


No.: BCTC/RF-EMC-007

Page: 59 of 79

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

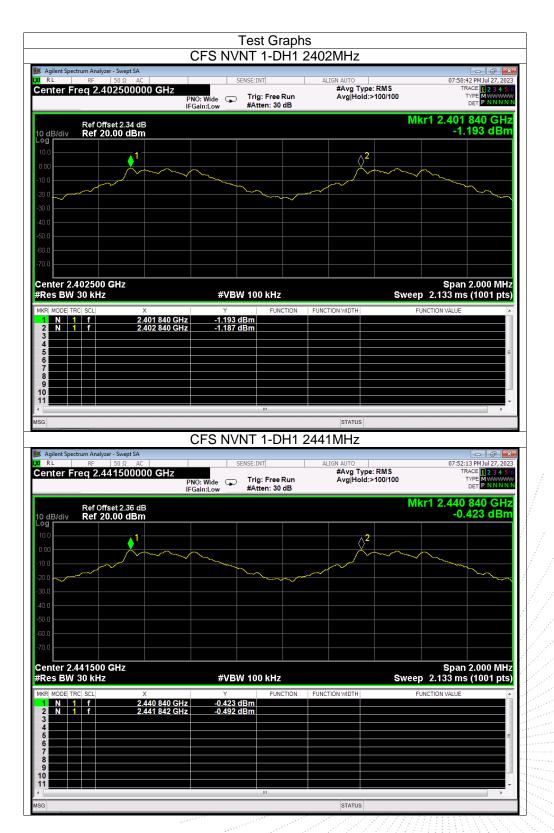
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.84	2402.84	1	0.561	Pass
NVNT	1-DH1	2440.84	2441.842	1.002	0.577	Pass
NVNT	1-DH1	2478.84	2479.84	1	0.616	Pass
NVNT	2-DH1	2401.84	2402.84	1	0.825	Pass
NVNT	2-DH1	2440.84	2441.84	1	0.837	Pass
NVNT	2-DH1	2478.84	2479.84	1	0.853	Pass
NVNT	3-DH1	2401.838	2402.84	1.002	0.809	Pass
NVNT	3-DH1	2440.838	2441.836	0.998	0.814	Pass
NVNT	3-DH1	2478.838	2479.838	1	0.833	Pass

12.4 Test Result


Page: 60 of 7

ТC

PR

测

Page: 61 of 79

TE OVE 心

No.: BCTC/RF-EMC-007

RL RF 50 Ω AC enter Freq 2.479500000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	07:55:10 PM Jul 27, 20 TRACE 1234 TYPE MWWW DET PNNN
Ref Offset 2.4 dB dB/div Ref 20.00 dBm	in Gain Low Annual Contract	Mkr1	2.478 840 GH -0.317 dBr
1.0			
0.0			
D.0			
0.0			
enter 2.479500 GHz Res BW 30 kHz	#VBW 100 kHz	Sweep 2	Span 2.000 MH 2.133 ms (1001 pt
KR MODE TRC SCL X 1 N 1 f 2.478 840 G	Y FUNCTION	FUNCTION WIDTH FUNC	TION VALUE
2 N 1 f 2.479 840 G 3 4	Hz0.274 dBm		
5 6 7			
8			
1	m	STATUS	- F
	CFS NVNT 2-DH1 2		
Agilent Spectrum Analyzer - Swept SA R.L RF 50 Ω AC	SENSE:INT	ALIGN AUTO	07:57:51 PM Jul 27, 20
enter Freq 2.402500000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	#Avg Type: RMS Avg Hold:>100/100	TRACE 1234 TYPE MWWW DET PNNN
Ref Offset 2.34 dB dB/div Ref 20.00 dBm		Mkr1	2.401 840 GH -1.224 dBr
			~~~~~
0.0			
D.0			
enter 2.402500 GHz	#VBW 100 kHz	Sweep 2	
enter 2.402500 GHz Res BW 30 kHz R MODE TRC SCL X N 1 f 2.401 840 G	Y FUNCTION Hz -1.224 dBm		
x         x           IN         1         f         2.402 840 Gi           2         N         1         f         2.402 840 Gi           3         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>Y FUNCTION</td> <td></td> <td>2.133 ms (1001 pt</td>	Y FUNCTION		2.133 ms (1001 pt
1 N 1 f 2.401 840 G	Y FUNCTION Hz -1.224 dBm		Span 2.000 MH 2.133 ms (1001 pt 100 VALUE



RL RF 50 Ω AC enter Freq 2.441500000 GHz	PNO: Wide Trig: Free Rui		08:00:00 PM Jul 27, 2 TRACE <b>12.34</b> O TYPE MY 44 DET PNNN
Ref Offset 2.36 dB	IFGain:Low #Atten: 30 dB		Mkr1 2.440 840 GH -0.492 dB
dB/div Ref 20.00 dBm			-0.402 dB
.0			
.0			
.0			
enter 2.441500 GHz			Span 2.000 MI
	#VBW 100 kHz		Sweep 2.133 ms (1001 pt
N 1 f 2.440 840 G N 1 f 2.441 840 G	Hz -0.492 dBm		
	11	STATUS	•
	CFS NVNT 2-DH	1 2480MHz	
