

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200400266201 Page: 1 of 84

# **TEST REPORT**

| Application No.:         | SHEM2004002662CR                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| FCC ID:                  | 2AVR3-IF2A                                                                                              |
| IC:                      | 22839-IF2A                                                                                              |
| Applicant:               | SecureNet Technologies, LLC                                                                             |
| Address of Applicant:    | 3451 Triumph Blvd #202, Lehi UT 84043 United States                                                     |
| Manufacturer:            | SecureNet Technologies, LLC                                                                             |
| Address of Manufacturer: | 3451 Triumph Blvd #202, Lehi UT 84043 United States                                                     |
| Factory:                 | 1.Hangzhou Hikvision Technology Co., Ltd.;                                                              |
|                          | 2.Hangzhou Hikvision Electronics Co., Ltd.;                                                             |
|                          | 3. Chongqing Hikvision technology Co., Ltd.                                                             |
| Address of Factory:      | 1.No.700,Dongliu Road, Binjiang District, Hangzhou Ctiy,Zhejiang, 310052,<br>China;                     |
|                          | 2.No.299,Qiushi Road,Tonglu Economic Development Zone,Tonglu<br>County, Hangzhou,Zhejiang,310052,China; |
|                          | 3.No. 118, Haikang Road, Area C, Jianqiao Industrial Park, Dadukou<br>District, Chongqing, 401325,China |
| Equipment Under Test (EU | Т):                                                                                                     |
| EUT Name:                | 2MP Wireless Indoor Camera                                                                              |
| Model No.:               | IF2A                                                                                                    |
| Trade mark:              | SecureNet                                                                                               |
| Standard(s) :            | 47 CFR Part 15, Subpart C 15.247                                                                        |
|                          | RSS-247 Issue 2, February 2017                                                                          |
|                          | RSS-Gen Issue 5, March 2019 Amendment 1                                                                 |
| Date of Receipt:         | 2020-04-14                                                                                              |
| Date of Test:            | 2020-04-14 to 2020-04-28                                                                                |
| Date of Issue:           | 2020-04-29                                                                                              |
| Test Result:             | Pass*                                                                                                   |

\* In the configuration tested, the EUT complied with the standards specified above.

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.



| Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed            |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents,      |
| subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.              |
| Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is |
| advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of    |
| Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a        |
| transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced           |
| except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or     |
| appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the      |
| results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.                     |
| Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,      |
| or email: CN Doccheck@sqs.com                                                                                                              |

Co.Ltd NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com



Report No.: SHEM200400266201 Page: 2 of 84

| Revision Record                 |          |            |   |  |  |
|---------------------------------|----------|------------|---|--|--|
| Version Description Date Remark |          |            |   |  |  |
| 00                              | Original | 2020-04-29 | / |  |  |
|                                 |          |            |   |  |  |
|                                 |          |            |   |  |  |

| Authorized for issue<br>by: |                                |  |
|-----------------------------|--------------------------------|--|
|                             | pichal Nil                     |  |
|                             | Micheal Niu / Project Engineer |  |
|                             | Parlam zhan                    |  |
|                             | Parlam Zhan / Reviewer         |  |



 Report No.:
 SHEM200400266201

 Page:
 3 of 84

# 2 Test Summary

| Radio Spectrum Technical Requirement                        |                                                    |                                              |                                              |                         |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------|--|--|--|
| Item                                                        | FCC Requirement                                    | IC Requirement                               | Method                                       | Result                  |  |  |  |
| Antenna Requirement                                         | 47 CFR Part 15,<br>Subpart C 15.203 &<br>15.247(c) | RSS-Gen Clause 6.8                           | N/A                                          | Customer<br>Declaration |  |  |  |
| N/A: Not applicable                                         |                                                    |                                              |                                              |                         |  |  |  |
| Radio Spectrum Matt                                         | er Part                                            |                                              |                                              |                         |  |  |  |
| Item                                                        | FCC Requirement                                    | IC Requirement                               | Method                                       | Result                  |  |  |  |
| Conducted Emissions<br>at AC Power Line<br>(150kHz-30MHz)   | 47 CFR Part 15,<br>Subpart C 15.207                | RSS-Gen Clause 8.8                           | ANSI C63.10<br>(2013) Section 6              | .2 Pass                 |  |  |  |
| Minimum 6dB<br>Bandwidth                                    | 47 CFR Part 15,<br>Subpart C 15.247a(2)            | RSS-247 Clause 5.2(a)                        | 11.8.1                                       | Pass                    |  |  |  |
| Conducted Peak<br>Output Power                              | 47 CFR Part 15,<br>Subpart C 15.247(b)(3)          | RSS-247 Clause 5.4(d)                        | ANSI C63.10<br>(2013) Section<br>11.9.1      | Pass                    |  |  |  |
| Power Spectrum<br>Density                                   | 47 CFR Part 15,<br>Subpart C 15.247(e)             | RSS-247 Clause 5.2(b)                        | ANSI C63.10<br>(2013) Section<br>11.10.2     | Pass                    |  |  |  |
| Conducted Band<br>Edges Measurement                         | 47 CFR Part 15,<br>Subpart C 15.247(d)             | RSS-247 Clause 5.5                           | ANSI C63.10<br>(2013) Section<br>11.13.3.2   | Pass                    |  |  |  |
| Conducted Spurious<br>Emissions                             | 47 CFR Part 15,<br>Subpart C 15.247(d)             | RSS-247 Clause 5.5                           | ANSI C63.10<br>(2013) Section<br>11.11       | Pass                    |  |  |  |
| Radiated Emissions<br>which fall in the<br>restricted bands | 47 CFR Part 15,<br>Subpart C 15.209 &<br>15.247(d) | RSS-247 Section 3.3 & RSS-Gen Section 8.9    | ANSI C63.10<br>(2013) Section<br>6.10.5      | Pass                    |  |  |  |
| Radiated Spurious<br>Emissions                              | 47 CFR Part 15,<br>Subpart C 15.209 &<br>15.247(d) | RSS-247 Section 3.3 &<br>RSS-Gen Section 8.9 | ANSI C63.10<br>(2013) Section<br>6.4,6.5,6.6 | Pass                    |  |  |  |
| 99% Bandwidth                                               | -                                                  | RSS-Gen Section 6.7                          | ANSI C63.10<br>Section 6.9.3                 | Pass                    |  |  |  |
| Frequency Stability                                         | -                                                  | RSS-Gen Section 8.11                         | RSS-Gen<br>Section 6.11                      | Note1                   |  |  |  |

Note1: Frequency stability requested in RSS GEN S8.11 has been complied since the result of band edge can demonstrate.



Report No.: SHEM200400266201 Page: 4 of 84

# 3 Contents

|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1      | I COVER PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                      |
| 2      | 2 TEST SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                      |
| 3      | 3 CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                      |
| 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                      |
|        | 4.1 DETAILS OF E.U.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                      |
|        | 4.1 POWER LEVEL SETTING USING IN TEST:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
|        | 4.2 DESCRIPTION OF SUPPORT UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|        | <ul> <li>4.3 MEASUREMENT UNCERTAINTY</li> <li>4.4 TEST LOCATION</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
|        | 4.4 TEST LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|        | 4.6 DEVIATION FROM STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|        | 4.7 ABNORMALITIES FROM STANDARD CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| 5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| 6      | 6 RADIO SPECTRUM TECHNICAL REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                     |
| 6      | 6.1 ANTENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                      |
| 6<br>7 | 6.1 ANTENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                     |
| -      | 6.1 ANTENNA REQUIREMENT<br>7 RADIO SPECTRUM MATTER TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>11                               |
| -      | <ul> <li>6.1 ANTENNA REQUIREMENT</li> <li>7 RADIO SPECTRUM MATTER TEST RESULTS</li> <li>7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)</li> <li>7.2 MINIMUM 6DB BANDWIDTH</li> </ul>                                                                                                                                                                                                                                                                                                                                                 | 10<br>11<br>                           |
| -      | <ul> <li>6.1 ANTENNA REQUIREMENT</li> <li>7 RADIO SPECTRUM MATTER TEST RESULTS</li> <li>7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)</li> <li>7.2 MINIMUM 6DB BANDWIDTH</li></ul>                                                                                                                                                                                                                                                                                                                                                  | 10<br>11<br>                           |
| -      | <ul> <li>6.1 ANTENNA REQUIREMENT</li> <li>7 RADIO SPECTRUM MATTER TEST RESULTS</li> <li>7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)</li> <li>7.2 MINIMUM 6DB BANDWIDTH</li></ul>                                                                                                                                                                                                                                                                                                                                                  | 10<br>11<br>11<br>15<br>16<br>18       |
| -      | 6.1       ANTENNA REQUIREMENT         7       RADIO SPECTRUM MATTER TEST RESULTS         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)         7.2       MINIMUM 6DB BANDWIDTH         7.3       CONDUCTED PEAK OUTPUT POWER         7.4       POWER SPECTRUM DENSITY         7.5       CONDUCTED BAND EDGES MEASUREMENT                                                                                                                                                                                                      | 10<br>11<br>11<br>15<br>16<br>18<br>19 |
| -      | 6.1       ANTENNA REQUIREMENT         7       RADIO SPECTRUM MATTER TEST RESULTS         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)         7.2       MINIMUM 6DB BANDWIDTH         7.3       CONDUCTED PEAK OUTPUT POWER         7.4       POWER SPECTRUM DENSITY         7.5       CONDUCTED BAND EDGES MEASUREMENT         7.6       CONDUCTED SPURIOUS EMISSIONS                                                                                                                                                       | 10<br>                                 |
| -      | 6.1       ANTENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| -      | 6.1       ANTENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| -      | 6.1       ANTENNA REQUIREMENT         7       RADIO SPECTRUM MATTER TEST RESULTS         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)         7.2       MINIMUM 6DB BANDWIDTH         7.3       CONDUCTED PEAK OUTPUT POWER         7.4       POWER SPECTRUM DENSITY         7.5       CONDUCTED BAND EDGES MEASUREMENT         7.6       CONDUCTED SPURIOUS EMISSIONS         7.7       RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS         7.8       RADIATED SPURIOUS EMISSIONS         7.9       99% BANDWIDTH |                                        |
| 7      | 6.1       ANTENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |



Report No.: SHEM200400266201 Page: 5 of 84

# 4 General Information

# 4.1 Details of E.U.T.

| Power supply:        | DC 5V By Adapter                           |
|----------------------|--------------------------------------------|
|                      | Adapter:                                   |
|                      | MODEL:ADS-12CG-06 05010EPCU                |
|                      | INPUT:100-240V~50/60Hz,Max 0.3A            |
|                      | OUTPUT:DC 5V/2.0A                          |
| Test voltage:        | AC120V/60Hz                                |
| Cable:               | USB Cable 3m                               |
| Antenna Gain:        | Antenna 1: 1.81dBi;                        |
|                      | Antenna 2: -1.60dBi                        |
|                      | Directional gain:3.28dBi                   |
| Antenna Type:        | Antenna 1: Ceramic Antenna;                |
|                      | Antenna 2: SMT antenna                     |
| Channel Spacing:     | 5MHz                                       |
| Modulation Type:     | 802.11b: DSSS (CCK, DQPSK, DBPSK)          |
|                      | 802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK) |
| Number of Channels:  | 802.11b/g/n(HT20):11                       |
|                      | 802.11n(HT40):7                            |
| Operation Frequency: | 802.11b/g/n(HT20): 2412MHz to 2462MHz      |
|                      | 802.11n(HT40): 2422MHz to 2452MHz          |

### 4.1 Power level setting using in test:

| Channel | 802.11b | 802.11g | 802.11n(HT20) |
|---------|---------|---------|---------------|
| 1       | 28      | 30      | 30            |
| 6       | 28      | 30      | 30            |
| 11      | 28      | 30      | 30            |
| Channel | 802.11b |         |               |
| 3       | 30      |         |               |
| 6       | 30      |         |               |
| 9       | 30      |         |               |

### 4.2 Description of Support Units

| Description               | Manufacturer | Model No.      | Serial No. |
|---------------------------|--------------|----------------|------------|
| Laptop                    | Lenovo       | ThinkPad X100e | /          |
| SecureCRT                 | VanDyke      | V 6.2.0        | /          |
| Serial port adapter plate | /            | Test Plate 3   | /          |



Report No.: SHEM200400266201 Page: 6 of 84

### 4.3 Measurement Uncertainty

| Item                            | Measurement Uncertainty                                                                                                                                                                                                                                                                           |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radio Frequency                 | ±8.4 x 10 <sup>-8</sup>                                                                                                                                                                                                                                                                           |
| Timeout                         | ±2s                                                                                                                                                                                                                                                                                               |
| Duty cycle                      | ±0.37%                                                                                                                                                                                                                                                                                            |
| Occupied Bandwidth              | ±3%                                                                                                                                                                                                                                                                                               |
| RF conducted power              | ±0.6dB                                                                                                                                                                                                                                                                                            |
| RF power density                | ±2.84dB                                                                                                                                                                                                                                                                                           |
| Conducted Spurious emissions    | ±0.75dB                                                                                                                                                                                                                                                                                           |
| DE Dedicted newer               | ±4.6dB (Below 1GHz)                                                                                                                                                                                                                                                                               |
| RF Radiated power               | ±4.1dB (Above 1GHz)                                                                                                                                                                                                                                                                               |
|                                 | ±4.2dB (Below 30MHz)                                                                                                                                                                                                                                                                              |
| Dedicted Courieus emission test | ±4.4dB (30MHz-1GHz)                                                                                                                                                                                                                                                                               |
| Radiated Spundus emission test  | ±4.8dB (1GHz-18GHz)                                                                                                                                                                                                                                                                               |
|                                 | ±5.2dB (Above 18GHz)                                                                                                                                                                                                                                                                              |
| Temperature test                | ±1°C                                                                                                                                                                                                                                                                                              |
| Humidity test                   | ±3%                                                                                                                                                                                                                                                                                               |
| Supply voltages                 | ±1.5%                                                                                                                                                                                                                                                                                             |
| Time                            | ±3%                                                                                                                                                                                                                                                                                               |
|                                 | Radio Frequency         Timeout         Duty cycle         Occupied Bandwidth         RF conducted power         RF power density         Conducted Spurious emissions         RF Radiated power         RF Radiated power         Temperature test         Humidity test         Supply voltages |

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



Report No.: SHEM200400266201 Page: 7 of 84

#### 4.4 Test Location

All tests were performed at: Compliance Certification Services (Kunshan) Inc. No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818 No tests were sub-contracted.

#### 4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

#### • FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

#### • ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

CAB Identifier: CN0072.

#### • VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

# 4.6 Deviation from Standards

None

# 4.7 Abnormalities from Standard Conditions

None



Report No.: SHEM200400266201 Page: 8 of 84

# 5 Equipment List

| Item  | Equipment                               | Manufacturer  | Model       | Serial Number | Cal Date   | Cal. Due Date |
|-------|-----------------------------------------|---------------|-------------|---------------|------------|---------------|
|       | ducted Emission at Mains Termin         |               |             |               |            |               |
| 1     | EMI Test Receive                        | R&S           | ESCI        | 100781        | 02/24/2020 | 02/23/2021    |
| 2     | LISN                                    | R&S           | ENV216      | 101604        | 10/24/2019 | 10/23/2020    |
| 3     | LISN                                    | Schwarzbeck   | NNLK 8129   | 8129-143      | 10/24/2019 | 10/23/2020    |
| 4     | Pulse Limiter                           | R&S           | ESH3-Z2     | 100609        | 02/24/2020 | 02/23/2021    |
| 5     | CE test Cable                           | Thermax       |             | 14            | 02/24/2020 | 02/23/2021    |
| RF    | Conducted Test                          |               |             |               |            |               |
| 1     | Spectrum Analyzer                       | Agilent       | E4446A      | MY44020154    | 07/03/2019 | 07/02/2020    |
| 2     | Spectrum Analyzer                       | Keysight      | N9020A      | MY55370209    | 12/19/2019 | 12/18/2020    |
| 3     | Signal Generator                        | Agilent       | E8257C      | MY43321570    | 10/24/2019 | 10/23/2020    |
| 4     | Vector Signal Generator                 | R&S           | SMU 200A    | 102744        | 02/25/2019 | 02/24/2020    |
| 5     | Universal Radio Communication<br>Tester | R&S           | CMU200      | 109525        | 12/19/2019 | 12/18/2020    |
| 6     | Universal Radio Communication<br>Tester | R&S           | CMW500      | 159275        | 12/19/2019 | 12/18/2020    |
| 7     | Power Meter                             | Anritsu       | ML2495A     | 1445010       | 04/22/2019 | 04/21/2020    |
| 8     | Power Meter                             | Anritsu       | ML2495A     | 1445010       | 04/21/2020 | 04/20/2021    |
| 9     | Switcher                                | CCSRF         | FY562       | KS301219      | 12/20/2019 | 12/19/2020    |
| 10    | AC Power Source                         | EXTECH        | 6605        | 1570106       | N.C.R      | N.C.R         |
| 11    | DC Power Supply                         | Aglient       | E3632A      | MY50340053    | N.C.R      | N.C.R         |
| 12    | 6dB Attenuator                          | Mini-Circuits | NAT-6-2W    | 15542-1       | N.C.R      | N.C.R         |
| 13    | Power Divider                           | AISI          | IOWOPE2068  | PE2068        | N.C.R      | N.C.R         |
| 14    | Filter                                  | MICRO-TRONICS | BRM50701    | 5             | N.C.R      | N.C.R         |
| 15    | Conducted test cable                    | /             | RF01-RF04   | /             | 04/22/2019 | 04/21/2020    |
| 16    | Conducted test cable                    | /             | RF01-RF04   | /             | 04/21/2020 | 04/22/2021    |
| 17    | Temp. / Humidity Chamber                | TERCHY        | MHK-120AK   | X30109        | 04/22/2019 | 04/21/2020    |
| 18    | Temp. / Humidity Chamber                | TERCHY        | MHK-120AK   | X30109        | 04/21/2020 | 04/20/2021    |
| RF Ra | adiated Test                            |               |             |               |            |               |
| 1     | Spectrum Analyzer                       | R&S           | FSV40       | 101493        | 01/08/2020 | 01/07/2021    |
| 2     | Signal Generator                        | Agilent       | E8257C      | MY43321570    | 10/24/2019 | 10/23/2020    |
| 3     | Loop Antenna                            | Schwarzbeck   | HXYZ9170    | 9170-108      | 02/24/2020 | 02/23/2021    |
| 4     | Bilog Antenna                           | TESEQ         | CBL 6112D   | 35403         | 06/22/2019 | 06/21/2020    |
| 5     | Bilog Antenna                           | SCHWARZBECK   | VULB9160    | 9160-3342     | 04/29/2019 | 04/28/2021    |
| 6     | Horn-antenna(1-18GHz)                   | Schwarzbeck   | BBHA9120D   | 267           | 11/04/2018 | 11/03/2020    |
| 7     | Horn-antenna(1-18GHz)                   | ETS-LINDGREN  | 3117        | 00143290      | 02/25/2019 | 02/24/2021    |
| 8     | Horn Antenna(18-40GHz)                  | Schwarzbeck   | BBHA9170    | BBHA9170171   | 02/27/2018 | 02/26/2021    |
| 9     | Pre-Amplifier(30MHz~18GHz)              | CCSRF         | AMP1277     | 1             | 12/19/2019 | 12/18/2020    |
| 10    | Pre-Amplifier(0.1~26.5GHz)              | EMCI          | EMC012645   | 980060        | 07/03/2019 | 07/02/2020    |
| 11    | Low Pass Filter                         | MICRO-TRONICS | VLFX-950    | RV142900829   | N.C.R      | N.C.R         |
| 12    | High Pass Filter                        | Mini-Circuits | VHF-1200    | 15542         | N.C.R      | N.C.R         |
| 13    | Filter (5450MHz~5770 MHz)               | MICRO-TRONICS | BRC50704-01 | 2             | N.C.R      | N.C.R         |
| 14    | Filter (5690 MHz~5930 MHz)              | MICRO-TRONICS | BRC50705-01 | 4             | N.C.R      | N.C.R         |
| 15    | Filter (5150 MHz~5350 MHz)              | MICRO-TRONICS | BRC50703-01 | 2             | N.C.R      | N.C.R         |
| 16    | Filter (885 MHz~915 MHz)                | MICRO-TRONICS | BRM14698    | 1             | N.C.R      | N.C.R         |
| 17    | Filter (815 MHz~860 MHz)                | MICRO-TRONICS | BRM14697    | 1             | N.C.R      | N.C.R         |
| 18    | Filter (1745 MHz~1910 MHz)              | MICRO-TRONICS | BRM14700    | 1             | N.C.R      | N.C.R         |
| 19    | Filter (1922 MHz~1977 MHz)              | MICRO-TRONICS | BRM50715    | 1             | N.C.R      | N.C.R         |
|       |                                         |               |             | _             |            |               |
| 20    | Filter (2550 MHz)                       | MICRO-TRONICS | HPM13362    | 5             | N.C.R      | N.C.R         |

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com



# SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

 Report No.:
 SHEM200400266201

 Page:
 9 of 84

| 22 | Filter (2.4GHz) | MICRO-TRONICS | BRM50701  | 5 | N.C.R      | N.C.R      |
|----|-----------------|---------------|-----------|---|------------|------------|
| 23 | RE test cable   | /             | RE01-RE04 | / | 04/22/2019 | 04/21/2020 |
| 24 | RE test cable   | /             | RE01-RE04 | / | 04/21/2020 | 04/22/2021 |



Report No.: SHEM200400266201 Page: 10 of 84

# 6 Radio Spectrum Technical Requirement

#### 6.1 Antenna Requirement

#### 6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

#### 6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### EUT Antenna:

The antenna 1 is Ceramic and antenna 2 is SMT antenna, and all on the main PCB and no consideration of replacement. The best case gain of the antenna 1 is 1.81dBi; antenna 2 is -1.60dBi. Antenna location: Refer to Appendix (Internal Photos)



Report No.: SHEM200400266201 Page: 11 of 84

# 7 Radio Spectrum Matter Test Results

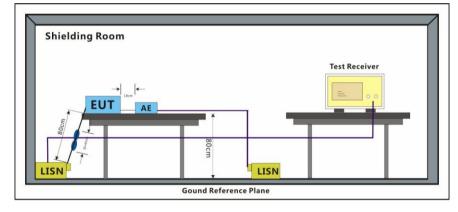
# 7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

| Test Requirement | 47 |
|------------------|----|
| Test Method:     | A١ |
| Limit:           |    |

47 CFR Part 15, Subpart C 15.207 ANSI C63.10 (2013) Section 6.2

| Execution of omission (MUT)        | Conducted limit(dBµV) |           |  |  |  |
|------------------------------------|-----------------------|-----------|--|--|--|
| Frequency of emission(MHz)         | Quasi-peak            | Average   |  |  |  |
| 0.15-0.5                           | 66 to 56*             | 56 to 46* |  |  |  |
| 0.5-5                              | 56                    | 46        |  |  |  |
| 5-30                               | 60                    | 50        |  |  |  |
| *Decreases with the logarithm of t | he frequency.         |           |  |  |  |




Report No.: SHEM200400266201 Page: 12 of 84

#### 7.1.1 E.U.T. Operation

Operating Environment:

Temperature:24 °CHumidity:48 % RHAtmospheric Pressure:1010 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

#### 7.1.2 Test Setup Diagram



#### 7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

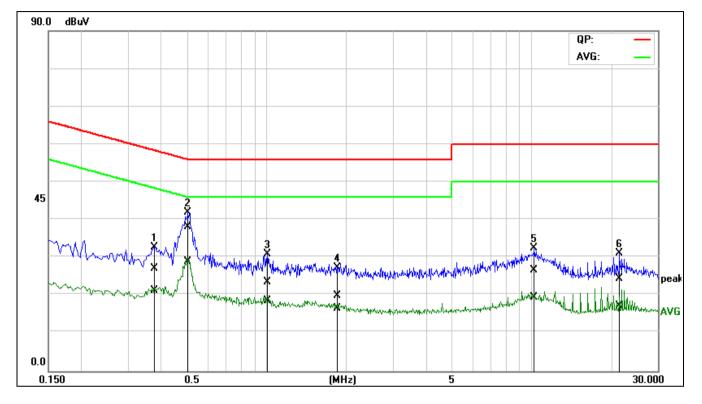
2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 $\mu$ H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

#### Remark:

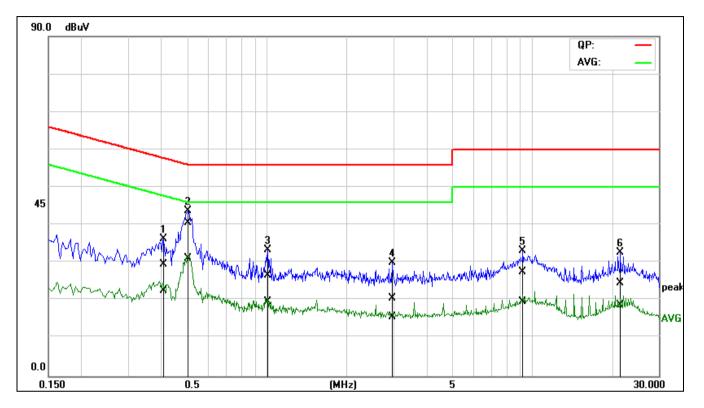

- 1. LISN=Read Level+ Cable Loss+ LISN Factor
- 2. This test item was investigated while operating in each channel mode, however, it was determined that channel 11 operation for b modulation produced the worst conducted emissions. So the conducted emissions produced from other operation are not report.



SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200400266201 Page: 13 of 84

Mode:a; Line:Live Line




| No. | Frequency | QuasiPeak<br>reading | Average reading | Correction<br>factor | QuasiPeak<br>result | Average<br>result | QuasiPeak<br>limit | Average<br>limit | QuasiPeak<br>margin | Average margin | Remark |
|-----|-----------|----------------------|-----------------|----------------------|---------------------|-------------------|--------------------|------------------|---------------------|----------------|--------|
|     | (MHz)     | (dBuV)               | (dBuV)          | (dB)                 | (dBuV)              | (dBuV)            | (dBuV)             | (dBuV)           | (dB)                | (dB)           |        |
| 1   | 0.3763    | 7.57                 | 1.76            | 19.51                | 27.08               | 21.27             | 58.36              | 48.36            | -31.28              | -27.09         | Pass   |
| 2*  | 0.5016    | 18.61                | 9.30            | 19.57                | 38.18               | 28.87             | 56.00              | 46.00            | -17.82              | -17.13         | Pass   |
| 3   | 1.0114    | 3.87                 | -1.13           | 19.68                | 23.55               | 18.55             | 56.00              | 46.00            | -32.45              | -27.45         | Pass   |
| 4   | 1.8585    | 0.24                 | -3.20           | 19.76                | 20.00               | 16.56             | 56.00              | 46.00            | -36.00              | -29.44         | Pass   |
| 5   | 10.2134   | 6.65                 | -0.47           | 20.04                | 26.69               | 19.57             | 60.00              | 50.00            | -33.31              | -30.43         | Pass   |
| 6   | 21.4473   | 3.91                 | -3.19           | 20.44                | 24.35               | 17.25             | 60.00              | 50.00            | -35.65              | -32.75         | Pass   |



SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200400266201 Page: 14 of 84



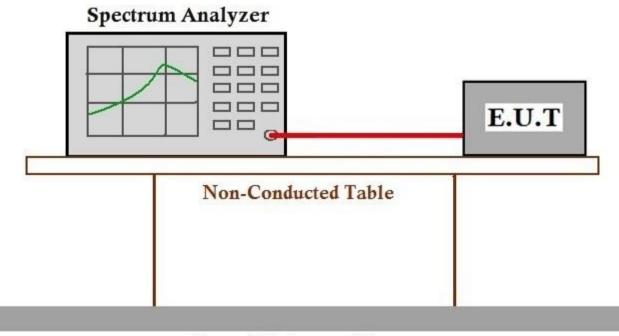
#### Mode:a; Line:Neutral Line

| No. | Frequency | QuasiPeak<br>reading | Average reading | Correction<br>factor | QuasiPeak<br>result | Average<br>result | QuasiPeak<br>limit | Average<br>limit | QuasiPeak<br>margin | Average<br>margin | Remark |
|-----|-----------|----------------------|-----------------|----------------------|---------------------|-------------------|--------------------|------------------|---------------------|-------------------|--------|
|     | (MHz)     | (dBuV)               | (dBuV)          | (dB)                 | (dBuV)              | (dBuV)            | (dBuV)             | (dBuV)           | (dB)                | (dB)              |        |
| 1   | 0.4119    | 10.09                | 3.20            | 19.48                | 29.57               | 22.68             | 57.61              | 47.61            | -28.04              | -24.93            | Pass   |
| 2*  | 0.4996    | 21.03                | 11.77           | 19.49                | 40.52               | 31.26             | 56.01              | 46.01            | -15.49              | -14.75            | Pass   |
| 3   | 1.0023    | 6.90                 | -0.01           | 19.66                | 26.56               | 19.65             | 56.00              | 46.00            | -29.44              | -26.35            | Pass   |
| 4   | 2.9311    | 0.72                 | -4.18           | 19.80                | 20.52               | 15.62             | 56.00              | 46.00            | -35.48              | -30.38            | Pass   |
| 5   | 9.2106    | 7.61                 | -0.16           | 19.96                | 27.57               | 19.80             | 60.00              | 50.00            | -32.43              | -30.20            | Pass   |
| 6   | 21.5300   | 4.16                 | -1.58           | 20.41                | 24.57               | 18.83             | 60.00              | 50.00            | -35.43              | -31.17            | Pass   |



Report No.: SHEM200400266201 Page: 15 of 84

#### 7.2 Minimum 6dB Bandwidth


| Test Requirement | 47 CFR Part 15, Subpart C 15.247a(2) |
|------------------|--------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 11.8.1    |
| Limit:           | ≥500 kHz                             |

#### 7.2.1 E.U.T. Operation

**Operating Environment:** 

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

#### 7.2.2 Test Setup Diagram



# **Ground Reference Plane**

#### 7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200400266201



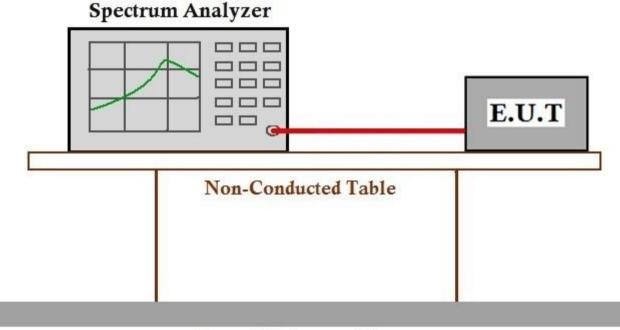
Report No.: SHEM200400266201 Page: 16 of 84

### 7.3 Conducted Peak Output Power

| Test Requirement | 47 CFR Part 15, Subpart C 15.247(b)(3) |
|------------------|----------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 11.9.1      |
| Limit:           |                                        |

| Frequency range(MHz) | Output power of the intentional radiator(watt)         |  |  |  |  |
|----------------------|--------------------------------------------------------|--|--|--|--|
|                      | 1 for ≥50 hopping channels                             |  |  |  |  |
| 902-928              | 0.25 for 25≤ hopping channels <50                      |  |  |  |  |
|                      | 1 for digital modulation                               |  |  |  |  |
|                      | 1 for ≥75 non-overlapping hopping channels             |  |  |  |  |
| 2400-2483.5          | 0.125 for all other frequency hopping systems          |  |  |  |  |
|                      | 1 for digital modulation                               |  |  |  |  |
| 5725-5850            | 1 for frequency hopping systems and digital modulation |  |  |  |  |




Report No.: SHEM200400266201 Page: 17 of 84

#### 7.3.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

#### 7.3.2 Test Setup Diagram



# **Ground Reference Plane**

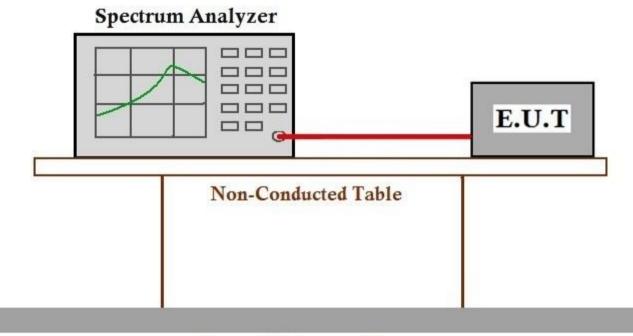
#### 7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200400266201



Report No.: SHEM200400266201 Page: 18 of 84

#### 7.4 Power Spectrum Density


| Test Requirement | 47 CFR Part 15, Subpart C 15.247(e)                                               |
|------------------|-----------------------------------------------------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 11.10.2                                                |
| Limit:           | $\leq$ 8dBm in any 3 kHz band during any time interval of continuous transmission |

