

TEST REPORT

Report No.:	BCTC2211990528E
Applicant:	DP AUDIO VIDEO LLC
Product Name:	Karaoke Microphone
Model/Type reference:	KRMC101
Tested Date:	2022-11-25 to 2022-11-29
Issued Date:	2022-11-30
She	nzhen BC TEsting Co., Ltd.
No.: BCTC/RF-EMC-007	Page: 1 of 25

FCC ID:2AVRVKRMC101

Product Name:	Karaoke Microphone
Trademark:	Core Innovations, Packed Party
Model/Type Reference:	KRMC101 KRMC101BL, KRMC101LC, KRMC101RG, XMAS200, XMAS300, XMAS400
Prepared For:	DP AUDIO VIDEO LLC
Address:	920 Malcolm Ave Los Angeles, California, USA 90024
Manufacturer:	GUANGDONG KAIGE TECHNOLOGY CO., LTD
Address:	XiuShui Road, Laimei Industrial Park, Fengxiang Street, Chenghai District, Shantou, Guangdong, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2022-11-25
Sample tested Date:	2022-11-25 to 2022-11-29
Issue Date:	2022-11-30
Report No.:	BCTC2211990528E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

Jeff.Fu/Project Handler

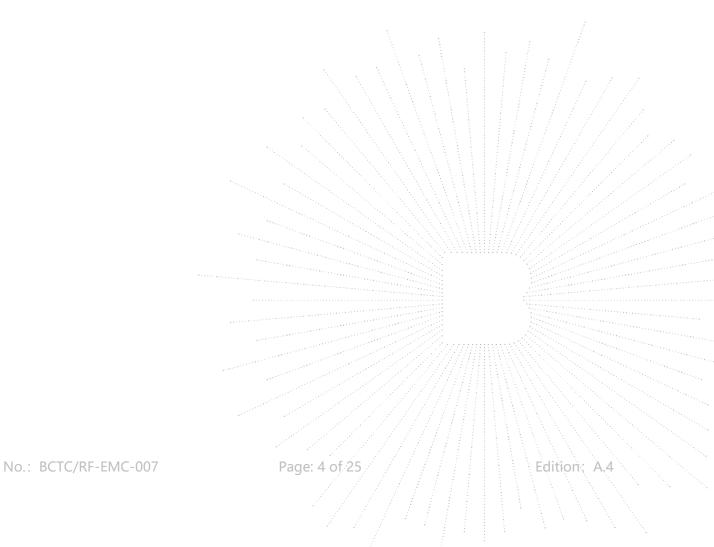
Approved by

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

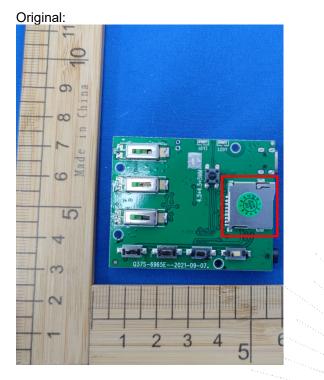
Test	Report Declaration	Page
1.	Version	4
2.	Test Summary	5
Mea	surement Uncertainty	7
3.	Product Information And Test Setup	8
4.1	Product Information	8
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	9
4.5	Test Mode	10
4.	Test Facility And Test Instrument Used	11
5.1	Test Facility	
5.2	Test Instrument Used	
5.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test procedure	13
6.4	EUT operating Conditions	
6.5	Test Result	14
6.	Radiated emissions	16
7.1	Block Diagram Of Test Setup	16
7.2	Limit	17
7.3	Test procedure	18
7.4	EUT operating Conditions	19
7.5	Test Result	
7.	EUT Photographs	23
8.	EUT Test Setup Photographs	24

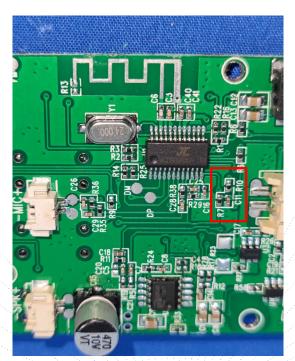

(Note: N/A Means Not Applicable)

