

TEST REPORT

No. I20D00025-EMC04

For

- Client : ClearCellular, Limited.
- Production : Smart Phone
- Model Name : ClearPHONE 420
- Brand Name: ClearCellular

FCC ID: 2AVSK-420

- Hardware Version: K6307Q-01
- Software Version: K6307QACL.FHDJ.P0.ANASAPA9DAT

JDFTL.0225_1140.V2.02

Issued date: 2020-03-19

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of China Telecommunication Technology Labs.
- The measurement uncertainty is not taken into account when deciding conformity, and the results of measurement (or the average of measurement results) are directly used as the criterion for the stating conformity.

Test Laboratory: East China Institute of Telecommunications Add: Building 4, No. 766, Jingang Road, Pudong New District, Shanghai Tel: +862163843300 E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
I20D00025-EMC04	00	2020-03-19	Initial creation of test report

CONTENTS

1.	TEST LABORATORY	6
1.1.	TESTING LOCATION	6
1.1.	TESTING ENVIRONMENT	6
1.2.	PROJECT DATA	6
1.3.	SIGNATURE	6
2.	CLIENT INFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	MANUFACTURER INFORMATION	7
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4.	REFERENCE DOCUMENTS	9
4.3.	REFERENCE DOCUMENTS FOR TESTING	9
5.	TEST RESULTS1	0
5.1.	SUMMARY OF TEST RESULTS1	0
5.2.	STATEMENTS1	0
6.	TEST EQUIPMENT UTILIZED 1	1
7.	SYSTEM CONFIGURATION DURING TEST1	2
7.1	TEST MODE1	2
7.2	CONNECTION DIAGRAM OF TEST SYSTEM1	2
8.	MEASUREMENT RESULTS1	3
8.1	20DB BANDWIDTH	3
8.2	FREQUENCY STABILITY1	5
	RADIATED EMISSIONS	7
East	China Institute of Telecommunications Page Number : 4 of 25	~

8.3.1 ELECTRIC FIELD STRENGTH OF FUNDAMENTAL EMISSIONS 1	17
8.3.2 ELECTRIC FIELD RADIATED EMISSIONS (BELOW 30MHZ) 1	9
8.3.3 ELECTRIC FIELD RADIATED EMISSIONS (ABOVE 30MHZ)2	21
8.4 CONDUCTED EMISSIONS	23
ANNEX A ACCREDITATION CERTIFICATE	25

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications	
Address:	Building 4, No. 766, Jingang Road, Pudong New District, Shanghai	
Postal Code:	201206	
Telephone:	(+86)-021-63843300	
FCC registration No:	958356	

1.1. Testing Environment

Normal Temperature:	15-35℃
Relative Humidity:	30-60% RH
Supply Voltage	120V/60Hz

1.2. Project data

Project Leader:	Zhang Heng
Testing Start Date:	2020-03-16
Testing End Date:	2020-03-16

1.3. Signature

中党务

Lu Huifang (Prepared this test report)

You Jinjun (Reviewed this test report)

Zheng Zhongbin (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	ClearCellular, Limited.
Address	4764/24B Moorefield Rd Johnsonville Wellington 6037-227 New
Address	Zealand
Telephone	+1.801.361.6453
Postcode	NA

2.2. Manufacturer Information

Company Name	COOSEA GROUP (HK) COMPANY LIMITED		
Address	UNIT 5-6 16F MULTIFIELD PLAZA 3-7A PRAT AVENUE TSIM SHA TSUI KL HONGKONG		
Telephone	86-0755-3397 1000		
Postcode	NA		

3. Equipment under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

EUT Description	Smart Phone
Model name	ClearPHONE 420
GSM Frequency Band	GSM850/GSM1900
WCDMA Frequency Band	Band II /Band IV/Band V
LTE Frequency Band	LTE 2/4/5/7/12/13/17
Additional Communication Function	BT4.2;WLAN 802.11b,g,n;NFC;GPS;GLONASS;BDS;FM;

