

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT FCC PART 15 SUBPART C REQUIREMENT

OF

BabyShark Children's Robot Vacuum

Model No.: BSRV200

Trademark: Pinkfong BabyShark

FCC ID: 2AVRVBSRV200TX

Report No.: E01A22070495F00201

Issue Date: October 15, 2022

Prepared for

DP AUDIO VIDEO LLC

920 MALCOLM AVE LA CA 90024 USA Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China..

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

TRF Originator: GTG E-mail: info@gtggroup.com

Applicant:	DP AUDIO VIDEO LLC 920 MALCOLM AVE LA CA 90024 USA
Manufacturer:	SHANTOU CITY CHENGHAI DISTRICT MINGXUAN TOY INDUSTRIAL LIMITED COMPANY 4TH FLOOR, A3 BUILDING,ZHENXING INDUSTRIAL ESTATE,CHENGHAI DISTRICT,SHANTOU, GUANGDONG, CHINA.
Product Description:	BabyShark Children's Robot Vacuum
Trade Mark:	Pinkfong BabyShark
Model Number:	BSRV200

VERIFICATION OF COMPLIANCE

We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2021).

Date of Test :

July 25, 2022 to October 11, 2022

Prepared by :

Approved & Authorized Signer :

Tiger Xu / Supervisor

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	/	E01A22070495F00201

Table of Contents

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	
1.2 TEST METHODOLOGY	6
2. TEST FACILITY	
3. DESCRIPTION OF TEST MODES	
4. SUMMARY OF TEST RESULTS	
5. TEST SYSTEM UNCERTAINTY	
6. RADIATED EMISSION TEST	
7.1 MEASUREMENT PROCEDURE	
7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
7.3 MEASUREMENT EQUIPMENT USED:	15
7.4 RADIATED EMISSION LIMIT	
7.5 MEASUREMENT RESULT	
7.6 RADIATED MEASUREMENT PHOTOS:	
7. 6DB BANDWIDTH MEASUREMENT	
6.1 MEASUREMENT PROCEDURE	
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3 MEASUREMENT EQUIPMENT USED:	
6.4 LIMIT	
6.5 MEASUREMENT RESULTS:	
8. MAXIMUM PEAK OUTPUT POWER TEST	
7.1 MEASUREMENT PROCEDURE	27
7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3 MEASUREMENT EQUIPMENT USED:	27
7.4 PEAK POWER OUTPUT LIMIT	
7.5 MEASUREMENT RESULTS:	
9. POWER SPECTRAL DENSITY MEASUREMENT	
8.1MEASUREMENT PROCEDURE	
8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3 MEASUREMENT EQUIPMENT USED:	_
8.4 MEASUREMENT PROCEDURE	
8.5 MEASUREMENT RESULTS:	30
10. BAND EDGE TEST	
9.1 Measurement Procedure	
9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	34
9.3 MEASUREMENT EQUIPMENT USED:	34
9.4 Measurement Results:	35

Global Testing , Great Quality.

1. GENERAL INFORMATION

1.1 Product Description

Characteristics	Description
Product Name	BabyShark Children's Robot Vacuum
Model number	BSRV200
Input Rating	Battery 3V
Power Supply	Battery 3V
Modulation	GFSK
Operating Frequency Range	2401MHz-2463MHz
Number of Channels	3
Transmit Power Max(PK)	0.77dBm(0.001194W)
Antenna Type	Integrated antenna
Antenna Gain	2.41dBi
Date of Sample Received	July 25, 2022

1.2 Test Methodology

All the test program has follow FCC new test procedure KDB 558074 D01 DTS Meas Guidance v05 and in accordance with the procedures given in ANSI C63.10-2013.

2. Test Facility

Site Description		
Name of Firm	:	Dong Guan Anci Electronic Technology Co., Ltd.
Site Location	:	1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

3. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

For Radiated: The EUT's antenna was pre-tested under the following modes:

Test Mode	Description
Mode A	X-Y axis
Mode B	Y-Z axis
Mode C	X-Z axis

From the above modes, the worst case was found in Mode C. Therefore only the test data of the mode was recorded in this report.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

Configuration of Tested System

EUT

Equipment Used in Tested System

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	BabyShark Children's Robot Vacuum	N/A	BSRV200	2AVRVBSRV200TX	

The EUT has been tested under TX operating condition. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2401	03	2463
02	2432		

Note:

1. Test of channel was included the lowest 2401MHz, middle 2432MHz and highest frequency 2463MHz in highest data rate and to perform the test, then record on this report.