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC enter Freg 2.479500000 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	08:02:39 PM Jul 27, 2 TRACE 1 2 3 4
enter Freq 2.479500000 GHZ	PNO: Wide Trig: Free Ru IFGain:Low #Atten: 30 dB	n Avg Hold:>100/10	D TYPE M WWW DET P N N N
Ref Offset 2.4 dB dB/div Ref 20.00 dBm			Mkr1 2.478 840 GH -0.330 dB
1.0			
.0			
.0			
1.0			
enter 2.479500 GHz			Span 2.000 MI
	#VBW 100 kHz		Sweep 2.133 ms (1001 pt
	Hz -0.330 dBm		
N 1 f 2.478 840 G N 1 f 2.479 840 G			
2 N 1 f 2.479 840 G			
2 N 1 f 2.479 840 G			



Agilent Spectrum Analyzer R L RF	r - Swept SA 50 Ω AC	SENSE:INT	ALIGN AU	ITO		🕞 🗗 📄
enter Freq 2.40	02500000 GHz	0: Wide 😱 Trig: Free	#A e Run Av	vg Type: RMS g Hold:>100/100	TRA	ACE 1 2 3 4 5 APE M M M M M DET P N N N N
Ref Offs	set 2.34 dB	ain:Low #Atten: 3			/kr1 2.401 8	838 GH
	.00 dBm				-1.3	42 dBn
0.0	↓ ¹					
0.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				~~~~~
0.0						
0.0						
0.0						
0.0						
enter 2.402500 ( Res BW 30 kHz	GHz	#VBW 100 kH;	7	Swa	Span 2 ep 2.133 ms	2.000 MH (1001 pts
KR MODE TRC SCL	Х	Y FUI	NCTION FUNCTION W		FUNCTION VALUE	, roor pis
1 N 1 f 2 N 1 f 3	2.401 838 GHz 2.402 840 GHz	-1.342 dBm -1.328 dBm				
5						
6 7 8						
9 0 1						
						· · ·
G		CFS NVNT 3-D				
Agilent Spectrum Analyzer			ALIGN AL		00.07.22	🗖 💣 🗾
enter Freq 2.44	41500000 GHz	O: Wide	e Run Av	vg Type: RMS g Hold:>100/100	08:07:37 TRA T)	CE 1 2 3 4 5 PE MWWW DET P NNNN
	IFG	ain:Low #Atten: 3	0 dB		/kr1 2.440	
D-6.05					_0.6	41 dBn
Ref Offs dB/div Ref 20	0.00 dBm				-0.0	
0 dB/div Ref 20	1.00 dBm				-0.0	
0 dB/div Ref 20	1.00 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2 		
0 dB/div Ref 20 99 0.0 0.0 0.0 0.0	1 1	~~~~~		2 		
0 dB/div Ref 20	1 1 1			2 		
0 dB/div Ref 20 99 0.00 0.00 0.00 0.00 0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1					
o dB/div Ref 20 99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1					
d B/div         Ref 20           00					Span ź	2.000 MH
enter 2.441500 ( Res BW 30 kHz	0.00 dBm	#VBW 100 kHz		Swe	Span 2 ep 2.133 ms	2.000 MH
dB/div         Ref 20           29			Z NCTION FUNCTION W	Swe	Span ź	2.000 MH
dB/div         Ref 20           29	0.00 dBm	Y FUI -0.641 dBm		Swe	Span 2 ep 2.133 ms	2.000 MH
dB/div         Ref 20           09	0.00 dBm	Y FUI -0.641 dBm		Swe	Span 2 ep 2.133 ms	2.000 MH
dB/div         Ref 20           0	0.00 dBm	Y FUI -0.641 dBm		Swe	Span 2 ep 2.133 ms	2.000 MH

EHENZHE.