#### 7.4.1 E.U.T. Operation

**Operating Environment:** 

| Temperature: | 22 °C                                                              | Humidity:                                                           | 50 % RH                                                  | Atmospheric Pressure:                                                                                                                                               | 1002 mbar                          |
|--------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Test mode    | types. All data<br>data rate @ 11<br>worst case of<br>802.11n(HT20 | rates for each<br>Mbps is the wo<br>IEEE 802.11g<br>)); data rate @ | n modulation typ<br>orst case of IEE<br>; data rate @ 6. | ransmitting mode with all to<br>be have been tested and for<br>E 802.11b; data rate @ 61<br>5Mbps is the worst case of<br>the worst case of IEEE 802<br>the report. | ound the<br>Mbps is the<br>of IEEE |

#### 7.4.2 Test Setup Diagram



# Ground Reference Plane

#### 7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200400266201

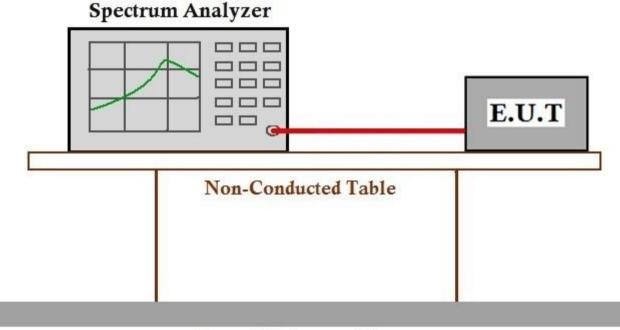


Report No.: SHEM200400266201 Page: 19 of 84

#### 7.5 Conducted Band Edges Measurement

**Test Requirement** 47 CFR Part 15, Subpart C 15.247(d) **Test Method:** ANSI C63.10 (2013) Section 11.13.3.2 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)




Report No.: SHEM200400266201 Page: 20 of 84

#### 7.5.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

#### 7.5.2 Test Setup Diagram



# **Ground Reference Plane**

#### 7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200400266201

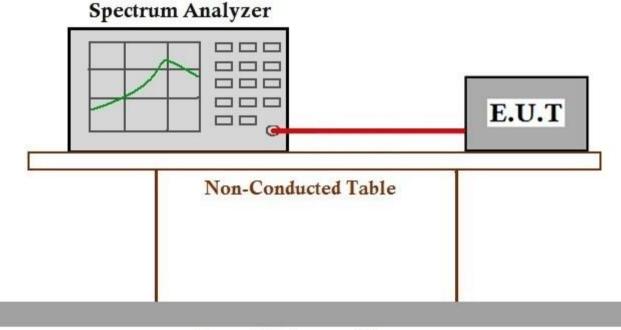


Report No.: SHEM200400266201 Page: 21 of 84

### 7.6 Conducted Spurious Emissions

**Test Requirement** 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 11.11 In any 100 kHz bandwidth outside the frequency band in which the spread Limit: spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)




Report No.: SHEM200400266201 Page: 22 of 84

#### 7.6.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

#### 7.6.2 Test Setup Diagram



# **Ground Reference Plane**

#### 7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200400266201



Report No.: SHEM200400266201 Page: 23 of 84

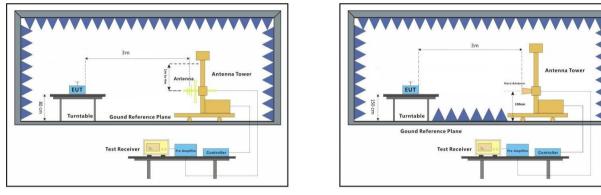
#### 7.7 Radiated Emissions which fall in the restricted bands

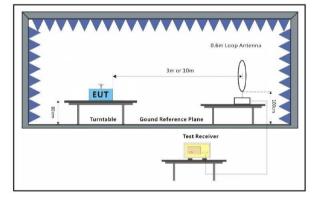
| Test Requirement | 47 CFR Part 15, Subpart C 15.209 & 15.247(d) |
|------------------|----------------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 6.10.5            |
| Limit:           |                                              |

| Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) |
|----------------|----------------------------------|------------------------------|
| 0.009-0.490    | 2400/F(kHz)                      | 300                          |
| 0.490-1.705    | 24000/F(kHz)                     | 30                           |
| 1.705-30.0     | 30                               | 30                           |
| 30-88          | 100                              | 3                            |
| 88-216         | 150                              | 3                            |
| 216-960        | 200                              | 3                            |
| Above 960      | 500                              | 3                            |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.




Report No.: SHEM200400266201 Page: 24 of 84


#### 7.7.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

#### 7.7.2 Test Setup Diagram







Report No.: SHEM200400266201 Page: 25 of 84

#### 7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Remark 3: This test item was investigated while operating in SISO and MIMO mode, however, it was determined that SISO antenna 1 operation for b/g modulation and MIMO antenna operation for n modulation produced the worst emissions. So the emissions produced from other operation are not recorded in report.





Report No.: SHEM200400266201 Page: 26 of 84

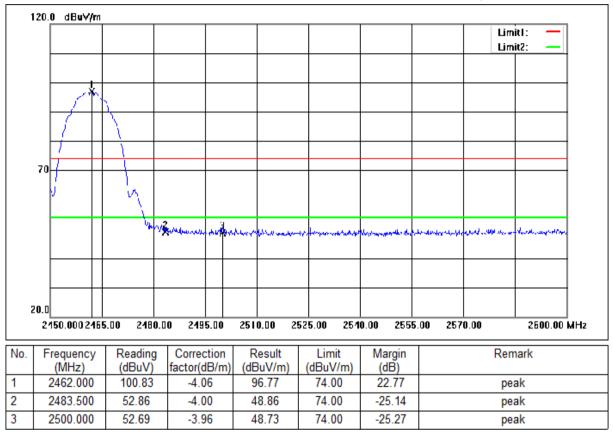
| 1  | 20.0 d⊟u∀/m     |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
|----|-----------------|------------|-------------------------|----------------------------|---------------------------------|-----------|----------|--------|----------------------------------------------------------------------------------------------------------------|--|
|    |                 |            |                         |                            |                                 |           |          | Limi   |                                                                                                                |  |
|    |                 |            |                         |                            |                                 |           |          | Limi   | t2: —                                                                                                          |  |
|    |                 |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
|    |                 |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
|    |                 |            |                         |                            |                                 | - (       | Ň        |        |                                                                                                                |  |
|    |                 |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
|    | 70              |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
|    |                 |            |                         |                            |                                 | P         |          | 2      |                                                                                                                |  |
|    | anaya tuburtada |            | . Waana dhalaanaa waara | veryterty and an the other | Sterne the sector of the sector | ~         |          | Murray | allative the second of the |  |
|    |                 |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
|    |                 |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
| 2  | 0.0             |            |                         |                            |                                 |           |          |        |                                                                                                                |  |
|    | 2310.0002324    | .00 2338.0 | 0 2352.00               | 2356.00 2                  | 380.00 239                      | 1.00 2108 | 8.00 242 | 2.00   | 2450.00 MHz                                                                                                    |  |
| 0. | Frequency       | Reading    | Correction              | Result                     | Limit                           | Margin    |          | Rem    | ark                                                                                                            |  |
|    | (MHz)           | (dBuV)     | factor(dB/m)            | (dBuV/m)                   | (dBuV/m)                        | (dB)      |          |        |                                                                                                                |  |
| _  | 2335.690        | 54.04      | -4.38                   | 49.66                      | 74.00                           | -24.34    |          | peak   |                                                                                                                |  |
|    | 2390.000        | 53.08      | -4.24                   | 48.84                      | 74.00                           | -25.16    |          | peak   |                                                                                                                |  |
|    | 2412.130        | 100.35     | -4.19                   | 96.16                      | 74.00                           | 22.16     |          | pea    | ak                                                                                                             |  |

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 27 of 84

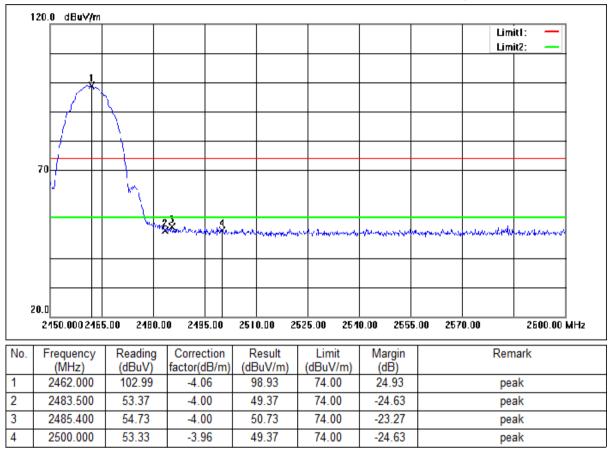

| 1  | l20.0 d⊟u∀/m          |                              |                                       |                |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----|-----------------------|------------------------------|---------------------------------------|----------------|----------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    |                       |                              |                                       |                |                |                  |             | Limiti: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|    |                       |                              |                                       |                |                |                  |             | Limit2: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|    |                       |                              |                                       |                |                |                  | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    |                       |                              |                                       |                |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    |                       |                              |                                       |                |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    |                       |                              |                                       |                |                | (                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    | 70                    |                              |                                       |                |                | j                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    |                       |                              |                                       |                |                | $\mathcal{J}$    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    | and the second second | mpridenses wh                | an the state of the second states and | mannerstore    | und allower    |                  |             | and the second s |  |
|    |                       |                              |                                       |                |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    |                       |                              |                                       |                |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2  | 20.0                  |                              |                                       |                |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    | 2310.0002324          | 1.00 2338.0                  | 10 2352.00                            | 2356.00 2      | 380.00 239     | 1.00 2408        | .00 2422.00 | 2150.00 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|    | Frequency             | Frequency Reading Correction |                                       | Result         | Limit          | Margin           |             | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| D. | riequency             |                              | factor(dB/m)                          | (dBuV/m)       | (dBuV/m)       | (dB)             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| D. | (MHz)                 | (dBuV)                       |                                       |                |                |                  | peak        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| D. | (MHz)<br>2372.370     | 54.72                        | -4.29                                 | 50.43          | 74.00          | -23.57           |             | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 0. | (MHz)                 | , , ,                        |                                       | 50.43<br>52.01 | 74.00<br>74.00 | -23.57<br>-21.99 |             | peak<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 28 of 84




Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 29 of 84



Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 30 of 84

| 1  | 20.0                 | 0 dBu∨/m          |                   |                            |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Limit1: —<br>Limit2: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|----------------------|-------------------|-------------------|----------------------------|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                      |                   |                   |                            |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                      |                   |                   |                            |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                      |                   |                   |                            |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 70                   |                   |                   |                            |                     |                   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                      |                   |                   |                            |                     | 3                 | and the second s | 1           | ч., "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                      |                   |                   |                            |                     | 1 march           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | wind the second se |
|    |                      | man               | -                 |                            | where we wanted the | A Comment         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | "areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                      |                   |                   |                            |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                      |                   |                   |                            |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2  | 0.0                  |                   |                   |                            |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 23                   | 110.0002324       | 1.00 2338.1       | 00 2352.00                 | 2356.00 2           | 380.00 239        | 1.00 2408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .00 2422.00 | 2150.00 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ). | F                    | requency<br>(MHz) | Reading<br>(dBuV) | Correction<br>factor(dB/m) | Result<br>(dBuV/m)  | Limit<br>(dBuV/m) | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                      | 2378.880          | 58.14             | -4.27                      | 53.87               | 74.00             | -20.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | 2390.000 65.85 -4.24 |                   | 61.61             | 74.00                      | -12.39              |                   | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                      | 2418.640          | 105.84            | -4.17                      | 101.67              | 74.00             | 27.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 31 of 84

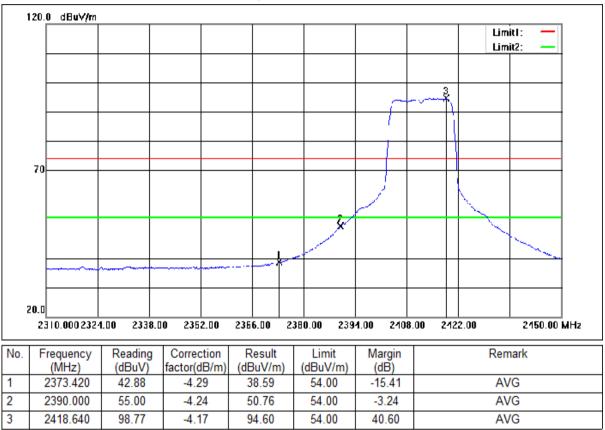
| 1  | 20. <b>0</b> | dBu∀/m          |                            |          |                            |         |                 |                   |     |                |      |        |        |         |        | _   |
|----|--------------|-----------------|----------------------------|----------|----------------------------|---------|-----------------|-------------------|-----|----------------|------|--------|--------|---------|--------|-----|
|    |              |                 |                            |          |                            |         |                 |                   |     |                |      |        |        | Limitl: | -      |     |
|    | ⊢            |                 |                            |          |                            |         |                 |                   |     |                |      |        |        | Limit2: | _      | +   |
|    |              |                 |                            |          |                            |         |                 |                   |     |                |      |        |        |         |        |     |
|    |              |                 |                            |          |                            |         |                 |                   |     |                |      | 3<br>X |        |         |        | 1   |
|    |              |                 |                            |          |                            |         |                 |                   |     | 1              |      |        |        |         |        |     |
|    |              |                 |                            |          |                            |         |                 |                   |     |                |      | 11     |        |         |        |     |
|    | 70           |                 |                            |          |                            |         |                 |                   |     |                |      | ╉      |        | _       |        | +   |
|    |              |                 |                            |          |                            |         |                 |                   |     |                |      |        | 5      |         |        |     |
|    |              |                 |                            |          |                            |         |                 | 1                 | ÿ/  |                |      |        |        |         | ~      |     |
|    | E            |                 |                            |          |                            | <u></u> |                 | ×                 |     |                |      |        |        |         |        | 1   |
| 2  | 20.0         |                 |                            |          |                            |         |                 |                   |     |                |      |        |        |         |        |     |
|    | 231          | 0.0002324       | .00 2330                   | B.00 235 | 2.00                       | 236     | 6.00 23         | 380.00            | 239 | 1.00 240       | 8.00 | 2422   | 2.00   | 1       | 150.00 | MHz |
| ). | Fre<br>(     | equency<br>MHz) | ency Reading<br>Iz) (dBuV) |          | Correction<br>factor(dB/m) |         | esult<br>BuV/m) | Limit<br>(dBuV/m) |     | Margin<br>(dB) |      |        | Remark |         | :      |     |
|    | 23           | 379.440         | 42.56                      | -4.2     | 27                         | 38.29   | 8.29            | 54.00             | )   | -15.71         |      |        |        | AVG     |        |     |
|    | 23           | 390.000         | 50.41                      | -4.2     | 24                         | 4       | 6.17            | 54.00             | )   | -7.83          |      |        |        | AVG     |        |     |
|    | 24           | 18.780          | 96.00                      | -4.1     | 17                         | 9       | 1.83            | 54.00             | )   | 37.83 AVG      |      |        |        |         |        |     |