4. Summary of Test Results

FCC Rules	Description Of Test	Result
§15.207	AC Power Conducted Emission	N/A(See Note)
§15.247(d),§15.209	Radiated Emission	Compliant
§15.247(a)(2)	6dB Bandwidth Measurement	Compliant
§15.247(b)	MAXIMUM PEAK OUTPUT POWER TEST	Compliant
§15.247(e)	Power Spectral Density Measurement	Compliant
§15.247(d)	Band EDGE test	Compliant
§15.203	Antenna Requirement	Compliant
N/A (Not Applicable) , EUT is a BabyShark Children's Robot Vacuum, EUT powered by battery.		
Remark: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device		
cabinet also comply with the applicable limits.		

5. TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%

6. Radiated Emission Test

7.1 Measurement Procedure

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 5. For measurement below 1GHz, if the emission level of the EUT measured by the peak detector is 3dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Use the following spectrum analyzer settings:

When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

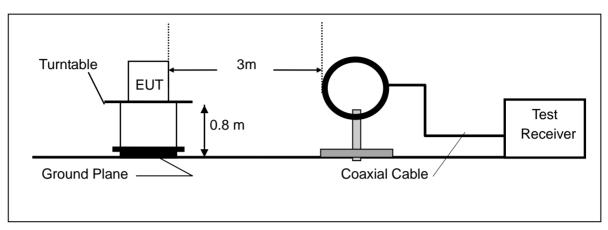
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

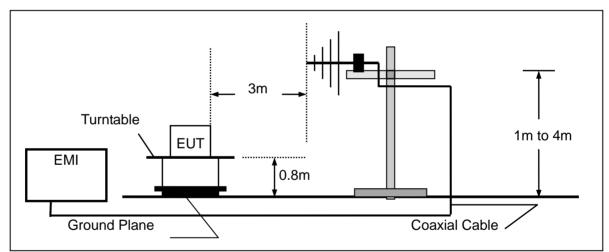
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Average
Trace	Max hold

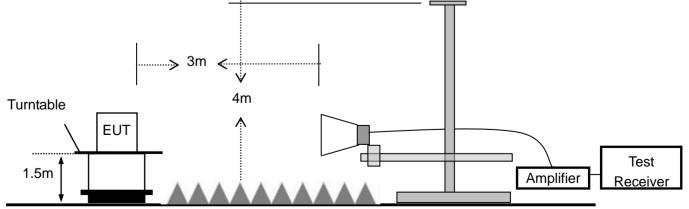
For Average Measurement:


VBW=10Hz, when duty cycle is no less than 98 percent.

VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


Band	Duty Cycle(%)	Τ(μ s)	1/T(KHz)	Average Correction Factor	VBW Setting
2401-2463	100	-	-	0	10Hz

7.2 Test SET-UP (Block Diagram of Configuration)


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Item	Instr.Co de	Kind of Equipment	Manufacturer	Туре No.	Serial No.	Calibrated until
1	AN-E060	EMI Test Receiver	Rohde & Schwarz	ESCI	100302	2023-05-12
2	AN-E061	Pre-Amplifier	Anritsu	MH648A	M57886	2023-05-12
3	AN-E076	Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-129 0	2022-11-11
4	AN-E063	RF Cable	N/A	ZT06S-NJ-NJ-11M	19060398	2023-05-12
5	AN-E064	RF Cable	N/A	ZT06S-NJ-NJ-0.5M	19060400	2023-05-12
6	AN-E065	RF Cable	N/A	ZT06S-NJ-NJ-2.5M	19060404	2023-05-12
7	AN-E056	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2024-11-11
8	AN-E069	Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A
9	AN-E037	Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2022-11-11
10	AN-E015	Low noise Amplifiers	A-INFO	LA1018N4009	J101313052400 1	2023-05-12
11	AN-E014	Horn antenna	A-INFO	LB-10180-SF	J203109061212 3	2023-05-14
12	AN-E065	RF Cable	N/A	ZT26-NJ-NJ-11M	19060401	2023-05-12
13	AN-E067	RF Cable	N/A	ZT26-NJ-NJ-2.5M	19060402	2023-05-12
14	AN-E068	RF Cable	N/A	ZT26-NJ-NJ-0.5M	19060403	2023-05-12
15	AN-E056	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2024-11-12
16	AN-E069	Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A

7.3 Measurement Equipment Used:

7.4 Radiated emission limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz MHz		GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

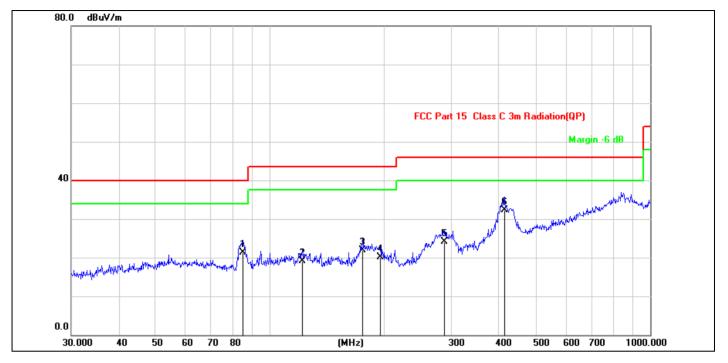
3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