📕 Agilent Spectrum Analyze						- ē E
CRL RF	50 Ω AC	SENSE:I	T	ALIGN AUTO		08:09:42 PM Jul 27, 202
Center Freq 2.47		Trie	: Free Run	#Avg Type: Avg Hold:>1		TRACE 1 2 3 4 5 TYPE M WWW
			ten: 30 dB	Avginoid.>	100/100	DET P NNNN
					Mkr	1 2.478 838 GH
10 dB/div Ref 20	set 2.4 dB 9 <b>.00 dBm</b>					-0.515 dBn
-og						
10.0	1					
0.00				— — <u>X</u> –		
10.0		$\sim$	~ ~ ~	~~~~ \~	$\sim \sim$	$\sim$
-20 0		~				
-30.0						
-40.0						
-50.0						
-60.0						
-70.0						
Center 2.479500	CH7					Span 2.000 MH
Res BW 30 kHz	6112	#VBW 10	0 kHz		Sweep	2.133 ms (1001 pts
MKR MODE TRC SCL	X	Y	FUNCTION	FUNCTION WIDTH		CTION VALUE
1 N 1 f	2.478 838 GHz	-0.515 dBm	Ponorion		1014	
2 N 1 f	2.479 838 GHz	-0.522 dBm				
3						
5						
6						
8						
9						
10						



No.: BCTC/RF-EMC-007

Page: 65 of 79



## 13. Number Of Hopping Frequency

## 13.1 Block Diagram Of Test Setup



## 13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

## 13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

13.4 Test Result

No.: BCTC/RF-EMC-007

,TC



Agilent Spectrum Analyzer - Swept SA R L RF 50 Ω AC		IG NO. NV		ALIGN AUTO		08:12:2	9 PM Jul 27, 2023
enter Freq 2.44175000			Free Run en: 30 dB	#Avg Ty Avg Hol	/pe: RMS d:>100/100		ACE 1 2 3 4 5 0 YPE M WWWWWW DET P N N N N
Ref Offset 2.36 dB dB/div Ref 20.00 dBm					Mkr	1 2.401 83 0.2	7 0 GHz 86 dBm
						WWWW	2 
art 2.40000 GHz tes BW 100 kHz		#VBW 300	KHZ	FUNCTION WIDTH		Stop 2.4 p 8.000 ms	8350 GHz (1001 pts)
	1 837 0 GHz 9 909 5 GHz	0.286 dBm 0.831 dBm					
				STATUS	A1.1		
Agilent Spectrum Analyzer - Swept SA	Hoppir	ng No. NV	NT 2-D	H1 2441N	/IHZ		
RI RE 50.0 ΔC		SENSE-IN	r	ALIGN AUTO		08:15:5	B PM Jul 27, 2023
RL RF 50Ω AC enter Freq 2.44175000	PNO:	use 🖵	Free Run en: 30 dB		/pe: RMS d:>100/100	TR/	B PM Jul 27, 2023 ACE 1 2 3 4 5 0 YPE MWWWWW DET P N N N N
Ref Offset 2.36 dB Ref Offset 2.36 dB B/div Ref 20.00 dBm	PNO: IFGain	Fast 🖵 Trig:	Free Run	#Avg Ty	d:>100/100	TRJ T 1 1 2.401 50	8 PM Jul 27, 2023 ACE <b>1 2 3 4 5</b> YPE MWWWW DET PNNNN
