenna Description:	FPC Antenna, 2.0dBi (max.)		
UMTS			

Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

Operation Band:	UMTS FDD Band II/V		
FrequencyRange:	WCDMA Band II: 1852.4~1907.6MHz		
Trequency/varige.	WCDMA Band V: 826.4~846.6MHz		
Modulation Type:	QPSK,16QAM		
WCDMA Release Version:	R6		
DC-HSUPA Release Version:	Not Supported		
	FPC Antenna		
Antenna Description:	0.45dBi (max.) For WCDMA Band II		
	0.45dBi (max.) For WCDMA Band V		
GSM			
Support Band:	GSM850/PCS1900		
Frequency:	GSM850:824.2~848.8MHz		
	GSM1900:1850.2~1909.8MHz		
Release Version:	R99		
Power Class:	GSM850:Power Class12		
	PCS1900:Power Class12		
Modulation Type:	GMSK for GSM/GPRS; GMSK,8PSK for EGPRS		
DTM Mode:	Not Supported		
	FPC Antenna		
Antenna Description:	0.45dBi (max.) For GSM 850		
	0.45dBi (max.) For PCS 1900		
GPS function	Support and only RX		

1.5. Statement of Compliance

The maximum of results of SAR found during testing for 10LA1 are follows:

<Highest Reported standalone SAR Summary>

Classment	Frequency	Hotspot (Report SAR _{1-g} (W/kg)	Body-worn (Report SAR _{1-g} (W/kg)			
Class	Band	(Separation Distance 0mm)				
	GSM 850	0.305	0.305			
	GSM1900	0.439	0.439			
	WCDMA Band V	0.452	0.452			
	WCDMA Band II	0.685	0.685			
	LTE band 2	0.533	0.533			
PCB	LTE band 4	0.455	0.455			
	LTE band 5	0.351	0.351			
	LTE band 7	0.612	0.612			
	LTE band 12	0.396	0.396			
	LTE band 17	0.403	0.403			
	LTE band 41	0.380	0.380			
DTS	WIFI2.4G	0.212	0.212			
NII	WIFI5.2G	0.171	0.171			
INII	WIFI5.8G	0.031	0.031			

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body-worn	PCB	0.007
(hotspot open)	DTS	0.897

2. TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Site Description EMC Lab.

: NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/	(g)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average(averaged over the whole body)	0.08	0.4
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	enovo G5005 MY		N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2021-06-11	2022-06-10
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2021-11-13	2022-11-12
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2021-11-13	2022-11-12
6	Wideband Radio Communication Tester	R&S			2021-11-20	2022-11-19
7	E-Field PROBE	MVG	EPGU324		2021-10-06	2022-10-05
8	DIPOLE 750	SATIMO	SID 750	SN 07/14 DIP 0G750-302	2021-09-29	2024-09-28
9	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2021-09-29	2024-09-28
10	DIPOLE 1800	SATIMO	SID 1800	SN 07/14 DIP 1G800-301	2021-09-29	2024-09-28
11	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2021-09-22	2024-09-21
12	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2021-09-29	2024-09-28
13	DIPOLE 2600	SATIMO	SID 2600	SN 38/18 DIP 2G600-468	2021-09-22	2024-09-21
14	DIPOLE 5000-6000	MVG	SWG5500	SN 49/16 WGA 43	2021-09-22	2024-09-21
15	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2021-11-13	2022-11-12
16	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2021-11-13	2022-11-12
17	Communication Antenna	SATIMO	TIMO ANTA57 SN 39/14 ANTA57		2021-11-13	2022-11-12
18	FEATURE PHONEPOSITIONING SATIMO DEVICE		MSH98	SN 40/14 MSH98	N/A	N/A
19	DUMMY PROBE	SATIMO	DP60	DP60 SN 03/14 DP60		N/A
20	SAM PHANTOM	SATIMO	SAM117	SAM117 SAM117 SAM117		N/A
21	Liquid measurement Kit	HP	85033D	3423A03482	2021-11-13	2022-11-12
22	Power meter	Agilent	E4419B	MY45104493	2021-06-11	2022-06-10
23	Power meter	Agilent	E4419B	MY45100308	2021-11-20	2022-11-19
24	Power sensor	Agilent	E9301H	MY41495616	2021-11-20	2022-11-19
25	Power sensor	Agilent	E9301H	MY41495234	2021-06-11	2022-06-10
26	Directional Coupler	MCLI/USA	4426-20	03746	2021-06-11	2022-06-10

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

SAR MEASUREMENTS SYSTEM CONFIGURATION 3.

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

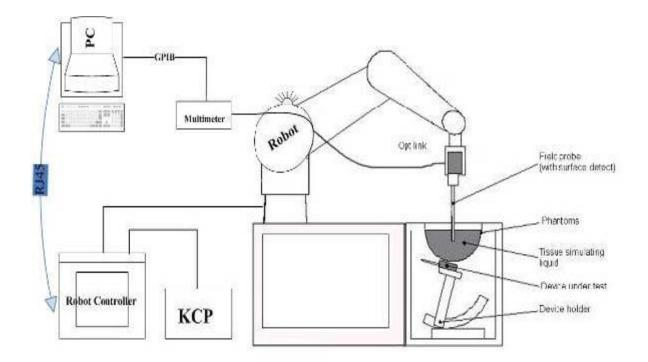
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

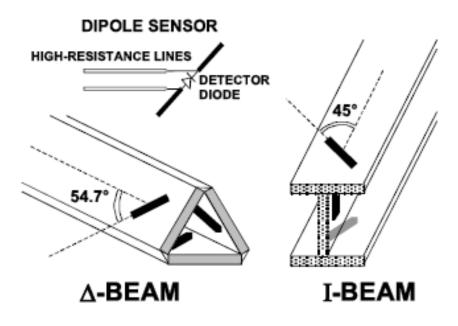
System validation dipoles to validate the proper functioning of the system.

3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by MVG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

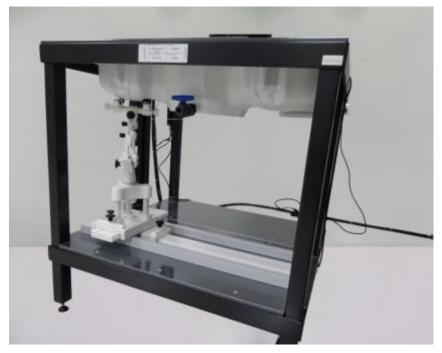
ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)


CalibrationISO/IEC 17025 calibration service available.

Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE 1528 and EN62209-1, EN62209-2. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz > 3 GHz				
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$				
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$ $20^{\circ} \pm 1^{\circ}$				
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

		•	0			
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$		
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid		$\leq 4 \ \mathrm{mm}$	$3-4$ GHz: ≤ 3 mm $4-5$ GHz: ≤ 2.5 mm $5-6$ GHz: ≤ 2 mm		
	2 b	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	m(n-1) mm		
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: ·	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression poir	nt Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters: -	Conductivity	σ
	- Density	0

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)Ui = input signal of channel i (i = x, y, z)cf = crest factor of exciting field dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

Shenzhen LCS Compliance Testing Laboratory Ltd.

FCC ID: 2AVTH-10LA102

(i = x, y, z)

(i = x, y, z)

L

Report No.: LCS211103087AEB

E – fieldprobes

H – fieldprobes :

:
$$E_i = \sqrt{\frac{N_i}{Norm_i \cdot ConvF}}$$

 $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

With Vi = compensated signal of channel i Normi = sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{o}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid										
Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	٤r
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

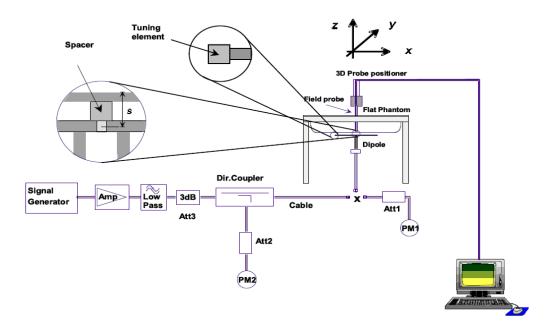
The composition of the tissue simulating liquid	
	-
	J

Target Frequency	He	ad	В	ody
(MHz)	٤r	σ(S/m)	٤ _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.8. Tissue equivalent liquid properties

lav 7h

The Frank Street


Dielectric Performance of Head and Body Tissue Simulating Liquid

Test Engineer: Jay Zhan									
Tissue	Measured	Targe	t Tissue		Measure	d Tissue		Liquid	Test Data
Туре	Frequency (MHz)	σ	٤r	σ	Dev.	٤r	Dev.	Temp.	
750H	750	0.89	41.90	0.88	-1.12%	41.58	-0.76%	21.2	11/26/2021
835H	835	0.90	41.50	0.86	-4.44%	40.14	-3.28%	20.4	11/28/2021
1800H	1800	1.40	40.00	1.42	1.43%	41.59	3.98%	22.5	11/30/2021
1900H	1900	1.40	40.00	1.37	-2.14%	39.23	-1.93%	21.5	12/02/2021
2450H	2450	1.80	39.20	1.76	-2.22%	40.12	2.35%	22.3	12/04/2021
2600H	2600	4.66	36.00	4.59	-1.50%	35.81	-0.53%	22.1	12/06/2021
5200H	5200	5.30	49.00	5.25	-0.94%	48.80	-0.41%	23.4	12/08/2021
5800H	5800	6.00	48.20	6.05	0.83%	48.46	0.54%	22.0	12/10/2021

3.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

Mixture	Frequency	Power	SAR _{1g}	SAR _{10g}	Drift	1W Ta	rget		rence ntage	Liquid	Date
Туре	(MHz)	Fower	(W/Kg)	(W/Kg)	(%)	SAR _{1a} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Date
		100 mW	0.824	0.562							
Head	750	Normalize to 1 Watt	8.24	5.62	1.42	8.38	5.53	-1.67%	1.63%	21.2	11/26/2021
		100 mW	0.975	0.632							
Head	835	Normalize to 1 Watt	9.75	6.32	-0.21	9.60	6.20	1.56%	1.94%	20.4	11/28/2021
		100 mW	3.819	20.13							
Head	1800	Normalize to 1 Watt	38.19	20.13	3.56	38.13	20.20	0.16%	-0.35%	22.5	11/30/2021
		100 mW	3.921	2.068							
Head	1900	Normalize to 1 Watt	39.21	20.68	-1.17	40.03	20.55	-2.05%	0.63%	21.5	12/02/2021
		100 mW	5.224	2.343							
Head	2450	Normalize to 1 Watt	52.24	23.43	0.24	53.89	24.15	-3.06%	-2.98%	22.3	12/04/2021
		100 mW	5.511	2.458							
Head	2600	Normalize to 1 Watt	55.11	24.58	3.25	56.91	24.69	-3.16%	-0.45%	22.1	12/06/2021
		100 mW	15.467	5.512							
Head	5200	Normalize to 1 Watt	154.67	55.12	-3.02	165.77	57.20	-6.70%	-3.64%	23.4	12/08/2021
		100 mW	18.293	6.177							
Head	5800	Normalize to 1 Watt	182.93	61.77	-1.01	186.77	62.84	-2.06%	-1.70%	22.0	12/10/2021

3.10. SAR measurement procedure

The measurement procedures are as follows:

3.10.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.10.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.10.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

I) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH shouldbe configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain aconstant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCHpower offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in theTable below. The CQI value is determined by the UE category, transport block size, numberof HS-PDSCHs and modulation used in the H-set

Sub-set	βc	βd	β _d (SF)	βc/βd	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)			
1	2/15	15/15	64	2/15	4/15	0.0	0.0			
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15 1.0 0.0					
3	15/15	8/15	64	15/8	30/15	1.5	0.5			
4	15/15	4/15	64	15/4 30/15 1.5 0.5						
Note2: CN Note3:For	4 15/15 4/15 64 15/4 30/15 1.5 0.5 Note1: Δ _{ACK} , Δ _{NACK} and Δ _{CQI} = 8 Ahs = βhs/βc=30/15 Ahs $\beta_{hs}=30/15^{+}$ βhs=30/15*βc Note2: CM=1 forβc/βd=12/15, βhs/βc=24/15. Note3:For subtest 2 the βcβd ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to βc=11/15 and βd=15/15.									

Table 2: Subtests for UMTS Release 5 HSDPA

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Sub- set	βc	βd	β _d (SF)	βc/βd	$\beta_{hs}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} [:] 47/15 β _{ed2} :47/15	4	2	2.0	1.0	15	92

Table 3: Sub-Test 5 Setup for Release 6 HSUPA

Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEE

V V													
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note	1: Δ_{ACK} , Δ	VACK and	$\Delta cql =$	8 ⇔ A _{hs} =	= βhs/βc =	= 30/15 ⇔β	3hs= 30/15 *	B _c .					
Note	2: CM = 1	for βc/βd	=12/15	$\beta_{\rm hs}/\beta_{\rm c} = 2$	4/15. Fo	or all other	combinatior	ns of DF	DCH, DF	CCH, F	IS- DPC	CCH, E-	
DPD	CH and E-I	DPĊCH th	ne MPF	is based	on the r	elative CM	difference.						
Note	3: For sub	test 1 the	βc/βd ι	atio of 11	15 for th	ne TFC dui	ring the mea	sureme	ent period	(TF1, T	F0) is a	achievec	lby
settin	g the signa	aled gain f	actors	for the ref	erence -	TFC (TF1,	TF1) to βc =	= 10/15	and $\beta d =$	15/15.			-
Note	4: For sub	test 5 the	βc/βd ι	atio of 15	15 for th	ne TFC dui	ring the mea	sureme	ent period	(TF1, T	F0) is a	achievec	lby
settin	g the signa	aled gain f	actors	for the ref	erence ⁻	TFC (TF1,	TF1) to βc =	= 14/15	and βd =	15/15.			
Note	5: Testing	UE using	E-DPD	OCH Physi	cal Laye	er category	1 Sub-test	3 is not	required	accordi	ng to TS	\$ 25.306	5
Figur	e 5.1a.												

Note 6: ßed can not be set directly; it is set by Absolute Grant Value.

3.10.4 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands
c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions . a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.
 The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.

When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.11. Power Reduction

The product without any power reduction.