:

7.5 Measurement Result

Below 30MHz:

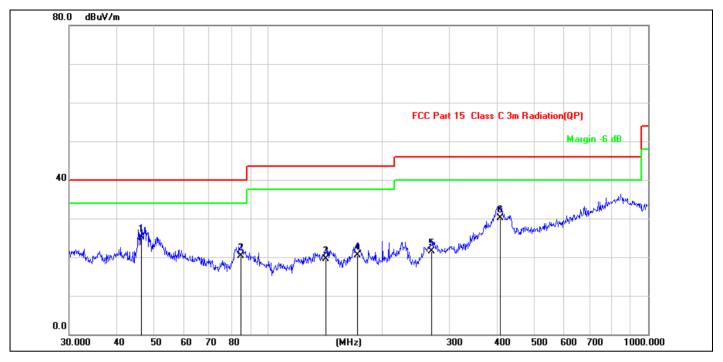
Operation Mode:	ТХ	Test Date :	2022-10-10
Frequency Range:	9KHz~30MHz	Temperature :	26 ℃
Test Result:	PASS	Humidity :	60 %
Measured Distance:	3m	Test By:	Sunshine


Freq.	Ant.Pol.	Emission	Limit 3m	Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Below 1000MHz:

Pass.


The data of the mode (TX 2401MHz) are recorded in the following pages.

Site:	843.3	Antenna::Horizontal	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	BabyShark Children's Robot Vacuum	Test Time:	
	-		2022-10-10
M/N.:	BSRV200	Power Rating:	DC 3V
Mode:	TX 2401MHz	Test Engineer:	Sunshine
Note:		0	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	84.7019	34.13	-12.81	21.32	40.00	-18.68	QP	
2	121.5486	30.69	-11.54	19.15	43.50	-24.35	QP	
3	175.0368	33.08	-11.24	21.84	43.50	-21.66	QP	
4	195.1365	31.18	-11.15	20.03	43.50	-23.47	QP	
5	286.9823	31.80	-7.69	24.11	46.00	-21.89	QP	
6 *	413.2706	35.10	-2.70	32.40	46.00	-13.60	QP	

*:Maximum data x:Over limit !:over margin

Site:	843.3	Antenna::Vertical	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	BabyShark Children's Robot Vacuum	Test Time:	2022-10-10
M/N.:	BSRV200	Power Rating:	DC 3V
Mode:	TX 2401MHz	Test Engineer:	Sunshine
Note:		-	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1 *	46.5030	35.14	-10.01	25.13	40.00	-14.87	QP	
2	84.9995	33.23	-12.89	20.34	40.00	-19.66	QP	
3	141.8262	31.18	-11.71	19.47	43.50	-24.03	QP	
4	171.9946	31.87	-11.35	20.52	43.50	-22.98	QP	
5	269.4284	29.92	-8.40	21.52	46.00	-24.48	QP	
6	408.9460	32.83	-2.77	30.06	46.00	-15.94	QP	

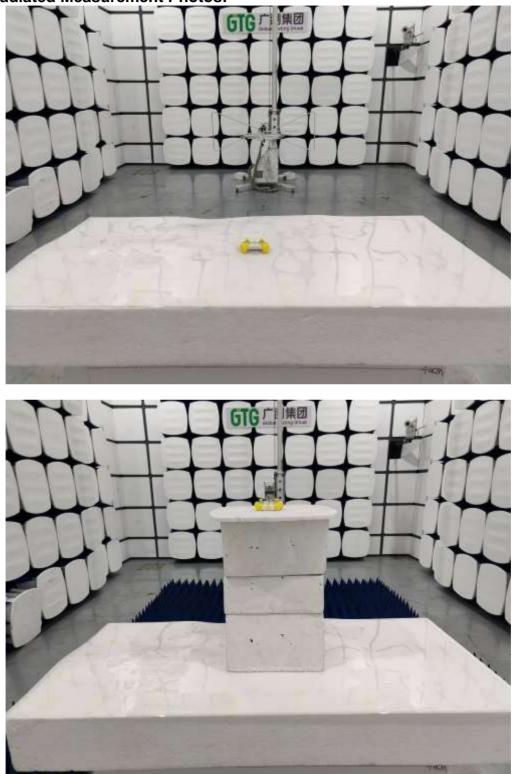
*:Maximum data x:Over limit !:over margin

Above 1000MHz~10th Harmonics:

All the modulation modes were tested the data are recorded in the following pages. The frequency range from 1GHz to 25GHz is investigated.

