

TEST REPORT

Report No.:	BCTC2305833288-2E	
Applicant:	DP AUDIO VIDEO LLC	
Product Name:	Portable Karaoke	
Model/Type reference:	100130735	THENTH
Tested Date:	2023-06-01 to 2023-06-28	
Issued Date:	2023-06-28	
She	nzhen BCTC Testing Co., Ltd.	
No.: BCTC/RF-EMC-007	Page: 1 of 64	Edition: B.0

FCC ID:2AVRV100130735

Product Name:	Portable Karaoke
Trademark:	onn.
Model/Type Reference:	100130735
Prepared For:	DP AUDIO VIDEO LLC
Address:	920 Malcolm Ave Los Angeles, California, USA 90024
Manufacturer:	Shenzhen City Enkor Electronics Ltd.
Address:	The 101,201,301 of Building 1 ,building 3, Plant No.4,Tianyang Third Road, Dongfang Community,Songgang Street,Bao'an District,Shenzhen City
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-06-01
Sample tested Date:	2023-06-01 to 2023-06-28
Issue Date:	2023-06-28
Report No.:	BCTC2305833288-2E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

Jeff.Fu/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 64

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	8
4.1	Product Information	8
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	11
5.1	Test Facility	11
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	13
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operat	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	
8.5	Test Result	
9.	Spurious RF Conducted Emissions	
9.1	Block Diagram Of Test Setup	26
9.2	Limit Test procedure Test Result	26
9.3	lest procedure	
9.4	Test Result	27
10.	20 dB Bandwidth	
10.1	Block Diagram Of Test Setup	
10.2	Limit	
10.3		41
10.4		
11.	Maximum Peak Output Power	
11.1		
11.2	Limit	45

,TC 3C

⊃PR

》测

11.3 Test procedure	45
11.4 Test Result	45
12. Hopping Channel Separation	49
12.1 Block Diagram Of Test Setup	49
12.2 Limit	49
12.3 Test procedure	49
12.4 Test Result	49
13. Number Of Hopping Frequency	53
13.1 Block Diagram Of Test Setup	53
13.2 Limit	53
13.3 Test procedure	53
13.4 Test Result	53
14. Dwell Time	55
14.1 Block Diagram Of Test Setup	55
14.2 Limit	55
14.3 Test procedure	55
14.4 Test Result	55
15. Antenna Requirement	60
15.1 Limit	60
15.2 Test Result	60
16. EUT Photographs	61
17. EUT Test Setup Photographs	62

(Note: N/A Means Not Applicable)

检了

Page: 4 of 64

Edition: B.0

1. Version

Report No.	Issue Date	Description	Approved
BCTC2305833288-2E	2023-06-28	Original	Valid

Page: 5 of 64

Edition: B.0

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

Page: 6 of 64

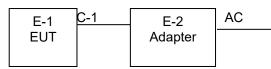
3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U≐0.59°C

No.: BCTC/RF-EMC-007

4. Product Information And Test Setup


4.1 Product Information

100130735
N/A
5.0
N/A
N/A
2402-2480MHz
GFSK, π/ 4 DQPSK
79CH
PCB antenna (Antenna 2)
-0.68 dBi
DC 5V From Adapter DC3.7V From Battery

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

E-1 EUT	

Edition: B.C

E

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Portable Karaoke	onn.	100130735	N/A	EUT
E-2	Adapter	N/A	BCTC0001	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	0.55M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	· · · · · · · · · · · · · · · · · · ·

,TC 3C PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK) 2402MHz 2441MHz 2480MHz					
3	Transmitting (Conducted emission & Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	FCC_assist_1.0.2.2				
Frequency	2402 MHz	2441 MHz	2480 MHz		
Parameters	DEF	DEF	DEF		

No.: BCTC/RF-EMC-007

Page: 10 of 64

Edition: B.0

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

ISED CAB identifier: CN0017

5.2 Test Instrument Used

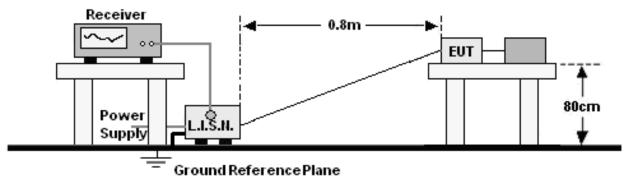
Conducted Emissions Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024			
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024			
Software	Frad	EZ-EMC	EMC-CON 3A1	١	/			
Attenuator	١	10dB DC-6GHz	1650	May 15, 2023	May 14, 2024			

	RF Conducted Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Power Metter	Keysight	E4419	I I	May 15, 2023	May 14, 2024			
Power Sensor (AV)	Keysight	E9300A		May 15, 2023	May 14, 2024			
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024			
Radio frequency control box	MAIWEI	MW100-RFC B	$\mathcal{F}_{\mathcal{F}}$	N				
Software	MAIWEI	MTS 8310		/	Γ			

	Radiated Emissions Test (966 Chamber01)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026			
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024			
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024			
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024			
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024			
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 15, 2023	May 14, 2024			
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024			
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024			
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024			
Software	Frad	EZ-EMC	FA-03A2 RE	١	\			

c 00.,L7

No.: BCTC/RF-EMC-007


Page: 12 of 64

Edition: B.0

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)			
Frequency (MHz)	Quas-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		
Notes:				

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

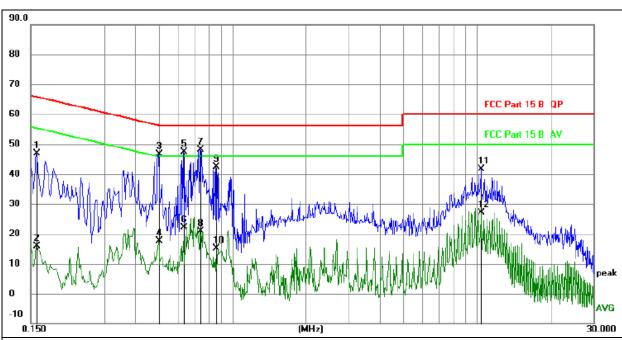
6.3 Test procedure

Receiver Parameters	S	Setting
Attenuation		10 dB
Start Frequency		0.15 MHz
Stop Frequency		30 MHz
IF Bandwidth		9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

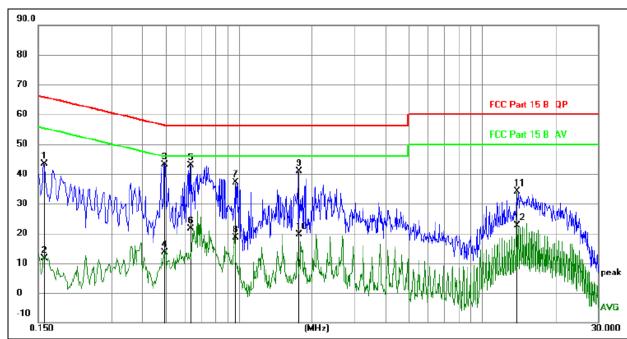
6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 3	Test Voltage :	AC120V/60Hz

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
 3. Measurement = Reading Level + Correct Factor
 4. Over = Measurement Limit

4.0701	meaca				* · ·	1 · · · ·		
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1590	37.02	9.88	46.90	65.52	-18.62	QP
2		0.1590	6.03	9.88	15.91	55.52	-39.61	AVG
3		0.5010	36.61	10.04	46.65	56.00	-9.35	QP
4		0.5010	7.57	10.04	17.61	46.00	-28.39	AVG
5		0.6313	37.40	10.05	47.45	56.00	-8.55	QP
6		0.6313	12.19	10.05	22.24	46.00	-23.76	AVG
7	*	0.7393	38.11	10.06	48.17	56.00	-7.83	QP
8		0.7393	10.70	10.06	20.76	46.00	-25.24	AVG
9		0.8608	32.40	10.07	42.47	56.00	-13.53	QP
10		0.8608	4.96	10.07	15.03	46.00	-30.97	AVG
11		10.4414	32.04	9.62	41.66	60.00	-18.34	QP
12		10.4414	17.61	9.62	27.23	50.00	-22.77	AVG
h								