3.12. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

According KDB 447498D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

2. According to October 2013TCB Workshop, for GSM / GPRS / EGPRS, the number of time slots to test for SAR should correspond to the highest frame-average maximum output power configuration, considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (4Tx slot) for GSM850/GSM1900 band due to their highest frame-average power.

3. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (4 Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

Conducted power measurement results for GSM850/PCS1900

		Condu	cicu pow					001300		
		Tune	Burst C	Conducted (dBm)	power		Tune-	Averag	e power (d	Bm)
GS	N 850	-up	Channe	I/Frequén	cy(MHz)	Division	up	Channel/	Frequency	(MHz)
		Max	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max	128/ 824.2	190/ 836.6	251/8 48.8
G	SM	32.50	32.41	32.42	32.43	-9.03dB	23.47	23.38	23.39	23.40
	1TX slot	32.50	32.32	32.31	32.33	-9.03dB	23.47	23.29	23.28	23.30
GPRS	2TX slot	31.00	30.98	30.97	30.98	-6.02dB	25.48	24.96	24.95	24.96
(GMSK)	3TX slot	30.00	29.53	29.50	29.47	-4.26dB	25.74	25.27	25.24	25.21
	4TX slot	28.00	27.98	27.97	27.99	-3.01dB	25.49	24.97	24.96	24.98
	1TX slot	26.50	26.02	25.98	26.01	-9.03dB	17.47	16.99	16.95	16.98
EGPRS	2TX slot	25.00	24.50	24.51	24.50	-6.02dB	18.98	18.48	18.49	18.48
(8PSK)	3TX slot	23.50	23.00	23.03	23.00	-4.26dB	18.74	18.74	18.77	18.74
	4TX slot	22.00	21.52	21.48	21.50	-3.01dB	18.99	18.51	18.47	18.49
		Tune	Burst C	Conducted (dBm)	power		Tune-	Averag	e power (d	Bm)
GSM	1 1 9 0 0	-up	Channe	I/Frequen	cy(MHz)	Division	up	Channel/	Frequency	(MHz)
0.01	11900	Max	512/ 1850.2	661/ 1880	810/ 1909.8	Factors	Max.	512/ 1850.2	661/ 1880	810/ 1909. 8
G	SM	29.50	29.43	29.45	29.45	-9.03dB	20.47	20.40	20.42	20.42
	1TX slot	29.50	29.37	29.41	29.38	-9.03dB	20.47	20.34	20.38	20.35
GPRS	2TX slot	28.50	27.98	28.03	27.98	-6.02dB	21.98	21.96	22.01	21.96
(GMSK)	3TX slot	27.00	26.53	26.52	26.47	-4.26dB	22.24	22.27	22.26	22.21
	4TX slot	25.00	24.98	24.99	25.00	-3.01dB	22.49	21.97	21.98	21.99
	1TX slot	26.00	25.52	25.49	25.52	-9.03dB	16.97	16.49	16.46	16.49
EGPRS	2TX slot	24.00	23.97	23.99	23.98	-6.02dB	18.48	17.95	17.97	17.96
(8PSK)	3TX slot	23.00	22.51	22.47	22.48	-4.26dB	18.74	18.25	18.21	18.22
	4TX slot	21.00	20.98	20.97	20.99	-3.01dB	18.49	17.97	17.96	17.98
Notos										

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) = -9.00 dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB 2. According to the conducted power as above, the GPRS measurements are performed with 3Txslot for GPRS850 and 3Txslot GPRS1900.

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station E5515C referred to the Setup Configuration. a.
- b. The RF path losses were compensated into the measurements. C.
 - A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 ii.
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	βd (SF)	βc/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 1: Note 2:	For the HS-E Magnitude (E discontinuity with β_{hs} = 2	DPCCH pow EVM) with H in clause 5. 4/15 * β_c .	er mask requ S-DPCCH te 13.1AA, ∆ _{ACK}	$_{\rm s}$ = 30/15 * β_c . irrement test in cla st in clause 5.13.1 and $\Delta_{\rm NACK}$ = 30/1	A, and HSDF 5 with β_{hs} =	PA EVM with ph 30/15 * β_c , and	ase d ∆ _{CQI} = 24/15
Note 3: Note 4:	DPCCH the support HSD	MPR is base PA in release	ed on the rela se 6 and late	. For all other com ative CM difference r releases. for the TFC during	e. This is app	licable for only l	JEs that
	achieved by = 15/15.	setting the s	signalled gain	factors for the ref	erence TFC (TF1, TF1) to β _c	= 11/15 and β_d

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base StationR&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK i.
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii, Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βc	βd	βd (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
		,		,		00/45							
Note 2	: CM = and E	Δ _{NACK} and 1 for β _c /β -DPCCH	d =12/1 the MF	= 30/15 w 5, β _{hs} /β _c PR is bas	=24/15. F ed on the	For all otl e relative	her combinatio CM difference	e.					
Note 2	: CM = and E : For su setting	Δ _{NACK} and 1 for β _d /β -DPCCH ibtest 1 tl g the sign	d =12/1 the MF he β₀/β alled g	= 30/15 w 5, β _{hs} /β _c PR is bas d ratio of ain facto	=24/15. F ed on the 11/15 for rs for the	For all ot relative the TFC reference	her combinatio CM difference during the m ce TFC (TF1,	e. easure TF1) to	ement peri p $\beta_c = 10/1$	iod (TF1, 15 and β	, TF0) is d = 15/15	achieved	by
Note 1 Note 2 Note 3 Note 4	CM = and E For su setting For su	Δ _{NACK} and 1 for β _o /β -DPCCH lbtest 1 tl g the sign lbtest 5 tl	the MF be β_c/β_c alled g	= 30/15 w 5, β _{hs} /β _c PR is bas a ratio of ain facto aratio of aratio of	=24/15. F ed on the 11/15 for rs for the 15/15 for	For all ot relative the TFC reference the TFC	her combinatio CM difference during the m	e. easure TF1) to easure	ement perio $\beta_c = 10/1$ ement peri	iod (TF1, 15 and β iod (TF1,	, TF0) is d = 15/15 , TF0) is	achieved achieved	by
Note 2 Note 3	CM = and E For su setting For su setting In cas	Δ_{NACK} and 1 for β_c/β -DPCCH lbtest 1 the g the sign lbtest 5 the g the sign	$s_d = 12/1$ the MF he β _c /β alled g he β _c /β alled g ng by l	= 30/15 w 5, βhs/βc PR is bas d ratio of ain facto d ratio of ain facto	=24/15. F ed on the 11/15 for rs for the 15/15 for rs for the	For all other relative the TFC reference the TFC reference	her combinatio CM difference during the mo ce TFC (TF1, during the mo	e. easure TF1) to easure TF1) to	ement peri $β_c = 10/2$ ement peri $β_c = 14/2$	iod (TF1, 15 and β iod (TF1, 15 and β	, TF0) is d = 15/15 , TF0) is d = 15/15	achieved achieved	by

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

		FDD I	Band V res	ult (dBm)	FDD Band II result (dBm)					
Item	Band		Test Chan	inel	Test Channel					
	20.10	4132/	4183/	4233/	9262/	9400/	9538/			
		826.4	836.6	846.6	1852.4	1880	1907.6			
RMC	12.2kbps	23.20	23.18	23.17	23.40	23.38	23.16			
	Subtest 1	22.64	22.63	22.59	22.54	22.83	22.58			
HSDPA	Subtest 2	22.48	22.74	22.41	22.49	22.59	22.70			
HSDFA	Subtest 3	22.71	22.61	22.42	22.44	22.63	22.51			
	Subtest 4	22.55	22.60	22.51	22.56	22.62	22.55			
	Subtest 1	22.55	22.51	22.34	22.55	22.69	22.43			
	Subtest 2	22.43	22.82	22.44	22.41	22.63	22.49			
HSUPA	Subtest 3	22.61	22.73	22.61	22.58	22.50	22.42			
	Subtest 4	22.46	22.58	22.37	22.36	22.51	22.37			
	Subtest 5	23.18	23.54	23.51	21.30	21.67	21.46			

Conducted Power Measurement Results(WCDMA Band II/V)

Note:1.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

BW	Frequency	RB Con	figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	21.28	20.24
		1	2	21.35	20.41
		1	5	21.34	20.23
	1850.7	3	0	21.32	20.18
		3	1	21.41	20.20
		3	3	21.39	20.15
		6	0	20.36	19.40
		1	0	21.07	19.98
	-	1	2	21.14	20.11
		1	5	20.95	19.95
1.4	1880.0	3	0	21.13	19.92
1	1000.0	3	1	21.16	19.90
	-	3	3	21.10	19.89
		6	0	20.04	19.13
		1	0	21.40	20.21
		1	2	21.40	20.21
	1000.0	1	5	21.45	20.21
	1909.3	3	0	21.48	20.25
		3	1	21.49	20.31
		3	3	21.47	20.29
		6	0	20.42	19.29
		1	0	21.43	20.39
		1	8	21.41	20.33
		1	14	21.51	20.44
	1851.5	8	0	20.42	19.48
		8	4	20.42	19.45
		8	7	20.40	19.48
		15	0	20.37	19.48
		1	0	21.22	20.12
		1	8	21.22	19.98
		1	14	21.18	19.97
3	1880.0	8	0	20.13	19.17
		8	4	20.14	19.23
		8	7	20.11	19.19
		15	0	20.11	19.05
		1	0	21.47	20.41
		1	8	21.57	20.34
		1	14	21.53	20.49
	1908.5	8	0	20.49	19.51
		8	4	20.47	19.51
		8	7	20.46	19.49
		15	0	20.48	19.42
	+ +	1	0	21.39	20.35
		1	12	21.54	20.48
		1	24	21.41	20.39
	1852.5	12	0	20.39	19.37
	1002.0	12	6	20.39	19.37
		12	13	20.44	19.50
	-	25	0	20.42	19.50
	<u>├</u>	25 1	0	20.46	20.12
5					
		1	12	21.19	20.12
		1	24	21.08	19.94
	1880.0	12	0	20.17	19.19
		12	6	20.18	19.17
		12	13	20.12	19.12
		25	0	20.16	19.20
	1907.5	1	0	21.33	20.43
		1	12	21.49	20.62

Report No.: LCS211103087AEB

¥					
		1	24	21.35	20.43
		12	0	20.50	19.55
		12	6	20.50	19.53
		12	13	20.46	19.55
		25	0	20.50	19.51
		1	0	21.42	20.41
		1	24	21.42	
					20.63
		1	49	21.51	20.52
	1855.0	25	0	20.45	19.51
		25	12	20.44	19.48
		25	25	20.58	19.60
		50	0	20.49	19.55
		1	0	21.30	20.31
		1	24	21.24	20.28
		1	49	21.04	20.04
10	1880.0	25	0	20.29	19.31
		25	12	20.28	19.32
		25	25	20.17	19.17
		50	0	20.19	19.25
			0		
		1		21.34	20.17
		1	24	21.61	20.46
		1	49	21.52	20.31
	1905.0	25	0	20.55	19.62
		25	12	20.57	19.66
		25	25	20.47	19.54
		50	0	20.53	19.58
		1	0	21.36	20.48
		1	38	21.58	20.67
		1	74	21.50	20.59
	1857.5	37	0	20.45	20.00
	1007.0	37	18	20.59	20.65
		37	37	20.58	20.54
		75	0	20.62	19.67
		1	0	21.37	20.44
		1	38	21.10	20.27
		1	74	20.90	20.06
15	1880.0	37	0	20.46	20.38
		37	18	20.26	20.22
		37	37	20.01	19.98
		75	0	20.24	19.29
		1	0	21.11	20.12
		1	38	21.30	20.50
		1	<u>30</u>		
	1000 5			21.40	20.49
	1902.5	37	0	20.16	20.14
		37	18	20.44	20.46
		37	37	20.51	20.47
		75	0	20.43	19.41
		1	0	21.41	20.53
		1	49	21.82	20.78
		1	99	21.51	20.42
	1860.0	50	0	20.48	19.55
		50	25	20.49	19.54
		50	50	20.45	19.70
		100	0	20.55	19.55
20					
		1	0	21.42	20.54
		1	49	21.29	20.47
		1	99	20.88	20.07
		50	0	20.33	19.42
	1880.0				
	1880.0	50	25	20.36	19.48
	1880.0			20.36 20.03	<u>19.48</u> 19.12

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 169

10LA102 Report No.: LCS211103087AEB

	1	0	20.97	20.08
	1	49	21.50	20.35
	1	99	21.40	20.33
1900.0	50	0	20.14	19.20
	50	25	20.10	19.16
	50	50	20.26	19.29
	100	0	20.11	19.18

LTE Band4 BW	Froqueney	DB Cor	figuration	Average Po	wor [dPm]
(MHz)	Frequency (MHz)	Size	Offset	QPSK	<u>бwer [dbm]</u> 16QAM
	_	1	0	20.78	19.80
	_	1	2	20.99	19.91
	4740 7	1	5	20.76	19.73
	1710.7	3	0	20.96	19.73
	_	3	1	20.96	19.72
		3	3	20.93	19.69
		6	0	19.87	18.92
		1	0	20.78	19.75
		1	2	21.00	19.88
		1	5	20.80	19.73
1.4	1732.5	3	0	20.96	19.72
		3	1	20.94	19.70
		3	3	20.96	19.72
		6	0	19.91	18.92
		1	0	21.18	20.00
		1	2	21.21	20.17
		1	5	21.15	19.92
	1754.3	3	0	21.22	20.05
		3	1	21.21	20.03
		3	3	21.23	20.02
		6	0	20.14	19.03
		1	0	20.88	19.99
		1	8	20.85	19.65
		1	14	20.81	19.62
	1711.5	8	0	19.83	18.87
		8	4	19.83	18.89
		8	7	19.81	18.94
		15	0	19.79	18.88
		1	0	20.84	19.72
		1	8	20.96	19.97
		1	14	21.00	19.85
3	1732.5	8	0	19.88	18.91
0	1102.0	8	4	19.83	18.88
		8	7	19.88	18.94
		15	0	19.82	18.92
		10	0	21.27	20.33
		1	8	21.27	20.33
	-	1	14	21.08	19.98
	1753.5	8	0	20.16	19.90
	1703.0				
		8	4 7	20.19	19.28
	-	8		20.14	19.12
		15	0	20.14	19.18
		1	0	20.90	19.80
		1	12	20.83	19.79
		1	24	20.60	19.58
5	1712.0	12	0	19.77	18.81
č		12	6	19.82	18.82
		12	13	19.69	18.68
		25	0	19.79	18.85
	1732.5	1	0	20.81	19.66