Operation Mode: Test Voltage:		TX 2401MHz DC 3V			Test Date : Test by:		0
Freq.	Ant. POL	Emissior Level(dE		Limit 3	Limit 3m(dBuV/m)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4802	V	62.64	43.04	74	54	-11.36	-10.96
7203	V	60.12	40.38	74	54	-13.88	-13.62
9604	V	58.27	39.21	74	54	-15.73	-14.79
12005	V	57.28	38.38	74	54	-16.72	-15.62
14406	V	56.31	37.10	74	54	-17.69	-16.9
16807	V	56.43	37.22	74	54	-17.57	-16.78
4802	Н	62.17	43.18	74	54	-11.83	-10.82
7203	Н	60.31	41.32	74	54	-13.69	-12.68
9604	Н	58.29	39.54	74	54	-15.71	-14.46
12005	Н	57.40	38.33	74	54	-16.6	-15.67
14406	Н	56.37	37.18	74	54	-17.63	-16.82
16807	Н	56.35	37.19	74	54	-17.65	-16.81

•	eration Mode: TX 2432MHz Test Date :		2022-10-10				
Test Vol	tage:	DC 3\	/	Test by:		Sunshine	
Freq.	Ant. POL	Emissior Level(dB		Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4864	V	62.39	43.17	74	54	-11.61	-10.83
7296	V	59.52	39.74	74	54	-14.48	-14.26
9728	V	57.67	38.31	74	54	-16.33	-15.69
12160	V	56.75	38.08	74	54	-17.25	-15.92
14592	V	56.72	37.54	74	54	-17.28	-16.46
17024	V	57.08	37.47	74	54	-16.92	-16.53
4864	Н	61.28	42.18	74	54	-12.72	-11.82
7296	Н	60.42	40.37	74	54	-13.58	-13.63
9728	Н	59.29	39.89	74	54	-14.71	-14.11
12160	Н	58.15	38.22	74	54	-15.85	-15.78
14592	Н	57.31	37.57	74	54	-16.69	-16.43
17024	Н	56.18	37.09	74	54	-17.82	-16.91


Operation Mode:	TX 2463MHz	Test Date :	2022-10-10
Test Voltage:	DC 3V	Test by:	Sunshine

Freq.	Ant. POL	Emission Level(dB		Limit 3m	(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4926	V	62.39	42.54	74	54	-11.61	-11.46
7389	V	60.47	38.44	74	54	-13.53	-15.56
9852	V	58.68	37.18	74	54	-15.32	-16.82
12315	V	57.27	38.74	74	54	-16.73	-15.26
14778	V	58.38	36.27	74	54	-15.62	-17.73
17241	V	57.19	37.27	74	54	-16.81	-16.73
4926	Н	60.52	41.09	74	54	-13.48	-12.91
7389	Н	59.74	40.56	74	54	-14.26	-13.44
9852	Н	58.08	39.38	74	54	-15.92	-14.62
12315	Н	57.45	37.28	74	54	-16.55	-16.72
14778	Н	56.17	36.54	74	54	-17.83	-17.46
17241	Н	55.38	37.74	74	54	-18.62	-16.26

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

7.6 Radiated Measurement Photos:

7. 6dB Bandwidth Measurement

6.1 Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

6.2 Test SET-UP (Block Diagram of Configuration)

EUT		Spectrum
-----	--	----------

6.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

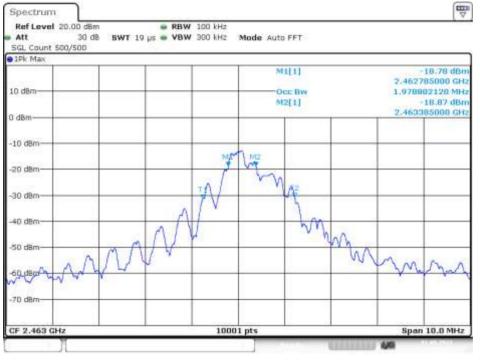
6.4 Limit

The minimum 6dB bandwidth shall be at least 500kHz.