No.: BCTC/RF-EMC-007

Page: 14 of 64

Edition: :B (E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 3	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor

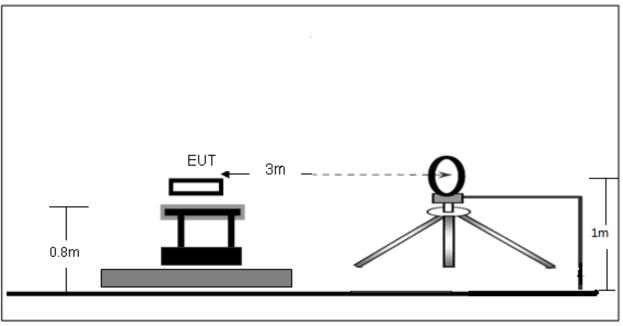
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1590	33.52	9.88	43.40	65.52	-22.12	QP
2		0.1590	1.75	9.88	11.63	55.52	-43.89	AVG
3	*	0.4964	33.16	10.04	43.20	56.06	-12.86	QP
4		0.4964	3.57	10.04	13.61	46.06	-32.45	AVG
5		0.6311	32.90	10.05	42.95	56.00	-13.05	QP
6		0.6311	11.69	10.05	21.74	46.00	-24.26	AVG
7		0.9644	27.03	10.06	37.09	56.00	-18.91	QP
8		0.9644	8.68	10.06	18.74	46.00	-27.26	AVG
9		1.7700	30.90	10.00	40.90	56.00	-15.10	QP
10		1.7700	9.60	10.00	19.60	46.00	-26.40	AVG
11		13.8523	24.48	9.66	34.14	60.00	-25.86	QP
12		13.8523	12.93	9.66	22.59	50.00	-27.41	AVG

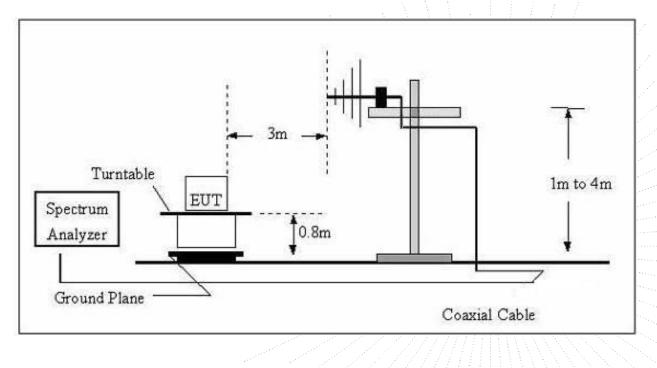
4. Over = Measurement - Limit

No.: BCTC/RF-EMC-007

Page: 15 of 64

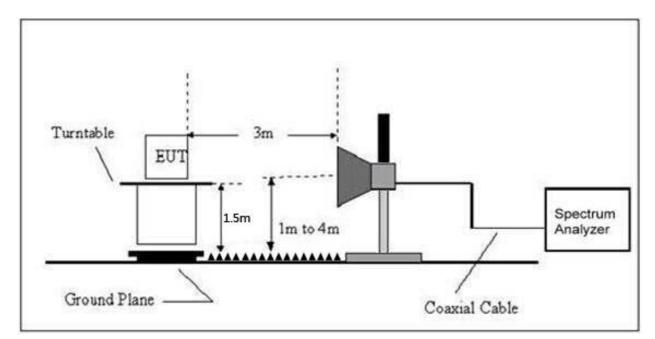
Edition: B.O


JC JC JC


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



TE,

检

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	····. 3 ····.	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

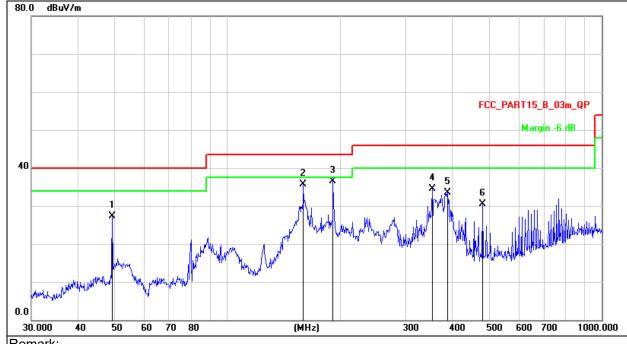
Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	DC 3.7V
Test Mode:	Mode 3	Polarization :	$\mathbf{H} = \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{$

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

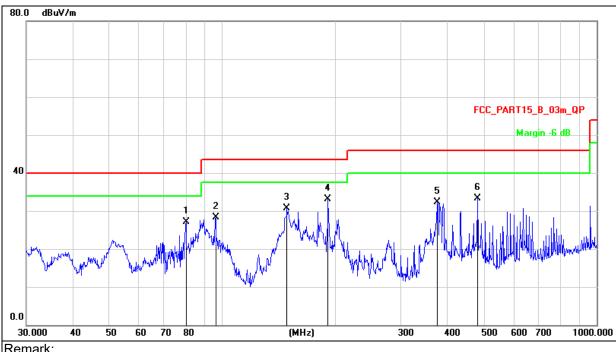
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 3	Test Voltage :	DC 3.7V

Remark:


Factor = Antenna Factor + Cable Loss – Pre-amplifier.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		49.3594	42.96	-15.66	27.30	40.00	-12.70	QP
2	1	159.7844	56.10	-20.33	35.77	43.50	-7.73	QP
3	*	191.7450	54.57	-17.98	36.59	43.50	-6.91	QP
4	3	352.9433	47.19	-12.76	34.43	46.00	-11.57	QP
5	3	387.9920	45.87	-12.35	33.52	46.00	-12.48	QP
6	4	180.5276	41.29	-10.73	30.56	46.00	-15.44	QP

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 3	Test Voltage :	DC 3.7V

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		80.0806	48.56	-21.54	27.02	40.00	-12.98	QP
2		96.0986	46.61	-18.33	28.28	43.50	-15.22	QP
3		148.9625	51.68	-20.98	30.70	43.50	-12.80	QP
4	*	191.7450	51.08	-17.98	33.10	43.50	-10.40	QP
5	3	374.6225	44.80	-12.50	32.30	46.00	-13.70	QP
6	4	180.5276	44.01	-10.73	33.28	46.00	-12.72	QP

JC JC JC

测

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		•	GFSK Low ch	annel	· ·		
V	4804.00	53.84	-0.43	53.41	74.00	-20.59	PK
V	4804.00	44.81	-0.43	44.38	54.00	-9.62	AV
V	7206.00	46.11	8.31	54.42	74.00	-19.58	PK
V	7206.00	35.29	8.31	43.60	54.00	-10.40	AV
Н	4804.00	50.77	-0.43	50.34	74.00	-23.66	PK
Н	4804.00	40.58	-0.43	40.15	54.00	-13.85	AV
Н	7206.00	43.27	8.31	51.58	74.00	-22.42	PK
Н	7206.00	34.54	8.31	42.85	54.00	-11.15	AV
GFSK Middle channel							
V	4882.00	51.71	-0.38	51.33	74.00	-22.67	PK
V	4882.00	44.66	-0.38	44.28	54.00	-9.72	AV
V	7323.00	41.78	8.83	50.61	74.00	-23.39	PK
V	7323.00	31.94	8.83	40.77	54.00	-13.23	AV
Н	4882.00	49.11	-0.38	48.73	74.00	-25.27	PK
Н	4882.00	39.69	-0.38	39.31	54.00	-14.69	AV
Н	7323.00	40.35	8.83	49.18	74.00	-24.82	PK
Н	7323.00	32.77	8.83	41.60	54.00	-12.40	AV
			GFSK High ch	annel			
V	4960.00	53.87	-0.32	53.55	74.00	-20.45	PK
V	4960.00	44.23	-0.32	43.91	54.00	-10.09	AV
V	7440.00	46.98	9.35	56.33	74.00	-17.67	PK
V	7440.00	37.91	9.35	47.26	54.00	-6.74	AV
Н	4960.00	51.52	-0.32	51.20	74.00	-22.80	PK
Н	4960.00	41.50	-0.32	41.18	54.00	-12.82	AV
Н	7440.00	44.91	9.35	54.26	74.00	-19.74	PK
Н	7440.00	36.46	9.35	45.81	54.00	-8.19	AV