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 169

Report No.: LCS211103087AEB

V		1	12	20.98	19.95
		1	24	21.01	19.92
		12	0	19.83	18.91
		12	6	19.86	18.87
		12	13	19.85	18.87
		25	0	19.88	18.97
		1	0	21.22	20.35
		1	12	21.24	20.34
		1	24	21.03	20.04
	1752.5	12	0	20.30	19.29
	1102.0	12	6	20.26	19.32
		12	13	20.20	19.32
		25	0	20.18	19.23
		1	0	20.21	19.93
		1	24	20.91	19.93
	4745 0	1	49	20.40	19.52
	1715.0	25	0	19.81	18.86
		25	12	19.81	18.87
		25	25	19.67	18.75
		50	0	19.67	18.79
		1	0	20.70	19.77
		1	24	21.05	20.06
		1	49	21.09	20.18
10	1732.5	25	0	19.93	18.99
		25	12	19.91	18.96
		25	25	20.01	18.99
		50	0	19.98	18.99
		1	0	21.39	20.37
		1	24	21.49	20.34
		1	49	21.18	20.05
	1750.0	25	0	20.44	19.48
		25	12	20.43	19.53
		25	25	20.31	19.36
		50	0	20.35	19.45
		1	0	20.77	19.88
		1	38	20.63	19.60
		1	74	20.37	19.42
	1717.5	37	0	19.91	19.93
		37	18	19.63	19.64
		37	37	19.46	19.45
		75	0	19.63	18.69
		1	0	20.59	19.54
		1	38	20.96	20.00
		1	74	21.13	20.00
15	1732.5	37	0	19.62	19.68
10	1102.0	37	18	20.03	19.96
		37	37	20.03	20.30
		75	0	19.94	18.91
			0	21.20	20.29
		1	38		
		1		21.37	20.48
	4747 5	1	74	21.03	20.18
	1747.5	37	0	20.39	20.35
		37	18	20.49	20.43
		37	37	20.17	20.16
		75	0	20.34	19.41
		1	0	20.82	19.88
		1	49	19.67	19.51
20	1720.0	1	99	20.46	19.34
20	1720.0	50	0	19.44	18.59
		50	25	19.47	18.58
		50	50	19.58	18.63

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 169

		100	0	19.53	18.54
		1	0	20.50	19.43
		1	49	21.06	20.00
		1	99	21.22	20.15
	1732.5	50	0	19.80	18.88
		50	25	19.82	18.88
		50	50	20.03	19.17
		100	0	19.83	18.95
		1	0	21.03	19.79
		1	49	21.59	20.52
	1745.0	1	99	21.10	19.96
		50	0	20.35	19.46
		50	25	20.35	19.49
		50	50	20.37	19.52
		100	0	20.37	19.47

LTE Band5

LTE Band5 BW	Frequency	RB Configuration		Average Power [dBm]		
(MHz)	(MHz)	Size	Offset	QPSK	16QAM	
/		1	0	22.01	20.83	
		1	2	22.18	21.10	
		1	5	22.06	20.90	
	824.7	3	0	22.14	20.84	
		3	1	22.14	20.91	
		3	3	22.12	20.89	
		6	0	21.11	20.09	
		1	0	21.86	20.69	
		1	2	21.92	20.87	
		1	5	21.87	20.64	
1.4	836.5	3	0	21.94	20.72	
		3	1	21.92	20.74	
	F F	3	3	21.92	20.71	
	F F	6	0	20.89	19.74	
		1	0	21.91	20.71	
		1	2	22.12	20.91	
		1	5	21.95	20.74	
	848.3	3	0	22.09	20.86	
		3	1	22.06	20.82	
		3	3	22.13	20.88	
		6	0	21.01	19.98	
		1	0	22.06	21.05	
		1	8	22.06	21.07	
		1	14	22.01	21.00	
	825.5	8	0	21.06	20.06	
		8	4	21.06	20.09	
		8	7	21.08	20.08	
		15	0	21.06	20.03	
		1	0	21.91	20.90	
		1	8	21.83	20.83	
		1	14	21.87	20.81	
3	836.5	8	0	20.84	19.90	
		8	4	20.89	19.87	
		8	7	20.91	19.94	
		15	0	20.89	19.88	
		1	0	22.01	20.84	
		1	8	22.09	20.95	
		1	14	22.03	21.02	
	847.5	8	0	20.96	20.04	
		8	4	21.01	19.94	
		8	7	21.03	20.05	
		15	0	21.00	20.01	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 169

Report No.: LCS211103087AEB

		1	0	22.08	20.98
		1	12	22.13	21.03
		1	24	22.01	20.92
	826.5	12	0	21.00	19.97
		12	6	21.03	19.97
		12	13	21.00	19.97
		25	0	21.03	20.01
		1	0	21.85	20.87
		1	12	21.92	20.91
		1	24	21.79	20.78
5	836.5	12	0	20.85	19.89
		12	6	20.86	19.89
		12	13	20.88	19.87
		25	0	20.91	19.89
		1	0	21.93	20.80
		1	12	22.06	
		1	24	21.98	20.80 20.95 20.91 19.97 19.98 20.01
	846.5	12	0	21.00	
		12	6	21.01	
		12	13	20.99	
		25	0	20.99	20.03
	829.0	1	0	22.08	21.05
		1	24	22.11	21.12
		1	49	21.88	20.89
		25	0	21.06	20.06
		25	12	21.11	20.03
		25	25	21.00	20.01
		50	0	20.99	20.01
	836.5	1	0	21.97	20.82
		1	24	22.11	20.79
		1	49	21.86	20.68
10		25	0	20.94	19.97
		25	12	20.94	19.99
		25	25	20.92	19.95
		50	0	20.96	19.98
		1	0	21.85	20.58
		1	24	21.96	20.80
			24 49	21.96 21.97	20.80 20.75
	844.0	1			
	844.0	1 1	49	21.97	20.75 20.04
	844.0	1 1 25	49 0	21.97 20.99	20.75

LTE Band 7					
BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	21.38	20.21
		1	12	21.36	20.24
		1	24	21.09	19.99
	2502.5	12	0	20.25	19.22
		12	6	20.33	19.24
		12	13	20.14	19.07
		25	0	20.21	19.20
5		1	0	21.26	20.07
		1	12	21.36	20.24
		1	24	21.23	20.05
	2535.0	12	0	20.24	19.19
		12	6	20.21	19.13
		12	13	20.21	16QAM 20.21 20.24 19.99 19.22 19.24 19.07 19.20 20.07 20.24 19.13 19.17 19.23
		25	0	20.23	19.23
	2567.5	1	0	20.27	19.39

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 169

V		1	40	00.50	40.55
		1	12	20.50	19.55
		1	24	20.45	19.46
		12	0	19.33	18.37
		12	6	19.43	18.40
		12	13	19.48	18.53
		25	0	19.42	18.37
		1	0	21.36	20.33
		1	24	21.22	20.36
		1	49	20.97	19.98
	2505.0	25	0	20.34	19.27
	2000.0	25	12	20.34	19.26
		25	25	20.31	
					19.13
		50	0	20.21	19.11
		1	0	21.15	20.16
		1	24	21.41	20.44
		1	49	21.16	20.12
10	2535.0	25	0	20.24	19.29
		25	12	20.25	19.20
		25	25	20.21	19.22
		50	0	20.22	19.19
		1	0	20.42	19.25
		1	24	20.55	19.36
		1	49	20.56	19.37
	2565.0	25	0	19.40	18.37
		25	12	19.39	18.41
		25	25	19.42	18.48
		50	0	19.40	18.38
		1	0	21.32	20.30
		1	38	21.10	20.08
		1	74	20.76	19.74
	2507.5	37	0	20.28	20.25
	2007.0	37	18	20.08	20.10
		37	37	19.73	19.75
		75	0	20.19	19.07
		1	0	21.09	20.10
		1	38	21.32	20.26
		1	74	21.05	20.01
15	2535.0	37	0	20.12	20.07
		37	18	20.29	20.36
		37	37	20.07	20.03
		75	0	20.29	19.22
		1	0	20.38	19.37
		1	38	20.36	19.35
		1	74		
	0500 5			20.45	19.47
	2562.5	37	0	19.35	19.35
		37	18	19.34	19.35
		37	37	19.49	19.42
		75	0	19.44	18.40
		1	0	21.31	20.13
		1	49	21.08	20.01
		1	99	20.73	19.57
	2510.0	50	0	20.02	19.03
	2010.0	50	25	20.02	19.02
		50	50		
20				20.01	19.03
		100	0	20.10	19.01
		1	0	21.04	19.87
		1	49	21.42	20.32
	2535 0	1	99	20.94	19.83
	2535.0	50	0	20.20	19.25
		50	25	20.21	19.19

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 169

	100	0	20.16	19.09
	1	0	20.62	19.42
	1	49	20.54	19.35
	1	99	20.47	19.10
2560	50	0	19.33	18.35
	50	25	19.32	18.34
50	50	19.25	18.24	
100	0	19.23	18.19	

LTE Band 12

BW	Frequency		figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	21.90	20.79
		1	2	21.98	21.00
		1	5	21.88	20.80
	699.7	3	0	22.02	20.77
		3	1	21.98	20.76
		3	3	22.00	20.79
		6	0	20.97	19.96
		1	0	21.94	20.82
		1	2	22.08	20.95
		1	5	21.95	20.70
1.4	707.5	3	0	22.00	20.83
	101.0	3	1	22.00	20.81
		3	3	22.00	20.72
		6	0	20.96	19.81
		1	0	21.84	20.55
		1	2	22.01	20.82
		1	5	21.77	20.60
	715.3	3	0	21.92	20.60
	715.5	3	1	21.92	20.66
	-	3	3		
	-	<u> </u>	0	21.95	20.64
				20.88	19.86
	-	1	0	21.96	20.98
		1	8	21.98	20.78
	700 5	1	14	22.02	20.93
	700.5	8	0	20.96	20.02
		8	4	20.96	20.03
		8	7	20.99	20.03
		15	0	20.91	20.00
		1	0	22.05	20.90
		1	8	21.87	20.88
		1	14	21.89	20.87
3	707.5	8	0	20.89	19.99
		8	4	20.88	19.99
		8	7	20.85	19.93
		15	0	20.87	19.91
		1	0	21.91	20.86
	Γ	1	8	21.82	20.81
		1	14	21.79	20.83
	714.3	8	0	20.79	19.91
		8	4	20.84	19.91
		8	7	20.88	19.91
		15	0	20.79	19.86
		1	0	21.94	20.86
		1	12	22.09	20.99
		1	24	21.94	20.81
5	701.5	12	0	20.97	20.02
÷		12	6	20.91	19.96
		12	13	20.96	19.92
		25	0	20.99	20.00
		20	U	20.33	20.00

$10 707.5 \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$10 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	0	21.96	21.00
$10 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	12	21.96	21.05
$10 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	24	21.79	20.87
$10 \begin{array}{ c c c c c c c c c c c c c c c c c c c$		707.5	12	0	20.99	20.03
$10 \begin{array}{ c c c c c c c c c c c c c c c c c c c$			12	6	20.98	20.01
$10 \qquad 707.5 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			12	13	20.89	19.93
$10 \begin{array}{c ccccccccccccccccccccccccccccccccccc$			25	0	20.95	19.97
$10 707.5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	0	21.92	20.73
$10 \qquad 713.5 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	12	21.96	20.79
12 6 20.84 19.96 12 13 20.80 19.85 25 0 20.92 19.98 25 0 21.95 21.00 1 24 22.05 21.06 1 49 21.85 20.86 1 49 21.85 20.86 25 0 20.99 20.01 25 12 20.96 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 25 20.99 19.93 50 0 21.00 20.00 1 24 22.04 20.94 1 24 22.04 20.02 25 12 21.01 20.06 25 25 20.94 20.02 50 0 2			1	24	21.81	20.70
12 13 20.80 19.85 25 0 20.92 19.98 1 0 21.95 21.00 1 24 22.05 21.06 1 49 21.85 20.86 25 0 20.99 20.01 25 12 20.96 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 12 20.01 20.00 1 49 21.86 20.75 1 49 21.00 20.03 25 12 21.01 20.06 25 25 20.94 20.02 50 0 20.97 20.02 50 0 2		713.5	12	0	20.88	19.89
25 0 20.92 19.98 1 0 21.95 21.00 1 24 22.05 21.06 1 49 21.85 20.86 1 49 21.85 20.86 25 12 20.96 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 25 20.99 19.93 50 0 21.00 20.00 1 0 22.04 20.94 1 24 22.12 20.95 1 49 21.96 20.75 25 12 21.01 20.06 25 25 20.94 20.02 50 0 20.97 20.02 50 0 20.97 20.02 50 0 20.9			12	6	20.84	19.96
1 0 21.95 21.00 1 24 22.05 21.06 1 49 21.85 20.86 1 49 21.85 20.01 25 0 20.99 20.01 25 12 20.96 20.00 25 25 20.99 19.93 50 0 21.00 20.00 25 25 20.99 19.93 50 0 21.00 20.00 1 24 22.12 20.94 1 24 22.12 20.95 1 49 21.96 20.75 1 49 21.96 20.75 25 12 21.01 20.06 25 25 20.94 20.02 50 0 20.97 20.02 50 0 20.97 20.02 50 0 20.98 20.74 1 24 22.0			12	13	20.80	19.85
$10 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			25	0	20.92	19.98
$10 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		704	1	0	21.95	21.00
704 25 0 20.99 20.01 25 12 20.96 20.00 25 25 20.99 19.93 50 0 21.00 20.00 1 0 22.04 20.94 1 24 22.12 20.95 1 49 21.96 20.75 1 49 21.96 20.75 25 12 21.01 20.06 25 12 21.01 20.06 25 25 20.94 20.02 50 0 20.97 20.02 50 0 20.97 20.02 50 0 20.97 20.02 50 0 20.97 20.02 1 24 22.03 20.74 1 24 22.03 20.79 1 49 21.85 20.56 711 25 0 20.98 20.02 2			1	24	22.05	21.06
$10 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	49	21.85	20.86
25 25 20.99 19.93 50 0 21.00 20.00 1 0 22.04 20.94 1 24 22.12 20.95 1 49 21.96 20.75 25 0 21.00 20.03 25 12 21.01 20.06 25 25 20.94 20.02 50 0 21.00 20.03 25 12 21.01 20.06 25 25 20.94 20.02 50 0 20.97 20.02 50 0 21.98 20.74 1 24 22.03 20.79 1 24 22.03 20.79 1 49 21.85 20.56 711 25 0 20.98 20.02 25 12 20.99 20.06 25 25 25 20.91 19.97			25	0	20.99	20.01
$10 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			25	12	20.96	20.00
$10 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			25	25	20.99	19.93
$10 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50	0	21.00	20.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	0	22.04	20.94
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	24	22.12	20.95
25 12 21.01 20.06 25 25 20.94 20.02 50 0 20.97 20.02 1 0 21.98 20.74 1 24 22.03 20.79 1 49 21.85 20.56 711 25 0 20.98 20.02 25 12 20.99 20.06 25 25 20.91 19.97			1	49	21.96	20.75
25 25 20.94 20.02 50 0 20.97 20.02 1 0 21.98 20.74 1 24 22.03 20.79 1 49 21.85 20.56 711 25 0 20.98 20.02 25 12 20.99 20.06 25 25 20.91 19.97	10	707.5	25	0	21.00	20.03
50 0 20.97 20.02 1 0 21.98 20.74 1 24 22.03 20.79 1 49 21.85 20.56 711 25 0 20.98 20.02 25 12 20.99 20.06 25 25 20.91 19.97			25	12	21.01	20.06
1 0 21.98 20.74 1 24 22.03 20.79 1 49 21.85 20.56 711 25 0 20.98 20.02 25 12 20.99 20.06 25 25 20.91 19.97			25	25	20.94	20.02
1 24 22.03 20.79 1 49 21.85 20.56 25 0 20.98 20.02 25 12 20.99 20.06 25 25 20.91 19.97			50	0	20.97	20.02
14921.8520.5625020.9820.02251220.9920.06252520.9119.97			1	0	21.98	20.74
711 25 0 20.98 20.02 25 12 20.99 20.06 25 25 20.91 19.97			1	24	22.03	20.79
251220.9920.06252520.9119.97			1	49	21.85	20.56
25 25 20.91 19.97		711	25	0	20.98	20.02
			25	12	20.99	20.06
50 0 20.95 19.96			25	25	20.91	19.97
			50	0	20.95	19.96