Ref Offset 2.36 dB Ref 20.00 dBm	PNO: IFGain	Fast Trig: Low #Atte	Free Run en: 30 dB	#Avg Ty Avg Hol	å:>100/100 Mkr	TRU T 1 2.401 50 -5.7	A 2
Ref Offset 2.36 dB Ref 20.00 dBm	PNO: IFGain	Fast Trig: Low #Atte	Free Run en: 30 dB	#Avg Ty Avg Hol	å:>100/100 Mkr	TRU T 1 2.401 50 -5.7	A 2
Ref Offset 2.36 dB dB/div Ref 20.00 dBm	PNO: IFGain	Fast Trig: Low #Atte	Free Run en: 30 dB	#Avg Ty Avg Hol	d:>100/100	TR. T 2.401 50 -5.7 γγμμυνγν	8 PM JU 27, 2022 CCC 12 23 4 5 5 6 CCC 12 23 4 5 5 6 P N N N N H 3 0 GHz 28 dBm 28 350 GHz
Ref Offset 2.36 dB Ref 20.00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	PNO: IFGain	Fast Trig: Low #Atta	Free Run en: 30 dB	#Avg Ty Avg Hol	d:>100/100 Mkr	TR. T 2.401 50 -5.7 Φ Φ Φ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	8 PM JU 27, 2022 CCC 12 23 4 5 5 6 CCC 12 23 4 5 5 6 P N N N N H 3 0 GHz 28 dBm 28 350 GHz

TE OVE

Edition: B.0

No.: BCTC/RF-EMC-007



He	opping No. N	VNT 3-D	H1 2441N	lHz		
Agilent Spectrum Analyzer - Swept SA	SENSE:	INT	ALIGN AUTO		08:20:10 PM Jul 2	
Center Freq 2.441750000 GHz	PNO: East Tri	ig: Free Run tten: 30 dB	#Avg Ty	be: RMS i:>100/100	TRACE 12 TYPE MU DET P N	345
Ref Offset 2.36 dB 10 dB/div Ref 20.00 dBm				Mkr1	2.401 586 5 -5.634 c	
						2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Start 2.40000 GHz #Res BW 100 kHz	#VBW 30	IO KHZ		Sweep	Stop 2.48350 8.000 ms (1001	GH 1 pts
MKR MODE TRC SCL X 1 N 1 f 2.401 586 5 G 2 N 1 f 2.480 327 0 G 3 4 5 6	Y Hz -5.634 dBm Hz -4.933 dBm	FUNCTION	FUNCTION WIDTH	FU	INCTION VALUE	
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						
G			STATUS			,





Page: 68 of 79



## 14. Dwell Time

#### 14.1 Block Diagram Of Test Setup



#### 14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### 14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

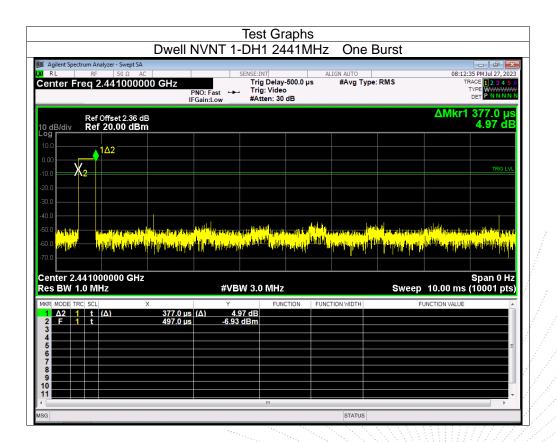
3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