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N08	869899033450854/ 869899033450862	K6307Q-01	K6307QACL.FHDJ.P0.A NASAPA9DATJDFTL.02 25_1140.V2.02	2020-03-09

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN
CA04	Adapter	HJ-FC017K7-US	NA
UB01	USB Cable	9V 2A Type-C	NA
AE1	Type A Card	NA	NA

*AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.3. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC CFR47	Frequency allocations and radio treaty matters;	2020/02/25
Part 2	general rules and regulations	2020/02/23
FCC CFR47	Padia Fraguanay Daviana Intentional Padiatora	2020/02/25
Part 15C	Radio Frequency Devices-Intentional Radiators	2020/02/25
ANSI C63.10	American National Standard of Procedures for Compliance	2013
ANSI C63.10	Testing of Unlicensed Wireless Devices	2013

5. Test Results

5.1. Summary of Test Results

Items	Test List	Clause in FCC rules	Verdict
1	20 dB bandwidth	2.1049	Pass
2	Frequency Stability	15.225(e)	Pass
3	Radiated Emissions	15.225 (a) (b) (c) (d) and 15.209	Pass
4	Conducted Emissions	15.207	Pass

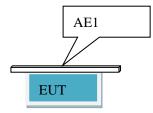
5.2. Statements

The ClearPHONE 420, supporting GSM/WCDMA/LTE.etc, manufactured by COOSEA GROUP (HK) COMPANY LIMITED is a new product for testing. ECIT only performed test cases which identified with Pass/Fail/Inc result in section 5.1.

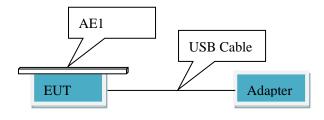
ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

6. Test Equipment Utilized

ltem	Instrument Name	Туре	Serial Number	Manufacturer	Cal. Date	Cal. interval
1	Test Receiver	ESU40	100307	R&S	2019-05-10	1 year
2	Trilog Antenna	VULB9163	VULB9163-515	Schwarzbeck	2020-02-28	2 years
3	Loop Antenna	AL-130R	121083	COM-POWER	2019-12-26	2 years
4	EMI Test Software	EMC32 V9.15	NA	R&S	NA	NA
5	Test Receiver	ESCI	101235	R&S	2019-05-10	1 year
6	2-Line V-Network	ENV216	101380	R&S	2019-05-10	1 year
7	EMI Test Software	EMC32 V10.35.02	NA	R&S	NA	NA
8	Vector Signal Analyser	FSQ26	101096	R&S	2019-05-10	1 year
9	Climate chamber	SH-641	92012011	ESPEC	2019-12-11	1 year



7. System Configuration during Test


7.1 Test Mode

Test Item	Function Type			
AC Conducted Emission	Mode 1: TX mode <figure 1=""></figure>			
Frequency Stability	Mode 1: TX mode <figure 1=""></figure>			
Radiated Emissions	Mode 1: TX mode <figure 1=""></figure>			
Conducted Emissions Mode 2: TX mode + CA04+UB01 <figure 2=""></figure>				
Remark: Enter working mode according to NFC transmission command. The EUT will transmit the				
NFC command continuously during the test, and will read the information from the Type A Card				
continuously.				

7.2 Connection Diagram of Test System

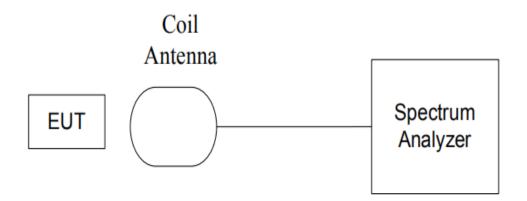
<Figure 1> Mode 1

<Figure 2> Mode 2

8. Measurement Results

8.1 20dB Bandwidth

Reference


See Clause 6.9 of ANSI C63.10-2013

Measurement Methods

The transmitter output signal was picked up by coil antenna to the spectrum analyzer.