LTE Band17

BW	Frequency		iguration	Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.06	20.94
		1	12	22.08	20.96
		1	24	21.98	20.86
	706.5	12	0	20.94	19.95
		12	6	20.99	19.92
		12	13	20.94	19.89
		25	0	20.95	19.98
		1	0	21.98	20.88
	710	1	12	21.99	20.93
		1	24	21.90	20.75
5		12	0	20.97	19.95
		12	6	20.95	19.93
		12	13	20.83	19.88
		25	0	20.94	19.95
		1	0	21.95	20.93
		1	12	22.02	21.05
		1	24	21.88	20.97
	713.5	12	0	20.99	20.00
		12	6	20.99	20.04
		12	13	20.94	19.99
		25	0	20.94	19.93
10	709	1	0	22.03	21.00

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 169

		1	24	22.05	21.03
		1	49	21.94	20.91
		25	0	21.04	20.01
		25	12	20.97	19.99
		25	25	20.92	19.94
		50	0	20.96	20.03
		1	0	22.12	20.90
		1	24	22.22	21.06
		1	49	21.99	20.80
	710	25	0	21.10	20.19
		25	12	21.08	20.19
		25	25	21.00	20.05
		50	0	21.06	20.08
		1	0	22.09	20.79
		1	24	22.08	20.90
		1	49	21.90	20.65
	711	25	0	21.13	20.15
		25	12	21.10	20.18
		25	25	20.98	20.03
		50	0	21.02	20.04

LTE Band41

BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	21.30	19.62
		1	12	21.35	20.42
		1	24	20.55	20.31
	2498.5	12	0	20.52	20.00
		12	6	20.61	19.63
		12	13	20.66	19.70
		25	0	20.68	19.53
		1	0	21.28	20.39
		1	12	21.41	20.23
		1	24	21.32	20.32
5	2593.0	12	0	20.53	19.52
		12	6	20.51	19.52
		12	13	20.58	19.49
		25	0	20.63	19.53
		1	0	21.87	20.77
		1	12	21.87	20.65
		1	24	21.79	20.24
	2687.5	12	0	20.89	19.90
		12	6	20.85	19.86
		12	13	20.85	19.84
		25	0	20.88	19.92
		1	0	21.61	20.64
		1	24	21.77	20.72
		1	49	21.73	20.68
	2501.0	25	0	20.83	19.81
		25	12	20.90	19.81
		25	25	20.88	19.74
		50	0	20.85	19.85
10		1	0	21.43	20.58
10		1	24	21.66	20.62
		1	49	21.58	20.61
	2593.0	25	0	20.87	19.77
		25	12	20.86	19.76
		25	25	20.85	19.74
		50	0	20.80	19.71
	0005.0	1	0	21.94	20.98
	2685.0	1	24	22.12	21.32

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 169

		1	49	22.08	20.96
		25	0	21.26	20.04
		25	12	21.21	20.02
		25	25	21.13	20.05
		50	0	21.16	20.18
		1	0	21.35	20.94
		1	38	21.82	20.87
		1	74	21.54	20.58
	2503.5	37	0	20.43	20.18
		37	18	20.59	21.03
		37	37	21.08	20.51
		75	0	20.77	19.78
		1	0	21.32	20.97
		1	38	21.74	20.55
		1	74	21.32	20.32
15	2593.0	37	0	20.39	20.48
		37	18	20.59	20.58
		37	37	20.42	20.93
		75	0	20.69	19.73
		1	0	21.91	21.39
		1	38	22.16	21.48
		1	74	22.05	21.42
	2682.5	37	0	21.49	21.44
		37	18	21.47	21.39
		37	37	21.41	20.89
		75	0	21.13	20.20
		1	0	21.25	20.03
		1	49	21.51	20.85
		1	99	21.25	20.21
	2506.0	50	0	20.60	19.78
		50	25	20.69	19.76
		50	50	20.70	19.73
		100	0	20.74	19.61
		1	0	21.44	20.15
		1	49	21.51	21.49
20		1	99	21.33	20.22
20	2593.0	50	0	20.68	19.74
		50	25	20.69	19.77
		50	50	20.76	19.83
		100	0	20.74	19.69
		1	0	22.07	21.52
		1	49	22.52	21.59
		1	99	21.86	20.59
	2680.0	50	0	21.13	20.33
		50	25	21.19	20.39
		50	50	21.11	20.13
		100	0	21.10	20.15

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency	Data rate	Average Output Power				
wode	Channel	(MHz)	(Mbps)	(dBm)				
			1	12.89				
	1	2442	2	12.65				
		2412	5.5	12.50				
			11	12.32				
IEEE 802.11b	6	0407	1	12.24				
1EEE 802.11D			2	11.59				
		2437	5.5	11.41				
			11	11.64				
	11	2462	1	12.87				
	11		2	11.77				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 169

		1		44.04
			5.5	11.64
			11	11.62
			6	12.01
			9	11.76
			12	11.28
	1	2412	18	11.51
	•	22	24	11.72
			36	11.44
			48	11.44
			54	11.76
			6	12.08
			9	11.64
			12	11.51
IEEE 802.11g	6	2437	18	11.49
1222 002.11g	0	2407	24	11.63
			36	11.14
			48	11.11
			54	11.64
			6	12.26
			9	11.33
			12	11.49
	11	2462	18	11.28
	11	2462	24	11.31
			36	11.20
			48	11.29
			54	11.33
		2412	MCS0	12.19
			MCS1	11.61
			MCS2	11.44
	1		MCS3	11.42
	I	2412	MCS4	11.52
			MCS5	11.30
			MCS6	11.33
			MCS7	11.61
			MCS0	12.09
			MCS1	11.30
			MCS2	11.35
IEEE 802.11n HT20	c	2427	MCS3	11.30
IEEE 802.110 H120	6	2437	MCS4	11.33
			MCS5	11.52
			MCS6	11.42
			MCS7	11.30
			MCS0	12.41
			MCS1	11.37
			MCS2	11.64
	4.4	0400	MCS3	11.33
	11	2462	MCS4	11.40
			MCS5	11.33
			MCS6	11.18
			MCS7	11.37
			MCS0	12.37
			MCS1	11.36
			MCS2	11.52
	~	0.400	MCS3	11.45
	3	2422	MCS4	11.55
IEEE 802.11n HT40			MCS5	11.55
			MCS6	11.50
			MCS7	11.36
			MCS0	13.25
	6	2437	MCS1	11.12
	Ŭ	,	MCS2	11.35
	1	1	11002	11.00

			MCS3	11.40
			MCS4	11.64
			MCS5	11.33
			MCS6	11.45
			MCS7	11.12
			MCS0	12.17
			MCS1	11.36
			MCS2	11.02
	9	2452	MCS3	11.16
	9	2452	MCS4	11.29
			MCS5	11.64
			MCS6	11.37
			MCS7	11.36

*Note:*SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Mode	Channel	Frequency (MHz)	Average Conducted Output Power(dBm)	Worst Case Test Rate Data				
	36	5180	13.21	MCS0				
IEEE 802.11a	40	5200	14.22	MCS0				
	48	5240	14.31	MCS0				
	36	5180	13.72	MCS0				
IEEE 802.11n HT20	40	5200	13.21	MCS0				
	48	5240	13.52	MCS0				
IEEE 802.11n HT40	38	5190	12.32	MCS0				
IEEE 002.1111 H140	46	5230	13.65	MCS0				
	36	5180	12.12	MCS0				
IEEE 802.11AC20	40	5200	13.02	MCS0				
	48	5240	13.12	MCS0				
	38	5190	12.32	MCS0				
IEEE 802.11AC40	46	5230	13.21	MCS0				
IEEE 802.11AC80	42	5210	12.13	MCS0				

<WLAN 5GHz U-NI-1 Conducted Power

<WLAN 5GHz U-NI-3 Conducted Power>

Mode	Channel	Frequency (MHz)	Average Conducted Output Power(dBm)	Worst Case Test Rate Data
	149	5745	12.21	MCS0
IEEE 802.11a	157	5785	12.21	MCS0
	165	5825	12.26	MCS0
	149	5745	12.31	MCS0
IEEE 802.11n HT20	157	5785	12.52	MCS0
	165	5825	12.36	MCS0
IEEE 802.11n HT40	151	5755	11.45	MCS0
IEEE 802.11111140	159	5795	11.53	MCS0
	149	5745	11.74	MCS0
IEEE 802.11AC20	157	5785	11.36	MCS0
	165	5825	11.28	MCS0
IEEE 802.11AC40	151	5755	11.43	MCS0
	159	5795	11.63	MCS0
IEEE 802.11AC80	155	5775	11.46	MCS0

<BT Conducted Power>

		I Conducted Power	
Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)
	0	2402	0.78
BLE	20	2442	0.77
	39	2480	0.37
	0	2402	2.83
GFSK	39	2441	2.46
	78	2480	2.52
	0	2402	2.86
π/4-DQPSK	39	2441	2.25
	78	2480	2.52
	0	2402	2.67
8DPSK	39	2441	2.16
	78	2480	2.48

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
3.0	5	2.45	0.6

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied todetermine SAR test exclusion. The test exclusion threshold is 0.6< 3.0, SAR testing is not required.

Transmit Antennas and SAR Measurement Position 4.2.

WIFI/BT Antenna Top Bottom 282mm WWAN Antenna 151mm 244mm Right Rear View

Left

Antenna information:

WLAN/BT Antenna	WLAN/BT TX/RX
WWAN Antenna	GSM/UMTS/LTE TX/RX

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 282mm>160mm, it is considered as "Tablet PC" device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

3). According to the KDB941225 D06 Hot Spot SAR v02, the edges with less than 25 mm distance to the antennas need to be tested for SAR.

4). Per KDB 616217 D04, The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the displaysection of a full-size tablet, away from the edges, are generally limited to the user's hands.