### 14.4 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).


DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

No.: BCTC/RF-EMC-007

Page: 69 of 1



Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (s)	Limit (s)	Verdict
NVNT	1-DH1	2441	0.377	0.121	0.4	Pass
NVNT	1-DH3	2441	1.633	0.261	0.4	Pass
NVNT	1-DH5	2441	2.881	0.307	0.4	Pass
NVNT	2-DH1	2441	0.382	0.122	0.4	Pass
NVNT	2-DH3	2441	1.638	0.262	0.4	Pass
NVNT	2-DH5	2441	2.886	0.308	0.4	Pass
NVNT	3-DH1	2441	0.388	0.124	0.4	Pass
NVNT	3-DH3	2441	1.637	0.262	0.4	Pass
NVNT	3-DH5	2441	2.888	0.308	0.4	Pass



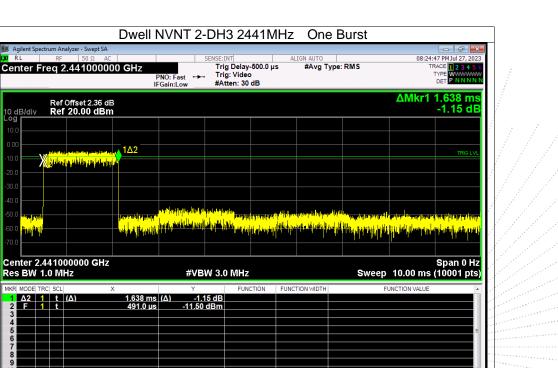
Page: 70 of 79

CHENZHER

No.: BCTC/RF-EMC-007



	Dwell [	NVNT 1-DI	H3 2441N	ihz One	e Burst		
Agilent Spectrum Analyzer - Swept SA       RL     RF       S0 Ω     AC       Center Freq 2.44100000	F	PNO: Fast +++ T	E:INT Frig Delay-500.0 μ Frig: Video #Atten: 30 dB	ALIGN AUTO Is #Avg T	ype: RMS	08:22:22 F TRAC TYP	M Jul 27, 20 <b>1 2 3 4</b> <b>W</b>
Ref Offset 2.36 dE 0 dB/div Ref 20.00 dBm .og						ΔMkr1 1. -(	633 m ).74 d
0.0	.▲1∆2						
							TRIG L
00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0 0 0 0	TERRITORIE	for an article brack to along Norman article brack and a star		na a fa filia da fili A filia (a. 1710-1711) a filia da filia	la l	a lan din ga din ya kata ya kat	
	n ( trailer a faith		and the state of the second state of the secon	when hit is a	aller le areale	Il contraction	114
enter 2.441000000 GHz es BW 1.0 MHz		#VBW 3	3.0 MHz		Sweep	S 10.00 ms (10	pan 0 H )001 pt
es BW 1.0 MHz (R MODE TRC SCL > 1 Δ2 1 t (Δ) 2 F 1 t 3	х 1.633 ms 491.0 µs	Υ (Δ) -0.74 d	FUNCTION	FUNCTION WIDTH			
es BW 1.0 MHz KR MODE TRC SCL >> 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 6 6	1.633 ms	Υ (Δ) -0.74 d	FUNCTION	FUNCTION WIDTH		10.00 ms (1	
es BW 1.0 MHz KR MODE TRC SCL >> 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 5 6	1.633 ms	Υ (Δ) -0.74 d	FUNCTION	FUNCTION WIDTH		10.00 ms (1	


### Dwell NVNT 1-DH5 2441MHz One Burst L Agil 08:23:21 PM Jul 2 #Avg Type: RMS Trig Delay-500.0 μs Trig: Video #Atten: 30 dB Center Freq 2.441000000 GHz PNO: Fast IFGain:Low DE ΔMkr1 2.881 ms -3.36 dB Ref Offset 2.36 dB Ref 20.00 dBm l0 dB/di 1∆2 a statistic to a statistic production of the statistic statistic and any statistic statistic statistic statistic Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz 2.881 ms (Δ) 484.0 μs 2 1 t (Δ) -3.36 dE -13.20 dBn

E A

Page: 71 of 79



	Dwell N	VNT 2-	DH1 24	41MHz	One I	Burst		
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC enter Freq 2.44100000	DO GHz	NO: Fast ↔→ Gain:Low	ENSE:INT Trig Delay- Trig: Video #Atten: 30	500.0 µs	LIGN AUTO #Avg Type	RMS	TF	05 PM Jul 27, 20 RACE 1 2 3 4 TYPE WWWW DET P NNN
Ref Offset 2.36 dE 0 dB/div <b>Ref 20.00 dB</b> m							ΔMkr1	382.0 µ -4.56 d
0.00 .00								
								TRIG L
0.0								
		interna a	is stel				as hint.	a dan .