The transmitter output signal was picked up by coil antenna connected to the spectrum analyzer. The bandwidth of the center frequency was measured with 140Hz RBW, 420Hz VBW and 14kHz span.

Test Setup

EUT Operating Mode and Test Conditions

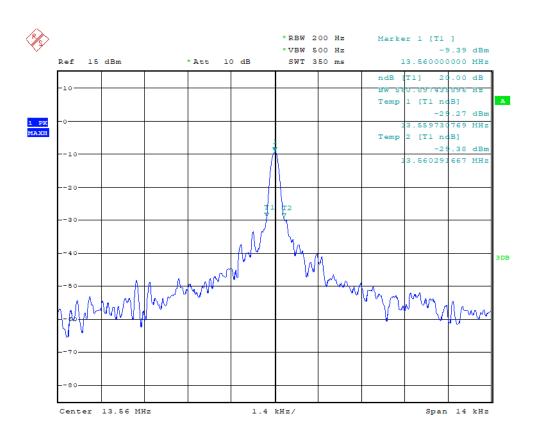
The measurement of EUT is carried out under the transmit state of NFC and without modulation. EUT had been not connected to a travel adapter.


During the measurements, the ambient temperature is in the range of 15~25 °C.

Limits

The 20dB bandwidth shall be less than 80% of the permitted frequency band. For 13.56MHz NFC, the permitted frequency band is 14kHz, so the limit is 11.2kHz.

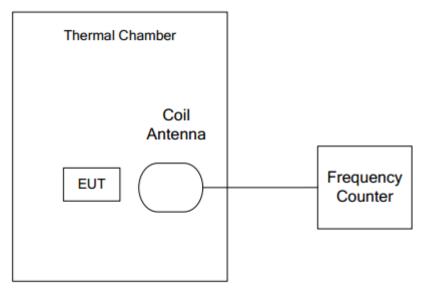
Uncertainty Measurement


The measurement uncertainty is 60.8Hz (k=2)

Test Results:

Carrier frequency	20dB Bandwidth	Conclusion
(MHz)	(kHz)	
13.56	0.561	Pass

Date: 17.FEB.2020 14:24:33



8.2 Frequency Stability

Reference

See Clause 6.8 of ANSI C63.10-2013

Measurement Methods

The transmitter output single was picked up by coil antenna connected to the frequency counter. The center frequency was measured with 30Hz RBW and 1kHz span.

During the test, the EUT was placed in a thermal chamber until thermal balance and lasting appropriate time.

EUT Operating Mode and Test Conditions

The measurement of EUT is carried out under the transmit state of without modulation, EUT1 had been not connected to a travel adapter.

Operation Temperature: Tmin=-20℃, Tnom=25℃, and Tmax=50℃

Operation Voltage: Vmin=22.8V, Vmax=25.2V, and Tnom=24V.

Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

Uncertainty Measurement

The measurement uncertainty U=60.8Hz(k=2).

Test Results

Temperature	Voltage	Frequency Error (MHz)			
		Startup	2Min Later	5Min Later	10Min Later
Tmin	Vnom	13.560401	13.560413	13.560419	13.560813
Tmax	Vnom	13.560471	13.560489	13.560480	13.560476
Tnom	Vnom	13.560449	13.560467	13.560471	13.560452
Tnom	Vmin	13.560428	13.560423	13.560421	13.560363
Tnom	Vmax	13.560417	13.560427	13.568931	13.560753

Temperature	Voltage	Frequency Error (%)			
		Startup	2Min Later	5Min Later	10Min Later
Tmin	Vnom	0.003	0.003	0.003	0.003
Tmax	Vnom	0.003	0.003	0.003	0.003
Tnom	Vnom	0.003	0.003	0.003	0.003
Tnom	Vmin	0.003	0.003	0.003	0.003
Tnom	Vmax	0.003	0.003	0.003	0.003