Distance of The Antenna to the EUT surface and edge (mm)										
Antennas Back Top Side Bottom Side Left Side Rigi										
BT/WLAN	<5	<5	230	<5	120					
WWAN	<5	231	<5	46	50					

Positions for SAR tests; Hotspot mode										
Antennas Back Top Side Bottom Side Left Side Right										
BT/WLAN	Yes	Yes	No	Yes	No					
WWAN	Yes	No	Yes	No	No					

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are ≥9cm*5cm, the test distance is 0mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

4.3. SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10}

Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
GSM	3:8
UMTS	1:1
LTE	1:1
WLAN2450	1:1
WLAN5200	1:1
WLAN5800	1:1

4.3.1 SAR Results

SAR Values [GSM 850]

				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)			
Ch.	Freq. (MHz)	Time slots	Test Position	Power	Allowed Power	Drift	Scaling Factor	Measured	Reported	Graph Results		
	(1711 12)	31013	FUSILION	(dBm)	(dBm)	(%)	1 00101	Measureu	Reponed	Nesuits		
			measured / rep	orted SAR num	bers - Body (ho	otspot ope	en, distance	e Omm)				
128	824.2	3Txslots	Rear	29.53	30.00	-1.39	1.114	0.274	0.305	Plot 1		
128	824.2	3Txslots	Bottom	29.53	30.00	2.01	1.114	0.235	0.262			
Dama												

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [GSM 1900]

				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)			
Ch.	Freq. (MHz)	time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results		
	measured / reported SAR numbers – Body (hotspot open, distance 0mm)											
512	1850.2	3Txslots	Rear	26.53	27.00	0.76	1.114	0.394	0.439	Plot 2		
512	1850.2	3Txslots	Bottom	26.53	27.00	2.51	1.114	0.310	0.345			

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)				
Ch.	Freq.	Channel	Test	Power	Allowed	Drift	Scaling		Dementeral	Graph			
	(MHz)	Туре	Position	(dBm)	Power (dBm)	(%)	Factor	Measured	Reported	Results			
	measured / reported SAR numbers - Body (hotspot open, distance 0mm)												
413	2 826.4	RMC*	Rear	23.20	23.50	-0.10	1.072	0.422	0.452	Plot 3			
413	2 826.4	RMC*	Bottom	23.20	23.50	1.15	1.072	0.378	0.405				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

SAR Values [WCDMA Band II]

	_ Chan	n	Condu	Maximum	Power		SAR1-g results(W/kg)					
Ch.	Freq.	nel	Test	cted	Allowed	Drift	Scaling			Graph		
Cri.	(MHz)	Туре	Position	Power	Power	(%)	Factor	Measured	Reported	Results		
		туре		(dBm)	(dBm)	(//)						
	measured / reported SAR numbers - Body (hotspot open, distance 0mm)											
9262	1852.4	RMC	Rear	23.40	23.50	-0.50	1.023	0.669	0.685	Plot 4		
9262	1852.4	RMC	Bottom	23.40	23.50	1.25	1.023	0.610	0.624			

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

	SAR Values [LTE Band 2]												
Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results			
		me	easured / rep	orted SAR numl	bers - Body (ho	tspot opei	n, distance	0mm)					
18700	1860.0	1RB	Rear	21.82	22.00	-0.42	1.042	0.511	0.533	Plot 5			
18700	1860.0	1RB	Bottom	21.82	22.00	0.52	1.042	0.356	0.371				
18700	1860.0	50%RB	Rear	20.55	21.00	1.45	1.109	0.410	0.455				
18700	1860.0	50%RB	Bottom	20.55	21.00	3.20	1.109	0.302	0.335				

SAR Values [LTE Band 4]

Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results		
	measured / reported SAR numbers - Body (hotspot open, distance 0mm)											
20300	1745.0	1RB	Rear	21.59	22.00	-4.90	1.099	0.414	0.455	Plot 6		
20300	1745.0	1RB	Bottom	21.59	22.00	2.32	1.099	0.321	0.353			
20300	1745.0	50%RB	Rear	20.37	20.50	1.00	1.030	0.362	0.373			
20300	1745.0	50%RB	Bottom	20.37	20.50	0.71	1.030	0.265	0.273			

SAR Values [LTE Band 5]

Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Power Allowed		Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		me	easured / rep	orted SAR numb	pers - Body (ho	tspot oper	n, distance	0mm)		
20407	829.0	1RB	Rear	22.11	22.50	0.93	1.094	0.321	0.351	Plot 7
20407	829.0	1RB	Bottom	22.11	22.50	1.32	1.094	0.187	0.205	
20407	829.0	50%RB	Rear	21.11	21.50	0.69	1.094	0.281	0.307	
20407	829.0	50%RB	Bottom	21.11	21.50	1.52	1.094	0.150	0.164	

SAR Values [LTE Band 7]

			Channel		Con	ducted	Maximum	Power		SAR1-g res	sults(W/kg)	
Ch.	Freq. (MHz		Type (10M)	Test Position	Power (dBm)		Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			n	easured / r	eported	I SAR num	bers - Body (he	otspot ope	n, distance	e Omm)		
2110	0 25	35.0	1RB	Re	ar	21.42	21.50	-1.07	1.019	0.601	0.612	Plot 8
2110	0 25	35.0	1RB	Bott	om	21.42	21.50	2.63	1.019	0.503	0.512	
2110	0 25	35.0	50%RB	Re	ar	20.21	20.50	1.05	1.069	0.558	0.597	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 169 Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

21100 2535.0 50%RB Bottom 20.21 20.50 2.14 1.069 0.485 0.518

					SAR Val	ues [LTE Bar	nd 12]				
		Channel		Con	ducted	Maximum	Power		SAR1-g res	sults(W/kg)	
Ch.	Freq. (MHz)	Type (10M)	Test Position	Po	ower IBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			measured / i	reported	l SAR num	bers - Body (he	otspot ope	n, distance	e Omm)		
2309	95 707.	5 1RB	Re	ar	22.12	22.50	-0.49	1.091	0.363	0.396	Plot 9
2309	95 707.	5 1RB	Bott	tom	22.12	22.50	3.25	1.091	0.260	0.284	
2309	95 707.	5 50%RI	B Re	ar	21.01	21.50	0.87	1.119	0.315	0.353	
2309	95 707.	5 50%RI	B Bott	om	21.01	21.50	1.36	1.119	0.211	0.236	

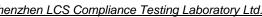
SAR Values [LTE Band 17]

		Channe		Condu	Maximum	Power		SAR1-g resi	ults(W/kg)	
Ch.	Freq. (MHz)	I Туре (20М)	Test Position	cted Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reporte d	Graph Results
		me	easured / reported	I SAR numb	pers - Body (ho	tspot oper	n, distance	0mm)		
23790	710.0	1RB	Rear	22.22	22.50	-0.04	1.067	0.378	0.403	Plot 10
23790	710.0	1RB	Bottom	22.22	22.50	3.25	1.067	0.274	0.292	
23790	710.0	50%RB	Rear	21.10	21.50	0.74	1.096	0.330	0.362	
23790	710.0	50%RB	Bottom	21.10	21.50	1.36	1.096	0.192	0.211	

SAR Values [LTE Band 41]

			Channel		Con	ducted	Maximum	Power		SAR1-g res	sults(W/kg)	
	Ch.	Freq. (MHz)	Type (10M)	Test Position	Power (dBm)		Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
				measured / r	reported	I SAR num	bers - Body (ho	otspot ope	n, distance	e Omm)		
	4149	0 2680	0.0 1RB	Re	ar	22.52	23.00	-1.00	1.117	0.340	0.380	Plot 11
Γ	4149	0 2680	0.0 1RB	Bott	om	22.52	23.00	3.02	1.117	0.231	0.258	
Ī	4149	0 2680	0.0 50%R	B Re	ar	21.19	21.50	0.58	1.074	0.300	0.322	
	4149	0 2680	0.0 50%R	B Bott	om	21.19	21.50	1.47	1.074	0.160	0.172	

SAR Values [WIFI2.4G]


				Condu Maximum		Power	Scaling Factor	SAR1-g res	ults(W/kg)	
Ch.	Freq. (MHz)	Service	Test Position	cted Allowed Power Power (dBm) (dBm)	Drift (%)	Measured		Reported	Graph Results	
		me	easured / reported	I SAR nun	nbers - Body (l	hotspot ope	en, distance	e Omm)		
1	2412	802.11b	Left	12.89	13.00	1.02	1.026	0.165	0.169	
1	2412	802.11b	Back	12.89	13.00	-0.42	1.026	0.207	0.212	Plot 12
1	2412	802.11b	Тор	12.89	13.00	0.36	1.026	0.124	0.127	

	SAR Values [WIFI5.2G]												
Ch.	Freq. (MHz)	Service Test Position		Power				SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results			
	measured / rep			orted SAR num	bers - Body (ho	tspot opei	n, distance	0mm)					
48	5240	802.11a	Left	14.31	14.50	3.05	1.045	0.120	0.125				
48	5240	802.11a	Back	14.31	14.50	-1.68	1.045	0.164	0.171	Plot 13			
48	5240	802.11a	Тор	14.31	14.50	1.02	1.045	0.100	0.104				

SAR Values [WIFI5.8G]

				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Service	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			measured / rep	orted SAR num	bers - Body (ho	tspot opei	n, distance	0mm)		
157	5785	802.11n20	Left	12.52	13.00	3.06	1.117	0.020	0.022	
157	5785	802.11n20	Back	12.52	13.00	-1.37	1.117	0.028	0.031	Plot 14
157	5785	802.11n20	Тор	12.52	13.00	2.01	1.117	0.015	0.017	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 169

Remark:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

4. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is $\leq 1.2 W/kg$, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

4.3.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01,simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit,SAR test exclusion is determined by the SAR to peak location separation ratio.

$$(SAR_1 + SAR_2)^{1.5}$$

Ratio= $\frac{(c) \Pi (1 + c) \Pi (2)}{(peak location separation,mm)} < 0.04$

		Estimated sta	nd alone SAR		
Communication system	unication Frequency Configuration stem (MHz) Configuration		Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)
Bluetooth*	2450	Hotspot	3.0	5	0.084
Bluetooth*	2450	Body-worn	3.0	5	0.084

Remark:

- 1. Bluetooth*- Including Lower power Bluetooth
- 2. Maximum average power including tune-up tolerance;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Body as body use distance is 10mm from manufacturer declaration of user manual

4.4. Simultaneous TX SAR Considerations

4.4.1 Introduction

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna. The device has 4 antennas, WWAN main antenna, WWAN diversity antenna(RX only), and WiFi antenna supports 2.4Wi-Fi.The 2 TX antennas can always transmit simultaneously.The work mode combination is showed as below table.;

Application Simultaneous Transmission information:

Combination No.	Mode
1	WWAN+WIFI
2	WWAN+BT

4.4.2 Evaluation of Simultaneous SAR

Body Hotspot Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	WiFi5.2G Reported SAR1-g (W/kg)	WiFi5.8G Reported SAR1-g (W/kg)	MAX. ΣSAR1- g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	/	1	1	/	/	/	1.6	no	no
Rear	0.305	0.439	0.212	0.171	0.031	0.651	1.6	no	no
Left	/	/	0.169	0.125	0.022	0.169	1.6	no	no
Right	/	/	/	/	/	/	1.6	no	no
Bottom	0.262	0.345	/	/	/	0.345	1.6	no	no
Тор	1	/	0.127	0.104	0.017	0.127	1.6	no	no

Simultaneous transmission SAR for WiFi and UMTS

		Official		131111331011					
Test	UMTS	UMTS	WiFi2.4G	WiFi5.2G	WiFi5.8G	MAX.	SAR1-	Peak	Simut
Position	Band V	Band II	Reported	Reported	Reported	ΣSAR1-	g Limit	location	Meas.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 169 -<u>/s</u>-

Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

×									
	Reported	Reported	SAR1-g	SAR1-g	SAR1-g	g	(W/kg)	separation	Required
	SAR1-g	SAR1-g	(W/kg)	(W/kg)	(W/kg)	(W/kg)		ratio	
	(W/kg)	(W/kg)							
Front	/	/	/	/	/	/	1.6	no	no
Rear	0.452	0.685	0.212	0.171	0.031	0.897	1.6	no	no
Left	/	/	0.169	0.125	0.022	0.169	1.6	no	no
Right	/	1	/	/	/	/	1.6	no	no
Bottom	0.405	0.624	1	/	/	0.624	1.6	no	no
Тор	/	/	0.127	0.104	0.017	0.127	1.6	no	no

SAR for WiFi and LTE

Boportod SAB1 g(M//kg)	Test Position						
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор	
LTE Band2	/	0.533	/	/	0.371	/	
LTE Band4	/	0.455	/	/	0.353	/	
LTE Band5	/	0.351	/	/	0.205	/	
LTE Band7	1	0.612	1	1	0.512	/	
LTE Band12	/	0.396	/	/	0.284	/	
LTE Band17	/	0.403	/	/	0.292	/	
LTE Band41	/	0.380	/	/	0.258	/	
WiFi2.4G	1	0.212	0.169	1	1	0.127	
WiFi5.2G	/	0.171	0.125	/	/	0.104	
WiFi5.8G	/	0.031	0.022	/	/	0.017	
MAX. ΣSAR1-g (W/kg)	/	0.824	0.169	/	/	0.127	
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6	
Peak location separation ratio	no	no	no	no	no	no	
Simut Meas. Required	no	no	no	no	no	no	

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	/	1	/	/	1.6	no	no
Rear	0.305	0.439	0.084	0.854	1.6	no	no
Left	/	1	0.084	/	1.6	no	no
Right	/	1	1	0.074	1.6	no	no
Bottom	0.262	0.345	1	0.074	1.6	no	no
Тор	1	1	0.084	0.671	1.6	no	no

Simultaneous transmission SAR for BT and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	1	/	/	/	1.6	no	no
Rear	0.452	0.685	0.084	0.786	1.6	no	no
Left	/	/	0.084	/	1.6	no	no
Right	/	/	/	0.074	1.6	no	no
Bottom	0.405	0.624	/	0.074	1.6	no	no
Тор	1	1	0.084	0.472	1.6	no	no

Simultaneous transmission SAR for BT and LTE

Deported SAR1 a(M//ka)	Test Position						
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор	
LTE Band2	/	0.533	/	/	0.371	/	
LTE Band4	/	0.455	/	/	0.353	/	
LTE Band5	/	0.351	/	/	0.205	/	
LTE Band7	/	0.612	1	1	0.512	/	
LTE Band12	/	0.396	/	/	0.284	/	
LTE Band17	/	0.403	/	/	0.292	/	
LTE Band41	/	0.380	/	/	0.258	/	
BT Estimated SAR1-g (W/kg)	/	0.084	0.084	1	1	0.084	
MAX. ΣSAR1-g (W/kg)	/	0.696	0.084	/	0.512	0.084	
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6	

Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

Peak location separation ratio	no	no	no	no	no	no
Simut Meas. Required	no	no	no	no	no	no

Note:

- 1. The WiFi and BT share same antenna, so cannot transmit at same time.
- 2. The value with **block** color is the maximum values of standalone
- 3. The value with blue color is the maximum values of $\sum SAR_{1-g}$

4.5. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with $\leq 20\%$ variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Frequency		RF		Repeated	Highest	First Re	epeated
Band (MHz)	Air Interface	Exposure Configuration	Test Position	SAR (yes/no)	Measured SAR _{1-g} (W/Kg)	Measued SAR _{1-g} (W/Kg)	Largest to Smallest SAR Ratio
750	LTE Band 12	Standalone	Body-Rear	no	0.363	n/a	n/a
750	LTE Band 17	Standalone	Body-Rear	no	0.378	n/a	n/a
	GSM 850	Standalone	Body-Rear	no	0.274	n/a	n/a
850	WCDMA Band V	Standalone	Body-Front	no	0.422	n/a	n/a
	LTE Band 5	Standalone	Body-Rear	no	0.321	n/a	n/a
1800	LTE Band 4	Standalone	Body- Rear	no	0.414	n/a	n/a
	GSM 1900	Standalone	Body-Rear	no	0.394	n/a	n/a
1900	WCDMA Band II	Standalone	Body-Front	no	0.669	n/a	n/a
	LTE Band 2	Standalone	Body-Rear	no	0.511	n/a	n/a
2450	2.4GWLAN	Standalone	Body-Rear	no	0.207	n/a	n/a
2600	LTE Band 7	Standalone	Body-Rear	no	0.601	n/a	n/a
2000	LTE Band 41	Standalone	Body-Rear	no	0.340	n/a	n/a
5200	5.2GWLAN	Standalone	Body-Rear	no	0.164	n/a	n/a
5800	5.8GWLAN	Standalone	Body-Rear	no	0.028	n/a	n/a