				<mark>dig di su sanati n</mark>	alla dalla filono barla Ty ^{na sy} llin ([n.(. Alla	a de la facta de la companya de la c Companya de la companya de la company		an airin ar An airin ar
enter 2.441000000 GHz		arkanni Markinski j	N 3.0 MHz	il in <mark>sette transmitten</mark> My ^d e system i <mark>be</mark>	line (interference in Interference interference interferen	<mark>hile (11) - 111 - 151</mark>	L. T.	Span 0 H (10001 pt
00.0	×	aleon (hikkeli) #VBN	W 3.0 MHz	vij in paratika	TION WIDTH	Sweep	10.00 ms	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	¹⁴ Republication of the second se	aleon (hikkeli) #VBN	W 3.0 MHz	vij in paratika	n ^{an (10} 1) (n.) Anto	Sweep	10.00 ms	
0.0         μμμου         μετρισμομιμου           0.0         μετρισμομιμου         μετρισμομιμου         μετρισμομιμου           0.0         μετρισμομιμου         μετρισμομιμου         μετρισμομιμου           0.0         μετρισμομιμου         μετρισμομιμου         μετρισμομιμου           0.0         μετρισμομιμου         μετρισμομιμου         μετρισμομιμου           0.0	× 382.0 µs	^(Δ143) (1) (1) (1) #VB) (Δ) -4.5	W 3.0 MHz	vij in paratika	n ^{an (10} 1) (n.) Anto	Sweep	10.00 ms	
0.0         π μηθη         π μηθη         π μηθη         η μηθη         η μηθη         η μηθη         η μηθη         η μηθη         η μηθη         η μηθη         η η μηθη         η μηθη <td>× 382.0 µs</td> <td>^(Δ143) (1) (1) (1) #VB) (Δ) -4.5</td> <td>W 3.0 MHz</td> <td>vij in paratika</td> <td>n^{an (10}1) (n.) Anto</td> <td>Sweep</td> <td>10.00 ms</td> <td></td>	× 382.0 µs	^(Δ143) (1) (1) (1) #VB) (Δ) -4.5	W 3.0 MHz	vij in paratika	n ^{an (10} 1) (n.) Anto	Sweep	10.00 ms	
0.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	× 382.0 µs	^(Δ143) (1) (1) (1) #VB) (Δ) -4.5	W 3.0 MHz	vij in paratika	n ^{an (10} 1) (n.) Anto	Sweep	10.00 ms	

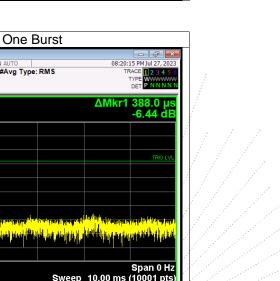


No.: BCTC/RF-EMC-007

L Agil

10 dB/di -og **r** 

2 1 t (Δ)


,TC 3C

[>]PR

* 测



	Dwell	NVNT 2-I		1 1 1 1 1 1 2	One E	Jarot		
Agilent Spectrum Analyzer - Sv RL RF 50 enter Freq 2.4410	Ω AC 000000 GHz	PNO: Fast ↔ FGain:Low	ENSE:INT Trig Delay- Trig: Video #Atten: 30 (	500.0 µs	IGN AUTO #Avg Type	RMS		39 PM Jul 27, 20 RACE 1 2 3 4 TYPE WWWW DET P NNN
Ref Offset 0 dB/div Ref 20.00							∆Mkr1	2.886 m 4.24 d
0.0	ماندانداند و را النظام و م	1Δ2						TRIG L
0.0 X <mark>iyilada 1040.</mark> 0.0	ide vite pope di altre di septembri di dine	, W. M.,						
0.0								
			a and she was toked to a	e hat a statelike som	that is a mich office		nal contra attal	