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 32 of 84

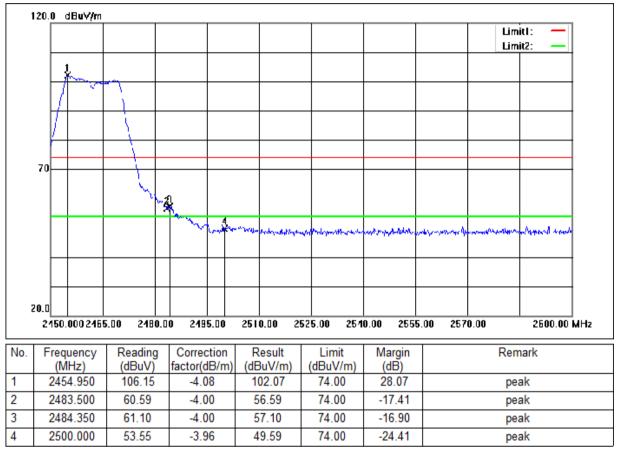

| 1  | 20.0 dBu∀/m       |                                          |                       |                       |                                          |                |            |                        |
|----|-------------------|------------------------------------------|-----------------------|-----------------------|------------------------------------------|----------------|------------|------------------------|
|    |                   |                                          |                       |                       |                                          |                |            | Limit1: —<br>Limit2: — |
|    |                   |                                          |                       |                       |                                          | ,              | hrm.       |                        |
|    |                   |                                          |                       |                       |                                          |                |            |                        |
|    |                   |                                          |                       |                       |                                          |                |            |                        |
|    | 70                |                                          |                       |                       |                                          | <i> </i>       | Ι Ĥ        |                        |
|    | 70                |                                          |                       |                       | 2-1                                      |                |            |                        |
|    |                   |                                          |                       |                       | J. J |                |            | No.                    |
|    | www.www.hou       | an a | manneration           | months and the second |                                          |                |            | Marine                 |
|    |                   |                                          |                       |                       |                                          |                |            |                        |
|    |                   |                                          |                       |                       |                                          |                |            |                        |
| 2  | 0.0               |                                          |                       |                       |                                          |                |            |                        |
|    | 2310.0002324      | 1.00 2338.0                              | 10 2352.00            | 2356.00 2             | 380.00 239                               | 1.00 2108.     | 00 2422.00 | 2150.00 MHz            |
| ). | Frequency         | Reading                                  | Correction            | Result                | Limit                                    | Margin         |            | Remark                 |
| _  | (MHz)<br>2379.160 | (dBuV)<br>58.05                          | factor(dB/m)<br>-4.27 | (dBuV/m)<br>53.78     | (dBuV/m)<br>74.00                        | (dB)<br>-20.22 |            | peak                   |
| +  | 2390.000          | 65.39                                    | -4.24                 | 61.15                 | 74.00                                    | -12.85         |            | peak                   |
|    |                   |                                          | -4.19                 | 103.87                |                                          |                |            | 1                      |

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 33 of 84

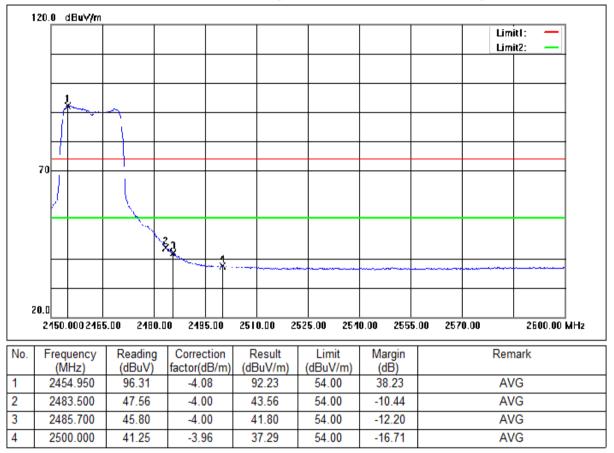



Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 34 of 84

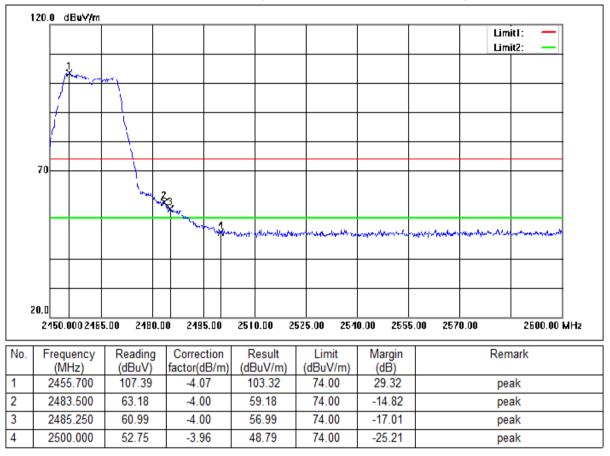



Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 35 of 84

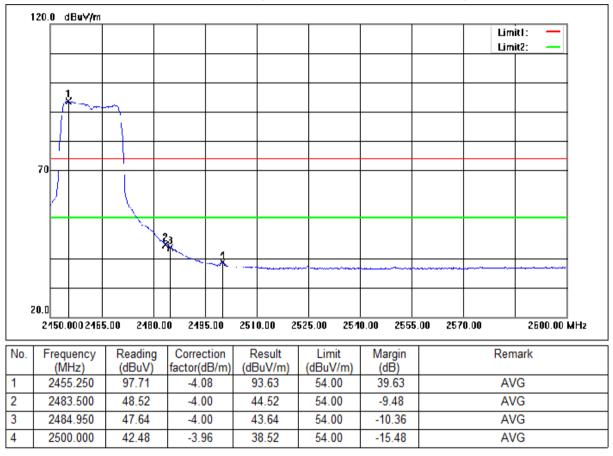



Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 36 of 84




Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 37 of 84



Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 38 of 84

|            | 20.4 | 0 10-12-1         |                                                                                                                 |                            |                    |                   | · · ·          |             |                        |  |
|------------|------|-------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-------------------|----------------|-------------|------------------------|--|
| '          | 20.0 | 0 dBu∀/m          |                                                                                                                 |                            |                    |                   |                |             | Limit1: —<br>Limit2: — |  |
|            |      |                   |                                                                                                                 |                            |                    |                   | /~~            | 3           |                        |  |
|            |      |                   |                                                                                                                 |                            |                    |                   |                |             |                        |  |
|            | 70   |                   |                                                                                                                 |                            |                    |                   | <u>j</u>       |             |                        |  |
|            |      |                   |                                                                                                                 |                            |                    | and the second    | juni           |             | and man man have       |  |
|            |      | wanter            | hard and an and a standard and a standard a s | www.math.puslaman          | monterentered      | . yr              |                |             | ~                      |  |
|            |      |                   |                                                                                                                 |                            |                    |                   |                |             |                        |  |
| 2          | 20.0 |                   |                                                                                                                 |                            |                    |                   |                |             |                        |  |
|            | 23   | 10.0002324        | .00 2338.0                                                                                                      | 10 2352.00                 | 2356.00 2          | 380.00 239        | 1.00 2108      | .00 2422.00 | 2150.00 MHz            |  |
| <b>D</b> . | F    | requency<br>(MHz) | Reading<br>(dBuV)                                                                                               | Correction<br>factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |             | Remark                 |  |
|            |      | 2371.880          | 55.36                                                                                                           | -4.29                      | 51.07              | 74.00             | -22.93         |             | peak                   |  |
|            | 2    | 2390.000          | 64.48                                                                                                           | -4.24                      | 60.24              | 74.00             | -13.76         | peak        |                        |  |
| _          |      | 2419.340          | 105.15                                                                                                          | -4.17                      | 100.98             | 74.00             | 26.98          |             | peak                   |  |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 39 of 84

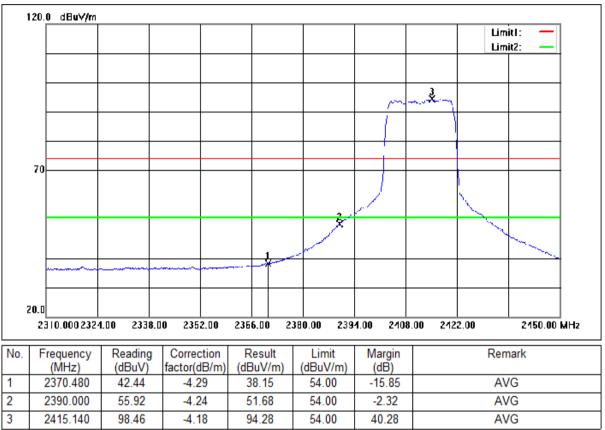
| 1  | 20.0 dBu∀/m        |                   |                            |                    |                   |                |          |      |             |
|----|--------------------|-------------------|----------------------------|--------------------|-------------------|----------------|----------|------|-------------|
|    |                    |                   |                            |                    |                   |                |          | Limi |             |
|    |                    |                   |                            |                    |                   |                |          | Limi | t2: —       |
|    |                    |                   |                            |                    |                   |                |          |      |             |
|    |                    |                   |                            |                    |                   |                |          |      |             |
|    |                    |                   |                            |                    |                   | 1              |          |      |             |
|    |                    |                   |                            |                    |                   |                |          |      |             |
|    | 70                 |                   |                            |                    |                   |                |          |      |             |
|    |                    |                   |                            |                    |                   |                |          |      |             |
|    |                    |                   |                            |                    | 2                 |                |          |      |             |
|    |                    | ~                 |                            |                    |                   |                |          |      |             |
| 2  | 20.0               |                   |                            |                    |                   |                |          |      |             |
|    | 2310.0002324       | 1.00 2338.0       | 0 2352.00                  | 2356.00 2          | 380.00 239        | 1.00 2108      | .00 2423 | 2.00 | 2150.00 MHz |
| 0. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |          | Rem  | ark         |
|    | 2378.880           | 42.69             | -4.27                      | 38.42              | 54.00             | -15.58         |          | AV   |             |
|    | 2390.000           | 51.95             | -4.24                      | 47.71              | 54.00             | -6.29          |          | AV   | G           |
|    | 2417.380           | 95.50             | -4.17                      | 91.33              | 54.00             | 37.33          |          | AV   | G           |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 40 of 84


| 1                 |                            |                 |                           |                                      |                       |                |             |                        |
|-------------------|----------------------------|-----------------|---------------------------|--------------------------------------|-----------------------|----------------|-------------|------------------------|
|                   |                            |                 |                           |                                      |                       |                |             | Limit1: —<br>Limit2: — |
|                   |                            |                 |                           |                                      |                       | /*             |             |                        |
|                   |                            |                 |                           |                                      |                       | i i            |             |                        |
|                   |                            |                 |                           |                                      |                       |                |             |                        |
|                   | 70                         |                 |                           |                                      |                       |                |             |                        |
|                   | ~0                         |                 |                           |                                      |                       | and a          |             | m                      |
|                   |                            | 1.              |                           |                                      | and the second second |                |             | man war                |
|                   | relievensing and an annual | millionterace   | ntera selletta antikation | North Contraction of the Contraction |                       |                |             |                        |
|                   |                            |                 |                           |                                      |                       |                |             |                        |
| -                 | 20.0                       |                 |                           |                                      |                       |                |             |                        |
| 2                 | 2310.0002324               | 1.00 2338.0     | 0 2352.00                 | 2366.00 2                            | 380.00 239            | 1.00 2408.     | .00 2122.00 | 2150.00 MHz            |
| <mark>ا</mark> ٥. | Frequency                  | Reading         | Correction                | Result                               | Limit                 | Margin         |             | Remark                 |
|                   | (MHz)<br>2328.200          | (dBuV)<br>54.74 | factor(dB/m)<br>-4.40     | (dBuV/m)<br>50.34                    | (dBuV/m)<br>74.00     | (dB)<br>-23.66 |             | peak                   |
|                   | 2390.000                   | 67.59           | -4.24                     | 63.35                                | 74.00                 | -10.65         |             | ,<br>peak              |
|                   | 2413.600                   | 107.89          | -4.18                     | 103.71                               | 74.00                 | 29.71          |             | peak                   |

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 41 of 84

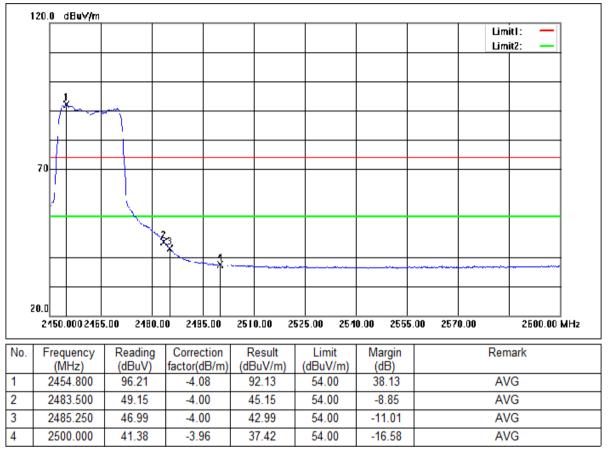


Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 42 of 84

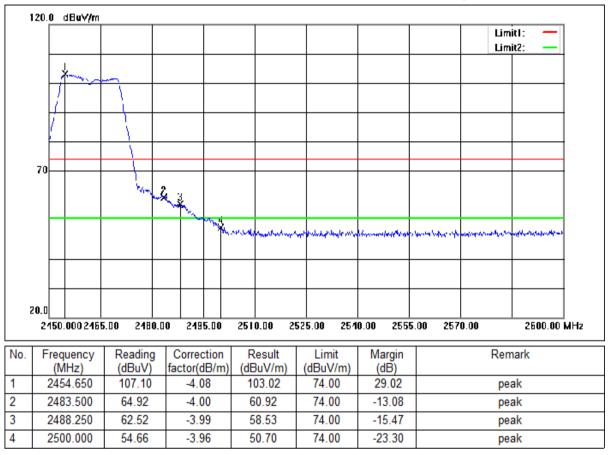

| 1   | 20.0 | dBuV/m           |                   | \$                         |                    |                   |                |             | mit1:       |
|-----|------|------------------|-------------------|----------------------------|--------------------|-------------------|----------------|-------------|-------------|
| 2   | 20.0 |                  |                   |                            |                    |                   |                |             |             |
|     | 24   | 50.000 2469      | 5.00 2480.1       | 00 2495.00                 | 2510.00 2          | 525.00 254        | 0.00 2555.     | .00 2570.00 | 2500.00 MHz |
| No. |      | equency<br>(MHz) | Reading<br>(dBuV) | Correction<br>factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Re          | mark        |
| 1   |      | 454.350          | 105.94            | -4.08                      | 101.86             | 74.00             | 27.86          | p           | eak         |
| 2   | 2    | 483.500          | 61.19             | -4.00                      | 57.19              | 74.00             | -16.81         | p           | eak         |
| 3   | 2    | 485.850          | 59.99             | -4.00                      | 55.99              | 74.00             | -18.01         | р           | eak         |
| 4   | 2    | 500.000          | 53.48             | -3.96                      | 49.52              | 74.00             | -24.48         | p           | eak         |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 43 of 84

