

TEST PROCEDURES

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meters full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth	
30 to 1000	QP	120 kHz	300 kHz	
Above 1000	Peak	1 MHz	3 MHz	
	Average	1 MHz	10 Hz	

TEST RESULTS

PASS

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Modulation:	8DPSK(the	worst cas	e)	Test Result: PASS			Test frequency range: 1-25GHz				
Freq.	Ant. Reading Pol. Level(dBuV)		ding dBuV)	Factor	Emissio (dBu ^v	Emission Level (dBuV/m)		Limit 3m (dBuV/m)		Margin (dB)	
(IVIHZ)	(H/V)	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV	
			Ope	ration Mod	le: TX Mod	e (Low)					
4804	V	45.84	31.26	6.30	52.14	37.56	74.00	54.00	-21.86	-16.44	
7206	V	45.16	30.93	10.44	55.60	41.37	74.00	54.00	-18.40	-12.63	
4804	Н	46.02	31.18	6.30	52.32	37.48	74.00	54.00	-21.68	-16.52	
7206	Н	45.21	30.91	10.44	55.65	41.35	74.00	54.00	-18.35	-12.65	
			Оре	eration Mod	de: TX Moo	le (Mid)	_		_		
4882	V	45.32	30.46	6.60	51.92	37.06	74.00	54.00	-22.08	-16.94	
7323	V	45.78	30.63	10.55	56.33	41.18	74.00	54.00	-17.67	-12.82	
4882	Н	45.99	30.73	6.60	52.59	37.33	74.00	54.00	-21.41	-16.67	
7323	Н	45.93	30.51	10.55	56.48	41.06	74.00	54.00	-17.52	-12.94	
			Ope	ration Mod	le: TX Mod	e (High)					
4960	V	44.31	30.73	6.89	51.20	37.62	74.00	54.00	-22.80	-16.38	
7440	V	44.59	30.36	10.60	55.19	40.96	74.00	54.00	-18.81	-13.04	
4960	Н	44.95	30.80	6.89	51.84	37.69	74.00	54.00	-22.16	-16.31	
7440	Н	45.09	30.48	10.60	55.69	41.08	74.00	54.00	-18.31	-12.92	
			Spurio	us Emissio	on in restric	cted band	:				
2390.000	V	50.98	38.18	0.13	51.11	38.31	74.00	54.00	-22.89	-15.69	
2390.000	Н	53.13	38.41	0.13	53.26	38.54	74.00	54.00	-20.74	-15.46	
2483.500	V	54.70	41.55	0.34	55.04	41.89	74.00	54.00	-18.96	-12.11	
2483.500	Н	56.13	42.46	0.34	56.47	42.80	74.00	54.00	-17.53	-11.20	
Remark:	Data of m reading of	neasureme emissions	nt within are atter	this frequ	ency rango e than 20d	e shown B below t	"" in th	e table a sible limit	above me ts.	ans the	

13.3 Channel Separation test

LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.2.

TEST RESULTS

PASS

Modulation	Channel	Frequency (MHz)	Hopping Separation Measurement (MHz)	Hopping Separation Limit (MHz)	Test Result
	Low	2402	1.002	>0.637	Pass
GFSK	Mid	2441	1.002 >0.637		Pass
	High	2480	1.005	>0.639	Pass
	Low	2402	1.002	>0.856	Pass
π/4-DQPSK	Mid	2441	0.999	>0.854	Pass
	High	2480	1.002	>0.869	Pass
8DPSK	Low	2402	0.996	>0.866	Pass
	Mid	2441	1.002	>0.866	Pass
	High	2480	0.999	>0.865	Pass

13.4 20dB Bandwidth

LIMIT

N/A

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 6.9.2.

TEST RESULTS

PASS

Modulation	Channel	Frequency (MHz)	20dB Measurement (MHz)	Limit (MHz)	Remark
	Low	2402	0.955		
GFSK	Mid	2441	0.955		
	High	2480	0.958		
π/4-DQPSK 8DPSK	Low	2402	1.284		
	Mid	2441	1.282		Reporting only
	High	2480	1.303		
	Low	2402	1.299		
	Mid	2441	1.299		
	High	2480	1.298		

13.5 Hopping Channel Number

LIMIT

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.3.