0.0 <mark></mark>				e te a tott te posta di terre a L'acchate a posta di terre a			an ha ganga an aik <mark>an ha ganga an a</mark> ika aika aika aika aika aika aika aik	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	GHz							Span 0 I
0.0	GHz 2.886 ms 490.0 µs	#VBV #VBV	V 3.0 MHz	<mark>, parket and and and and and and and and and and</mark>		Sweep	esteration of the second s	Span 0 I
0 0	× 2.886 ms	#VBV #VBV	V 3.0 MHz	<mark>, parket and and and and and and and and and and</mark>		Sweep	10.00 ms	Span 0 I
0 0 44444 enter 2.441000000 es BW 1.0 MHz KR MODE TRC ScL 1 A2 1 t (A) 2 F 1 t 3 4 4 5 5 5 7 4 8 9 9 0 5 8 9 0 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	× 2.886 ms	#VBV #VBV	V 3.0 MHz	<mark>, parket and and and and and and and and and and</mark>		Sweep	10.00 ms	Span 0 H
0.0 στημ αμγύρη enter 2.441000000 es BW 1.0 MHz KR MODE TRC ScL 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 6 6 4 7 8 8 9 9 4 4 4 5 4 6 4 7 8 8 9 1 5 4 1	× 2.886 ms	#VBV #VBV	V 3.0 MHz	<mark>, parket and and and and and and and and and and</mark>		Sweep	10.00 ms	Span 0 H



# L Agil #Avg Type: RMS Trig Delay-500.0 μs Trig: Video #Atten: 30 dB Center Freq 2.441000000 GHz PNO: Fast IFGain:Low Ref Offset 2.36 dB Ref 20.00 dBm 10 dB/d -og r Δ2 Хŗ enter the data and protoper to the enterest of a story provide and the story of the state to be a supervised by deithe in a britter is an in Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz 388.0 μs (Δ) 497.0 μs -6.44 dB -1.65 dBm 2 1 t (Δ)

Dwell NVNT 3-DH1 2441MHz





	Dwell I	NVNT 3-	DH3 24	41MHz	One	Dursi		
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.44100000	00 GHz	PNO: Fast ↔→→ FGain:Low	SENSE:INT Trig Delay Trig: Video #Atten: 30	-500.0 µs	IGN AUTO #Avg Type	e: RMS		:48 PM Jul 27, 20 RACE 1 2 3 4 5 TYPE WWWWW DET PNNNN
Ref Offset 2.36 dE 10 dB/div Ref 20.00 dBm							∆Mkr1	1.637 m -1.35 d
10.0								
	1Δ2							TRIG L
-10.0 <b>X</b> 211 y 10 y 11 11 10 y 11 11								
-30.0								
-40.0								
-50.0	regenerie beler Groetbelgener	renerate for the protocol of The activity of the selection	ala ang ang ang ang ang ang ang ang ang an		anto contrato da la contrato Esta productiva da la contrato da la contrato da la contrato da la contrato da la			ing Collections of
50.0 <mark>alberry (?</mark> 60.0 <mark>1.4 1.1 m)</mark>	regue constitutes Littlet b <mark>il depuis</mark>	novel da kiesterial Na jud jud judine	an a	and an an air an	an to contration with a space of the second			th y dan baha pana Manaka pata dan baharan Manaka pata dan baharan ba
	ara na ta ta ta ta Lina da ta ta ta ta ta	High Agus An An Angur	W 3.0 MHz		an a	al <mark>a alta and</mark> ar Alta and and an		Span 0 H