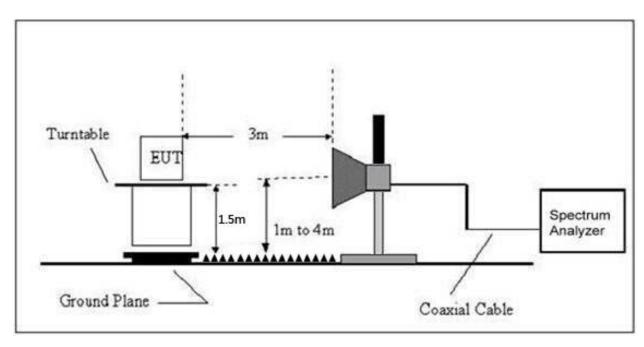
Between 1GHz – 25GHz

Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)			
Frequency (MHz)	Peak	Average		
Above 1000	74	54		

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar Frequency (H/V) (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result			
		((dBuV/m)	(dB)	РК	□РК	AV			
	Low Channel 2402MHz									
GFSK	Н	2390.00	53.47	-6.70	46.77	74.00	54.00	PASS		
	Н	2400.00	58.39	-6.71	51.68	74.00	54.00	PASS		
	V	2390.00	54.01	-6.70	47.31	74.00	54.00	PASS		
	V	2400.00	58.98	-6.71	52.27	74.00	54.00	PASS		
	High Channel 2480MHz									
	Н	2483.50	57.37	-6.79	50.58	74.00	54.00	PASS		
	Н	2500.00	51.33	-6.81	44.52	74.00	54.00	PASS		
	V	2483.50	57.98	-6.79	51.19	74.00	54.00	PASS		
	V	2500.00	54.19	-6.81	47.38	74.00	54.00	PASS		
	Low Channel 2402MHz									
π/4DQPSK	Н	2390.00	53.11	-6.70	46.41	74.00	54.00	PASS		
	Н	2400.00	56.85	-6.71	50.14	74.00	54.00	PASS		
	V	2390.00	52.58	-6.70	45.88	74.00	54.00	PASS		
	V	2400.00	56.98	-6.71	50.27	74.00	54.00	PASS		
	High Channel 2480MHz									
	Н	2483.50	56.77	-6.79	49.98	74.00	54.00	PASS		
	Н	2500.00	51.37	-6.81	44.56	74.00	54.00	PASS		
	V	2483.50	55.63	-6.79	48.84	74.00	54.00	PASS		
Demerily	V	2500.00	52.16	-6.81	45.35	74.00	54.00	PASS		

Remark:

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level – Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

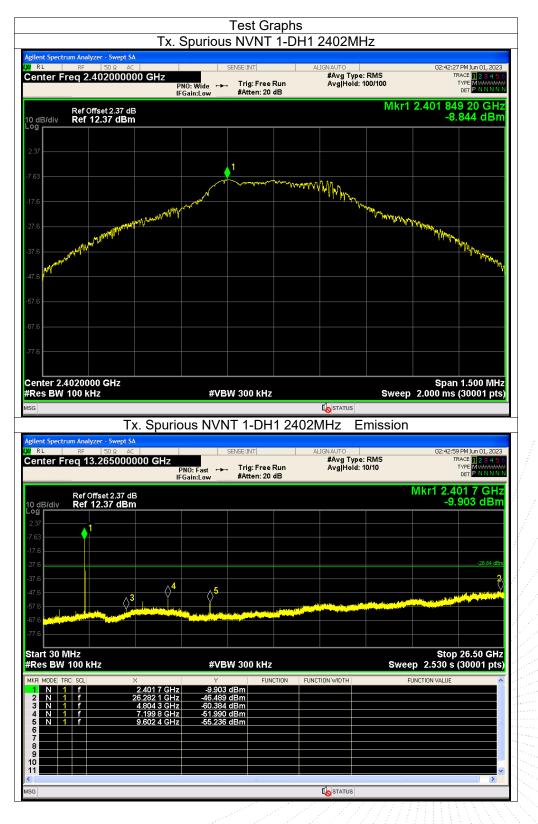
9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

9.3 Test procedure

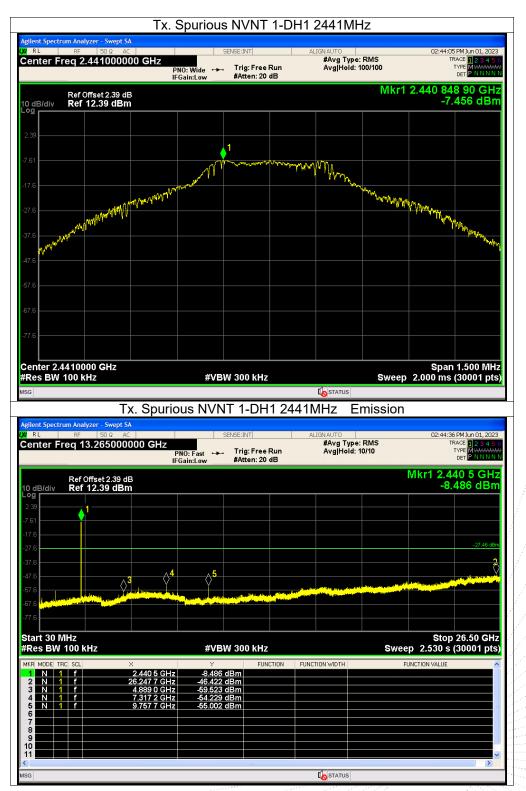
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: Below 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold

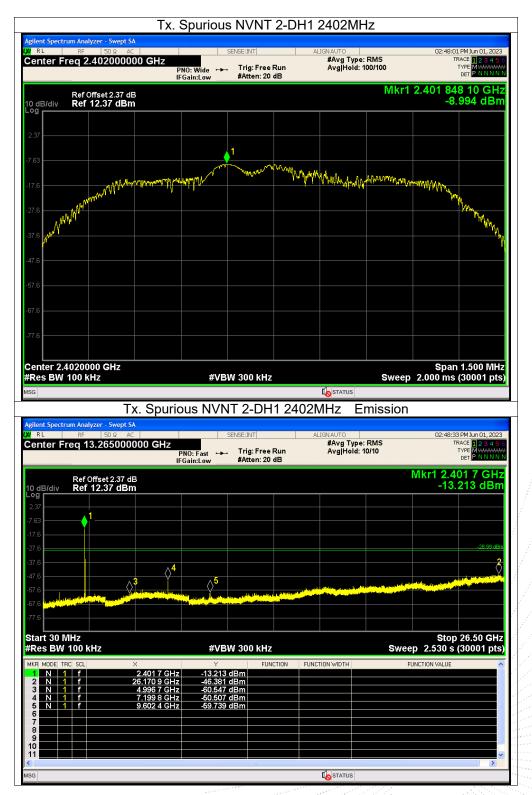

No.: BCTC/RF-EMC-007

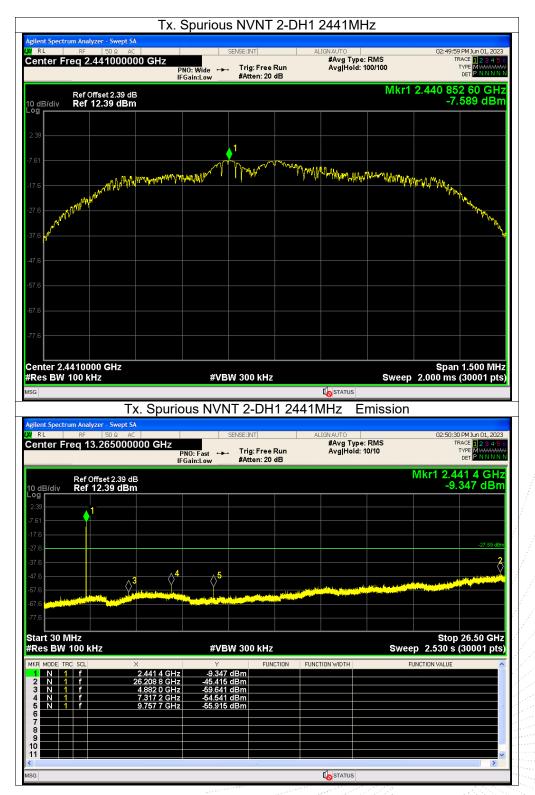
Page: 26 of 6

Edition: B.0

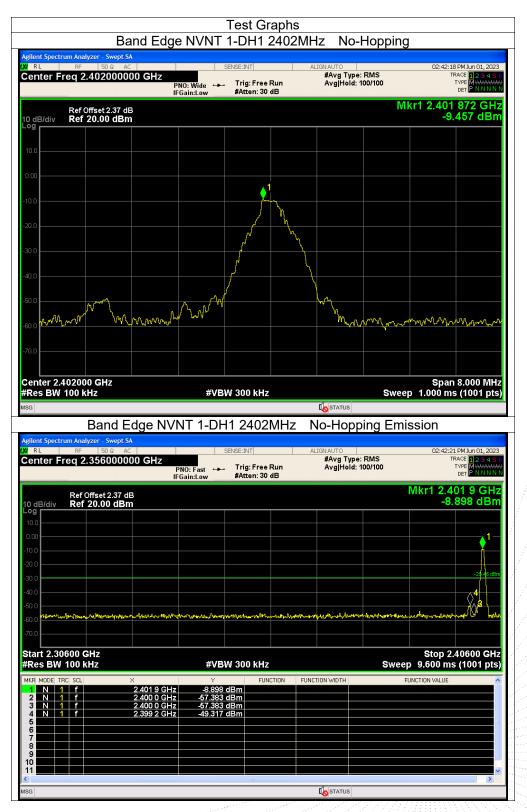

9.4 Test Result

Edition: B.0

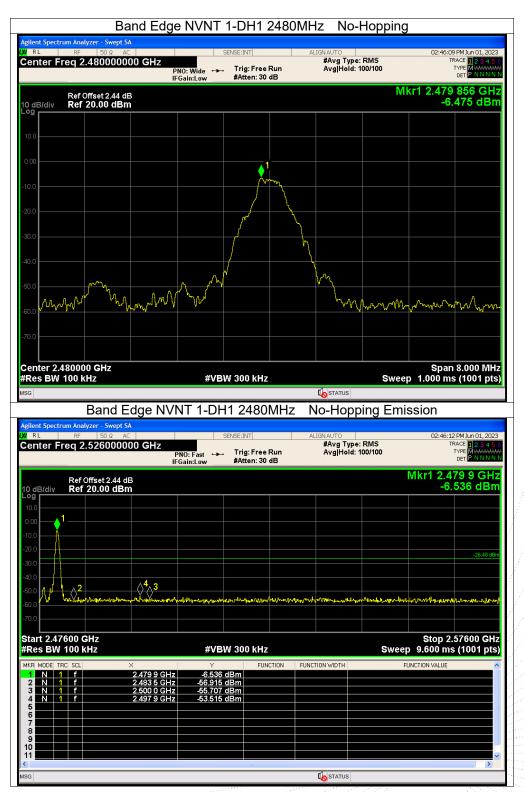


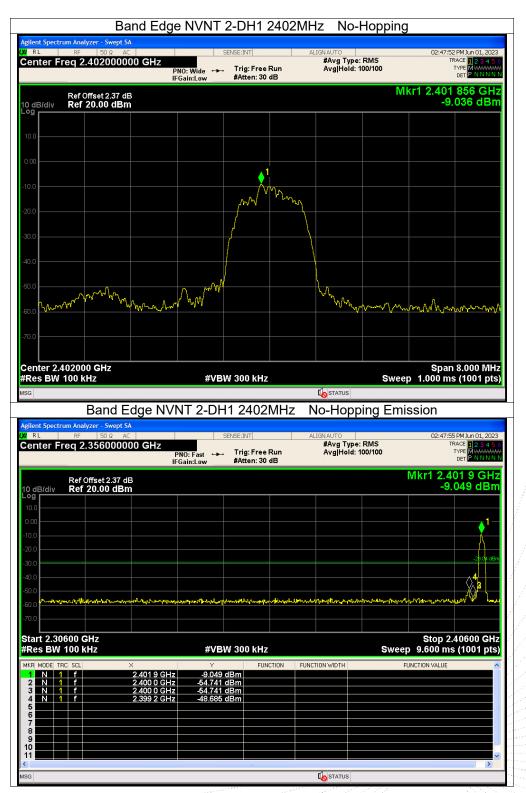


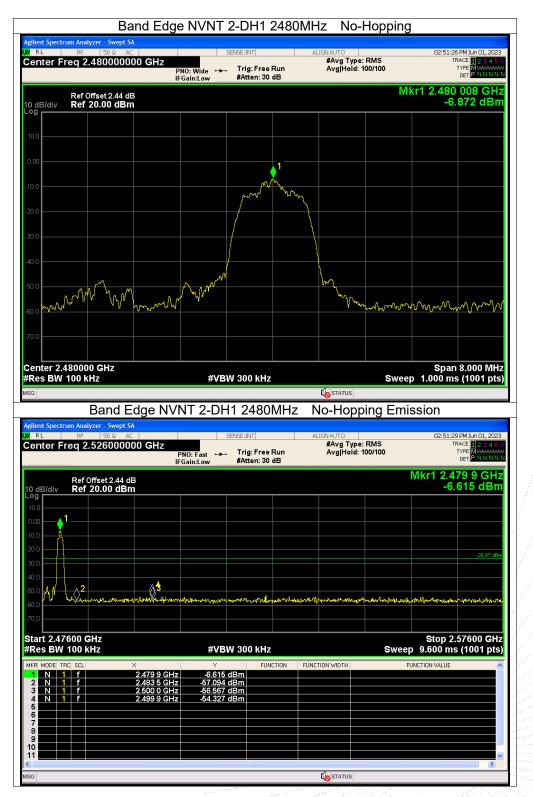
Page: 29 of 64

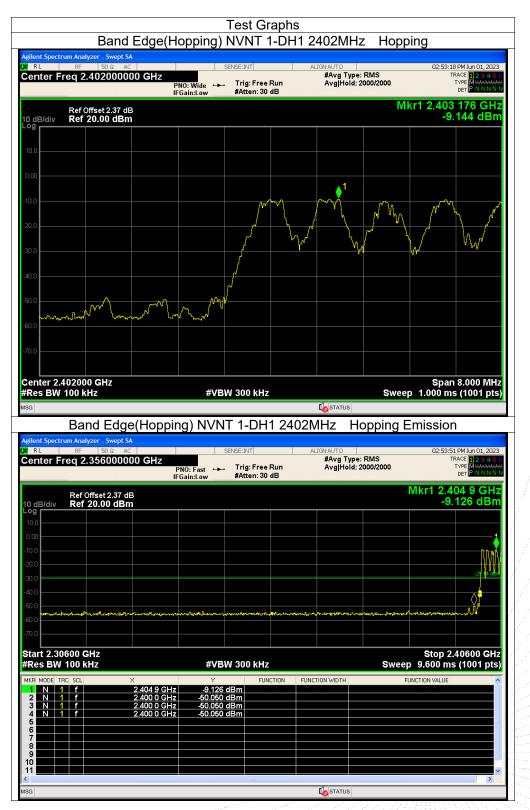


CHENZHER









10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.872	Pass
NVNT	1-DH1	2441	0.819	Pass
NVNT	1-DH1	2480	0.863	Pass
NVNT	2-DH1	2402	1.248	Pass
NVNT	2-DH1	2441	1.224	Pass
NVNT	2-DH1	2480	1.234	Pass