8.3 Radiated Emissions

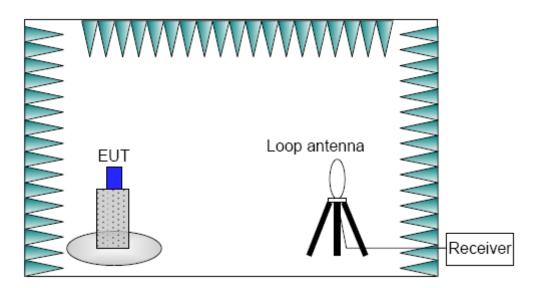
8.3.1 Electric Field Strength of Fundamental Emissions

Reference

See Clause 6.4 of ANSI C63.10-2013

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The transmitter carrier output levels (E-Field) from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. Both horizontal and vertical polarizations of the antenna were set during the measurement. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.


The measurement bandwidth:

Frequency (MHz)	RBW / VBW
12.56-14.56	10 / 30kHz

The E-field measured at 3m is calculated as:

E-field (dBuV/m) = Rx (dBuV) + Cable Loss (dB) + AF@3m (dB/m)

Test Setup

Limits

Clause 15.225(a) the field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Clause 15.225(b) within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Clause 15.225(c) within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

Frequency Range (MHz)	E-field Strength Limit @30m	E-field Strength Limit @3m
	(uV/m)	(dBuV/m)
13.560 ± 0.007	+15,848	124
13.410 to 13.553	+334	90
13.567 to 13.710		
13.110 to 13.410	+106	81
13.710 to 14.010		

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:

Extrapolation (dB) = $40\log_{10}$ (Measurement Distance / Specification Distance)

Measurement Uncertainty

Measurement uncertainly: (9kHz-30MHz) 5.66dB k=2

Measurement Results

Measurement results of normal conditions see Figure 1 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses

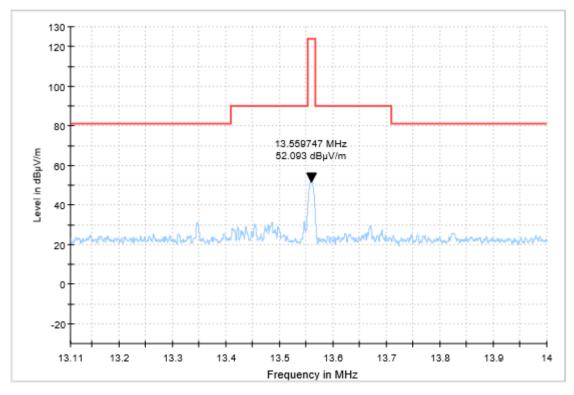


Figure 1 TX mode

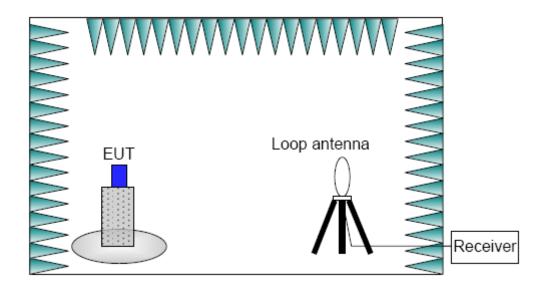
8.3.2 Electric Field Radiated Emissions (Below 30MHz)

Reference

See Clause 6.4 of ANSI C63.10-2013

Method of Measurement

The electric field radiated emissions from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. Both horizontal and vertical polarizations of the antenna were set during the measurement. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.


The measurement bandwidth:

Frequency (MHz)	RBW / VBW
0.009-30	10 / 30kHz

The E-field measured at 3m is calculated as:

E-field (dBuV/m) = Rx (dBuV) + Cable Loss (dB) + AF@3m (dB/m)

Test Setup

Limits

Frequency Range (MHz)	E-field Strength Limit @30m	E-field Strength Limit @3m	
	(mV/m)	(dBuV/m)	
0.009-0490	2400/F (kHz)	129-94	
0.490-1.705	24000/F (kHz)	74-63	
1.705-30	30	70	
Neter Millione the limite house here defined at the distance and a simple limited more summaries			