60.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x	₩₩₩₩₩₩₩ #VBI	W 3.0 MHz		n ng kang kang kang kang kang kang kang	Sweep		Span 0 H
60.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i dia dia kaominina dia kao	#γμ4,#/## #VB\ (Δ) -1.3	W 3.0 MHz		<u>n for de la contra d</u>	Sweep	10.00 ms	Span 0 H
60.0         μμητι μ           60.0         μμητι μ           70.0         μ           Center 2.441000000 GHz           Res BW 1.0 MHz           MKR MODE TRC SCL         3           4         Δ2         1         t	× 1.637 ms	#γμ4,#/## #VB\ (Δ) -1.3	W 3.0 MHz		<u>n for de la contra d</u>	Sweep	10.00 ms	Span 0 H
60.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	× 1.637 ms	#γμ4,#/## #VB\ (Δ) -1.3	W 3.0 MHz		<u>n for de la contra d</u>	Sweep	10.00 ms	Span 0 H
50.0         μμητή           60.0         μμητή           70.0         -           Center 2.441000000 GHz           Res BW 1.0 MHz           MKR MODE  TRC  SCL            1         Δ2           2         F           4           5           6           7           8           9	× 1.637 ms	#γμ4,#/## #VB\ (Δ) -1.3	W 3.0 MHz		<u>n for de la contra d</u>	Sweep	10.00 ms	Span 0 H
40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00         50.00 <t< td=""><td>× 1.637 ms</td><td>#γμ4,#/## #VB\ (Δ) -1.3</td><td>W 3.0 MHz</td><td></td><td><u>n for de la contra d</u></td><td>Sweep</td><td>10.00 ms</td><td>Span 0 H</td></t<>	× 1.637 ms	#γμ4,#/## #VB\ (Δ) -1.3	W 3.0 MHz		<u>n for de la contra d</u>	Sweep	10.00 ms	Span 0 H

# Dwell NVNT 3-DH5 2441MHz One Burst L Agil 08:27:40 PM Jul 2 #Avg Type: RMS Trig Delay-500.0 μs Trig: Video #Atten: 30 dB Center Freq 2.441000000 GHz PNO: Fast IFGain:Low DET ΔMkr1 2.888 ms -1.38 dB Ref Offset 2.36 dB Ref 20.00 dBm 10 dB/d -og r 1∆2 Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz 2.888 ms (Δ) 497.0 μs -1.38 dB 0.15 dBm 2 <u>1 t</u> (Δ) 1 t





# 15. Antenna Requirement

#### 15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

## 15.2 Test Result

The EUT antenna is PCB antenna, The antenna gain is 0 dBi, fulfill the requirement of this section.

No.: BCTC/RF-EMC-007 Page: 75 of Edition: •B (



# 16. EUT Photographs

EUT Photo 1



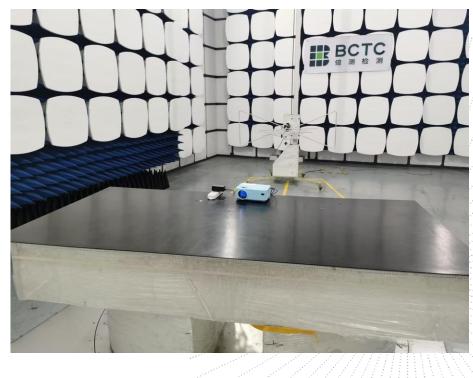






No.: BCTC/RF-EMC-007

Page: 76 of 79




# 17. EUT Test Setup Photographs

# **Conducted Measurement Photo**



**Radiated Measurement Photos** 



No.: BCTC/RF-EMC-007

Page: 77 of 79

Edition: B.0

BC

APPR

测







No.: BCTC/RF-EMC-007

Page: 78 of 79



# STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-007

Page: 79 of 7