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

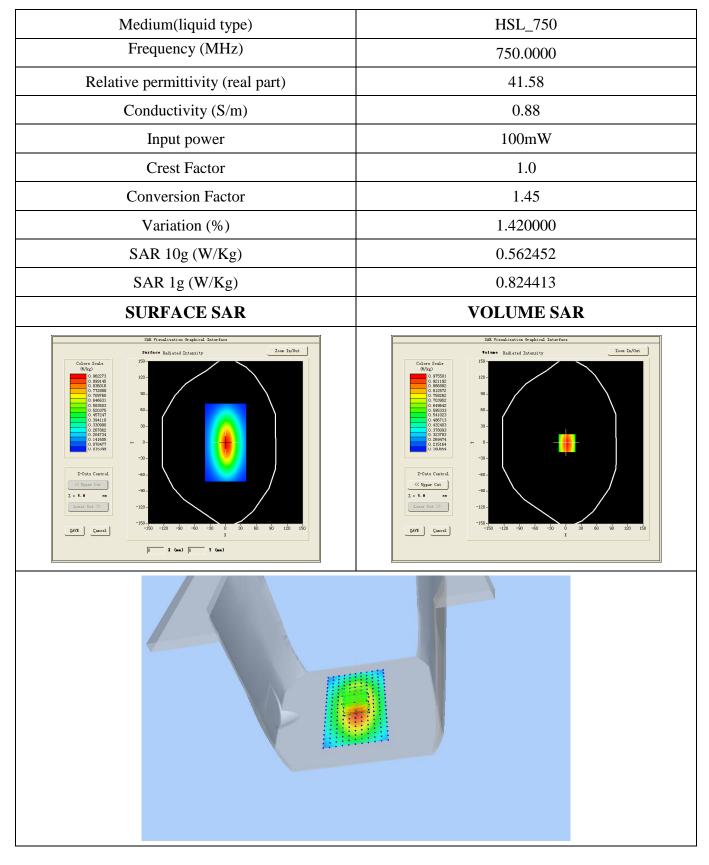
4.6. General description of test procedures

- 1. Test positions as described in the tables above are in accordance with the specified test standard.
- 2. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 3. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.

4. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

• \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz • \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

• \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz


- 5. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 6. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 7. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

4.7. Measurement Uncertainty (450MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

4.8. System Check Results

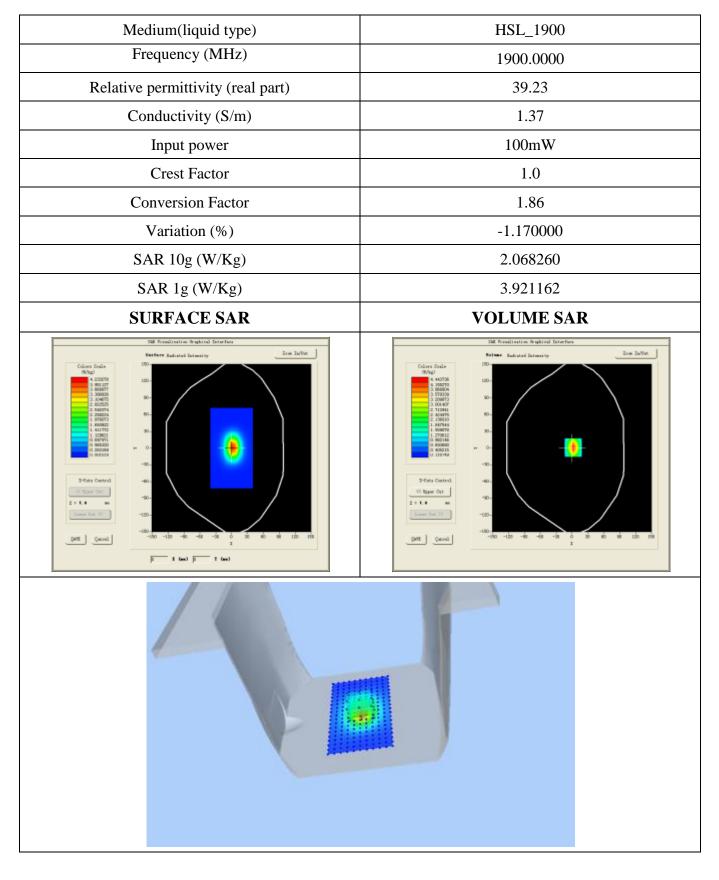
Test mode:750MHz(Head) Product Description:Validation Model:Dipole SID750 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: November 26, 2021

FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date:November 28, 2021

Medium(liquid type)	HSL_850			
Frequency (MHz)	835.0000			
Relative permittivity (real part)	40.14			
Conductivity (S/m)	0.86			
Input power	100mW			
Crest Factor	1.0			
Conversion Factor	1.55			
Variation (%)	-0.210000			
SAR 10g (W/Kg)	0.632132			
SAR 1g (W/Kg)	0.975488			
SURFACE SAR	VOLUME SAR			
$ \begin{array}{c} \text{Surface Related Intensity} \\ \hline \\ \text{Colors Scale} \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 0 & 0 & 0 & 0 \\ \hline \\ \text{O} & 1 & 0 & 0 & 0 \\ \hline \\ \text{O} & 1 & 0 & 0 \\ \hline \\ \text{O} & 1 & 0 & 0 \\ \hline \\ \text{O} & 1 & 0 & 0 \\ \hline \\ \text{O} & 1 & 0 & 0 \\ \hline \\ \text{O} & 1 & 0 \\ \hline \\ \end{array}$	$ \begin{array}{c} \text{Follow Haits Id Intensity} \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$			

C ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

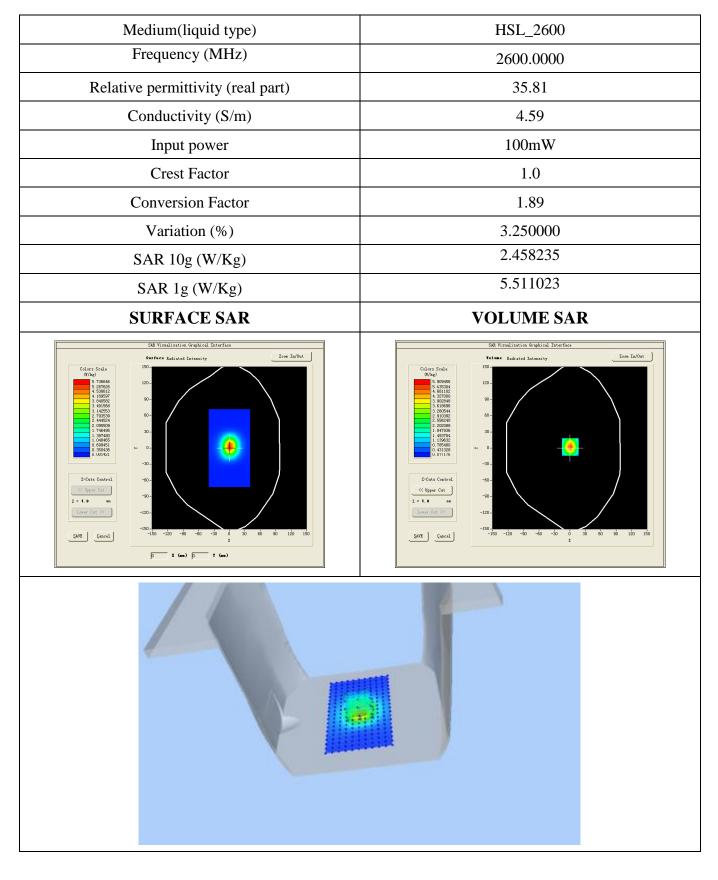

Test mode:1800MHz(Head) Product Description:Validation Model :Dipole SID1800 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: November 30, 2021

Medium(liquid type)	HSL_1800			
Frequency (MHz)	1800.0000			
Relative permittivity (real part)	41.59			
Conductivity (S/m)	1.42			
Input power	100mW			
Crest Factor	1.0			
Conversion Factor	1.65			
Variation (%)	3.560000			
SAR 10g (W/Kg)	2.013283			
SAR 1g (W/Kg)	3.819085			
SURFACE SAR	VOLUME SAR			
$ \begin{array}{c} $	$\begin{array}{c} \textbf{Follow} \textbf{Fadiated Intensity} \\ \hline \textbf{Conv} \\ \textbf$			

nzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: December 02, 2021

FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB


Test mode:2450MHz(Head) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: December 04, 2021

Medium(liquid type)	HSL_2450			
Frequency (MHz)	2450.0000			
Relative permittivity (real part)	40.12			
Conductivity (S/m)	1.76			
Input power	100mW			
Crest Factor	1.0			
Conversion Factor	1.91			
Variation (%)	0.240000			
SAR 10g (W/Kg)	2.343463			
SAR 1g (W/Kg)	5.224016			
SURFACE SAR	VOLUME SAR			
$ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \\ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \\ \end{array} \\ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \\ \end{array} \\ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Surface halated Intensity} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Surface halated Intensity} \\ \end{array} \\ $	$ \begin{array}{c} \text{Follow Edited Litensity} \\ \hline \\ $			

then LCS Compliance Testing Laboratory Ltd. FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

Test mode:2600MHz Product Description:Validation Model:Dipole SID2600 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: December 06, 2021

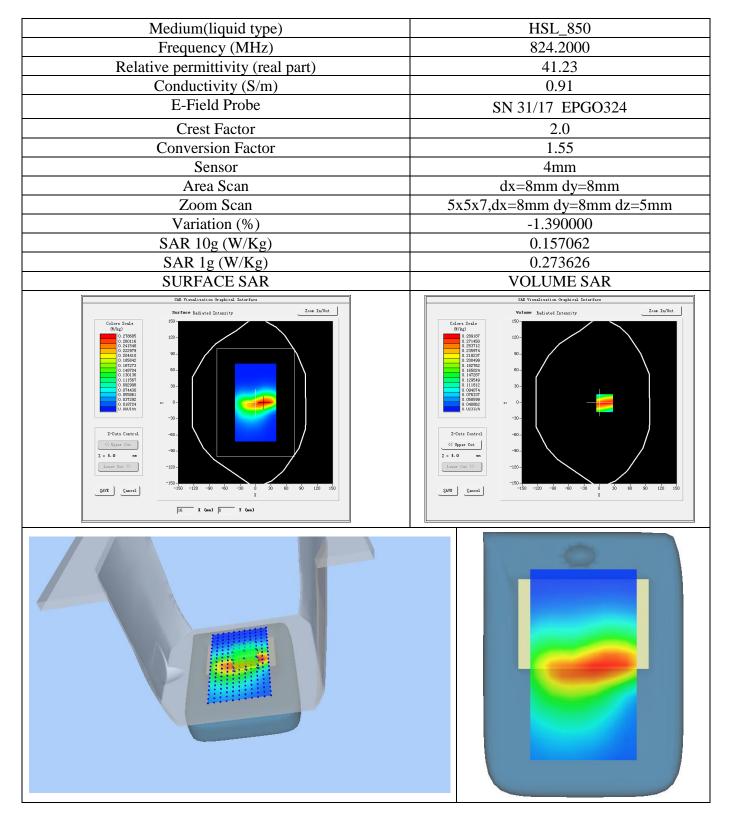
FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

Test mode:5200MHz(Head) Product Description:Validation Model:Dipole SID5000 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: December 08, 2021

Medium(liquid type)	HSL_5000			
Frequency (MHz)	5200.0000			
Relative permittivity (real part)	48.80			
Conductivity (S/m)	5.25			
Input power	100mW			
Crest Factor	1.0			
Conversion Factor	1.50			
Variation (%)	-3.020000			
SAR 10g (W/Kg)	5.512210			
SAR 1g (W/Kg)	15.467034			
SURFACE SAR	VOLUME SAR			
$\begin{bmatrix} C_{1}c_{2}c_{3}c_{3}\\ (f_{1}c_{2}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3})\\ (f_{2}c_{3}c_{3}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3})\\ (f_{1}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3$	$ \begin{array}{c} \text{Folse hist de l'henrity} \\ \hline \\ $			

FCC ID: 2AVTH-10LA102 Report No.: LCS211103087AEB

Test mode:5800MHz(Head) Product Description:Validation Model:Dipole SID5000 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date:December 10, 2021

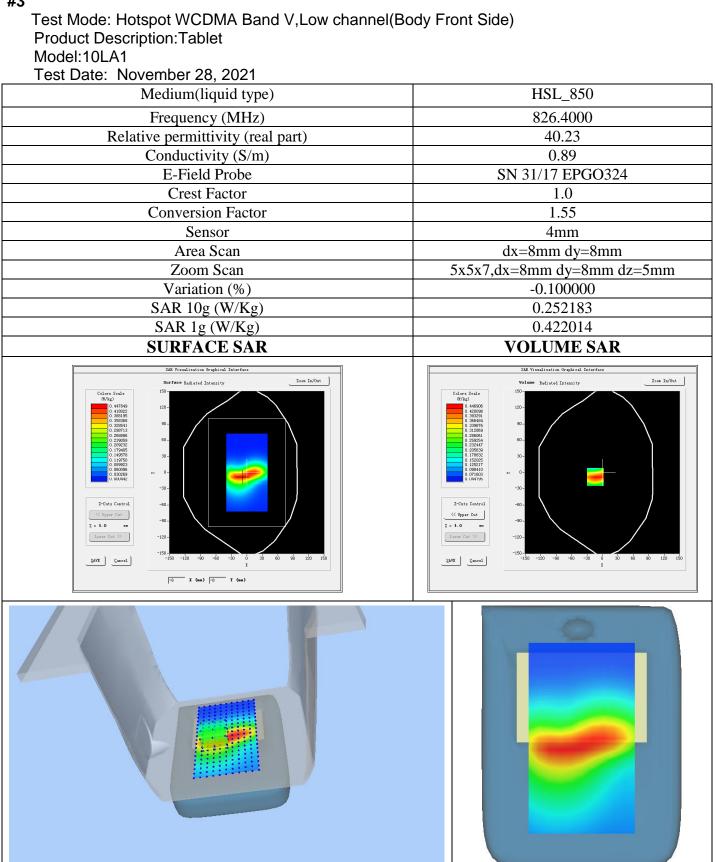

Medium(liquid type)	HSL_5000				
Frequency (MHz)	5800.0000				
Relative permittivity (real part)	48.46				
Conductivity (S/m)	6.05				
Input power	100mW				
Crest Factor	1.0				
Conversion Factor	1.50				
Variation (%)	-1.010000				
SAR 10g (W/Kg)	6.177085				
SAR 1g (W/Kg)	18.293250				
SURFACE SAR	VOLUME SAR				
$ \begin{array}{c} \text{Surface Exists} \\ \hline \\ \text{Cohern Scale} \\ \hline \\ \text{O'Ac} \\ $	$ \begin{array}{c} \text{Follow factor Intensity} \\ \hline \\ $				