6.5 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2022-08-03
Test By:	Sunshine	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %


Channel number	Channel	Measurement level	Required Limit
	frequency (MHz)	(KHz)	(KHz)
01	2401	0.666	>500
02	2432	0.619	>500
04	2463	0.6	>500

-Spectrum Ref Level 20.00 dBm RBW 100 kHz Att 30 dB BWT 19 µs . VBW 300 kH2 Mode Auto FFT SGL Count 300/300 IPk Max M1[1] 12.86 dBn 2.400742000 GHz 10 dBm 6.111388861 MHz Occ Bw -12.93 dBm M2[1] 2.401408000 GHz 0 dBm -10 dBm -20 dBm -30 dBm 40 Rm All dan -60 dBr 70 d8m CF 2,401 GHz 10001 pts Span 10.0 MHz Date: 1.AUG.2022 15:01:34

6DB NVNT BLE 2401MHz Ant1

6DB NVNT BLE 2432MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 100 kHz Att 30 dB BWT 19 µs . VBW 300 kH2 Mode Auto FFT SGL Count 300/300 IPk Max M1[1] 11.55 dBo 2.431760000 GHz 10 dBm 5.211478852 MHz OCC BW M2[1] -11.57 dBm 2.432379000 GHz 0 dBm -10 dBm antimm -20 dBn -30 dBr T MIA 50 d -60 dBm 70 d8m Span 10.0 MHz CF 2.432 GHz 10001 pts

Date: 1.AUG.2022 14:27:59

6DB NVNT BLE 2463MHz Ant1

Date: 1.AUG.2022 15:08:30

8. MAXIMUM PEAK OUTPUT POWER TEST

7.1 Measurement Procedure

- a. The Transmitter output (antenna port) was connected to the spectrum Analyzer.
- b. Turn on the EUT and then record the peak power value.
- c. Repeat above procedures on all channels needed to be tested.

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

7.4 Peak Power output limit

The maximum peak power shall be less 1Watt.

7.5 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2022-08-03
Test By:	Jack	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel number	Channel Frequency(MHz)	Peak Power output(dB m)	Peak Power output(mW)	Peak Power Limit(W)	Pass/Fail
01	2401	-2.05	0.624	1W(30dBm)	PASS
02	2432	0.77	1.194	1W(30dBm)	PASS
03	2463	-5.51	0.281	1W(30dBm)	PASS

9. Power Spectral Density Measurement

9.1Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

9.2 Test SET-UP (Block Diagram of Configuration)

EUT		Spectrum Analyzer
-----	--	-------------------

9.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Measurement Procedure

10.4.1 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

10.4.2. Set to the maximum power setting and enable the EUT transmit continuously.

10.4.3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)

10.4.4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.

10.4.5. Measure and record the results in the test report.

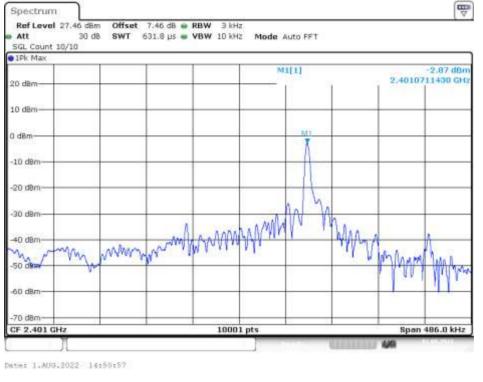
10.4.6. The Measured power density (dBm)/ 100KHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

9.5 Measurement Results:

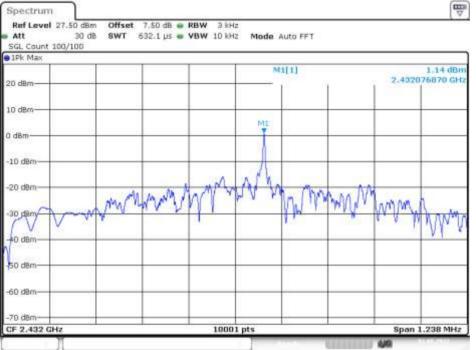
The following table is the setting of spectrum analyzer.

Spectrum analyzer	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS bandwidth.
RB	3KHz
VB	10KHz
Detector	Peak
Trace	Max hold
Sweep Time	Automatic

Refer to attached data chart.


Spectrum Detector:	PK	Test Date :	2022-08-03
Test By:	Sunshine	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel	Channel	Measurement level	Required	Pass/Fail
number	frequency	(dBm)	Limit	
	(MHz)	PSD/3kHz	(dBm/3kHz)	
01	2402	-2.87	8	PASS
02	2432	1.14	8	PASS
03	2463	9.46	8	PASS


Note:

- 1. Measured power density(dBm) has offset with cable loss.
- 2. The measured power density(dBm)/100KHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

PSD NVNT user 2401MHz Ant1

PSD NVNT user 2432MHz Ant1

Date: 1.AUG.2022 14:40:43

PSD NVNT user 2463MHz Ant1

Date: 1.AUG.2022 15:06:21

10. Band EDGE test

10.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

	,
EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

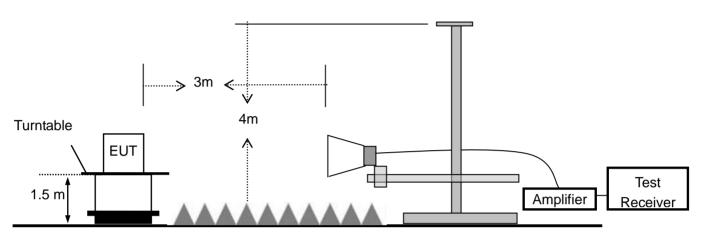
The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:


EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

10.2 Test SET-UP (Block Diagram of Configuration)

For Conducted Test

For Radiated emission Test

10.3 Measurement Equipment Used:

For Conducted Test

• •					
	EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
	Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
	Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

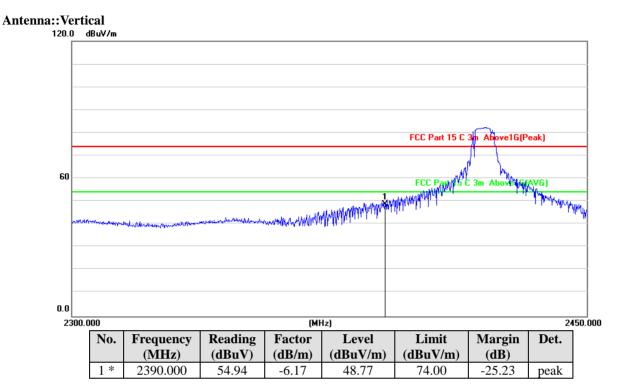
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

For Radiated emission Test

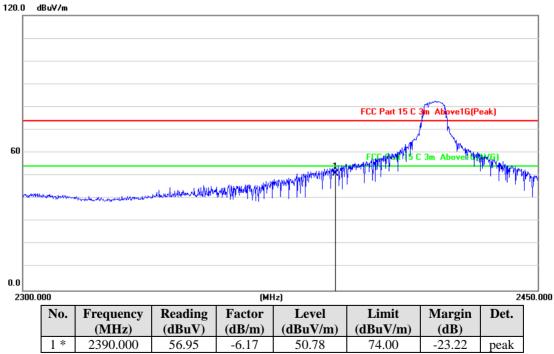
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Signal Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
2	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX100KHz-40G Hz	J1013130524 001	2022-11-12
3	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J2031090612 123	2022-11-12
4	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-2m	N/A	2022-11-12
5	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-0.3m	N/A	2022-11-12

10.4 Measurement Results:

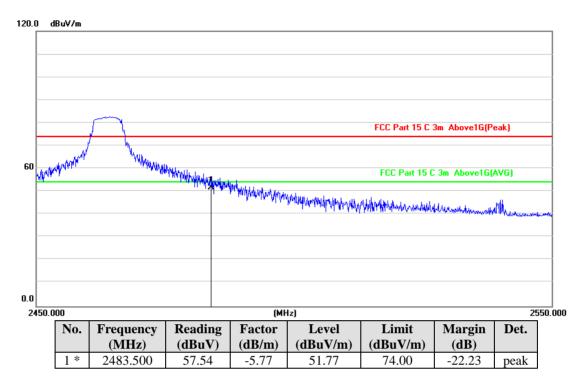
Refer to attached data chart.

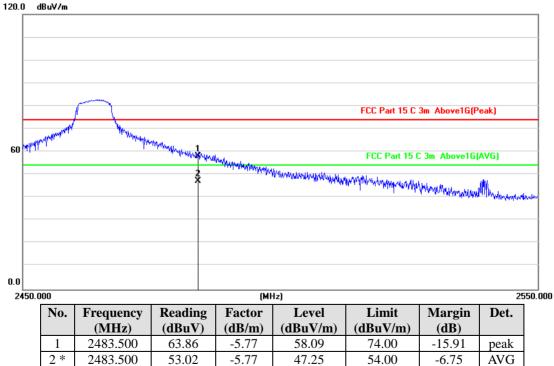

Spectrum Detector:	PK	Test Date :	2022-08-03
Test By:	Sunshine	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