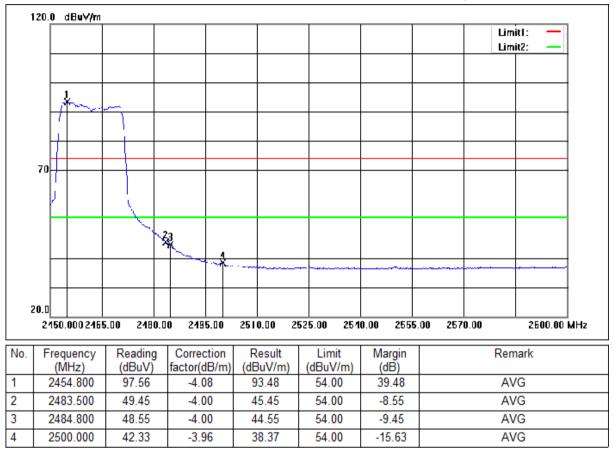



Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 44 of 84




Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 45 of 84



Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 46 of 84

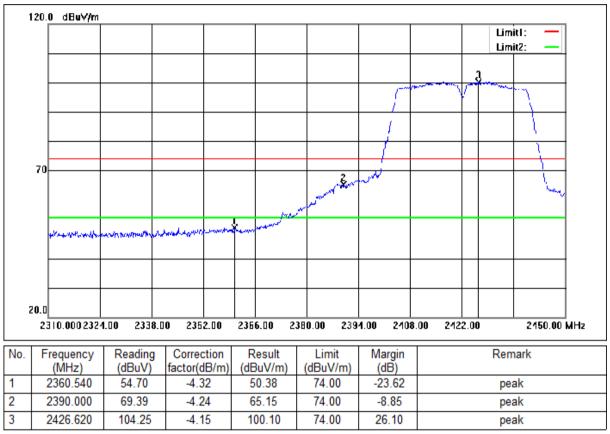
|   |                 | 0 dBu∀/m                        |                                          |                  |                               |                   |                           | -                               |                             |                        |       |           |            |     |
|---|-----------------|---------------------------------|------------------------------------------|------------------|-------------------------------|-------------------|---------------------------|---------------------------------|-----------------------------|------------------------|-------|-----------|------------|-----|
|   |                 |                                 |                                          |                  |                               |                   |                           |                                 |                             |                        |       | Limi      | itl: —     |     |
|   | ļ               |                                 |                                          |                  |                               |                   |                           |                                 |                             |                        |       | Limi      | it2: —     | 1   |
|   |                 |                                 |                                          |                  |                               |                   |                           |                                 |                             |                        |       |           |            |     |
|   | ł               |                                 |                                          |                  |                               |                   |                           |                                 |                             |                        |       | 3         |            | 4   |
|   |                 |                                 |                                          |                  |                               |                   |                           |                                 | C                           | and all and a state of |       | A. Martin | 5          |     |
|   | Ī               |                                 |                                          |                  |                               |                   |                           |                                 |                             |                        |       |           |            | 1   |
|   |                 |                                 |                                          |                  |                               |                   |                           |                                 |                             |                        |       |           | Ì          |     |
|   | 70              |                                 |                                          |                  |                               |                   |                           |                                 |                             |                        |       |           |            | +   |
|   |                 |                                 |                                          |                  |                               |                   |                           | 2.00                            | www                         |                        |       |           | "Mary      |     |
|   |                 |                                 |                                          |                  |                               |                   |                           | - And Marken                    |                             |                        |       |           |            |     |
|   |                 | manananahu                      | na an a | dayet we we have | Konto er                      | wheat             | dy management             | and the second states           |                             |                        |       |           |            |     |
|   |                 |                                 | serveral a su                            | dripets,-subject | <b>E</b> ryster I'            | when              | dy manafastan             | y and the second second         |                             |                        |       |           |            |     |
| 2 |                 |                                 | 46.04.49F.81.04.849                      | dayat waadagad   | <b>E</b> rostor (*            | -steatt           | dy meast and a            |                                 |                             |                        |       |           |            |     |
| 2 | 0.0             |                                 |                                          |                  | 52.00                         | 2356              | al meretalman             | ,<br>                           |                             | 8.00 242               | 22.00 |           | 2150.00    | MHz |
| _ | 0.0<br>23       | 310.0002324                     | 1.00 2338<br>Reading                     | 5.00 239         | 52.00                         | 2356<br>R(        | 5.00 2.<br>esult          | 380.00 233                      | 11.00 210<br>Margin         | 8.00 242               | 22.00 | Rem       |            | MHz |
| _ | 0.0<br>23       | 10.0002324<br>requency<br>(MHz) | I.00 2338<br>Reading<br>(dBuV)           | 238<br>Corre     | 52.00<br>ction<br>dB/m)       | 2356<br>(dB       | 5.00 2.<br>esult<br>uV/m) | 380.00 233<br>Limit<br>(dBuV/m) | 11.00 210<br>Margin<br>(dB) | 8.00 242               | 22.00 |           | nark       | MHz |
| _ | 0.0<br>23       | 310.0002324                     | 1.00 2338<br>Reading                     | 5.00 239         | 52.00<br>ction<br>dB/m)       | 2356<br>(dB       | 5.00 2.<br>esult          | 380.00 233                      | 11.00 210<br>Margin         | 8.00 212               | 2.00  | Rem       | nark       | MHz |
| 2 | 0.0<br>23<br>Fr | 10.0002324<br>requency<br>(MHz) | I.00 2338<br>Reading<br>(dBuV)           | 238<br>Corre     | 52.00<br>ction<br>dB/m)<br>34 | 2356<br>Re<br>(dB | 5.00 2.<br>esult<br>uV/m) | 380.00 233<br>Limit<br>(dBuV/m) | 11.00 210<br>Margin<br>(dB) | 8.00 212               | 22.00 |           | nark<br>ak | MHz |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200400266201 Page: 47 of 84


| 1  | 20.0 dBu∀/m        |                   |                            |                    |                   |                |             |                        |
|----|--------------------|-------------------|----------------------------|--------------------|-------------------|----------------|-------------|------------------------|
|    |                    |                   |                            |                    |                   |                |             | Limit1: —<br>Limit2: — |
|    |                    |                   |                            |                    | _                 |                |             |                        |
|    |                    |                   |                            |                    |                   |                | 3           |                        |
|    |                    |                   |                            |                    |                   |                | ~~~/**      |                        |
|    | 70                 |                   |                            |                    |                   | 1              |             |                        |
|    | 70                 |                   |                            |                    |                   |                |             | 1                      |
|    |                    |                   |                            |                    |                   |                |             |                        |
|    |                    | ~                 |                            |                    |                   |                |             |                        |
| 2  | 0.0                |                   |                            |                    |                   |                |             |                        |
|    | 2310.0002324       | 1.00 2338.0       | 0 2352.00                  | 2356.00 2          | 380.00 239        | 1.00 2108      | .00 2122.00 | 2150.00 MHz            |
| 0. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |             | Remark                 |
|    | 2381.400           | 48.68             | -4.27                      | 44.41              | 54.00             | -9.59          |             | AVG                    |
|    | 2390.000           | 53.54             | -4.24                      | 49.30              | 54.00             | -4.70          |             | AVG                    |
|    | 2426.620           | 92.36             | -4.15                      | 88.21              | 54.00             | 34.21          |             | AVG                    |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200400266201 Page: 48 of 84

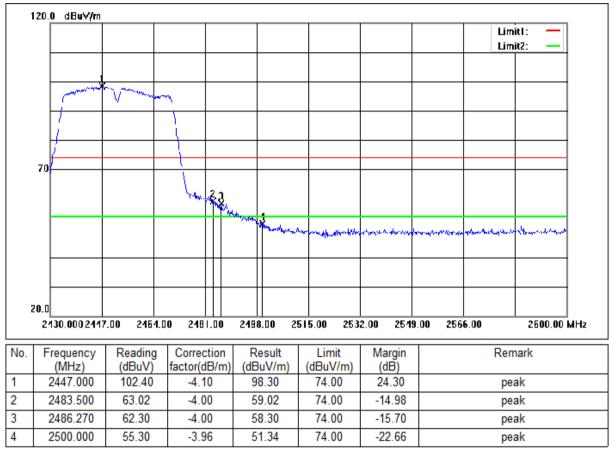


#### Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200400266201 Page: 49 of 84

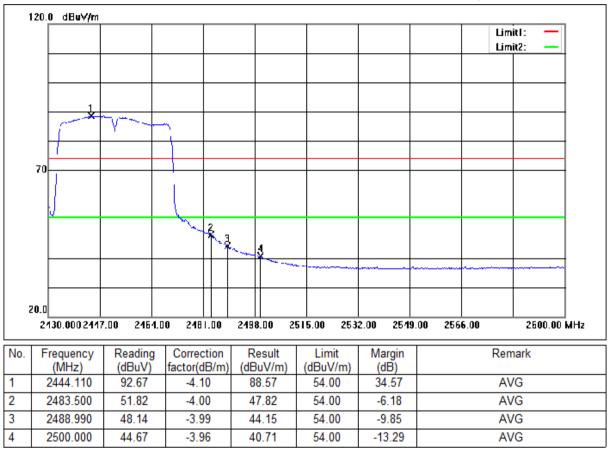

|        | 00 0 JE-12         |                   |                            |                    |                   |                |             |                        |
|--------|--------------------|-------------------|----------------------------|--------------------|-------------------|----------------|-------------|------------------------|
| 1      | 20.0 dBu∀/m        |                   |                            |                    |                   |                |             | Limit1: —<br>Limit2: — |
|        |                    |                   |                            |                    |                   |                |             |                        |
|        |                    |                   |                            |                    |                   |                | 3           |                        |
|        |                    |                   |                            |                    |                   |                |             |                        |
|        |                    |                   |                            |                    |                   |                |             |                        |
|        | 70                 |                   |                            |                    |                   |                |             |                        |
|        |                    |                   |                            |                    | 2                 |                |             |                        |
|        |                    |                   | 1.                         |                    | *-                |                |             |                        |
|        |                    |                   |                            |                    |                   |                |             |                        |
| 2      | 0.0                |                   |                            |                    |                   |                |             |                        |
|        | 2310.0002324       | 1.00 2338.0       | 0 2352.00                  | 2366.00 2          | 380.00 239        | 1.00 2108      | .00 2122.00 | 2450.00 MHz            |
| ).     | Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |             | Remark                 |
|        | 2359.000           | 43.29             | -4.32                      | 38.97              | 54.00             | -15.03         |             | AVG                    |
|        | 2390.000           | 56.57             | -4.24                      | 52.33              | 54.00             | -1.67          |             | AVG                    |
| $\neg$ | 2426.620           | 94.75             | -4.15                      | 90.60              | 54.00             | 36.60          |             | AVG                    |

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200400266201 Page: 50 of 84

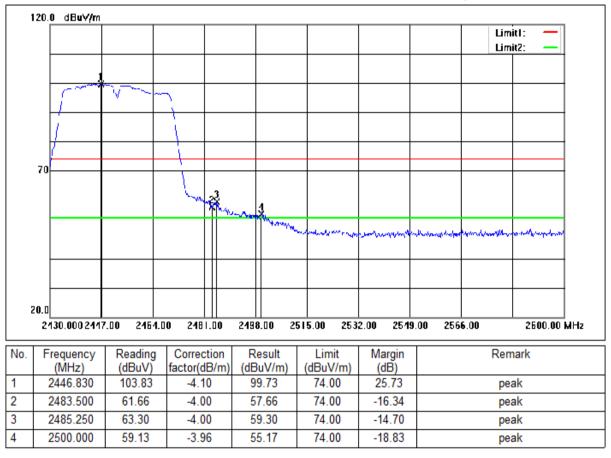



Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High





Report No.: SHEM200400266201 Page: 51 of 84




Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High





Report No.: SHEM200400266201 Page: 52 of 84



Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High





Report No.: SHEM200400266201 Page: 53 of 84

|    |                    |                   |                            |                    |                          |                 |                                                   | imitl: —<br>imit2: —            |
|----|--------------------|-------------------|----------------------------|--------------------|--------------------------|-----------------|---------------------------------------------------|---------------------------------|
|    |                    | 1.                |                            |                    |                          |                 |                                                   |                                 |
|    | T                  | -V#               | 1                          |                    |                          |                 |                                                   |                                 |
|    | 70                 |                   |                            |                    |                          |                 |                                                   |                                 |
|    |                    |                   |                            |                    |                          |                 |                                                   |                                 |
|    | V                  |                   | ~~ & J                     | milin              |                          |                 |                                                   |                                 |
|    |                    |                   |                            |                    | have been and the second | *************** | 100-07-0170-00-00-00-00-00-00-00-00-00-00-00-00-0 | and all which are inspectioned. |
| 2  | 20.0               |                   |                            |                    |                          |                 |                                                   |                                 |
|    | 2130.000 2117      | 7.00 2464.0       | 10 2481.00                 | 2498.00 2          | 515.00 253               | 2.00 2549.      | 00 2566.00                                        | 2500.00 MHz                     |
| ). | Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)        | Margin<br>(dB)  | R                                                 | emark                           |
|    | 2455.075           | 97.92             | -4.08                      | 93.84              | 54.00                    | 39.84           | ,                                                 | AVG                             |
|    | 2483.500           | 52.21             | -4.00                      | 48.21              | 54.00                    | -5.79           |                                                   | AVG                             |
|    | 2486.610           | 51.08             | -3.99                      | 47.09              | 54.00                    | -6.91           |                                                   | AVG                             |
| -  | 2500.000           | 47.04             | -3.96                      | 43.08              | 54.00                    | -10.92          |                                                   | AVG                             |

### Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High



Report No.: SHEM200400266201 Page: 54 of 84

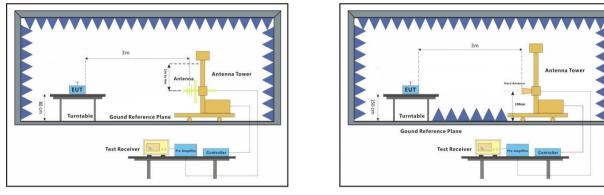
# 7.8 Radiated Spurious Emissions

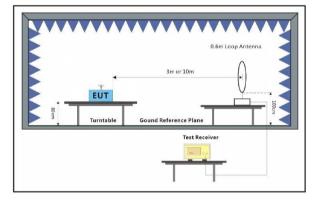
| Test Requirement | 47 CFR Part 15, Subpart C 15.209 & 15.247(d) |
|------------------|----------------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 6.4,6.5,6.6       |
| Limit:           |                                              |

| Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) |
|----------------|----------------------------------|------------------------------|
| 0.009-0.490    | 2400/F(kHz)                      | 300                          |
| 0.490-1.705    | 24000/F(kHz)                     | 30                           |
| 1.705-30.0     | 30                               | 30                           |
| 30-88          | 100                              | 3                            |
| 88-216         | 150                              | 3                            |
| 216-960        | 200                              | 3                            |
| Above 960      | 500                              | 3                            |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.




Report No.: SHEM200400266201 Page: 55 of 84


# 7.8.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

# 7.8.2 Test Setup Diagram







Report No.: SHEM200400266201 Page: 56 of 84

#### 7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

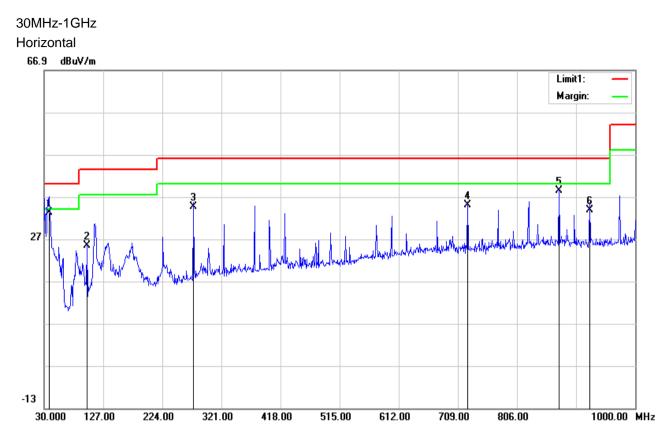
j. Repeat above procedures until all frequencies measured was complete.

#### Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

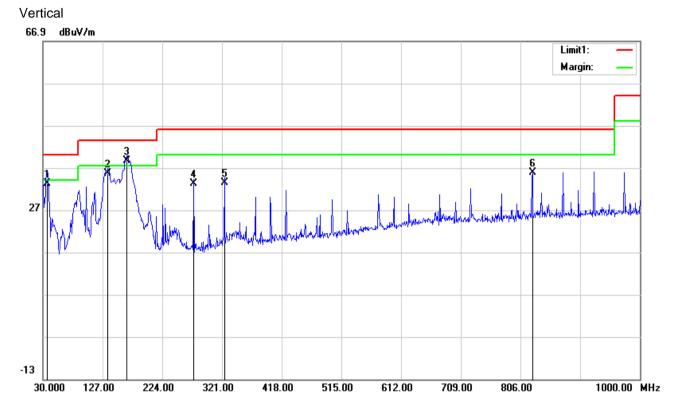

3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

5) This test item was investigated while operating in SISO and MIMO mode, however, it was determined that SISO antenna 1 operation for b/g modulation and MIMO antenna operation for n modulation produced the worst emissions. So the emissions produced from other operation are not recorded in report.