4.9. SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination

#1

Test Mode: Hotspot GSM850MHz,Low channel(Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: November 26, 2021


#2 Test Mode: Hotspot GPRS1900MHz,Low channel(Body Rear Side)

Product Description: Tablet Model:10LA1

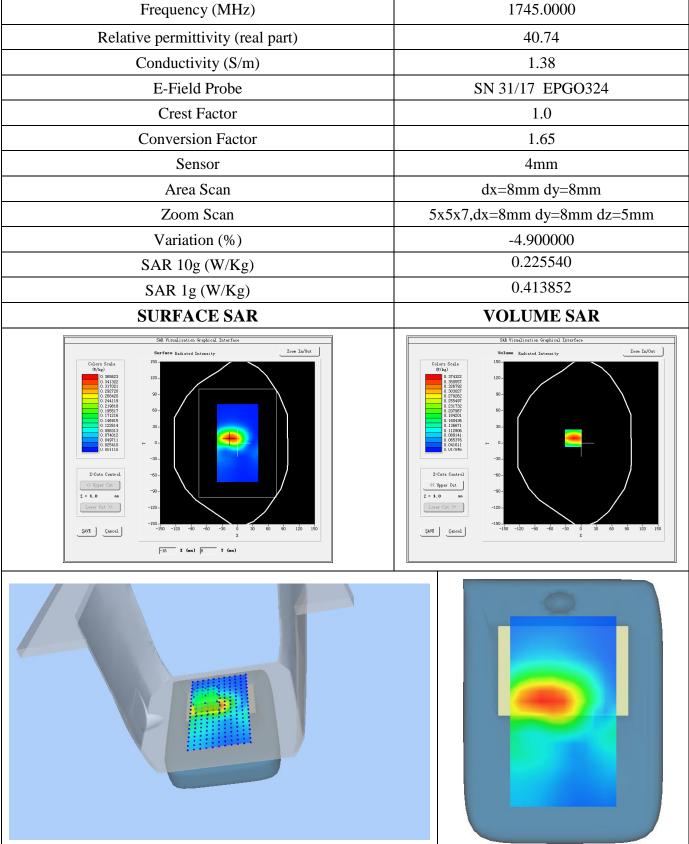
Test Date: December 02, 2021

Medium(liquid type)	HSL_1900
Frequency (MHz)	1850.2000
Relative permittivity (real part)	40.75
Conductivity (S/m)	1.42
E-Field Probe	SN 31/17 EPGO324
Crest Factor	2.0
Conversion Factor	1.86
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.760000
SAR 10g (W/Kg)	0.194307
SAR 1g (W/Kg)	0.394035
SURFACE SAR	VOLUME SAR
SAR Virualization Graphical Interface	S&& Virualization Graphical Interface
Surface Radiated Intenzity Zoom In/Out	Volume Radiated Intensity Zoom In/Out
(8/kg)	0.425415 120-
0 44226 0 447270 0 33534 0 335349 0 32649 0 23649 0 90 -	0.39796 0.37076 0.37076 0.37076 0.037076 0.037076 0.02707 0.0000000000
0.255697 60 - 0.255697 60 -	0.259692 60 - 0.232071 60 - 0.21451
0.117056 0.118125 0.018125 0.018860	0.17650 0.140209 30- 0.212599 30- 0.09396
	0.08547
-30 - 2-Cuts Central -60 -	
-50 -	(V Upper Cut) z = 1.0 m -90-
Lover Cut >> -120 -	Lover Cut >> -120-
SNT Curcil -150 -120 -90 -60 -30 60 90 120 150 -150 -120 -120 -120 -120 -120 120 150	
-16 X (m) 0 T (m)	

Test Mode: Hotspot WCDMA Band II,Low channel(Body Front Side) Product Description: Tablet Model:10LA1 Test Date: December 02, 2021

Medium(liquid type)	HSL_1900
Frequency (MHz)	1852.4000
Relative permittivity (real part)	39.25
Conductivity (S/m)	1.43
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.86
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.500000
SAR 10g (W/Kg)	0.332171
SAR 1g (W/Kg)	0.669342
SURFACE SAR	VOLUME SAR
S& Virudisation Graphical Interface	SAE Vizualisation Graphical Interface
$\begin{bmatrix} C_{0}Cres Scale} \\ 0 & 0.00054 \\ 0 & 0.0$	$\begin{array}{c} v \text{ Juse field tell fittensity} \\ \hline \\ $

Test Mode: Hotspot LTE Band 2, 1RB,Middle channel(Body Rear Side) Product Description:Tablet Model:10LA1 Test Date: December 02, 2021


Medium(liquid type)	HSL_1900
Frequency (MHz)	1860.0000
Relative permittivity (real part)	40.22
Conductivity (S/m)	1.78
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.86
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.420000
SAR 10g (W/Kg)	0.256847
SAR 1g (W/Kg)	0.510831
SURFACE SAR	VOLUME SAR
SME Visualisation Graphical Interface	SAE Virualisation Graphical Interface
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \textbf{Volume} \textbf{Redisted Intensity} \\ \hline \textbf{Colors Scale} \\ \hline \textbf{O} \\ \textbf{Vector} \\ \textbf{Colors Scale} \\ \hline \textbf{O} \\ \textbf{Vector} \\ \textbf{Colors Scale} \\ \hline \textbf{O} \\ \textbf{Vector} \\ \textbf{Colors Scale} \\ \hline \textbf{Vector} \\ \hline \textbf{Vector} \\ \hline \textbf{Colors Scale} \\ \hline \textbf{Vector} \\ \hline \textbf{Vector} \\ \hline \textbf{Colors Scale} \\ \hline \textbf{Vector} \\ \hline \textbf{Colors Scale} \\ \hline \textbf{Vector} \\ \hline Vector$

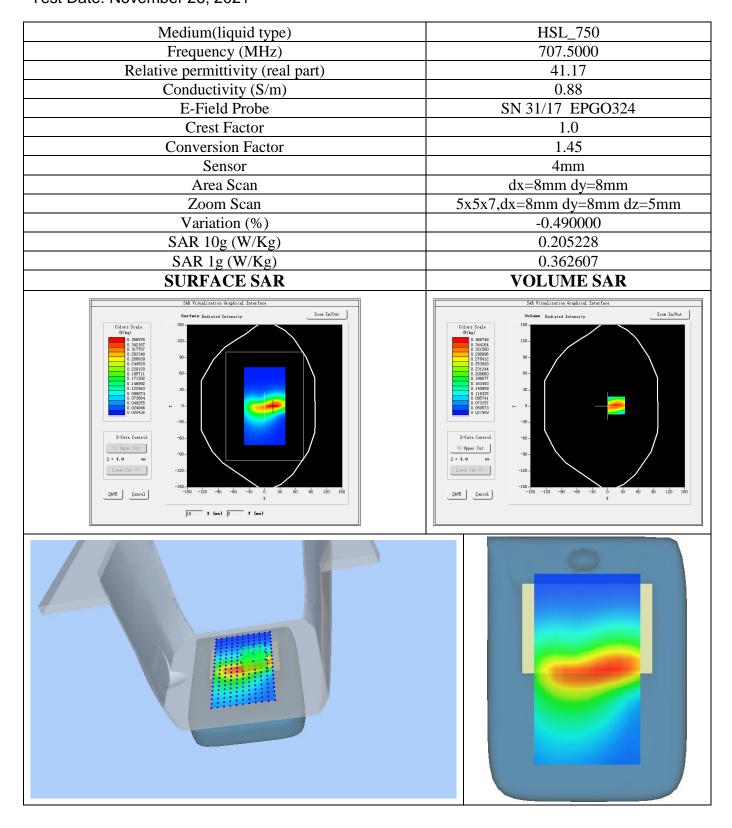
HSL_1800

Test Mode: LTE Band 4, 1RB, Middle channel (Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: November 30, 2021 Medium(liquid type) Frequency (MHz)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 169

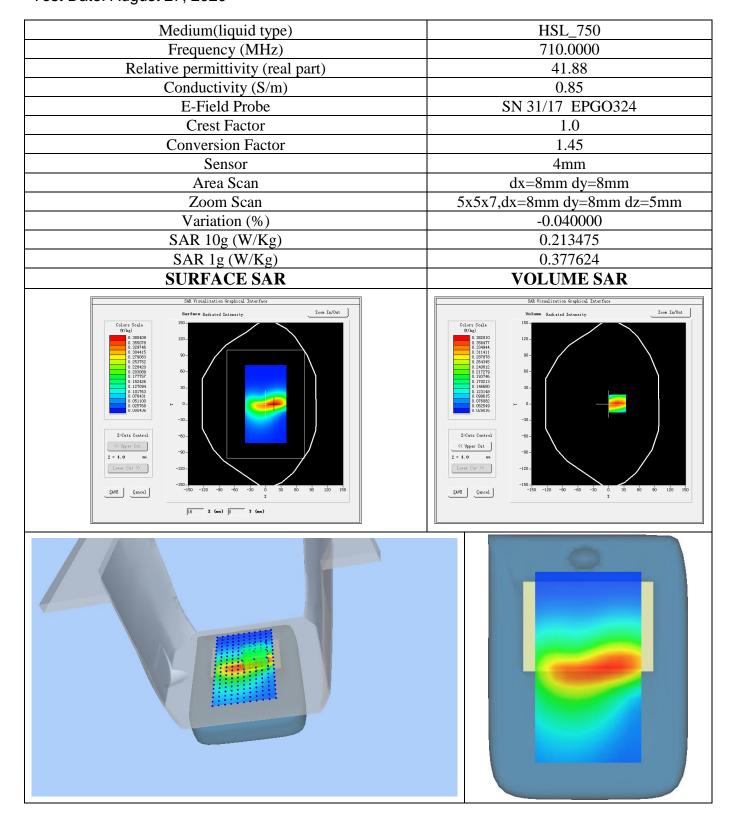
Test Mode: LTE Band 5, 1RB,Low channel(Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: November 28, 2021

Medium(liquid type)	HSL_835
Frequency (MHz)	829.0000
Relative permittivity (real part)	41.68
Conductivity (S/m)	0.90
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.930000
SAR 10g (W/Kg)	0.182017
SAR 1g (W/Kg)	0.321121
SURFACE SAR	VOLUME SAR
SAR Visualisation Graphical Interface	SAE Visualization Graphical Interface
$\begin{bmatrix} Cders Scale \\ 0/kp \\ 0 & 0.5553 \\ 0 & 0 & 0.5553 \\ 0 & 0 & 0.5553 \\ 0 & 0 & 0 & 0.5553 \\ 0 & 0 & 0 & 0 & 0.5553 \\ 0 & $	Volume Exit ted Intensity Zem In/Out 0 34221 0 0 34221 0 0 34221 0 0 213786 0 0 213786 0 0 100504 0 0 100000000000000000000000000000000



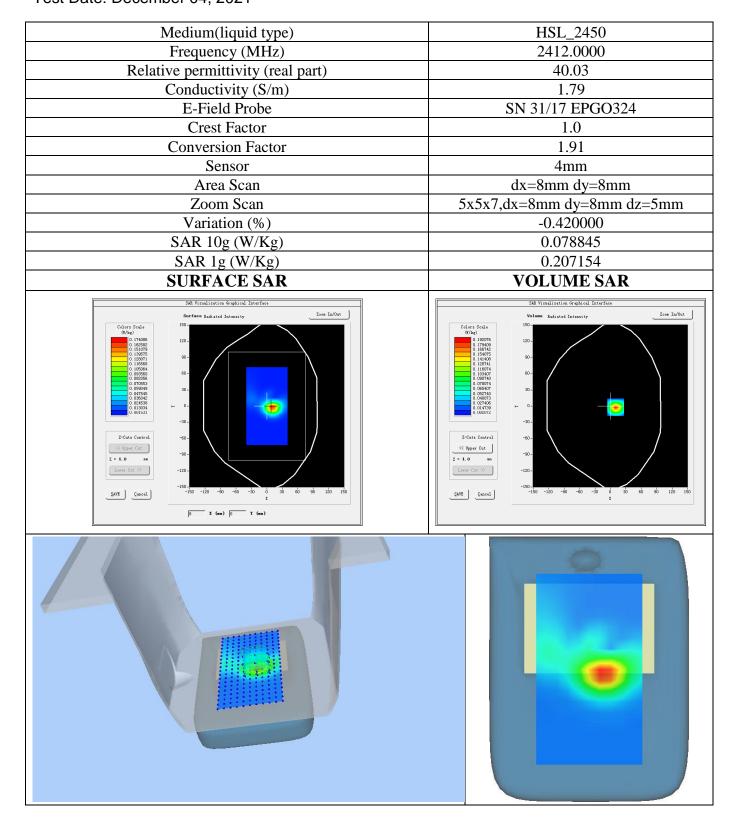
Test Mode: LTE Band 7, 1RB, Middle channel (Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: December 06, 2021

Medium(liquid type)	HSL_2600
Frequency (MHz)	2535.0000
Relative permittivity (real part)	36.12
Conductivity (S/m)	4.70
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.070000
SAR 10g (W/Kg)	0.246188
SAR 1g (W/Kg)	0.601093
SURFACE SAR	VOLUME SAR
SAR Visualization Graphical Interface	SAR Vizualization Graphical Interface
$\begin{array}{c} C_{d,ry} = 3.44 \\ 0'R_{dy} = 0 \\ 0.55566 \\ 0.55566 \\ 0.55566 \\ 0.55567 \\ 0.5567 \\ 0.$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} c_{0} r_{0} r$