Page: 3 of 25

1. Version

Report No.	Issue Date	Description	Approved
BCTC2211990528E	2022-11-30	Original	Valid

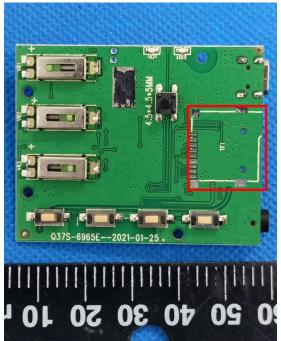

2. **Test Summary**

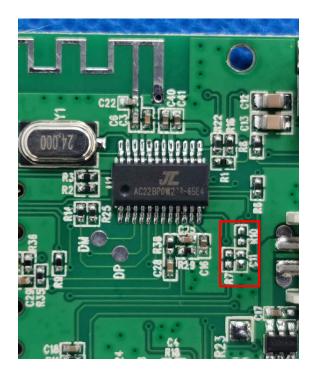

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emissions	15.207	PASS
2	Radiated Emissions	15.209	PASS

Remark: Based on the following changes in the product, the RF chip remains unchanged. So the report is only updated Conducted emissions and Radiated Emissions for the original report: BCTC2112185313E. The original ID of the reference:2AVRVKRMC101.

Changes : 1 The new product has removed the TF booth and TF circuit.




No.: BCTC/RF-EMC-007

Edition:

New:

No.: BCTC/RF-EMC-007

Page: 6 of 25

Measurement Uncertainty

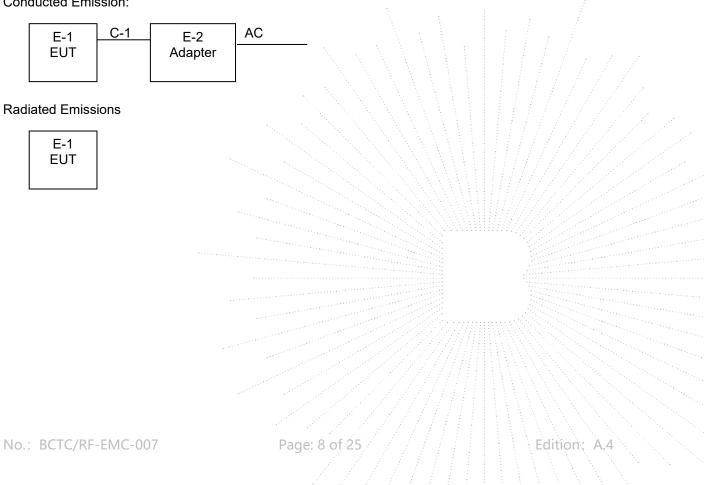
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	humidity uncertainty	U=5.3%
2	Temperature uncertainty	U=0.59°C
3	Conducted Emission (150kHz-30MHz)	U=3.2dB
4	Radiated disturbance(30MHz-1000MHz)	U=4.8dB
5	Radiated disturbance(1GHz-6GHz)	U=4.9dB
6	Radiated disturbance(1GHz-18GHz)	U=5.0dB

No.: BCTC/RF-EMC-007

Page: 7 of 25

Product Information And Test Setup 3.


4.1 Product Information

Model/Type Ref.:	KRMC101 KRMC101BL, KRMC101LC, KRMC101RG, XMAS200, XMAS300, XMAS400
Model differences:	All the model are the same circuit and RF module, except model names.
Bluetooth Version	BT 5.0
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	PCB antenna
Antenna Gain:	-0.58dBi
Ratings:	USB:5V Battery:DC 3.7V

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

Conducted Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Karaoke Microphone	Core Innovations, Packed Party	KRMC101	Ref. the Section 4.1	EUT
E-2	Adapter	UGREEN	CD122	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	0.3M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	: 19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode
1	Conducted emission
2	Radiated emission

Page: 10 of 2

4. Test Facility And Test Instrument Used

5.1 Test Facility

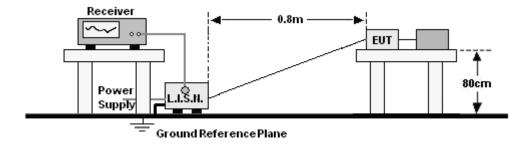
All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583