TEST RESULTS

PASS

Modulation	Number of Hopping Channels Measurement	Limit	Test Result
GFSK	79	≥15	PASS
π/4-DQPSK	79	≥15	PASS
8DPSK	79	≥15	PASS
	The worst case: 8DPSK		
Keysight Spectrum Analyzer - Swept SJ (N) R RF 50 Ω All Center Freq 2.4417500 10 dB/div Ref Offset 7.36 d 10 dB/div Ref 20.00 dBr 10 dB/div Ref 20.00 dBr 200 Δ 10 dB/div Ref 20.00 dBr 200 Δ Δ 200 Δ Δ 40 d Δ Δ 200 Δ Δ 40 d Δ Δ 40 d Δ Δ 40 d Δ Δ Δ 40 d Δ Δ Δ 40 d Δ Δ Δ 5 Start 2.40000 GHz #Res BW 100 kHz MKR MKR MODE TRC SCL Δ Δ 10 d Δ Δ Δ Δ 10 d Δ Δ Δ Δ 10 d Δ Δ Δ Δ Δ 10 d Δ Δ Δ Δ Δ 10 d Δ Δ <t< td=""><td>A C OO GHz PNO: Fast IFGain:Low PNO: Fast IFGain:Low Tig: Free Run #Atten: 30 dB B n Avg Hold:>100/ #Atten: 30 dB B n Avg Hold:>100/ Avg Hold:</td><td>12:58:24 PM Jul 28,2 S 100 TAPE MAN Det P MAN AMkr1 78.657 0 M 3.958 d MAR Stop 2.48350 G Sweep 8.000 ms (1001 p FUNCTION VALUE</td><td></td></t<>	A C OO GHz PNO: Fast IFGain:Low PNO: Fast IFGain:Low Tig: Free Run #Atten: 30 dB B n Avg Hold:>100/ #Atten: 30 dB B n Avg Hold:>100/ Avg Hold:	12:58:24 PM Jul 28,2 S 100 TAPE MAN Det P MAN AMkr1 78.657 0 M 3.958 d MAR Stop 2.48350 G Sweep 8.000 ms (1001 p FUNCTION VALUE	

13.6 Time of Occupancy (Dwell Time)

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.4.

TEST RESULTS

PASS

Modulation	Packet	Frequency (MHz)		Dwell Time Measurement (msec)		Limit (msec)	Test Result
GFSK	DH1	2441	0.383	(ms)*(1600/(2*79))*31.6=	122.56	400	Pass
	DH3	2441	1.641	(ms)*(1600/(4*79))*31.6=	262.56	400	Pass
	DH5	2441	2.889	(ms)*(1600/(6*79))*31.6=	308.16	400	Pass
	2-DH1	2441	0.395	(ms)*(1600/(2*79))*31.6=	126.40	400	Pass
π/4-DQPSK	2-DH3	2441	1.645	(ms)*(1600/(4*79))*31.6=	263.20	400	Pass
	2-DH5	2441	2.891	(ms)*(1600/(6*79))*31.6=	308.37	400	Pass
8DPSK	3-DH1	2441	0.395	(ms)*(1600/(2*79))*31.6=	126.40	400	Pass
	3-DH3	2441	1.648	(ms)*(1600/(4*79))*31.6=	263.68	400	Pass
	3-DH5	2441	2.893	(ms)*(1600/(6*79))*31.6=	308.59	400	Pass