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

11.2 Limit

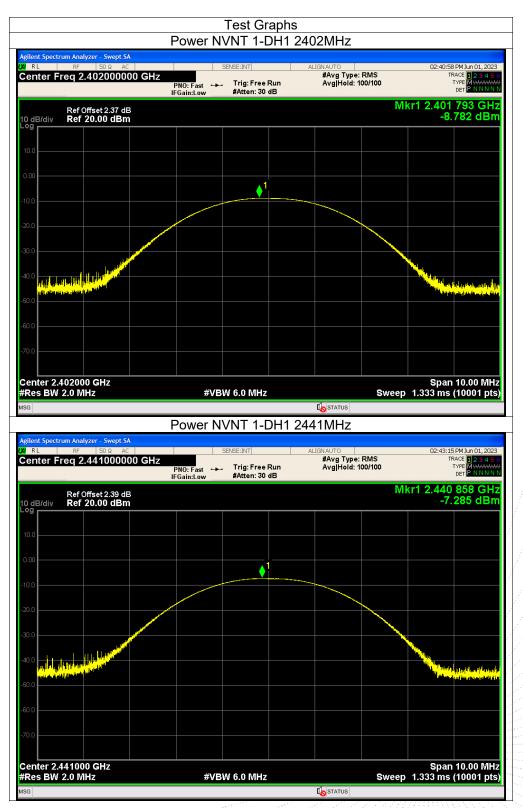
FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS		

11.3 Test procedure

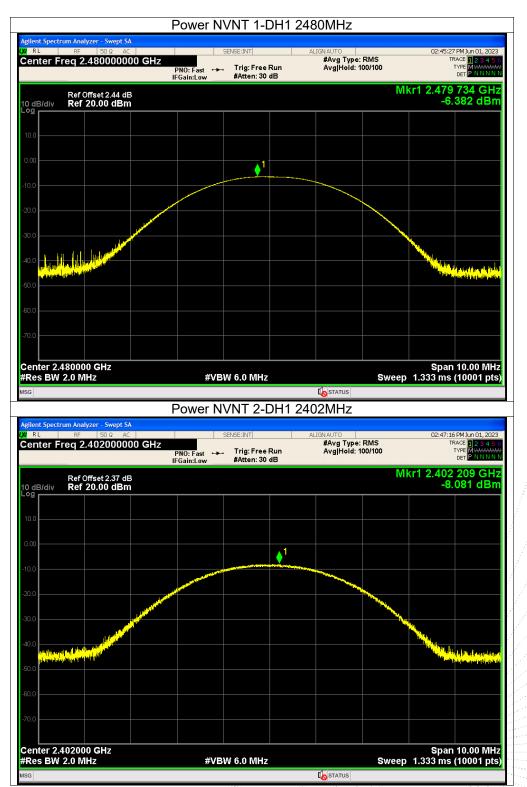
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

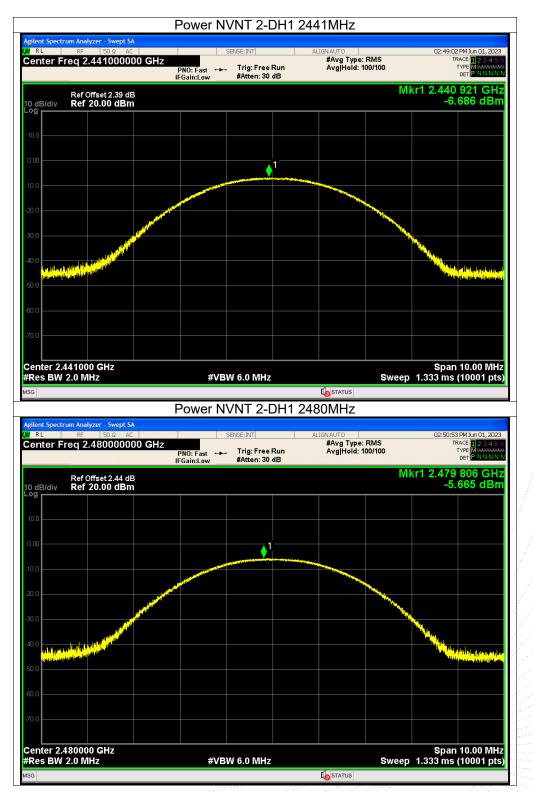
2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.


11.4 Test Result

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-8.78	21	Pass
NVNT	1-DH1	2441	-7.29	21	Pass
NVNT	1-DH1	2480	-6.38	21	Pass
NVNT	2-DH1	2402	-8.08	21	Pass
NVNT	2-DH1	2441	-6.69	21	Pass
NVNT	2-DH1	2480	-5.67	21	Pass





检

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.85	2402.848	0.998	0.872	Pass
NVNT	1-DH1	2440.848	2441.848	1	0.819	Pass
NVNT	1-DH1	2478.848	2479.85	1.002	0.863	Pass
NVNT	2-DH1	2401.85	2402.848	0.998	0.832	Pass
NVNT	2-DH1	2440.848	2441.846	0.998	0.816	Pass
NVNT	2-DH1	2478.848	2479.85	1.002	0.823	Pass