1. Conducted Test


Spectrum Ref Level 3	and the second	Offset	7.46 dB =	RBW 100 kHz					1
Att SGL Count :	40 d8			VBW 300 kHz		Auto FFT			
1Pk Max	1009-100								
					M	1(1)		2012/2011	-2.13 dB
20 dBm-				-		at the second			10000 GH
10 d8m					M	2[1]			37.67 dB) 00000 CH
						1	1	1 2,000	kit
0 dBm			-	-			-		1
-10 dBm-									
10 000									
-20 dBm	01 -22.578	dBra							
-30 dBm-		112.17	-			2			
		144							MP
-40 dBm		-		1. 1	0.0000	0.000000	No. Cont	OT MB AL	
-50 dBm-	the the place	Acres Asserts	apply and	ala why why	Associates and the	and stilling has	Manua	Why att all an	reported by
-co upin									
-60 dBm				-			-		-
20.40	1								
-70 dBm Start 2.304	75 CH2			1001	nte			Stop 2 4	0475 GHz
Marker	Yo Mrie			100.1	pes			acopian	0470.012
Type Ref	Trc	X-valu	e	Y-value	Fund	tion	Fun	ction Result	
MI	1		111 GHz	-2.13 dBr					
M2	1		2.4 GHz	-37.67 dBr					
					m				
		2.325 51108	.30 GH2 355 GH2 7.51 dB	-46,27 dBr -42,01 dBr	n			4/0	(G
M4 ster 1.800 Spectrum Ref Level 1 Att	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB			Auto FFT	CHILLING	40	(E
M4 stel 1.400 Spectrum Ref Level 1 Att SGL Count :	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr		Auto FFT		40	(E)
M4 stel 1.400 Spectrum Ref Level 1 Att SGL Count :	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n	Selvizor Ma	CHARLES	40	
M4 stat 1.400 Spectrum Ref Level 1 Att SGL Count : JDK Max	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n	Auto FFT	0.0.0.0	4/0 2.463	-4.44 dBi
M4 ates 1.400 Spectrum Ref Level 1 Att SGL Count 1 91Pk Max 20 dBm	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n : Mode	Selvizor Ma			-4.44 dBi 10000 GF 47.79 dBi
M4 stat 1.400 Spectrum Ref Level 1 Att SGL Count SGL Count	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GF 47.79 dBi
M4 ster 1.400 Spectrum Ref Level 1 Att SGL Count 3 10 d8m 10 d8m	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GF 47.79 dBi
M4 stor 1.400 Spectrum Ref Level 3 Att SGL Count 1 IPk Max 20 dBm 10 dBm 0 dBm	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GF 47.79 dBi
M4 ster 1.400 Spectrum Ref Level 1 Att SGL Count 3 10 d8m 10 d8m	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GF 47.79 dBi
M4 stor 1.400. Spectrum Ref Level 1 Att SGL Count 10K Max 20 dBm 10 dBm 0 dBm -10 dBm	1 1022 14: 27.51 dBm 40 dB	2.321 51108 Offset	7.51 dB	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GH 47.79 dBi 50000 GH
M4 stol 1.400 Spectrum Ref Level 3 Att SGL Count 3 ID d8m 0 d8m 0 d8m 0 d8m 0 d8m	1 1022 14: 27.51 dBm 40 dB	2.321 51r08 Offset SWT 1	7.51 dB	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GF 47.79 dBi
M4 stol 1.400 Spectrum Ref Level 3 Att SGL Count 1 IPk Max 20 dBm 10 dBm 0 dBm 0 dBm	1 1 27.51 dBm 40 dB 100/100	2.321 51r08 Offset SWT 1	7.51 dB	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GF 47.79 dBi
M4 stol 1.400. Spectrum Ref Level 1 Att SGL Count 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	1 1022 14: 27.51 dBm 40 dB 100/100	2.321 b1r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	n : Mode	1(1)			-4.44 dBi 10000 GF 47.79 dBi
M4 stol 1.400 Spectrum Ref Level 1 Att SGL Count 1 IPK Max 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	1 1 27.51 dBm 40 dB 100/100	2.321 b1r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	Mode Mode	1(1)		2.483	-+.4+ dB 10000 Gr 47.79 dB 50000 Gr
M4 stor 1, AUG. Spectrum Ref Level 1 Att SGL Count 10K Max 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	1 1022 14: 27.51 dBm 40 dB 100/100	2.321 b1r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	Mode Mode	1(1)	1	2.483	-+.4+ dB 10000 Gr 47.79 dB 50000 Gr
M4 stol 1.400. Spectrum Ref Level 3 Att SGL Count 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm	1 1022 14: 27.51 dBm 40 dB 100/100	2.321 b1r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	Mode Mode	1(1)		2.483	-+.4+ dB 10000 Gr 47.79 dB 50000 Gr
M4 stor 1,400. Spectrum Ref Level 1 Att SGL Count 1 IDK Max 20 dBm 10 dBm 0 dBm 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	1 1022 14: 27.51 dBm 40 dB 100/100	2.321 b1r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	Mode Mode	1(1)		2.483	-+.4+ dB 10000 Gr 47.79 dB 50000 Gr
M4 stol 1.400 Spectrum Ref Level 3 Att SGL Count 10 dBm 10 dBm 10 dBm 10 dBm 0 dBm 50 dBm 50 dBm 50 dBm 70 dBm 70 dBm 70 dBm	1 1 1 1 1 1 1 1 27.51 dBm 40 dB 100/100 01 -24.952 1 1 1 1 1 1 1 1 1 1 1 1 1	2.321 b1r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	n Mode Mode	1(1)		2,483	-4.44 dBi 10000 GH 50000 GH 50000 GH
M4 stol 1, AUG. Spectrum Ref Level 1 Att SGL Count 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 50 dBm 50 dBm 70 dBm 70 dBm 70 dBm 70 dBm 70 dBm	1 1 1 1 1 1 1 1 27.51 dBm 40 dB 100/100 01 -24.952 1 1 1 1 1 1 1 1 1 1 1 1 1	2.321 b1r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	n Mode Mode	1(1)		2,483	-4.44 dBi 10000 GH 50000 GH 50000 GH
M4 stol 1. AUG Spectrum Ref Level 1 Att SGL Count 1 SGL Count 1 IPK Max 20 dBm 0 dBm 0 dBm 0 dBm -0 dBm	1 1022 14: 27.51 dBm 40 dB 100/100 01 -24.352 	2.321 51r08 Offset SWT 1	7.51 dB • 13.8 µs •	-42.01 dBr	n Mode	1[1] 2[1]		2.483	-+.4+ dbi 10000 G+ 47,79 dbi 50000 G+
M4 stol 1.400 Spectrum Ref Level 3 Att SGL Count 3 ID dBm 10 dBm 10 dBm 0 dBm -10 dBm -0 dBm -0 dBm -0 dBm -0 dBm -70 dBm	1 1 27.51 dBm 40 dB 100/100 0124.352 Fv/pt/Lamo	2.321 51r08 Offset SWT 1	7.51 dB = 13.8 µs =	-42.01 dBr	n Made	1[1] 2[1]		2,483	-+.4+ dbi 10000 G+ 47,79 dbi 50000 G+
M4 stol 1. AUG Spectrum Ref Level 1 Att SGL Count 1 SGL Count 1 IPK Max 20 dBm 0 dBm 0 dBm 0 dBm -0 dBm	1 1 27.51 dBm 40 dB 100/100 01 - 24.952 4-7/04/40/00 01 - 24.952 25 GHz 25 GHz 1	2.321 51108 Offset SWT 1 	7.51 dB = 13.8 µs = 13.8 µs = 531 GHz	-42.01 dBr RBW 100 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz 100 kHz VBW 300 kHz VBW 42 kHz	n Mode	1[1] 2[1]		2.483	-+.4+ dbi 10000 G+ 47,79 dbi 50000 G+
M4 stor 1, AUG. Spectrum Ref Level 1 Att SGL Count 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 50 dBm 50 dBm 50 dBm 70 dB	1 1 27.51 dBm 40 dB 100/100 0124.352 Fv/pt/Lamo	2.321 51108 Offset SWT 1 	7.51 dB = 13.8 µs =	-42.01 dBr	n	1[1] 2[1]		2.483	-+.4+ dbi 10000 G+ 47,79 dbi 50000 G+