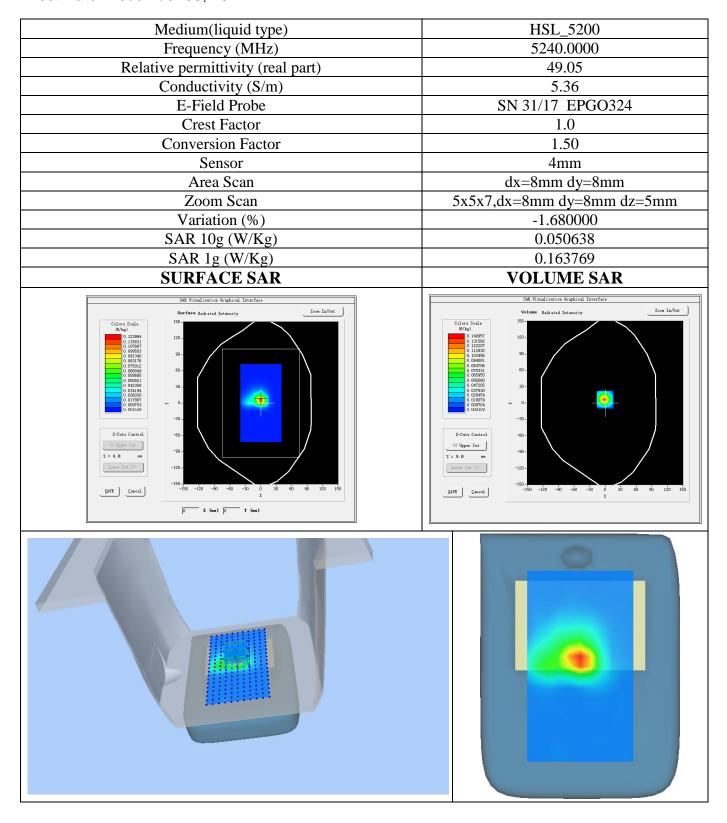
Test Mode: Hotspot LTE Band 12, 1RB,Low channel (Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: November 26, 2021

Test Mode: Hotspot LTE Band 17, 1RB, Low channel (Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: August 27, 2020

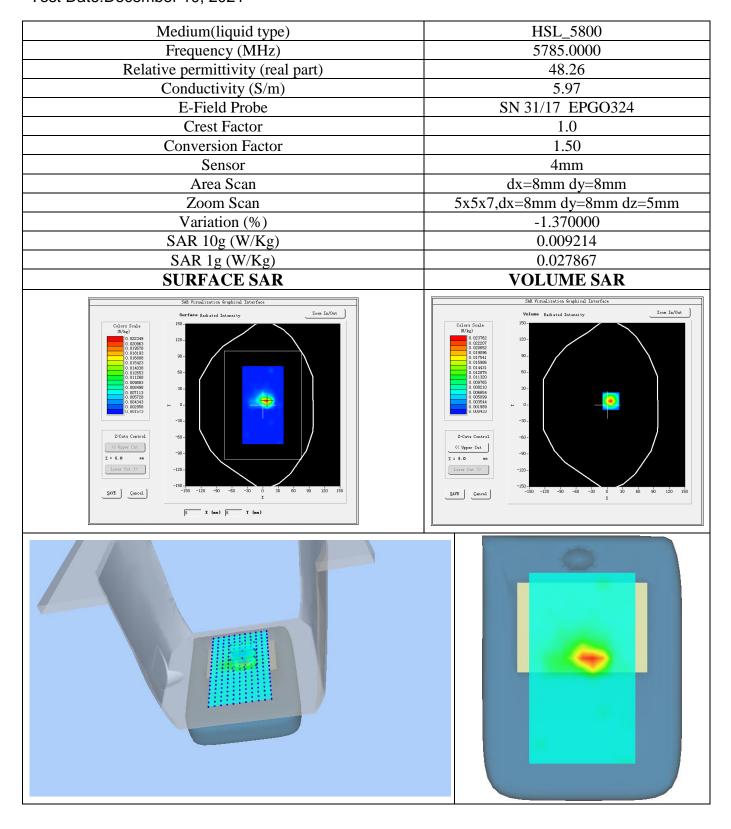

#11

Test Mode: Hotspot LTE Band 41, 1RB, High channel(Body Rear Side) Product Description:Tablet Model:10LA1 Test Date: December 02, 2021

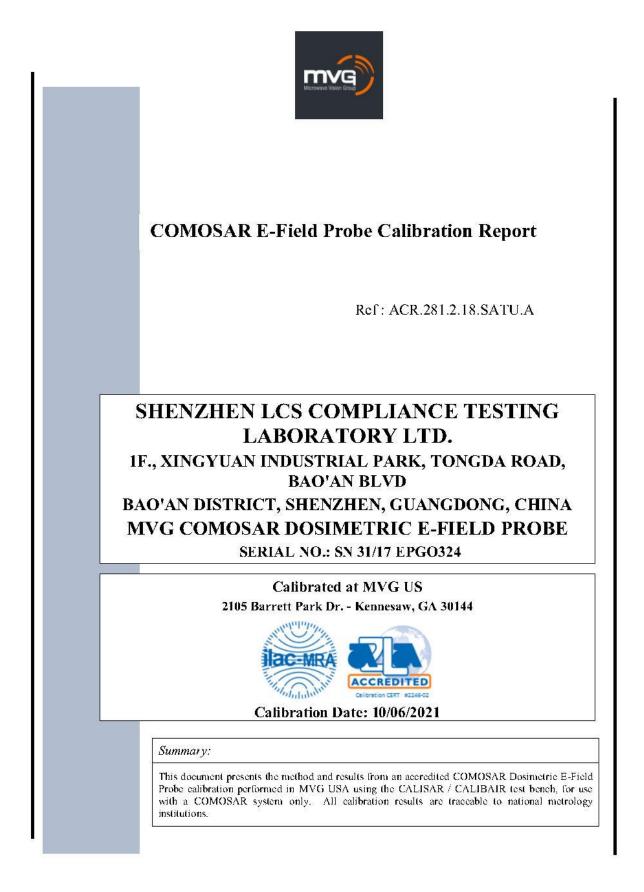
Medium(liquid type)	HSL_2600
Frequency (MHz)	2680.0000
Relative permittivity (real part)	36.15
Conductivity (S/m)	4.69
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.58
Conversion Factor	1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.000000
SAR 10g (W/Kg)	0.138295
SAR 1g (W/Kg)	0.340451
SURFACE SAR	VOLUME SAR
SAR Visualisation Graphical Interface	SAE Visualisation Graphical Interface
$\begin{bmatrix} C_{1} C_{2} C_{3} C_$	Volume Ratisted Intensity Zown Int/Out 0 955189 0 955189 0 95509 0 9509 0 9509 0 9509 0 9509 0 9509 10 9509 10 9509



Test Mode: Hotspot 802.11b(WiFi2.4G),Low channel(Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: December 04, 2021



Test Mode: Hotspot 802.11a(WiFi5.2G), High channel (Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: December 08, 2021



Test Mode: Hotspot 802.11n20(WiFi5.8G), Middle channel (Body Rear Side) Product Description: Tablet Model:10LA1 Test Date: December 10, 2021

5. CALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

Ref. ACR.281.2.18.SATU.A

9	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/6/2021	JES
Checked by :	Jérôme LUC	Product Manager	10/6/2021	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/6/2021	them nuthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod fications
A	10/6/2021	Initial release
1		
19		

Page: 2/10

Report No.: LCS211103087AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

TABLE OF CONTENTS

1	Dev	/ice Under Test	
2	Pro	duct Description	
	2.1	General Information	4
3	Mea	asurement Method4	
	3.1	Lincarity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	asurement Uncertainty	
5	Cal	ibration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment	

Page: 3/10

Ref: ACR.281.2.18.SATU.A

1 DEVICE UNDER TEST

Device	e Under Test
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE2
Serial Number	SN 31/17 EPGO324
Product Condition (new / used)	New
Frequency Range of Probe	0.15 GHz-6GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ
	Dipole 2: R2=0.203 MΩ
	Dipole 3: R3=0.218 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.281.2.18.SATU.A

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

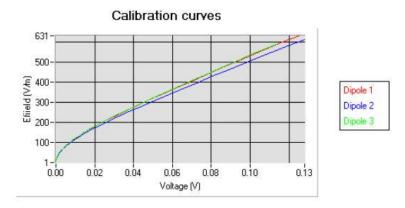
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$]	2.887%

Page: 5/10

Ref: ACR.281.2.18.SATU.A

Field prob e linearity	3.00%	Rectangular	√3	1	1.732%
Combined standard uncertainty			(2)		5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

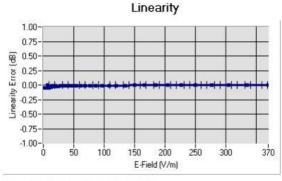

	Calibration Parameters	
Liquid Temperature	21.°C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	
0.80	0.83	0.68

DCP dipole 1	DCP dipole 2	DCP dipole 3	
(mV)	(mV)	(mV)	
95	90	93	

Calibration curves ci=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$



Ref: ACR.281.2.18.SATU.A

5.2 LINEARITY

Linearity: 1+/-1.13% (+/-0.05dB)

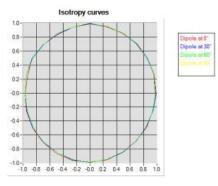
5.3 SENSITIVITY IN LIQUID

<u>Liquid</u>	<u>Frequency</u> (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

Ref: ACR.281.2.18.SATU.A


5.4 ISOTROPY

HL900 MHz

- Axial isotropy	:
- Hemispherical	isotropy:

Hemispherical	lisotropy:
---------------	------------

0.05	dB
0.07	dB

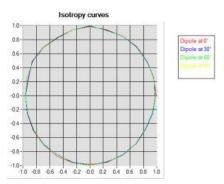
HL1800 MHz

- Axial isotropy	:
- Hemispherical	isotropy:

	1	T			
1					Dipole
		++		1	Dipole
+++		-	+ + -	+	Deputie
1	-	-	+ +	1	102
1				11	
			++	1	
V				Å	
			1		

0.06 dB 0.07 dB

Page: 8/10



REF. ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.06 dB 0.10 dB

Page: 9/10

REF. ACR.281.2.18.SATU.A

6 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2019	02/2022
Reference Probe	MVG	EP 94 SN 37/08	10/2019	10/2021
Multimeter	Keithley 2000	1188656	01/2020	01/2023
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2020	01/2023
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701		Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	11/2020	11/2023

Page: 10/10

SAR Reference Dipole Calibration Report

Ref: ACR.287.3.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. **1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA**

SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 750 MHZ SERIAL NO.: SN 07/14 DIP 0G750-302

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/29/2021

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.287.3.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	Jes
Checked by :	Jérôme LUC	Product Manager	10/12/2021	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	10/12/2021	thim putthoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications	
A	10/12/2021	Initial release	

Page: 2/11

FCC ID: 2AVTH-10LA102

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

TABLE OF CONTENTS

	Intro	oduction4	
2	Dev	iee Under Test4	
3	Proc	luct Description4	
	3.1	General Information	4
4	Мса	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Мса	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment11	

Page: 3/11

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID750	
Serial Number	SN 07/14 DIP 0G750-302	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

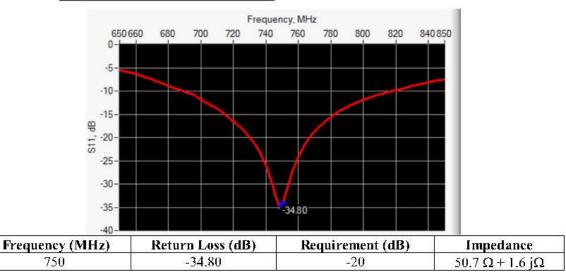
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
lg	20.3 %
10 g	20.1 %

Page:	5/11	
ugu.	241.1	



Ref: ACR.287.3.14.SATU: A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz require	Ln	Lmm hmm		h mm		nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.	9 - 1 	6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

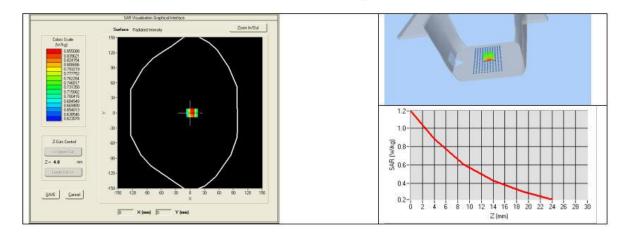
Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.1 sigma : 0.89
Distance between dipole center and liquid	15.0 mm
Area sean resolution	dx=8nm/dy=8mm

Page: 7/11



Ref: ACR.287.3.14.SATU.A

Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	8
750	8.49	8.38 (0.84)	5.55	5.53 (0.55)
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	2
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	2
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	5
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

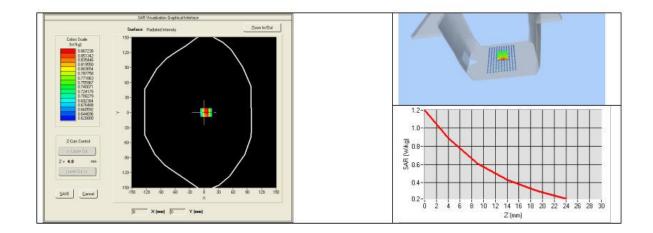
Ref: ACR.287.3.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %	PASS	0.96 ±5 %	PASS
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps': 56.6 sigma: 0.99	
Distance between dipole center and liquid	15.0 mm	
Area sean resolution	dx=8nm/dy=8nm	
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


Page: 9/11

Ref: ACR.287.3.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
750	8.77 (0.88)	5.78 (0.58)

Page: 10/11

Ref: ACR.287.3.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024	
Calipers	Carrera	CALIPER-01	12/2018	12/2021	
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022	
Multimeter	Keithley 2000	1188656	12/2018	12/2021	
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2018	12/2021	
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024	

Page: 11/11