	8DPSK / 3-DH1		8DPSK / 3-DH3	
Keysight Spectrum Analyzer - Swept SA R ² 50 G A _C Marker 1 Δ 395.200 μs IF GainLow Ref Officet 1 dB	SENSE.INT SOURCE OFF ALIGN ACTO	0330-40 PM bit 28, 2022 TRACE 0.2 2 4 5 5 TPMC 0.2 2 4 5 5 Peak Search Next Peak Next Peak	Keynight Spectrum Analyzer - Severt 54 Strett-Infl Source OFF ALMA MUTO 09.3196 9H/bit 26.3022 Marker 1 Δ 1.64767 ms Files t→→ Trig: Free Run AvgiHold: 1/1 Trig: Fre	Marker
10 dB/div Ref 10.00 dBm		14.093 àB Next Pk Right	10 delativ Ref 10.00 dBm 12.681 dB	Normal
200 200 200 200 200 200 200 200	New andperior incomments proving	Next Pk Left		Delta Fixed⊳
Center 2.441000000 GHz Res BW 1.0 MHz #V MRR MODE TRCI SCLI Χ Δ2 1 1 (Δ) 395.2 μs	BW 3.0 MHz Sweep 2.5 Υ FUNCTION FUNCTION WIDTH (Δ) 14.093 dB	Span 0 Hz 33 ms (1001 pts) FUNCTION VALUE	Center 2.44 1000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 5.000 ms (1001 pts) MMR MODE TRC SKL X Y FUNCTION FUNCTION VALUE A2 1 t (JA) 1.648 ms (JA) 12.681 ndl) 12.681 ndl) 12.681 ndl)	Off
2 N 3 C 582./ MS	-4/ MH2 dBm	Mkr→RefLvi More	2 N 1 t 740.0 us -57.444 dBm	Properties► More
11 MSG	BDPSK / 3-DH5			
Reysight Spectrum Analyzer - Swept SA Φ RF 50.0 AC Marker 1 Δ 2.89280 ms PNO: Fast IFGain:Low	SENSE INT SOURCE OFF ALIGN AUTO	03:31:37 PH/Jul 28, 2022 TRACE D 2 4 3 5 Trace D 2 4		
10 dBrdiv Ref 10.00 dBm 10 dBrdiv Ref 10.00 dBm 10 0 dBrdiv Ref 10.00 dBm 10 0 dBrdiv Ref 10.00 dBm		-37.346 dB Next Pk Right		
30.0 40.0 60.0 70.0 97.0	1∆2 ດຸຫຼາ/ໃນການນີ	Next Pk Left	Blank	
S0 0 Center 2.441000000 GHz Res BW 1.0 MHz #V MMR MODE TRC: SCL X	BW 3.0 MHz Sweep 7.5 Y FUNCTION	Span 0 Hz 33 ms (1001 pts) FUNCTION VALUE		
1 Δ2 1 t (Δ) 2.893 ms 2 N 1 t 1.544 ms 4 4 5 6 7 <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<>	(Δ) -37,346 dB -3,593 dBm	Mkr→RefLvi		
9 10 11 4 MSG	III STATUS	More 1 of 2		

13.7 Maximum Peak Output Power

LIMIT

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.5.

TEST RESULTS

PASS

Modulation	Frequency (MHz)	Peak Power output Measurement (dBm)	Peak Power output Measurement (mW)	Peak Power Limit (dBm)	Test Result
	2402.00	-3.789	0.42	21	Pass
GFSK	2441.00	-3.461	0.45 21		Pass
	2480.00	-2.234	0.60	21	Pass
	2402.00	-2.931	0.51	21	Pass
π/4-DQPSK	2441.00	-2.586	0.55	21	Pass
	2480.00	-1.354	0.73	21	Pass
	2402.00	-2.499	0.56	21	Pass
8DPSK	2441.00	-2.143	0.61	21	Pass
	2480.00	-0.897	0.81	21	Pass

13.8 Band Edge Conducted Spurious Emission Measurement

LIMIT

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.6 and 6.10.
- d. Enable hopping function of the EUT and then repeat steps above.

TEST RESULTS

PASS

Please refer to the following test plots.

13.9 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203 and 15.247:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

ANTENNA CONNECTED CONSTRUCTION

The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0 dBi, Therefore, the antenna is considered to meet the requirement.

14. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2022	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2022	2 Year
3.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2022	1 Year
4.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 13, 2022	1 Year
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	101094	Mar. 13, 2022	1 Year
6.	Horn Antenna	Schwarzbeck	BBHA9170	9170-172	Mar. 23, 2022	2 Year
7.	Power Sensor	DARE	RPR3006W	15l00041SNO 64	Mar. 13, 2022	1 Year
8.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2022	2 Year
9.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2022	1 Year
10.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2022	1 Year
11.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2022	2 Year
12.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2022	1 Year
13.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2022	1 Year
14.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2022	1 Year
15.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
16.	Test Software	EZ	EZ_EMC, NTC-3A1.1	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.