Report No.: SHEM200400266201 Page: 57 of 84




| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Height | Degree | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | (cm)   | (deg.) |        |
| 1   | 37.7600   | 10.91   | 22.30        | 33.21    | 40.00    | -6.79  | 100    | 0      | QP     |
| 2   | 100.8100  | 11.55   | 13.77        | 25.32    | 43.50    | -18.18 | 200    | 301    | QP     |
| 3   | 275.4100  | 16.97   | 17.59        | 34.56    | 46.00    | -11.44 | 100    | 278    | QP     |
| 4   | 724.5200  | 10.76   | 24.25        | 35.01    | 46.00    | -10.99 | 300    | 208    | QP     |
| 5   | 874.8700  | 13.20   | 25.16        | 38.36    | 46.00    | -7.64  | 200    | 327    | QP     |
| 6   | 925.3100  | 8.40    | 25.44        | 33.84    | 46.00    | -12.16 | 200    | 347    | QP     |



# SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200400266201 Page: 58 of 84



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Height | Degree | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | (cm)   | (deg.) |        |
| 1   | 36.7900   | 10.44   | 22.70        | 33.14    | 40.00    | -6.86  | 100    | 0      | QP     |
| 2   | 135.7300  | 19.68   | 15.98        | 35.66    | 43.50    | -7.84  | 100    | 360    | QP     |
| 3   | 166.7700  | 22.74   | 15.91        | 38.65    | 43.50    | -4.85  | 200    | 54     | QP     |
| 4   | 275.4100  | 15.62   | 17.59        | 33.21    | 46.00    | -12.79 | 100    | 0      | QP     |
| 5   | 324.8800  | 14.87   | 18.58        | 33.45    | 46.00    | -12.55 | 400    | 0      | QP     |
| 6   | 825.4000  | 11.04   | 24.83        | 35.87    | 46.00    | -10.13 | 300    | 354    | QP     |



Report No.: SHEM200400266201 Page: 59 of 84

# Above 1GHz

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:Low

100.0 dBu∀/m Limit1: Limit2: 50 × 0.0 1000.0002700.00 1100.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00MHz No. Frequency Reading Correction Result Limit Margin Remark (dB) (MHz) (dBuV) factor(dB/m) (dBuV/m) (dBuV/m) -27.21 1 4824.000 57.00 -10.21 46.79 74.00 peak 2 7236.000 55.52 -7.05 48.47 74.00 -25.53 peak 3 9648.000 52.67 -4.77 47.90 74.00 -26.10 peak





Report No.: SHEM200400266201 Page: 60 of 84

| 1   | 00.0 | 0 d⊟uV/m    |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|-----|------|-------------|-----------|------|----------|------|-----|---------|-----|----------|-----------|------------|-------|-------|---------|------|
|     |      |             |           |      |          |      |     |         |     |          |           |            |       | Limi  |         | ]    |
|     |      |             |           |      |          |      |     |         | -   |          |           |            |       | Limit | t2: —   | 4    |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         | 1    |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         | 1    |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       | -     |         | 1    |
|     | 50   |             |           |      |          |      |     |         |     | <u>3</u> |           |            |       |       |         |      |
|     |      |             |           | ł    | (        |      | Â   |         | '   | ľ        |           |            |       |       |         | 1    |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     |      |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     |      |             |           | +    |          |      | +   |         | -   |          |           |            |       |       |         | +    |
|     | 0.0  |             |           |      |          |      |     |         |     |          |           |            |       |       |         |      |
|     | I    | 100.0002700 | 0.00 1100 | D. 0 | 0 610    | 0.00 | 780 | 0.00 9! | 50( | 0.00  12 | 00.00  29 | 00.00   16 | 00.00 |       | 18000.0 | 0MHz |
| lo. | F    | requency    | Reading   | 1    | Correc   |      |     | esult   |     | Limit    | Margin    |            |       | Rem   | ark     |      |
|     |      | (MHz)       | (dBuV)    |      | factor(d |      |     | BuV/m)  | (   | dBuV/m)  | (dB)      |            |       |       |         |      |
|     |      | 4824.000    | 56.59     |      | -10.3    |      |     | 6.38    |     | 74.00    | -27.62    |            |       | pea   |         |      |
| 2   |      | 7236.000    | 53.96     |      | -7.0     | 15   |     | 6.91    |     | 74.00    | -27.09    |            |       | pea   | ik      |      |
| }   | 9    | 9648.000    | 53.88     |      | -4.7     | 7    | 4   | 9.11    |     | 74.00    | -24.89    |            |       | pea   | ik      |      |

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 61 of 84

| 1   | 00.0 | dB <b>u∀/m</b> |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        | _         |
|-----|------|----------------|---------|---------------|----------|------|-----|--------|-----|----------|--------|-------|------|------|-----|-------|-----|----------|--------|-----------|
|     | Γ    |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       | Lim |          | -      | ]         |
|     | ┝    |                |         |               |          |      |     |        |     |          |        |       |      |      | _   |       | Lim | it2:     | _      | -         |
|     |      |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        |           |
|     | F    |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        | 1         |
|     |      |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        | 1         |
|     |      |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        |           |
|     | ⊦    |                |         |               |          |      |     |        |     | $\vdash$ |        |       |      |      | _   |       |     |          |        | +         |
|     | 50-  |                |         |               |          |      |     |        |     | 1        | 1      |       |      |      | _   |       |     |          |        |           |
|     | 50-  |                |         | $\rightarrow$ | (        |      | Ŷ   |        |     | ľ        |        |       |      |      |     |       |     |          |        | 1         |
|     |      |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        |           |
|     |      |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        |           |
|     |      |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        |           |
|     |      |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        |           |
|     | Γ    |                |         |               |          |      |     |        |     | Π        |        |       |      |      |     |       |     |          |        | 1         |
|     | ┝    |                |         |               |          |      | +-  |        |     | μ        |        |       |      |      | _   |       |     | <u> </u> |        | -         |
|     | 0.0  |                |         |               |          |      |     |        |     |          |        |       |      |      |     |       |     |          |        |           |
|     |      | 0.0002700      | .00 440 | D. 0          | 0 610    | 0.00 | 780 | 0.00 9 | 950 | 0.1      | 00  12 | 00.00 | 1290 | 0.00 | 146 | 00.00 |     |          | 8000.0 | J<br>OMHZ |
| Vo. | Fre  | equency        | Reading | 1             | Correc   | tion | R   | lesult | Τ   |          | Limit  | Mar   | rgin |      |     |       | Ren | nark     |        |           |
|     |      | (MHz)          | (dBuV)  |               | factor(d | B/m) |     | BuV/m) | (   | d        | BuV/m) | (dl   | B)   |      |     |       |     |          |        |           |
| 1   |      | 874.000        | 56.33   |               | -10.0    |      |     | 6.32   |     |          | 74.00  |       | .68  |      |     |       | pe  | ak       |        |           |
| 2   | 7    | 311.000        | 52.89   |               | -6.9     | 3    | 4   | 5.96   |     |          | 74.00  | -28   | .04  |      |     |       | pe  | ak       |        |           |
| 3   | 9    | 748.000        | 52.92   |               | -4.3     | 0    | 4   | 8.62   |     | Ĩ        | 74.00  | -25   | .38  |      |     |       | pe  | ak       |        |           |

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:middle





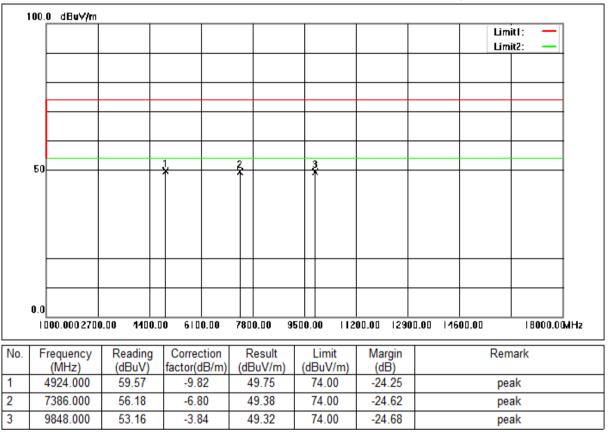
Report No.: SHEM200400266201 Page: 62 of 84

| 1  | 00.0 | dBu∀/m      |          |         |      |     |        |                |          |           |           |       |          |     |
|----|------|-------------|----------|---------|------|-----|--------|----------------|----------|-----------|-----------|-------|----------|-----|
|    | Г    |             |          |         |      |     |        | Τ              |          |           |           |       | nitl: —  |     |
|    | Ļ    |             |          |         |      |     |        | $ \rightarrow$ |          |           |           | Lin   | nit2: —  |     |
|    |      |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    | ŀ    |             |          |         |      |     |        | +              |          |           |           |       |          |     |
|    |      |             |          |         |      |     |        | $\dashv$       |          |           |           |       |          |     |
|    | ŀ    |             |          |         |      |     |        | +              |          |           |           |       |          |     |
|    |      |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    | ſ    |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    | 50   |             |          | 1       |      | 2   |        |                | 3        |           |           |       |          |     |
|    |      |             |          |         |      | ۲.  |        |                |          |           |           |       |          |     |
|    |      |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    |      |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    |      |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    |      |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    | Γ    |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    | L    |             |          |         |      |     |        | $\square$      |          |           |           |       |          |     |
|    |      |             |          |         |      |     |        |                |          |           |           |       |          |     |
|    | 0.0  | 00.000.0700 |          |         |      | 700 | 0.00 0 |                |          |           |           | 00.00 | 10000.00 |     |
|    | 101  | 00.000 2700 | .00 1100 | .00 610 | 0.00 | 780 | 0.00 9 | 500            | 0.00  12 | 00.00 129 | 00.00 146 | 00.00 | 18000.00 | MHZ |
| 0. | Fr   | equency     | Reading  | Corre   |      |     | lesult |                | Limit    | Margin    |           | Rer   | mark     |     |
|    |      | (MHz)       | (dBuV)   | factor( |      |     | BuV/m) | (              | dBuV/m)  | (dB)      |           |       |          |     |
|    |      | 874.000     | 59.56    | -10.    |      |     | 9.55   |                | 74.00    | -24.45    |           | pe    | ak       |     |
|    | 7    | 311.000     | 53.76    | -6.9    | 93   | 4   | 6.83   |                | 74.00    | -27.17    |           | pe    | ak       |     |
|    | 9    | 748.000     | 54.27    | -4.3    | 30   | 4   | 9.97   |                | 74.00    | -24.03    |           | pe    | ak       |     |

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:middle






Report No.: SHEM200400266201 Page: 63 of 84

| 1   | l00.0 d⊟u∀/m      |                 |                       |                   |                   |                           |               |             |
|-----|-------------------|-----------------|-----------------------|-------------------|-------------------|---------------------------|---------------|-------------|
|     |                   |                 |                       |                   |                   |                           |               | imitl: —    |
|     |                   |                 |                       |                   |                   |                           | L             | imit2: —    |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               | +           |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     | F.0               |                 |                       | 2                 |                   |                           |               |             |
|     | 50                |                 | *                     | Ŷ                 | 3<br>X            |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     |                   |                 |                       |                   |                   |                           |               |             |
|     | 0.0               |                 |                       |                   |                   |                           |               |             |
|     | 1000.0002700      | ).00 4400.0     | 0 6100.00             | 7800.00 9         | 500.00  12        | <u>   </u><br>:00.00  290 | 0.00 14600.00 | 18000.00MHz |
|     |                   |                 |                       |                   |                   |                           |               |             |
| Vo. | Frequency         | Reading         | Correction            | Result            | Limit             | Margin                    | R             | emark       |
| 1   | (MHz)<br>4924.000 | (dBuV)<br>56.13 | factor(dB/m)<br>-9.82 | (dBuV/m)<br>46.31 | (dBuV/m)<br>74.00 | (dB)<br>-27.69            |               | peak        |
| 2   | 7386.000          | 55.14           | -6.80                 | 48.34             | 74.00             | -25.66                    |               | peak        |
| 3   | 9848.000          | 50.00           | -3.84                 | 46.16             | 74.00             | -27.84                    |               | peak        |
| ,   | 5040.000          | 50.00           | -5.04                 | 40.10             | 14.00             | -21.04                    |               | Jean        |

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:High



Report No.: SHEM200400266201 Page: 64 of 84



Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 65 of 84

| 1   | 00.0 | 0 dBu∀/m          |                 |      |                   |      |          |                |            |             |     |       |            |      |      |      |              |     |        |     |
|-----|------|-------------------|-----------------|------|-------------------|------|----------|----------------|------------|-------------|-----|-------|------------|------|------|------|--------------|-----|--------|-----|
|     |      |                   |                 |      |                   |      |          |                |            |             |     |       |            |      |      |      | Limi<br>Limi |     |        |     |
|     | Ī    |                   |                 |      |                   |      |          |                |            |             |     |       |            |      |      |      |              |     |        |     |
|     | ļ    |                   |                 |      |                   |      |          |                |            |             |     |       |            |      |      |      |              |     |        |     |
|     |      |                   |                 |      |                   |      |          |                |            |             |     |       |            |      | -    |      |              |     |        |     |
|     |      |                   |                 |      |                   |      |          |                |            | -           |     |       |            |      | -    |      |              |     |        |     |
|     | 50   |                   |                 | ļ    |                   |      | <u>2</u> |                |            | <u>J</u>    |     |       |            |      |      |      |              |     |        |     |
|     |      |                   |                 | Î    |                   |      |          |                |            |             |     |       |            |      |      |      |              |     |        |     |
|     |      |                   |                 |      |                   |      |          |                |            |             |     |       |            |      |      |      |              |     |        |     |
|     |      |                   |                 |      |                   |      |          |                |            |             |     |       |            |      |      |      |              |     |        |     |
|     | ł    |                   |                 | +    |                   |      |          |                |            | $\parallel$ |     |       |            |      | -    |      |              |     |        |     |
|     | ł    |                   |                 | _    |                   |      | -        |                |            | _           |     |       |            |      | _    |      |              |     |        |     |
|     | 0.0  |                   |                 |      |                   |      |          |                |            |             |     |       |            |      |      |      |              |     |        |     |
|     | 10   | 100.0002700       | 0.00 1100       | ).0( | ) 610             | 0.00 | 780      | 0.00           | 950        | 0.00        | 112 | 00.00 | 1290       | 0.00 | 1460 | 0.00 |              | 180 | 000.00 | MHz |
| No. | Fr   | requency          | Reading         |      | Correc            |      |          | lesult         | Τ          |             | mit | Ma    | rgin       |      |      |      | Rem          | ark |        |     |
| 1   | 4    | (MHz)<br>4824.000 | (dBuV)<br>58.43 |      | factor(d<br>-10.2 |      |          | BuV/m)<br>8.22 | +          |             | .00 |       | B)<br>5.78 |      |      |      | pea          | ak  |        |     |
| 2   | 7    | 7236.000          | 59.00           |      | -7.0              | 5    | 5        | 1.95           | $\uparrow$ | 74          | .00 | -22   | 2.05       |      |      |      | pea          |     |        |     |
| 3   | 9    | 9648.000          | 53.88           |      | -4.7              | 7    | 4        | 9.11           |            | 74          | .00 | -24   | 1.89       |      |      |      | pea          | ak  |        |     |

# Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 66 of 84

| 1      | 00.0 | 0 dBu∀/m   |            |              |      |     |           |                   |        |           |              |        |       |          | _        |
|--------|------|------------|------------|--------------|------|-----|-----------|-------------------|--------|-----------|--------------|--------|-------|----------|----------|
|        |      |            |            |              |      |     |           | Τ                 |        |           |              |        | Limit |          |          |
|        |      |            |            |              |      |     |           |                   |        |           |              |        | Limit | 2: —     | 4        |
|        |      |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        | -    |            |            |              |      |     |           | +                 |        |           |              |        |       |          | ł        |
|        |      |            |            |              |      |     |           | +                 |        |           |              |        |       |          | -        |
|        |      |            |            |              |      |     |           | +                 |        |           |              |        |       |          | t        |
|        |      |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        |      |            |            |              |      |     |           | 4                 |        |           |              |        |       |          |          |
|        | 50   |            |            |              |      | 2   |           | Ř                 |        |           |              |        |       |          | -        |
|        |      |            | :          | κ I          |      | ו   |           |                   |        |           |              |        |       |          |          |
|        |      |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        |      |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        |      |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        |      |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        |      |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        |      |            |            |              |      |     |           | $\parallel$       |        |           |              |        |       |          | 4        |
|        | 0.0  |            |            |              |      |     |           |                   |        |           |              |        |       |          |          |
|        |      | 00.0002700 | .00 1100.0 | <br> 0 6 00. | 0.0  | 780 | о по — он | <u>  </u><br>500. | 00 112 | 00.00  29 | <br>00.00  1 | 600.00 |       | 18000.00 | <br>1445 |
|        |      |            |            | io 0100.     |      | 100 | 0.00 3.   | 500.              | 00 112 | 00.00 123 | 00.00 11     | 000.00 |       | 10000.00 | M112     |
| 0.     | F    | requency   | Reading    | Correcti     |      | R   | esult     |                   | Limit  | Margin    |              |        | Rema  | ark      |          |
|        |      | (MHz)      | (dBuV)     | factor(dE    | 3/m) |     | BuV/m)    |                   | BuV/m) | (dB)      |              |        |       |          |          |
|        | 4    | 4824.000   | 55.33      | -10.21       | 1    | 4   | 5.12      |                   | 74.00  | -28.88    |              |        | pea   | k        |          |
|        | 1    | 7236.000   | 55.64      | -7.05        |      | 4   | 8.59      |                   | 74.00  | -25.41    |              |        | pea   | k        |          |
| $\neg$ | 9    | 9648.000   | 56.76      | -4.77        | '    | 5   | 1.99      |                   | 74.00  | -22.01    |              |        | pea   | k        |          |