Bate: 1.400.1022 15:06:31


2. Radiated emission Test


Antenna::Horizontal:

Antenna::Vertical

Antenna::Horizontal

11 Antenna Application

11.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

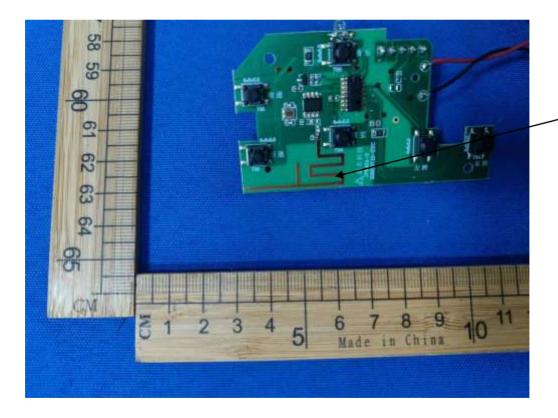
FCC part 15C section 15.247 requirements:

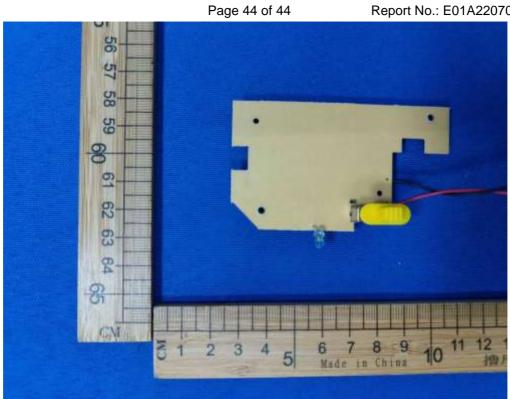
Systems operating in the 2402-2463MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

11.2 Result

The EUT's antenna, permanent attached antenna, used a ceramic antenna and integrated on PCB, The antenna's gain is 2.41dBi and meets the requirement.

APPENDIX I (Photos of EUT)





ANT

-----The end of report------