5.2 Test Instrument Used

Conducted Emissions Test							
Equipment Manufacturer Model# Serial# Last Cal. Nex							
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022		
LISN	R&S	ENV216	101375	May 28, 2021	May 27, 2022		
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/		
Attenuator	١	10dB DC-6GHz	1650	May 28, 2021	May 27, 2022		

Radiated Emissions Test (966 Chamber)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023	
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022	
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022	
Amplifier	SKET	LAPA_01G18 G-45dB		May 28, 2021	May 27, 2022	
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	Jun. 01, 2021	May 31, 2022	
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 02, 2021	Jun. 01, 2022	
Horn Antenn (18GHz-40GH z)	Schwarzbeck	BBHA9170	00822	Jun. 15, 2021	Jun. 14, 2022	
Amplifier (18GHz-40GH z)	MITEQ	TTA1840-35- HG	2034381	May 28, 2021	May 27, 2022	
Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Jun. 02, 2021	Jun. 01, 2022	

No.: BCTC/RF-EMC-007


RF cables1 (9kHz-30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-000 8	May 28, 2021	May 27, 2022
RF cables2 (30MHz-1GHz)	Huber+Suhnar	30MHz-1GHz	1486150	May 28, 2021	May 27, 2022
RF cables3 (1GHz-40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	May 28, 2021	May 27, 2022
Power Metter	Keysight	E4419	١	May 28, 2021	May 27, 2022
Power Sensor (AV)	Keysight	E9300A	/	May 28, 2021	May 27, 2022
Signal Analyzer 20kHz-26.5G Hz	Keysight	N9020A	MY49100060	May 28, 2021	May 27, 2022
Spectrum Analyzer 9kHz-40GHz	R&S	FSP 40	١	May 28, 2021	May 27, 2022
Software	Frad	EZ-EMC	FA-03A2 RE		\

Page: 12 of 25

5. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

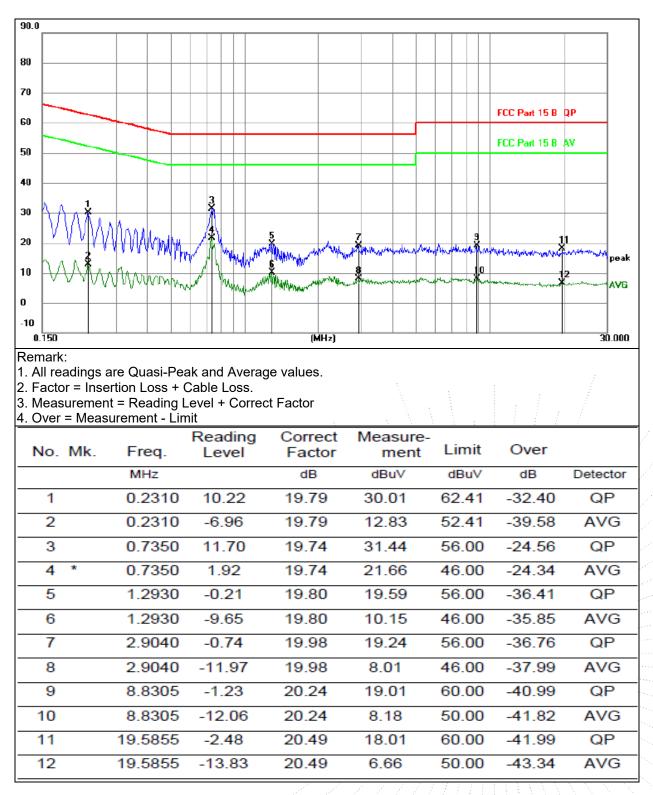
6.3 Test procedure

Receiver Parameters		Setting	
Attenuation		10 dB	
Start Frequency		0.15 MHz	
Stop Frequency		30 MHz	
IF Bandwidth		9 kHz	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