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 67 of 84

| 1   | l00.0 dBu∀/m |             |              |           |            |             |               |                    |
|-----|--------------|-------------|--------------|-----------|------------|-------------|---------------|--------------------|
|     |              |             |              |           |            |             |               | mitl: —<br>mit2: — |
|     |              |             |              |           |            |             |               |                    |
|     |              |             |              |           |            |             |               | +                  |
|     |              |             |              |           |            |             |               |                    |
|     |              |             |              |           |            |             |               |                    |
|     |              |             |              |           | <u> </u>   |             |               |                    |
|     | 50           |             | ı<br>X       | \$        | *          |             |               |                    |
|     |              |             |              |           |            |             |               |                    |
|     |              |             |              |           |            |             |               |                    |
|     |              |             |              |           |            |             |               |                    |
|     |              |             |              |           |            |             |               |                    |
|     |              |             |              |           |            |             |               |                    |
|     | 0.0          |             |              |           |            |             |               |                    |
|     | 1000.0002700 | ).00 1100.0 | 0 6100.00    | 7800.00 9 | 500.00  12 | 00.00 (290) | 0.00  1600.00 | 18000.00MHz        |
| No. | Frequency    | Reading     | Correction   | Result    | Limit      | Margin      | Re            | mark               |
|     | (MHz)        | (dBuV)      | factor(dB/m) | (dBuV/m)  | (dBuV/m)   | (dB)        |               |                    |
| 1   | 4874.000     | 58.45       | -10.01       | 48.44     | 74.00      | -25.56      |               | eak                |
| 2   | 7311.000     | 53.85       | -6.93        | 46.92     | 74.00      | -27.08      |               | eak                |
| 3   | 9748.000     | 55.01       | -4.30        | 50.71     | 74.00      | -23.29      | p             | eak                |

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:middle





Report No.: SHEM200400266201 Page: 68 of 84

| 1   | 00.       | 0 dBu∀/m          |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|-----|-----------|-------------------|-------------------|----------------------|----------|-----|------------------|--------|------------------|------------|------------|----------|------------|--------------------|----------|-----|
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          | 1 I I      | Limitl:<br>Limit2: |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  | _      |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        | 3                |            |            |          |            |                    |          |     |
|     | 50        |                   |                   | Ŷ                    |          | Å   |                  |        | Î                |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     |           |                   |                   |                      |          |     |                  |        |                  |            |            |          |            |                    |          |     |
|     | 0.0<br>10 | <br>100.0002700   | .00 1100          | .00 610              | <br>0.00 | 780 | 0.00 *           | 35 D ( | <br>D.00         | 200.00     | 1290       | 0.00 146 | <br>500.00 |                    | 18000.00 | MHz |
|     | -         |                   | D. I              |                      | 1        |     |                  | _      | 12-2             |            |            | 1        |            |                    |          |     |
| No. | F         | requency<br>(MHz) | Reading<br>(dBuV) | Corrector(corrector) |          |     | lesult<br>BuV/m) | 6      | Limit<br>dBuV/m) | Mar<br>(dl | rgin<br>B) |          | F          | Remar              | к        |     |
| 1   | 4         | 4874.000          | 58.13             | -10.                 |          |     | 8.12             | T      | 74.00            |            | .88        |          |            | peak               |          |     |
| 2   | 1         | 7311.000          | 53.71             | -6.9                 | 93       | 4   | 6.78             |        | 74.00            | -27        | .22        |          |            | peak               |          |     |
| 3   | 9         | 9748.000          | 55.38             | -4.3                 | 30       | 5   | 1.08             |        | 74.00            | -22        | .92        |          |            | peak               |          |     |

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:middle





Report No.: SHEM200400266201 Page: 69 of 84

| 1   | 00. | 0 dBu∀/m          |                   |                  |        |     |                 |              |                 |                |                  |            |          |          |
|-----|-----|-------------------|-------------------|------------------|--------|-----|-----------------|--------------|-----------------|----------------|------------------|------------|----------|----------|
|     |     |                   |                   |                  |        |     |                 |              |                 |                |                  | Lim<br>Lim |          |          |
|     |     |                   |                   |                  |        |     |                 | +            |                 |                |                  |            |          |          |
|     |     |                   |                   |                  |        |     |                 | +            |                 |                |                  |            |          |          |
|     |     |                   |                   |                  |        |     |                 | +            |                 |                |                  |            |          |          |
|     |     |                   |                   |                  |        |     |                 |              |                 |                |                  |            |          |          |
|     |     |                   |                   | 4                |        |     |                 |              |                 |                |                  |            |          |          |
|     | 50  |                   |                   | ×                |        | Ŕ   |                 | +            | 3<br>¥          |                |                  |            |          |          |
|     |     |                   |                   |                  |        | ſ   |                 |              |                 |                |                  |            |          |          |
|     |     |                   |                   |                  |        |     |                 |              |                 |                |                  |            |          |          |
|     |     |                   |                   |                  |        |     |                 |              |                 |                |                  |            |          |          |
|     |     |                   |                   |                  |        |     |                 | $\downarrow$ |                 |                |                  |            |          |          |
|     |     |                   |                   |                  |        |     |                 |              |                 |                |                  |            |          |          |
|     | Ì   |                   |                   |                  |        |     |                 | +            |                 |                |                  |            |          |          |
|     | 0.0 | 00.0002700        | ).00 1100.1       | 0 610            | 0 11 0 | 780 | <br>0.00 9      | 500.         | 00 112          | <br>:00.00  29 | <br> 00.00   148 | <br>600.00 | 18000.00 | <br>14H3 |
|     |     | 100.0002110       |                   | 10 010           | 0.00   | 100 | 0.00 3          | 500.         |                 | .00.00 123     | 00.00 146        |            | 1000.00  | M112     |
| No. | F   | requency          | Reading<br>(dBuV) | Correc           |        |     | lesult          |              | Limit           | Margin         |                  | Ren        | nark     |          |
| 1   | 4   | (MHz)<br>4924.000 | (dBuV)<br>60.94   | factor(d<br>-9.8 |        |     | BuV/m)<br>51.12 |              | BuV/m)<br>74.00 | (dB)<br>-22.88 |                  | pe         | ak       |          |
| 2   |     | 7386.000          | 54.19             | -6.8             |        |     | 7.39            |              | 74.00           | -26.61         |                  |            | ak       |          |
| 3   | 9   | 9848.000          | 53.03             | -3.8             | 4      | 4   | 9.19            |              | 74.00           | -24.81         |                  | pe         | ak       |          |

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 70 of 84

| 1   | 00.0 d⊟u∀/m        |                   |                            |                    |                   |                |               |                    |
|-----|--------------------|-------------------|----------------------------|--------------------|-------------------|----------------|---------------|--------------------|
|     |                    |                   |                            |                    |                   |                |               | mitl: —<br>mit2: — |
|     |                    |                   |                            |                    |                   |                |               |                    |
|     |                    |                   |                            |                    |                   |                |               |                    |
|     |                    |                   |                            |                    |                   |                |               | +                  |
|     |                    |                   |                            |                    | _                 |                |               | +                  |
|     | 50                 |                   | 1                          | ŝ                  |                   |                |               |                    |
|     |                    |                   | Ť                          |                    |                   |                |               |                    |
|     |                    |                   |                            |                    |                   |                |               |                    |
|     |                    |                   |                            |                    |                   |                |               |                    |
|     |                    |                   |                            |                    |                   |                |               |                    |
|     |                    |                   |                            |                    |                   |                |               | +                  |
|     | 0.0                |                   |                            |                    |                   |                |               |                    |
|     | 1000.0002700       | ).00 1100.0       | 0 6100.00                  | 7800.00 9          | 500.00   2        | 00.00 1290     | 0.00  1600.00 | 18000.00MHz        |
| lo. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Re            | emark              |
|     | 4924.000           | 55.65             | -9.82                      | 45.83              | 74.00             | -28.17         | p             | eak                |
|     | 7386.000           | 57.80             | -6.80                      | 51.00              | 74.00             | -23.00         |               | eak                |
|     | 9848.000           | 54.20             | -3.84                      | 50.36              | 74.00             | -23.64         | p             | eak                |

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 71 of 84

| 1   | 00.0 | 0 dBu∀/m    |            |          |      |        |         |              |            |           |           |       |          |     |
|-----|------|-------------|------------|----------|------|--------|---------|--------------|------------|-----------|-----------|-------|----------|-----|
|     |      |             |            |          |      |        |         |              |            |           |           |       | nitl: —  |     |
|     | -    |             |            |          |      |        |         | +            |            |           |           | Lin   | nit2: —  |     |
|     |      |             |            |          |      |        |         |              |            |           |           |       |          |     |
|     | ł    |             |            |          |      |        |         | +            |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         | ╉            |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         | Τ            |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         | $\downarrow$ |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         | _            | 4          |           |           |       |          |     |
|     | 50   |             |            | ×        |      | 2<br>X |         | ┝            |            |           |           |       |          |     |
|     |      |             |            |          |      | ¥.     |         |              |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         |              |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         |              |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         |              |            |           |           |       |          |     |
|     |      |             |            |          |      | +      |         | +            |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         |              |            |           |           |       |          |     |
|     |      |             |            |          |      |        |         | +            |            |           |           |       |          |     |
|     | 0.0  |             |            |          |      |        |         |              |            |           |           |       |          |     |
|     | 10   | 100.0002700 | .00 1100.0 | 10 6100  | 0.00 | 780    | 0.00 9! | 500          | 0.00   120 | 00.00 129 | 00.00 146 | 00.00 | 18000.00 | MHz |
| lo. | F    | requency    | Reading    | Correc   |      |        | esult   |              | Limit      | Margin    |           | Rer   | mark     |     |
|     |      | (MHz)       | (dBuV)     | factor(d |      |        | BuV/m)  | (0           | dBuV/m)    | (dB)      |           |       |          |     |
|     |      | 4824.000    | 58.10      | -10.2    |      |        | 7.89    |              | 74.00      | -26.11    |           |       | eak      |     |
|     |      | 7236.000    | 52.26      | -7.0     | 5    | 4      | 5.21    |              | 74.00      | -28.79    |           | pe    | eak      |     |
|     | 9    | 9648.000    | 54.78      | -4.7     | 7    | 5      | 0.01    |              | 74.00      | -23.99    |           | pe    | eak      |     |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 72 of 84

| 1   | 00. | 0 dBu∀/m             |            |           |     |        |         |     |           |            |           |       |                    |     |
|-----|-----|----------------------|------------|-----------|-----|--------|---------|-----|-----------|------------|-----------|-------|--------------------|-----|
|     |     |                      |            |           |     |        |         | Τ   |           |            |           |       | nitl: —<br>nit2: — |     |
|     |     |                      |            |           |     |        |         | 1   |           |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         | +   |           |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         | 1   |           |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         |     |           |            |           |       |                    |     |
|     |     |                      |            |           |     | 2<br>X |         | 1   |           |            |           |       |                    |     |
|     | 50  |                      |            | ř –       |     | *      |         | _   | ×         |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         |     |           |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         |     |           |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         |     |           |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         | +   |           |            |           |       |                    |     |
|     |     |                      |            |           |     |        |         |     |           |            |           |       |                    |     |
|     | 0.0 |                      |            |           |     |        |         |     |           |            |           |       |                    |     |
|     |     | 100.000 <b>27</b> 00 | .00 1100.0 | 10 6100   | .00 | 780    | 0.00 9! | 500 | 0.00  120 | 00.00 1290 | 00.00 146 | 00.00 | 18000.00           | MHz |
| No. | F   | requency             | Reading    | Correct   |     |        | esult   |     | Limit     | Margin     |           | Rei   | mark               |     |
|     |     | (MHz)                | (dBuV)     | factor(dl |     |        | BuV/m)  | (0  | dBuV/m)   | (dB)       |           |       |                    |     |
| 1   |     | 4824.000             | 60.32      | -10.2     |     |        | 0.11    |     | 74.00     | -23.89     |           | -     | eak                |     |
| 2   |     | 7236.000             | 59.73      | -7.05     |     |        | 2.68    |     | 74.00     | -21.32     |           |       | eak                |     |
| 3   |     | 9648.000             | 56.21      | -4.77     | 1   | 5      | 1.44    |     | 74.00     | -22.56     |           | pe    | eak                |     |

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200400266201 Page: 73 of 84

| 1   | 100.0 dBu∀/m      |             |              |           |            |            |               |             |   |
|-----|-------------------|-------------|--------------|-----------|------------|------------|---------------|-------------|---|
|     | (MHz)<br>4874.000 |             |              |           |            |            |               | Limitl: —   |   |
|     |                   |             |              |           |            |            |               | Limit2: —   |   |
|     |                   |             |              |           |            |            |               |             |   |
|     |                   |             |              |           |            |            |               |             |   |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             |   |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     | 50                |             | 1.<br>*      | \$        | 3          |            |               |             | ĺ |
|     |                   | ,           |              | Î         |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     |                   |             |              |           |            |            |               |             | ĺ |
|     | 1000.0002700      | 0.00 4400.0 | 0 6100.00    | 7800.00 9 | 500.00   2 | 00.00  290 | 0.00  4600.00 | 18000.00MHz |   |
| No. | Frequency         | Reading     | Correction   | Result    | Limit      | Margin     | F             | Remark      |   |
|     | (MHz)             | (dBuV)      | factor(dB/m) | (dBuV/m)  | (dBuV/m)   | (dB)       |               |             |   |
| 1   |                   | 55.74       | -10.01       | 45.73     | 74.00      | -28.27     |               | peak        |   |
| 2   | 7311.000          | 53.90       | -6.93        | 46.97     | 74.00      | -27.03     |               | peak        |   |
| 3   | 9748.000          | 53.80       | -4.30        | 49.50     | 74.00      | -24.50     |               | peak        |   |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:middle





Report No.: SHEM200400266201 Page: 74 of 84

| 1   | 00. | 0 dBu∀/m    |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|-----|-----|-------------|----------|--------------|----------|------|-----|--------|-----|-------------|--------|-------|------|----------|-----|-------|-----|------|--------|-----|
|     |     |             |          |              |          |      |     |        |     | Γ           |        |       |      |          |     |       | Lim |      | -      | ]   |
|     |     |             |          |              |          |      |     |        |     | $\vdash$    |        |       |      |          |     |       | Lim | it2: | _      | -   |
|     |     |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     |             |          |              |          |      |     |        |     | F           |        |       |      |          |     |       |     |      |        | 1   |
|     |     |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        | 1   |
|     |     |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     |             |          |              |          |      |     |        |     | $\vdash$    |        |       |      |          |     |       |     |      |        | ł   |
|     | 50  |             |          |              |          |      | 9   |        |     | 2           | ,      |       |      |          |     |       |     |      |        |     |
|     | 50  |             |          | ¥            |          |      | ¥   |        |     | Π           | ,      |       |      |          |     |       |     |      |        | 1   |
|     |     |             |          | T            |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     |             |          | +            |          |      | _   |        |     | $\parallel$ |        |       |      |          |     |       |     |      |        | -   |
|     | 0.0 |             |          |              |          |      |     |        |     |             |        |       |      |          |     |       |     |      |        |     |
|     |     | 300.0002700 | .00 1100 | .00          | 610      | 0.00 | 780 | 0.00   | 950 | 0.          | 00  12 | 00.00 | 1290 | 0.00     | 146 | 00.00 |     |      | 8000.0 | MHz |
| No. | F   | requency    | Reading  | Τ            | Correc   |      |     | Result | Τ   |             | Limit  | Ма    | rgin |          |     |       | Ren | nark |        |     |
|     |     | (MHz)       | (dBuV)   | 1            | factor(d |      |     | BuV/m) |     |             | BuV/m) | (d    | B)   | <b> </b> |     |       |     |      |        |     |
| 1   |     | 4874.000    | 54.98    | $\downarrow$ | -10.0    |      |     | 4.97   |     |             | 74.00  |       | 9.03 | <b> </b> |     |       | ре  |      |        |     |
| 2   |     | 7311.000    | 54.29    |              | -6.9     |      |     | 7.36   |     |             | 74.00  |       | 5.64 |          |     |       | ре  |      |        |     |
| 3   | 9   | 9748.000    | 54.07    |              | -4.3     | 0    | 4   | 9.77   |     |             | 74.00  | -24   | 1.23 |          |     |       | pe  | ak   |        |     |