12.4 Test Result

gilent Spectrum Analyze	r - Swept SA	CFS NVNT 1-			
RL RF	50 Ω AC	SENSE:INT	ALIGN AUTO #Avg Ty	02:4	6:04 PM Jun 01, 2023 TRACE 1 2 3 4 5 6
	PN	0:Wide 😱 Trig:Fr iain:Low #Atten:	ree Run Avg Hol	d:>100/100	TRACE 12345 6 TYPE MWWWWW DET PNNNN
Ref Offs	set 2.44 dB			Mkr1 2.47	78 848 GHz
	.00 dBm			-	7.988 dBm
10.0					
0.00	¹			λ ²	
20.0					
80.0			~~~~		
10.0					
50.0					
70.0					
enter 2.479500 (Res BW 30 kHz	GHz	#VBW 100 k	Hz	Sweep 2.133 ا	an 2.000 MHz ms (1001 pts)
KR MODE TRC SCL	X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALU	
1 N 1 f 2 N 1 f	2.478 848 GHz 2.479 850 GHz	-7.988 dBm -7.930 dBm			
3					
5					
8					
9					
					>
G			STATUS		
		CFS NVNT 2-	DH1 2402MHz		
			DH1 2402MHz	02:4	7:47 PM Jun 01, 2023
RL RF	r - Swept SA 50 Ω AC D25000000 GHz PN	CFS NVNT 2- sense:INT sense:INT Sens	DH1 2402MHz	02:4 rpe: RMS d:> 100/100	7:47 PM Jun 01, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N
RL RF enter Freq 2.40 Ref Offs 0 dB/div Ref 20	r - Swept SA 50 Ω AC D25000000 GHz PN	SENSE:INT	DH1 2402MHz	mpe: RMS d:>100/100 Mkr1 2.40	7:47 PMJun 01, 2023 TRACE 1 2 3 4 5 6 TYPE MUNANNA DET P NNNNN 01 850 GHz 0.501 dBm
enter Freq 2.40 Ref Offs 0 dB/div Ref 20	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz	mpe: RMS d:>100/100 Mkr1 2.40	
RL RF enter Freq 2.40 Ref Offs 0 dB/div Ref 20	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol	ree: RMS d⇒100/100 Mkr1 2.40 -1	
RL RF enter Freq 2.4(Ref Offs D dB/div Ref Offs 0 dB/div Ref 20 0 0	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol	mpe: RMS d:>100/100 Mkr1 2.40	
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref Offs 9 0 0.00 0 0.00 0 0.00 0	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol	ree: RMS d⇒100/100 Mkr1 2.40 -1	
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 9 0 0.00 0 0.00 0 0.00 0	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol	ree: RMS d⇒100/100 Mkr1 2.40 -1	
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 0 g 0 0 dD/div Ref 20 0 g 0 0 dD/div Ref 20 0 g 0 0 dD/div Ref 20 0 dD/div Ref 20 <td>r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB</td> <td>SENSE:INT</td> <td>DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol</td> <td>ree: RMS d⇒100/100 Mkr1 2.40 -1</td> <td></td>	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol	ree: RMS d⇒100/100 Mkr1 2.40 -1	
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 0.00	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol	ree: RMS d⇒100/100 Mkr1 2.40 -1	
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 0.0	r - Swept SA 50 Ω AC D2500000 GHz PN IFG set 2.37 dB	SENSE:INT	DH1 2402MHz ALIGNAUTO #Avg Ty #Avg Ty Avg Hol	ree: RMS d⇒100/100 Mkr1 2.40 -1	
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 000	r - Swept SA [50 Ω AC] D2500000 GHz PN IFG set 2.37 dB .00 dBm	SENSE:INT	DH1 2402MHz	re: RMS d>100/100 Mkr1 2.40 -1	11 850 GHz 0.501 dBm
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 00	r - Swept SA [50 Ω AC] D2500000 GHz PN IFG set 2.37 dB 0.00 dBm 1 0 0 dBm 1 0 0 dBm 1 0 0 dBm 1 0 0 dBm 1 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm dBm 0 dBm 0 dBm dBm 0 dBm 0 dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT	DH1 2402MHz	Pe: RMS d>100/100	11 850 GHz 0.501 dBm
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 0 g	r - Swept SA S0 Ω AC D2500000 GHz PN IFG set 2.37 dB .00 dBm GHz 2.401 850 GHz	SENSE:INT	DH1 2402MHz	re: RMS d>100/100 Mkr1 2.40 -1	11 850 GHz 0.501 dBm
RL RF enter Freq 2.40 Ref Offs 0 dB/div Ref 20 000	r - Swept SA [50 Ω AC] D2500000 GHz PN IFG set 2.37 dB 0.00 dBm 1 0 0 dBm 1 0 0 dBm 1 0 0 dBm 1 0 0 dBm 1 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm dBm 0 dBm 0 dBm dBm 0 dBm 0 dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT	DH1 2402MHz	Pe: RMS d>100/100	11 850 GHz 0.501 dBm
RL RF enter Freq 2.4(Ref Offs 0 dB/div Ref 20 0 dB/div <	r - Swept SA S0 Ω AC D2500000 GHz PN IFG set 2.37 dB .00 dBm GHz 2.401 850 GHz	SENSE:INT	DH1 2402MHz	Pe: RMS d>100/100	11 850 GHz 0.501 dBm
RL RF enter Freq 2.4(0 Global diversity 1 N 1 T 2 N 1 T 1 Global diversity 2 N 3 Global diversity 4 Global diversity 5 Global	r - Swept SA S0 Ω AC D2500000 GHz PN IFG set 2.37 dB .00 dBm GHz 2.401 850 GHz	SENSE:INT	DH1 2402MHz	Pe: RMS d>100/100	11 850 GHz 0.501 dBm
Ref Offs Ref Offs 0 dB/div Ref 20 9 -	r - Swept SA S0 Ω AC D2500000 GHz PN IFG set 2.37 dB .00 dBm GHz 2.401 850 GHz	SENSE:INT	DH1 2402MHz	Pe: RMS d>100/100	11 850 GHz 0.501 dBm
RL RF enter Freq 2.40 Ref Offs 0 dB/div Ref 20 000	r - Swept SA S0 Ω AC D2500000 GHz PN IFG set 2.37 dB .00 dBm GHz 2.401 850 GHz	SENSE:INT	DH1 2402MHz	Pe: RMS d>100/100	11 850 GHz 0.501 dBm

ilent Spectrum Analyz			TA IOT. TA IT		02.42.05.0111
	50 Ω AC 41500000 GH		ENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	02:49:35 PM Jun 01, 2023 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Off	set 2.39 dB				Mkr1 2.440 848 GHz -9.154 dBm
og	0.00 dBm				0.104 0.01
0.0	1				
0.0					
20.0	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	man 1	mum
0.0					
i0.0					
60.0					
0.0					
enter 2.441500 Res BW 30 kHz		#VBV	№ 100 kHz	s	Span 2.000 MH: weep 2.133 ms (1001 pts
KR MODE TRC SCL	× 2.440 848	GHz -9.154	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
2 N 1 f 3	2.441 846	GHz -9.208			
4					
6					
8 9 0					
1					×
G					
				STATUS	
		CFS NV	NT 2-DH1 2		
				2480MHz	ריים אונו Milium ביריסי דע אונו אין דע איני דע אונו אין דע אונע דע אונע דע איני דע אונע דע איני דע אונע דע אינ
RL RF	50 Ω AC		NT 2-DH1 2 ENSE:INT Trig: Free Run #Atten: 30 dB		02:51:21 PM Jun 01, 2023 TRACE 103 4 5 TYPE MAXWAN DET P NN N
RL RF enter Freq 2.4 Ref Off	50 Ω AC	Z PNO: Wide C	ENSE:INT	ALIGNAUTO #Avg Type: RMS	TRACE 12345
RL RF enter Freq 2.4 Ref Off 0 dB/div Ref 2	50 Ω AC 79500000 GH; 5set 2.44 dB	Z PNO: Wide C	ENSE:INT	2480MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1 2 3 4 5 TYPE MWWWWW DET P.N.N.N. Mkr1 2.478 848 GH2
RL RF enter Freq 2.4 Ref Off D dB/div Ref 2	50 Ω AC 79500000 GH; 5set 2.44 dB	Z PNO: Wide C	ENSE:INT	2480MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1 2 3 4 5 TYPE MWWWWW DET P.N.N.N. Mkr1 2.478 848 GH2
RL RF enter Freq 2.4 Ref Off D dB/div Ref 2 9 0.0 0.0 0.0 0.0	50 Ω AC 79500000 GH; 5set 2.44 dB	Z PNO: Wide C	ENSE:INT	ALIGNAUTO #Avg Type: RMS	TRACE 1 2 3 4 5 TYPE MWWWWW DET P.N.N.N. Mkr1 2.478 848 GH2
RL RF enter Freq 2.4 Ref Off 0 dB/div Ref Off 0 d0/div Ref Off 0 00 00 0.0 00 0.0 00	50 Ω AC 79500000 GH; 5set 2.44 dB	Z PNO: Wide C	ENSE:INT	2480MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1 2 3 4 5 TYPE MWWWWW DET P.N.N.N. Mkr1 2.478 848 GH2
RL RF enter Freq 2.4 Ref Off D dB/div Ref 2 99 0.00 0.00 0.00 0.00	50 Ω AC 79500000 GH; 5set 2.44 dB	Z PNO: Wide C	ENSE:INT	2480MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1 2 3 4 5 TYPE MWWWWW DET P.N.N.N. Mkr1 2.478 848 GH2
RL RF enter Freq 2.4 Ref Off 0 dB/div Ref Off 0 dB/div Ref Off 0 dB/div Ref Off 0 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	50 Ω AC 79500000 GH; 5set 2.44 dB	Z PNO: Wide C	ENSE:INT	2480MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1 2 3 4 5 TYPE MWWWWW DET P.N.N.N. Mkr1 2.478 848 GH2
Ref Off D dB/div Ref 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 Ω AC 79500000 GH; 5set 2.44 dB	Z PNO: Wide C	ENSE:INT	2480MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1 2 3 4 5 TYPE MWWWWW DET P.N.N.N. Mkr1 2.478 848 GH2
RL RF enter Freq 2.4 D dB/div Ref Off 0 dB/div Ref 2 0 dB/div Ref 3 0 dB/div Ref 3 0 dB/div Ref 4 0 dB/div Ref 3 0 dB/div Ref 4 0 dB/div Ref 3 0 dB/div Ref 4 0 dB/div Ref 4 0 dB/div Ref 3 0 dB/div Ref 4 0 dB/div Ref 3 0 dB/div Ref 4 0 dB/di	50 Ω AC 79500000 GH; set 2.44 dB	Z PNO: Wide C	ENSE:INT	2480MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE [12:3 4 S TYPE MAXWAW Der MAXWAW -8.178 dBm
RL RE enter Freq 2.4 Ref Off D dB/div Ref 2' O d D dD/div Ref 2' O d D dD/div Ref 2' O d D dD/div Ref 2' O d D dD/div Ref 2' O	50 Ω AC 79500000 GH: 5set 2.44 dB 0.00 dBm	Z PNO: Wide IFGain:Low	ENSE:INT	2480MHz	Brace D 23 4 5 TYPE D 24 4 5 TYPE D 24 4 5 D 24 5 D 24 5 D 24 5 D 24
RL RE enter Freq 2.4 Ref Off dB/div Ref Off 0 0 <td>50 Ω AC 79500000 GH; set 2.44 dB 0.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td>Z PNO: Wide IFGain:Low #VB1</td> <td>ENSE:INT</td> <td>2480MHz</td> <td>TRACE [12:3 4 S TYPE MAXWAW Der MAXWAW -8.178 dBm</td>	50 Ω AC 79500000 GH; set 2.44 dB 0.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Wide IFGain:Low #VB1	ENSE:INT	2480MHz	TRACE [12:3 4 S TYPE MAXWAW Der MAXWAW -8.178 dBm
RL RE enter Freq 2.4 Ref Off 0.0	50 Ω AC 79500000 GH 5set 2.44 dB 0.00 dBm	Z PNO: Wide IFGain:Low #VBV	Trig: Free Run #Atten: 30 dB	2480MHz ALIGNAUTO #AvgType: RMS AvgHold:>100/100	Span 2.000 MH: weep 2.133 ms (1001 pts
RL RF enter Freq 2.4 Ref Off 0 dB/div B 0 dB/div B 1 n 1 2 n 1 3 d B	50 Ω AC 79500000 GH2 5set 2.44 dB 0.00 dBm 4 4 6 4 6 4 2.478 848	Z PNO: Wide IFGain:Low #VBV	Trig: Free Run #Atten: 30 dB	2480MHz ALIGNAUTO #AvgType: RMS AvgHold:>100/100	Span 2.000 MH: weep 2.133 ms (1001 pts
RL RE enter Freq 2.4 Ref Off 0 dB/div Ref Off	50 Ω AC 79500000 GH2 5set 2.44 dB 0.00 dBm 4 4 6 4 6 4 2.478 848	Z PNO: Wide IFGain:Low #VBV	Trig: Free Run #Atten: 30 dB	2480MHz ALIGNAUTO #AvgType: RMS AvgHold:>100/100	Span 2.000 MH: weep 2.133 ms (1001 pts
RL RE enter Freq 2.4 Ref Off 0.4B/div Ref Off 0.5B/div Ref Off 0.4B/div Ref Off 0.5B/div Ref Off 0.4B/div Ref Off	50 Ω AC 79500000 GH2 5set 2.44 dB 0.00 dBm 4 4 6 4 6 4 2.478 848	Z PNO: Wide IFGain:Low #VBV	Trig: Free Run #Atten: 30 dB	2480MHz ALIGNAUTO #AvgType: RMS AvgHold:>100/100	Span 2.000 MH: weep 2.133 ms (1001 pts
RL RF enter Freq 2.4 Ref Off 0 dB/div	50 Ω AC 79500000 GH2 5set 2.44 dB 0.00 dBm 4 4 6 4 6 4 2.478 848	Z PNO: Wide IFGain:Low #VBV	Trig: Free Run #Atten: 30 dB	2480MHz ALIGNAUTO #AvgType: RMS AvgHold:>100/100	Span 2.000 MH: weep 2.133 ms (1001 pts

13. Number Of Hopping Frequency

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

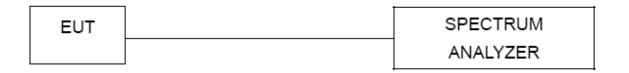
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.4 Test Result

Co	ndition	Mode	Hopping Number	Limit	Verdict
Ν	IVNT	1-DH1	79	15	Pass
Ν	IVNT	2-DH1	79	15	Pass


ilent Spectrum Analyze		ping No. NV	t Graphs NT 1-DF	H1 2441MHz		
RL RF	50 Ω AC 41750000 GHz		: Free Run	ALIGN AUTO #Avg Type: R Avg Hold:>10	MS	55:00 PM Jun 01, 2023 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Offs	IF set 2.39 dB	Gain:Low #Atte	en: 30 dB		Mkr1 2.402	2 004 0 GHz
dB/div Ref 20).00 dBm					-9.343 dBm
.00						
					<u>↓↓↓↓↓↓↓↓↓↓</u>	
0.0						
0.0 <mark>N</mark> 0.0						
0.0						
tart 2.40000 GH Res BW 100 kH		#VBW 300	kHz		Stop Sweep 8.000	o 2.48350 GHz ms (1001 pts
KR MODE TRC SCL	× 2.402 004 0 GHz 2.479 993 0 GHz	ץ -9.343 dBm -6.848 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VAL	UE
3						
6 7						
9 0 1						~
G						>
	· · ·	ping No. NV	'NT 2-Dł	H1 2441MHz	-	
RL RF RL RF RL RF	er - Swept SA 50 Ω AC 41750000 GHz	SENSE:IN		ALIGN AUTO #Avg Type: R	MS	58:53 PM Jun 01, 2023 TRACE 1 2 3 4 5
	F		: Free Run en: 30 dB	Avg Hold:>10		DET
Ref Offs dB/div Ref 20	set 2.39 dB 0.00 dBm					586 5 GHz 15.605 dBm
0.0						
	wwwwwww	ᢦᢗᡘᢦᠺᡌᡕᠯ᠋᠋ᢦᡧᠺᠺ᠋ᢩᠰ		ᢣ᠕ᡃ᠕᠕᠕᠕᠕᠕᠕	ԽՆՆՆՆՆՆՆՆՆՆՆՆ	MMM^{2}
0.0						
						العياد الم
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		41/PM 200				2.48350 GHz
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	z ×	#VBW 300	KHZ	FUNCTION WIDTH	Stop Sweep 8.000 FUNCTION VAL	ms (1001 pts
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2	Y		FUNCTION WIDTH	Sweep 8.000	ms (1001 pts
000 100 100 100 100 100 100 100	z ×	Y		FUNCTION WIDTH	Sweep 8.000	ms (1001 pts
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	z ×	Y		FUNCTION WIDTH	Sweep 8.000	ms (1001 pts

No.: BCTC/RF-EMC-007

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.4 Test Result

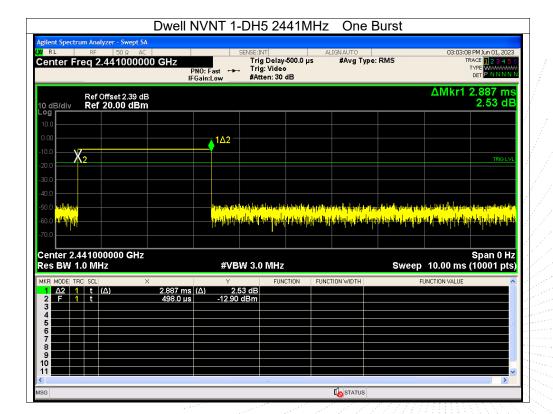
DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Page: 55 of 64

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (s)	Limit (s)	Verdict
NVNT	1-DH1	2441	0.383	0.123	0.4	Pass
NVNT	1-DH3	2441	1.638	0.262	0.4	Pass
NVNT	1-DH5	2441	2.887	0.308	0.4	Pass
NVNT	2-DH1	2441	0.39	0.125	0.4	Pass
NVNT	2-DH3	2441	1.642	0.263	0.4	Pass
NVNT	2-DH5	2441	2.887	0.308	0.4	Pass



Edition: B.0

No.: BCTC/RF-EMC-007

	Dwell N	NVNT 1-DH	I3 2441N	IHz One	Burst		
Agilent Spectrum Analyzer - Swept S Δ RL RF 50Ω AC Center Freq 2.4410000	00 GHz	NO:East →→ Tri	імт ig Delay-500.0 µ ig: Video tten: 30 dB	ALIGNAUTO s #Avg Ty	pe: RMS	TRAC	4Jun 01, 2023 E 1 2 3 4 5 6 E WWWWWW FT P N N N N N
Ref Offset 2.39 dl 10 dB/div Ref 20.00 dBn						ΔMkr1 1.	638 ms 6.98 dB
10.0 0.00 -10.0 X2	1Δ2						
-20.0 -30.0 -40.0 -50.0 -60.0 -60.0 -70.0		n fra tu an tainta ng mana			na je na stali po da pred kara stali kara stali Tel pred stali stali stali stali stali stali stali stali stali Tel pred stali s		TRIG LVL
Center 2.441000000 GHz Res BW 1.0 MHz		#VBW 3.0	0 MHz		Sweep	S 10.00 ms (1	pan 0 Hz 0001 pts)
MKR MODE TRC SCL	X	Y	FUNCTION	FUNCTION WIDTH	FI	JNCTION VALUE	
1 Δ2 1 t (Δ) 2 F 1 t 3 3 - - - - 5 - - - - 6 - - - - - 7 - - - - - 9 - - - - - 10 - - - - - 11 - - - - -	1.638 ms 498.0 μs	(Δ) -6.98 dB -9.00 dBm					

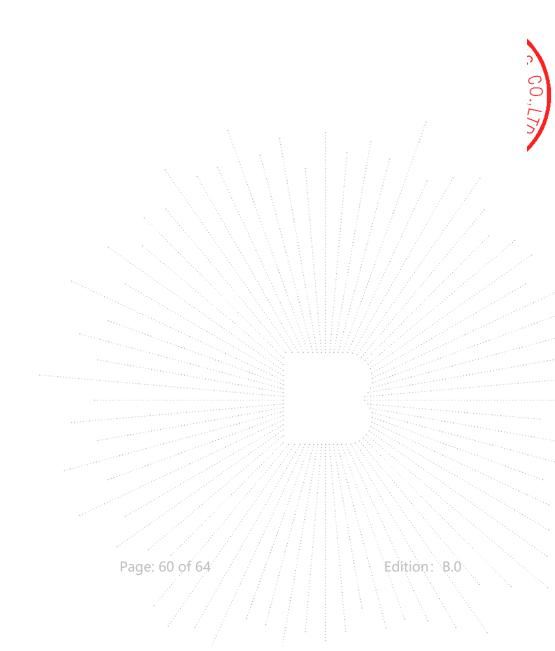
Dwell N	NVNT 2-DH	1 2441MF	lz One	Burst		
	NO: Fast +++ Trig	Π Delay-500.0 μs : Video en: 30 dB	ALIGNAUTO #Avg Ty	pe: RMS	TR	PM Jun 01, 2023 ACE 1 2 3 4 5 (YPE WWWWWW DET P N N N N I
Ref Offset 2.39 dB 10 dE/div Ref 20.00 dBm 10 0	energing and the sufficiency of the				a by plants op a the state	390.0 µs -3.59 dB TRIC LVL
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0	MHz		Sweep	10.00 ms (Span 0 Hz 10001 pts
MKR MODE TRC SCL × 1 Δ2 1 t (Δ) 390.0 µs 2 F 1 t 354.0 µs 3 - - - 4 - - - 6 - - -	γ (Δ) -3.59 dB -19.66 dBm	FUNCTION F	UNCTION WIDTH	FI	UNCTION VALUE	
7 8 9 10 11						、

Dwell NVNT 2-DH3 2441MHz One Burst ept SA nt Spectrum Analyzer RL 18 PM Jun 01, 20 NSE:INT Trig Delay-500.0 μs Trig: Video #Atten: 30 dB #Avg Type: RMS Center Freq 2.441000000 GHz PNO: Fast ↔↔ IFGain:Low TYPE DET ΔMkr1 1.642 ms -3.81 dB Ref Offset 2.39 dB Ref 20.00 dBm 10 dB/div 1<u>Δ</u>2 X Honey Milling and Miles المنافر والمراجع المحمد المالي والمتحد والمتعربة المراجع والمحمد والمحمد والمحمد والمحمد والمحمد li atala, yinib yingka kita y n hay ti<mark>yilini a d</mark>u Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz UNCTION 2 1 t (Δ) 1 t 1.642 ms (Δ) 354.0 μs -3.81 dE -19.62 dBm **STATUS**

No.: BCTC/RF-EMC-007

Dwell	NVNT 2-DH5 24	41MHz One Bu	ırst
	SENSE:INT Trig Delay- PNO: Fast → Trig: Video FGain:Low #Atten: 30 o		03:10:17 PM Jun 01, 2023 TRACE 1023 4 55 TYPE (WARNER DET PINNINN
Ref Offset 2.39 dB 10 dB/div Ref 20.00 dBm 10 a	n ji A	las Dinikantaina ykystysen kisa kasta	AMkr1 2.887 ms -3.16 dB
-80.0 40.7 70.0 Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz		Sweep 10.00 ms (1001 pts)
KCB BW TO INITZ MKR MODE TRC SCI X 1 Δ2 1 t Δ2.887 ms 2 F 1 4 353.0 µs 3 4 - - 5 - - - 6 - - - 7 - - - 9 - - - 10 - - -	Υ FUNC	TION FUNCTION WIDTH	Sweep TU.UU ITS (TUUUT PLS)
MSG		I STATUS	

Page: 59 of 64


15. Antenna Requirement

15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.2 Test Result

The EUT antenna is PCB antenna, The antenna gain is -0.68 dBi, fulfill the requirement of this section.

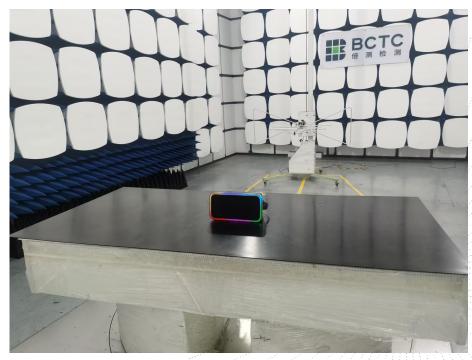
No.: BCTC/RF-EMC-007

16. EUT Photographs

EUT Photo 1

No.: BCTC/RF-EMC-007

Page: 61 of 64



17. EUT Test Setup Photographs

Conducted Measurement Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-007

Edition: B.0

BC

APPR

测

No.: BCTC/RF-EMC-007

Page: 63 of 64

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-007

Page: 64 of 64