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula: Extrapolation (dB) = $40\log_{10}$ (Measurement Distance / Specification Distance)

Measurement Uncertainty

Measurement uncertainly: (9kHz-30MHz) 5.66dB k=2

Measurement Results

Measurement results of normal conditions see Figure 2 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses

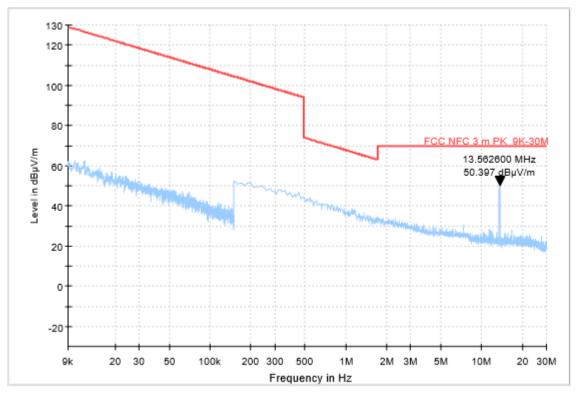
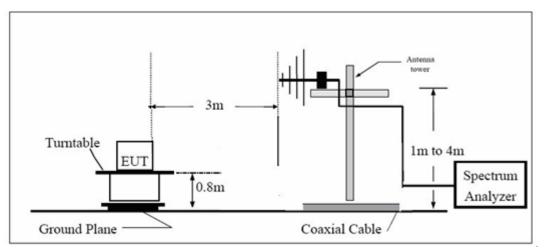


Figure 2 TX mode (9kHz-30MHz)

8.3.3 Electric Field Radiated Emissions (Above 30MHz)

Reference

See Clause 6.5 of ANSI C63.10-2013


Method of Measurement

The electric field radiated emissions from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The table was rotated 360 degree and the received antenna mounted on a variable-height antenna tower was varied from 1m to 4m to find the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna were set during the measurement. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. The measurements were performed with the peak detector and if required, the quasi-peak detector.

The measurement bandwidth:

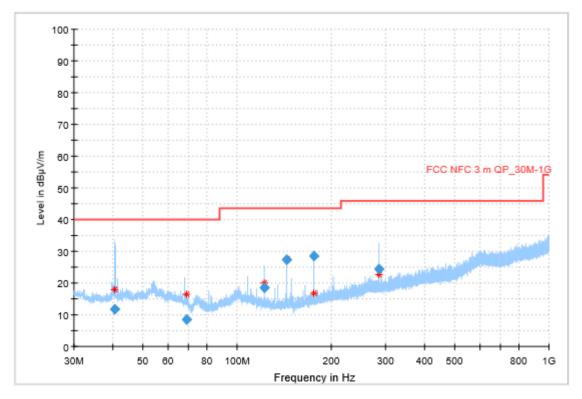
Frequency (MHz)	RBW / VBW	
30-1000	120 kHz / 300kHz	

Test Setup

Limits

Frequency Range (MHz)	E-field Strength Limit @3m	E-field Strength Limit @3m
	(mV/m)	(dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
960-1000	500	54

Measurement Uncertainty


Measurement uncertainly: (30MHz-1000MHz) 4.98dB k=2

Measurement Results

Measurement results of normal conditions see Figure 3 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses

QP detection is used in radiated emissions test, and the Duty Cycle of NFC main frequency signal is 100%.

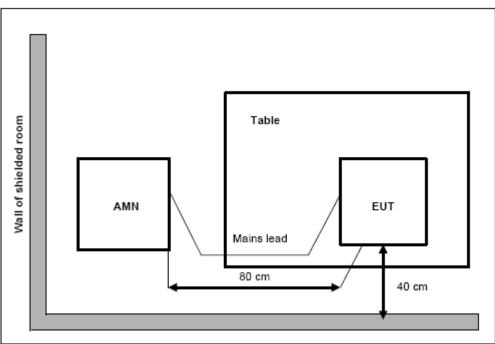
Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
				(ms)					
40.508008	11.85	40.00	28.15	1000.0	120.000	125.0	v	1.0	-15.9
68.892005	8.54	40.00	31.46	1000.0	120.000	196.2	v	147.0	-18.3
122.010923	18.64	43.50	24.86	1000.0	120.000	199.8	Н	30.0	-17.3
144.012405	27.34	43.50	16.16	1000.0	120.000	175.0	٧	242.0	-17.8
176.265472	28.56	43.50	14.94	1000.0	120.000	174.9	Η	147.0	-16.3
284.757205	24.48	46.00	21.52	1000.0	120.000	125.0	Н	326.0	-12.1

8.4 Conducted Emissions

Reference

See Clause 6.2 of ANSI C63.10-2013

Methods of Measurement


The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector. Tested in accordance with the procedures of ANSI C63.10-2013 The conducted emission measurements were made with the following detector of the test receiver Quasi-Peak / Average Detector.

Test Setup

The measurement bandwidth and Test Condition

Frequency (MHz)	RBW	Sweep Time (s)	Test Voltage
0.15-30	9 kHz	Auto	120V/60Hz

Test Setup

Limits

Conducted Limit (dBuV)				
Quasi-peak	Average			
66 to 56*	56 to 46*			
56	46			
60	50			
	Quasi-peak 66 to 56* 56			

*Decreases with the logarithm of the frequency

Measurement Uncertainty

Measurement uncertainly: (150kHz-30MHz) 3.66dB k=2

Measurement Results

Note: The measurement result at 13.56MHz is the fundamental emission of NFC signal.

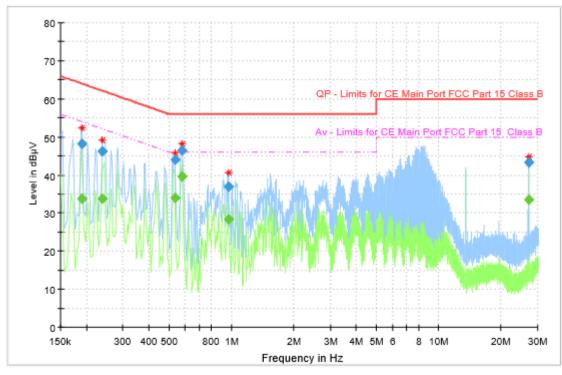


Figure 4 TX mode (150kHz-30MHz)

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	Filter	Corr. (dB)
					(ms)				
0.191044	48.25		63.99	15.74	15000.0	9.000	N	ON	9.7
0.191044		33.67	53.99	20.32	15000.0	9.000	N	ON	9.7
0.239550		33.67	52.11	18.44	15000.0	9.000	N	ON	9.7
0.239550	46.35		62.11	15.77	15000.0	9.000	N	ON	9.7
0.534319	44.05		56.00	11.96	15000.0	9.000	N	ON	9.8
0.534319		33.94	46.00	12.06	15000.0	9.000	N	ON	9.8
0.575363	46.48		56.00	9.52	15000.0	9.000	N	ON	9.8
0.575363		39.52	46.00	6.48	15000.0	9.000	N	ON	9.8
0.967144	36.98		56.00	19.02	15000.0	9.000	N	ON	9.8
0.967144		28.43	46.00	17.57	15000.0	9.000	N	ON	9.8
27.119475		33.52	50.00	16.48	15000.0	9.000	L1	ON	10.2
27.119475	43.26		60.00	16.74	15000.0	9.000	L1	ON	10.2

Note:

- 1. Emission level(quasi-peak or Average peak)=Raw value by receiver + Corr(Insertion loss+ cable loss)
- 2. The raw value is used to calculate by software which is not shown in the sheet.
- 3. Margin=limit value emission level.
- 4. L1 and N line is all have been tested, the result of them is synthesized in the above data diagram.

Annex A Accreditation Certificate

Accredited Laboratory

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 6th day of May 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

***********END OF REPORT*********