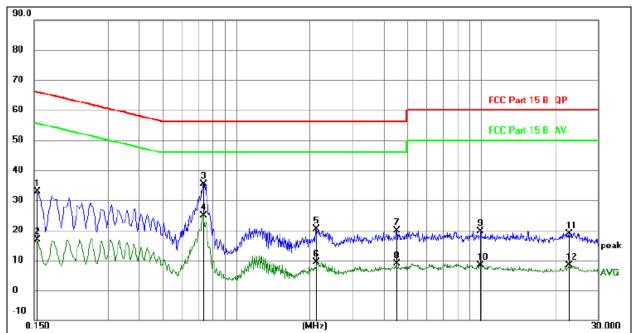
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 1	Test Voltage :	AC 120V/60Hz



No.: BCTC/RF-EMC-007

Page: 14 of 25

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 1	Test Voltage :	AC 120V/60Hz

Remark:

1. All readings are Quasi-Peak and Average values.

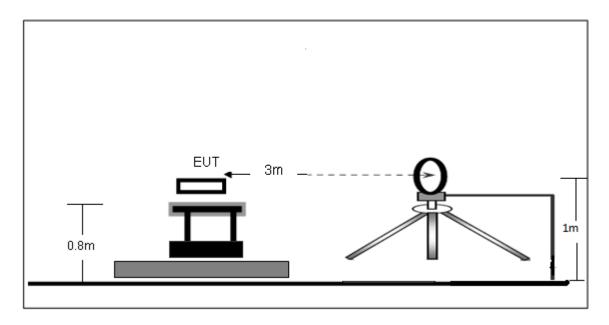
2. Factor = Insertion Loss + Cable Loss.

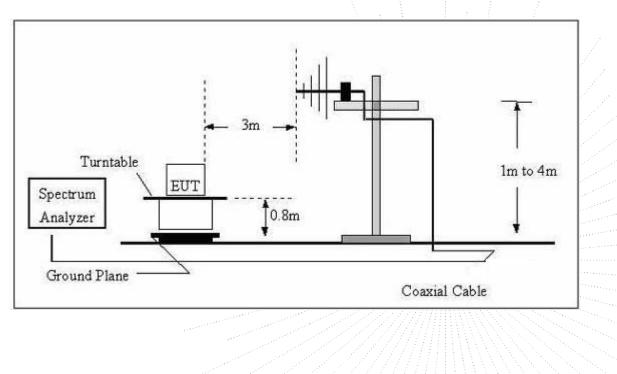
3. Measurement = Reading Level + Correct Factor

4. Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1544	13.17	19.68	32.85	65.76	-32.91	QP
2		0.1544	-2.72	19.68	16.96	55.76	-38.80	AVG
3	*	0.7349	15.73	19.74	35.47	56.00	-20.53	QP
4		0.7349	5.08	19.74	24.82	46.00	-21.18	AVG
5		2.1164	0.44	19.89	20.33	56.00	-35.67	QP
6		2.1164	-10.63	19.89	9.26	46.00	-36.74	AVG
7		4.5015	-0.25	20.11	19.86	56.00	-36.14	QP
8		4.5015	-11.24	20.11	8.87	46.00	-37.13	AVG
9		9.8880	-0.59	20.28	19.69	60.00	-40.31	QP
10		9.8880	-11.81	20.28	8.47	50.00	-41.53	AVG
11		22.7850	-1.59	20.52	18.93	60.00	-41.07	QP
12		22.7850	-12.23	20.52	8.29	50.00	-41.71	AVG

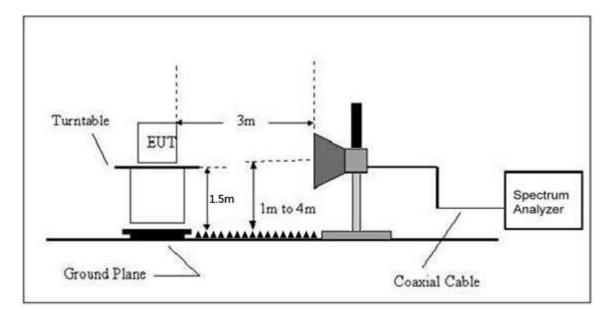
No.: BCTC/RF-EMC-007


Page: 15 of 25


6. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m)	(at 3M)
Frequency (MHz)	Peak	Average
Above 1000		54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting			
Attenuation	Auto			
9kHz~150kHz	RBW 200Hz for QP			
150kHz~30MHz	RBW 9kHz for QP			
30MHz~1000MHz	RBW 120kHz for QP			

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Teat Valtage :	DC 3.7V
Test Mode:	Mode 2	Test Voltage :	DC 3.7V

Freq.	Reading	Limit	Margin	State	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	
				PASS	
				PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the

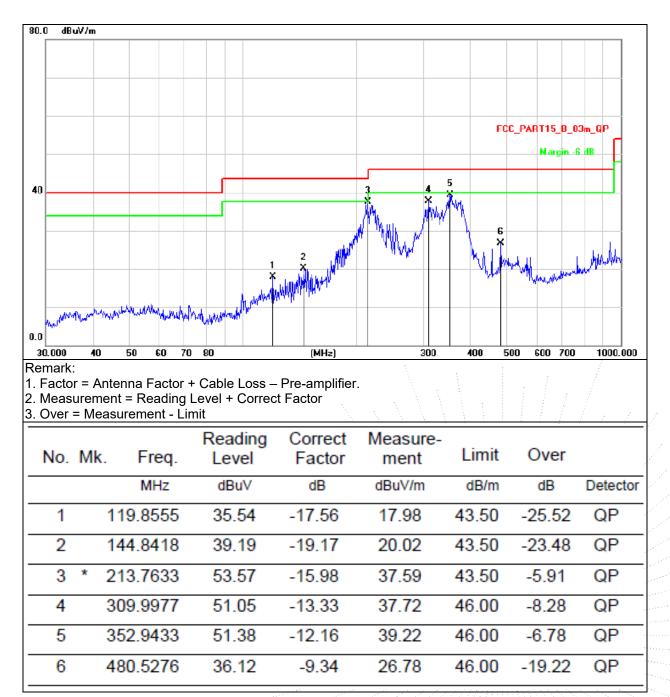
permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

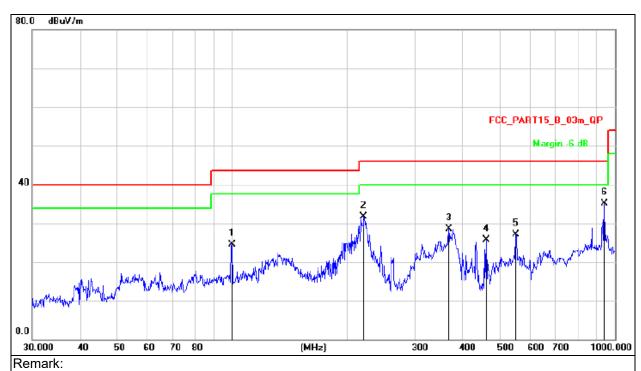
No.: BCTC/RF-EMC-007

Page: 20 of 2



Original IC+New Battery

Report No.: BCTC2211990528E


Between 30MHz – 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 2	Test Voltage :	DC 3.7V

Temperature:	26 ℃	Relative Humidity:	54%	
Pressure:	101KPa	Phase :	Vertical	
Test Mode:	Mode 2	Test Voltage :	DC 3.7V	

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		99.8777	40.77	-16.30	24.47	43.50	-19.03	QP
2		220.6170	47.51	-15.83	31.68	46.00	-14.32	QP
3		368.1116	40.42	-11.82	28.60	46.00	-17.40	QP
4		460.7271	35.51	-9.75	25.76	46.00	-20.24	QP
5		550.9479	34.69	-7.66	27.03	46.00	-18.97	QP
6	*	938.8325	36.35	-1.20	35.15	46.00	-10.85	QP

7. EUT Photographs

EUT Photo 1

EUT Photo 2

8. EUT Test Setup Photographs

Conducted emissions

Radiated Measurement Photo

No.: BCTC/RF-EMC-007

Page: 24 of 25

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6. The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

******** END ******

No.: BCTC/RF-EMC-007

Page: 25 of 25