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:middle





Report No.: SHEM200400266201 Page: 75 of 84

| 1   | 00.                                           | 0 dBu∀/m          |                 |       |                  |      |     |                |      |     |                |               |      |          |       |              |       |       |    |
|-----|-----------------------------------------------|-------------------|-----------------|-------|------------------|------|-----|----------------|------|-----|----------------|---------------|------|----------|-------|--------------|-------|-------|----|
|     | 50<br>50<br>0.0<br>1000.<br>Freq<br>(M<br>492 |                   |                 |       |                  |      |     |                |      |     |                |               |      |          |       | Limi<br>Limi |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               | ╈    |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                | +    |     |                |               | +    |          |       |              |       | -     |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               | +    |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               |      |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               | _    |          |       |              |       | _     |    |
|     | 50                                            |                   |                 | 2     | ř                |      | Ŷ   |                |      | ¥   |                |               | +    |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               |      |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               |      |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               |      |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               | ╈    |          |       |              |       |       |    |
|     |                                               |                   |                 |       |                  |      | +   |                | +    | +   |                |               | +    |          |       |              |       | -     |    |
|     |                                               |                   |                 |       |                  |      |     |                |      |     |                |               |      |          |       |              | 1.000 |       |    |
|     | 11                                            | 100.0002700       | .00 1100        | J. UI | 0 610            | 0.00 | 780 | 0.00 9         | 9500 | J.U | 10 112         | 00.00 li      | 2900 | 1.00 146 | 00.00 |              | 1800  | 0.00M | Hz |
| No. | F                                             | requency          | Reading         |       | Correc           |      |     | lesult         | ,    |     | imit           | Margi         | n    |          |       | Rem          | nark  |       |    |
| 1   |                                               | (MHz)<br>4924.000 | (dBuV)<br>57.19 |       | factor(d<br>-9.8 |      |     | BuV/m)<br>7.37 | ((   |     | 3uV/m)<br>4.00 | (dB)<br>-26.6 | 3    |          |       | pea          | ak    |       |    |
| 2   |                                               | 7386.000          | 54.99           |       | -6.8             |      |     | 8.19           | +    |     | 4.00           | -25.8         |      |          |       | pea          |       |       |    |
| 3   |                                               | 9848.000          | 50.35           |       | -3.8             | 4    | 4   | 6.51           |      | 7   | 4.00           | -27.4         | 9    |          |       | pea          |       |       |    |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 76 of 84

| 100.0 dBuV/m |                                                                              |             |          |         |       |          |         |     |         |           |           |        |          |     |
|--------------|------------------------------------------------------------------------------|-------------|----------|---------|-------|----------|---------|-----|---------|-----------|-----------|--------|----------|-----|
|              | 50<br>50<br>0.0<br>1000.000270<br>Frequency<br>(MHz)<br>4924.000<br>7386.000 |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         | +   |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         | +   |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         | +   |         |           |           |        |          |     |
|              | 50                                                                           |             |          | 1       |       | <u> </u> |         |     | 3       |           |           |        |          |     |
|              |                                                                              |             |          | Ť       |       | ħ        |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              |                                                                              |             |          |         |       | +        |         | +   |         |           |           |        |          |     |
|              | 0.0                                                                          |             |          |         |       |          |         |     |         |           |           |        |          |     |
|              | IÖ                                                                           | 100.0002700 | .00 1100 | .00 610 | 10.00 | 780      | 0.00 9! | 500 | .00  12 | 00.00 129 | 00.00 146 | 600.00 | 18000.00 | MHz |
| No.          | F                                                                            | requency    | Reading  | Corre   |       |          | lesult  |     | Limit   | Margin    |           | Ren    | nark     |     |
|              |                                                                              | (MHz)       | (dBuV)   | factor( |       |          | BuV/m)  |     | BuV/m)  | (dB)      |           |        |          |     |
| 1            |                                                                              |             | 56.37    | -9.     |       |          | 6.55    |     | 74.00   | -27.45    |           | -      | ak       |     |
| 2            |                                                                              |             | 52.89    | -6.     |       |          | 6.09    |     | 74.00   | -27.91    |           | -      | ak       |     |
| 3            | 9                                                                            | 9848.000    | 53.89    | -3.     | 84    | 5        | 0.05    |     | 74.00   | -23.95    |           | pe     | ak       |     |

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200400266201 Page: 77 of 84

| 1   | 00.0 dBu∀/m                                             |             |           |        |         |           |            |           |       |          |     |
|-----|---------------------------------------------------------|-------------|-----------|--------|---------|-----------|------------|-----------|-------|----------|-----|
|     |                                                         |             |           |        |         |           |            |           | Limi  |          |     |
|     | 50<br>50<br>0.0<br>1000.000 2700.<br>Frequency<br>(MHz) |             |           |        |         |           |            |           | Limi  | it2: —   |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     | 50                                                      |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             | k         | \$     |         | ×         |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     |                                                         |             |           |        |         |           |            |           |       |          |     |
|     | 0.0                                                     |             |           |        |         |           |            |           |       |          |     |
|     | 1000.0002700                                            | ).00 4400.0 | 0 6100.0  | 00 780 | 0.00 95 | 00.00  12 | 00.00 1290 | 0.00 1460 | 00.00 | 18000.00 | MHz |
| No. | Frequency                                               | Reading     | Correctio |        | Result  | Limit     | Margin     |           | Rem   | nark     |     |
|     | (MHz)                                                   | (dBuV)      | factor(dB |        | BuV/m)  | (dBuV/m)  | (dB)       |           |       |          |     |
| 1   | 4844.000                                                | 55.00       | -10.13    |        | 4.87    | 74.00     | -29.13     |           | pea   |          |     |
| 2   | 7266.000                                                | 52.01       | -7.00     |        | 15.01   | 74.00     | -28.99     |           | pea   | ak       |     |
| 3   | 9688.000                                                | 51.08       | -4.58     | 4      | 46.50   | 74.00     | -27.50     |           | pea   | ak       |     |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200400266201 Page: 78 of 84

| 1   | 00.0 | 0 dBu∀/m    |          |          |      |     |        |        |       |       |      |          |       |          |     |
|-----|------|-------------|----------|----------|------|-----|--------|--------|-------|-------|------|----------|-------|----------|-----|
|     |      |             |          |          |      |     |        |        |       |       |      |          | Lin   | nitl: —  | ]   |
|     |      |             |          |          |      |     |        |        |       |       |      |          | Lin   | nit2: —  | 4   |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     | ł    |             |          |          |      |     |        | _      |       |       | _    |          |       |          | +   |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          | -   |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          | 1   |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     | 50   |             |          | <u>+</u> |      | 8   |        |        |       |       |      |          |       |          | +   |
|     |      |             |          | T        |      | Ť   |        | Ş      |       |       |      |          |       |          |     |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          | 1   |
|     |      |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     | ł    |             |          | -        |      | +   |        | _      |       |       | _    |          |       |          | +   |
|     | 0.0  |             |          |          |      |     |        |        |       |       |      |          |       |          |     |
|     |      | 100.0002700 | .00 1100 | .00 610  | 0.00 | 780 | 0.00 9 | 500.00 | )   2 | 00.00 | 2900 | 1.00 146 | 00.00 | 18000.00 | MHz |
| lo. | F    | requency    | Reading  | Corre    |      |     | lesult |        | mit   | Marg  | in   |          | Rer   | mark     |     |
|     |      | (MHz)       | (dBuV)   | factor(  |      |     | BuV/m) |        | uV/m) | (dB)  |      |          |       |          |     |
|     |      | 4844.000    | 58.82    | -10.     |      |     | 8.69   |        | 1.00  | -25.3 |      |          |       | eak      |     |
|     | 1    | 7266.000    | 54.25    | -7.      | 00   | 4   | 7.25   | 74     | 1.00  | -26.7 | '5   |          | pe    | eak      |     |
|     | 9    | 9688.000    | 49.13    | -4.      | 58   | 4   | 4.55   | 74     | 1.00  | -29.4 | 5    |          | pe    | eak      |     |

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200400266201 Page: 79 of 84

| 1   | 100.0 dBu∀/m      |                 |                        |                   |                   |                |               |                    |
|-----|-------------------|-----------------|------------------------|-------------------|-------------------|----------------|---------------|--------------------|
|     |                   |                 |                        |                   |                   |                |               | mitl: —<br>mit2: — |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     | 50                |                 | Ļ –                    | 2                 | 3                 |                |               |                    |
|     |                   | '               |                        |                   |                   |                |               |                    |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     |                   |                 |                        |                   |                   |                |               |                    |
|     | 0.0               |                 |                        |                   |                   |                |               |                    |
|     | 1000.0002700      | ).00 1100.0     | 0 6100.00              | 7800.00 9         | 500.00  12        | 00.00 1290     | 0.00  1600.00 | 18000.00MHz        |
| No. | Frequency         | Reading         | Correction             | Result            | Limit             | Margin         | Re            | mark               |
| 1   | (MHz)<br>4874.000 | (dBuV)<br>58.68 | factor(dB/m)<br>-10.01 | (dBuV/m)<br>48.67 | (dBuV/m)<br>74.00 | (dB)<br>-25.33 | p             | eak                |
| 2   | 7311.000          | 53.87           | -6.93                  | 46.94             | 74.00             | -27.06         |               | eak                |
| 3   | 9748.000          | 54.31           | -4.30                  | 50.01             | 74.00             | -23.99         | p             | eak                |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:middle





Report No.: SHEM200400266201 Page: 80 of 84

|     | 50  |                   |                   |                   |      |     |                  |      |                 |                |          |        | Limitl:<br>Limit2: | _                |     |
|-----|-----|-------------------|-------------------|-------------------|------|-----|------------------|------|-----------------|----------------|----------|--------|--------------------|------------------|-----|
|     |     |                   |                   |                   |      |     |                  |      |                 |                |          |        |                    |                  |     |
|     |     |                   |                   |                   |      |     |                  |      |                 |                |          |        |                    |                  |     |
|     | 50  |                   |                   | 1                 |      | 2   |                  |      | 3               |                |          |        |                    |                  |     |
|     |     |                   |                   | Î                 |      | \$  |                  |      |                 |                |          |        |                    |                  |     |
|     |     |                   |                   |                   |      |     |                  |      |                 |                |          |        |                    |                  |     |
|     |     |                   |                   |                   |      | +   |                  | +    |                 |                |          |        |                    |                  |     |
|     | • • |                   |                   |                   |      | +   |                  | +    |                 |                |          |        |                    |                  |     |
|     |     | 100.000 2700      | .00 1100          | .00 610           | 0.00 | 780 | 0.00 9           | 500. | .00  12         | 00.00 129      | 00.00  / | 600.00 |                    | 8 <b>0</b> 00.00 | MHz |
| lo. | F   | requency<br>(MHz) | Reading<br>(dBuV) | Corre<br>factor(c |      |     | lesult<br>BuV/m) |      | Limit<br>BuV/m) | Margin<br>(dB) |          |        | Remark             | (                |     |
|     | 4   | 4874.000          | 58.18             | -10.              |      |     | 8.17             |      | 74.00           | -25.83         | +        |        | peak               |                  |     |
|     | 1   | 7311.000          | 54.39             | -6.9              | 3    | 4   | 7.46             |      | 74.00           | -26.54         |          |        | peak               |                  |     |
|     | 9   | 9748.000          | 54.48             | -4.3              | 30   | 5   | 0.18             |      | 74.00           | -23.82         |          |        | peak               |                  |     |

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:middle





Report No.: SHEM200400266201 Page: 81 of 84

| 1  | 00.0         | dBu∀/m      |          |          |      |     |        |            |            |           |        |          |     |
|----|--------------|-------------|----------|----------|------|-----|--------|------------|------------|-----------|--------|----------|-----|
|    | 100.0 dBuV/m |             |          |          |      |     |        |            |            | Lim       | itl: — |          |     |
|    | Ļ            |             |          |          |      |     |        |            |            |           | Lim    | it2: —   |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    | ŀ            |             |          |          |      |     |        |            |            |           |        |          |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    | ŀ            |             |          |          |      |     |        |            |            |           |        |          |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    | 50           |             |          |          |      | *   |        | 3          |            |           |        |          |     |
|    |              |             |          | ×        |      |     |        | ×          |            |           |        |          |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    | L            |             |          |          |      |     |        |            |            |           |        |          |     |
|    |              |             |          |          |      |     |        |            |            |           |        |          |     |
|    | ŀ            |             |          |          |      | +   |        |            |            |           |        |          |     |
|    | 0.0          |             |          |          |      |     |        |            |            |           |        |          |     |
|    | - L          | 00.000 2700 | .00 1100 | .00 610  | 0.00 | 780 | 0.00 9 | 500.00   2 | 200.00 129 | 00.00 146 | 00.00  | 18000.00 | MHz |
| D. | Fr           | equency     | Reading  | Correc   |      |     | lesult | Limit      | Margin     |           | Ren    | nark     |     |
|    |              | (MHz)       | (dBuV)   | factor(c |      |     | BuV/m) | (dBuV/m)   | (dB)       |           |        |          |     |
|    |              | 904.000     | 56.25    | -9.8     |      |     | 6.36   | 74.00      | -27.64     |           |        | ak       |     |
|    | - 7          | 356.000     | 56.32    | -6.8     | 15   | 4   | 9.47   | 74.00      | -24.53     |           | pe     | ak       |     |
|    | 9            | 808.000     | 50.20    | -4.0     | 2    | 4   | 6.18   | 74.00      | -27.82     |           | pe     | ak       |     |

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High





Report No.: SHEM200400266201 Page: 82 of 84

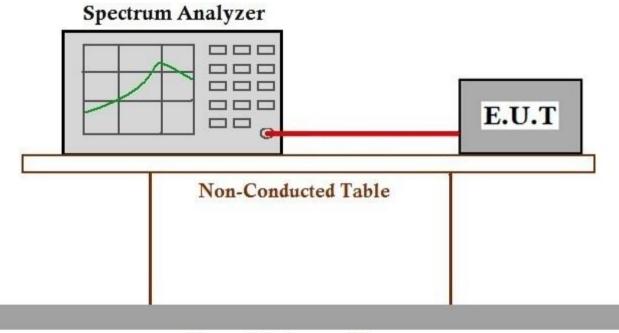
| 1  | 00.0 | ) dBu∀/m    |           |          |      |     |        |            |            |          |       |          |     |
|----|------|-------------|-----------|----------|------|-----|--------|------------|------------|----------|-------|----------|-----|
|    | [    |             |           |          |      |     |        |            |            |          | Lim   |          |     |
|    | ŀ    |             |           |          |      |     |        |            |            |          | Lim   | it2: —   |     |
|    |      |             |           |          |      |     |        |            |            |          |       |          |     |
|    | ŀ    |             |           |          |      |     |        |            |            |          |       |          |     |
|    | - t  |             |           |          |      |     |        |            |            |          |       |          |     |
|    |      |             |           |          |      |     |        |            |            |          |       |          |     |
|    |      |             |           |          |      |     |        |            |            |          |       |          |     |
|    | -    |             |           | 1        |      | g   |        | 3          |            |          |       |          |     |
|    | 50-  |             |           | ¥ l      |      | Ť   |        | 1          |            |          |       |          |     |
|    |      |             |           |          |      |     |        |            |            |          |       |          |     |
|    |      |             |           |          |      |     |        |            |            |          |       |          |     |
|    |      |             |           |          |      |     |        |            |            |          |       |          |     |
|    |      |             |           |          |      |     |        |            |            |          |       |          |     |
|    | Ī    |             |           |          |      |     |        |            |            |          |       |          |     |
|    | ŀ    |             |           |          |      | _   |        |            |            |          |       |          |     |
|    | 0.0  |             |           |          |      |     |        |            |            |          |       |          |     |
|    | . L  | 00.000 2700 | .00 1100. | 00 6100  | 0.00 | 780 | 0.00 9 | 500.00 II2 | 00.00 1290 | 0.00 146 | 00.00 | 18000.00 | MHz |
| 0. |      | requency    | Reading   | Correct  |      |     | lesult | Limit      | Margin     |          | Ren   | nark     |     |
|    |      | (MHz)       | (dBuV)    | factor(d |      |     | BuV/m) | (dBuV/m)   | (dB)       |          |       |          |     |
|    |      | 904.000     | 58.16     | -9.8     |      |     | 8.27   | 74.00      | -25.73     |          |       | ak       |     |
|    |      | 356.000     | 57.14     | -6.8     |      |     | 0.29   | 74.00      | -23.71     |          |       | ak       |     |
|    | 9    | 808.000     | 54.82     | -4.0     | 2    | 5   | 0.80   | 74.00      | -23.20     |          | pe    | ak       |     |

#### Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High



Report No.: SHEM200400266201 Page: 83 of 84

### 7.9 99% Bandwidth


Test Requirement Test Method: RSS-Gen Section 6.7 ANSI C63.10 Section 6.9.3

## 7.9.1 E.U.T. Operation

**Operating Environment:** 

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode\_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

### 7.9.2 Test Setup Diagram



## **Ground Reference Plane**

### 7.9.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200400266201



Report No.: SHEM200400266201 Page: 84 of 84

# 8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

# 9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -