

celecom

Number of pages:	20	Date of Report:	2021-May-03
Testing company:	CETECOM GmbH Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150	Applicant:	Bosch Healthcare Solutions GmbH
Test Object / Tested Device(s):	Vivatmo pro (Handheld), System for quantitative measurement o	of fractional nitric oxid	e (FeNO) in human breath
Listing FCC ID:	2AVQ9VMPHH1	ISED:	25928-VMPHH1
Testing has been carried out in accordance with:	Title 47 CFR, Chapter I FCC Regulations, Subchapter A §15.247 (DTS) ISED-Regulations RSS-Gen, Issue 5 RSS-210 Issue 10 Deviations, modifications or clarifications section under "Test method and limit".	(if any) to above mentio	ned documents are written in each
Tested Technology:	BLE		
Test Results:	The EUT complies with the requirem The test results relate only to devices spe The current version of Test Report CETEC CETECOM_TR19_1_0137401T01a date	cified in this document COM_TR19_1_0137401	T01a-C01 replaces the test report
Signatures:			
	DiplIng. Ninovic Perez Authorization of test report		B.Sc. M. Ahmed Test manager

Test Report 19-1-0137401T01a-C01

Table of Contents

1	(General information	4
	1.1	Disclaimer and Notes	4
	1.1.	Summary of Test Results	5
	1.2.	Summary of Test Methods	5
2	1	Administrative Data	6
	2.1	Identification of the Testing Laboratory	. 6
	2.2	General limits for environmental conditions	. 6
	2.3	Test Laboratories sub-contracted	6
	2.4	Organizational Items	. 6
	2.5	Applicant's details	. 6
	2.6	Manufacturer's details	. 6
	2.7	EUT: Type, S/N etc. and short descriptions used in this test report	7
	2.8	Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	7
	2.9	Connected cables	7
	2.10	EUT set-ups	7
	2.11	EUT operation modes	7
3	E	Equipment under test (EUT)	. 8
	3.1	General Data of Main EUT as Declared by Applicant	. 8
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	. 9
	3.3	Modifications on Test sample	. 9
	3.4	Test Software	. 9
4	ſ	Measurements	10
	4.1	Radiated field strength emissions below 30MHz	10
	4.2	Radiated field strength emissions 30MHz – 1GHz	12
	4.3	Radiated field strength emissions above 1GHz	14
	4.4	Radiated Band-Edge emissions	16
	4.5	Results from external laboratory	18
	4.6	Opinions and interpretations	18
5	E	Equipment list	18
6	1	Measurement Uncertainty valid for conducted/radiated measurements	19
7	١	/ersions of test reports (change history)	20

	Table of Annex					
Annex No.	Contents	Reference Description	Total Pages			
Annex 1	Test result diagrams	CETECOM_TR19_1_0137401T01a_A1	14			
Annex 2	External photographs of EUT	CETECOM_TR19_1_0137401T01a_A2	5			
Annex 3	Test set-up photographs	CETECOM_TR19_1_0137401T01a_A3	5			
	The listed attachments are separate documents.					
	For internal photographs of EUT, see applicant's documentation.					

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM".

CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM. All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.1. Summary of Test Results

The EUT integrates a BTLE transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference	Reference	Daga	Demark	Result	
Test case	Clause FCC 🛛	Clause ISED 🛛	Page	Remark	Result	
Duty-Cycle	§15.35(c)	RSS-Gen Issue 5, §8.2			NP	
Minimum Emission Bandwidth 6 dB	§15.247 5.2(a)			1	NP	
Occupied Channel Bandwidth 99%	2.1049(h)	RSS-Gen Issue 5, § 6.7		1	NP	
Peak output power (Sweep)	§15.247(b)(3)			1	NP	
Transmitter Peak output power radiated	§15.247(b)(4)(c)(i)			1	NP	
Emissions in non-restricted frequency bands	§15.247(d)			1	NP	
Radiated Band-Edge emissions	§15.205(b) §15.247(d)	RSS-Gen: Issue 5 §8.9, §8.10	16		PASSED	
Power spectral density	§15.247(e)			1	NP	
Radiated field strength emissions below 30MHz	§15.205(a) §15.209(a)	RSS-Gen: Issue 5 §8.9 Table 6 RSS-210 Issue 10 B.10(a)	10		PASSED	
Radiated field strength emissions 30MHz – 1GHz	§15.209 §15.247(d)	RSS-Gen: Issue 5 §8.9 Table 5 RSS-210 Issue 10 B.10(a)	12		PASSED	
Radiated field strength emissions above 1GHz	§15.209(a) §15.247(d)	RSS-Gen: Issue 5: §8.9 Table 5+7 RSS-210 Issue 10 B.10(a)(b)	14		PASSED	
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5: § 8.8, Table 4		1	NP	
PASSED The EUT complies with	the essential requirem	nents in the standard.				

FAILED NP

The EUT does not comply with the essential requirements in the standard. The test was not performed by the CETECOM Laboratory.

Remark: 1) please refer to modules Test Report 10300014H-A-R1 issued on June 4, 2014 (FCCID VPYLBZY IC: 772C-LBZY)

1.2. Summary of Test Methods

Test method		
ANSI 63.10:2013, §11.6(b)		
ANSI C63.10:2013, §6.9.2, §11.8		
ANSI C63.10:2013, §6.9.3		
ANSI C63.10:2013, §11.9		
ANSI C63.10:2013, §11.10		
ANSI C63.10:2013, §11.11, §6.10.5		
ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13		
Result calculated with measured conducted RF-power value and stated/measured antenna		
gain for band of interest		
ANSI C63.10-2013 §6.3, §6.4		
ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, § 6.5		
ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, § 6.6		
ANSI C63.4-2014 §7, ANSI C63.10-2013 § 6.2		

And reference also to Test methods in KDB558074

2 Administrative Data

2.1 Identification of the Testing Laboratory

	• •
Company name:	CETECOM GmbH
Address:	Im Teelbruch 116
	45219 Essen - Kettwig
	Germany
Responsible for testing laboratory:	DiplIng. Ninovic Perez
Accreditation scope:	DAkkS Webpage
Test location:	CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C	
Relative. humidity:	45±15% rH	

2.3 Test Laboratories sub-contracted

Company name:	-	
---------------	---	--

2.4 Organizational Items

Order No.:	1
Responsible for test report	B.Sc. M. Ahmed
Project leader:	M.Sc. P. Marzotko
Receipt of EUT:	2019-Nov-06
Date(s) of test:	2019-Nov-21 – 2019-Nov-29
Date of report:	2021-Mai-03
Version of template:	13.02

2.5 Applicant's details

Applicant's name:	Bosch Healthcare Solutions GmbH	
Address:	Stuttgarter Straße 130 71332 Waiblingen	
	Germany	
Contact Person:	Mr. Markus Thürsam	

2.6 Manufacturer's details

Manufacturer's name:	see Applicant's details
Address:	see Applicant's details

2.7 EUT: Type, S/N etc. and short descriptions used in this test report

Short descrip tion*)	PMT Sample No.	EUT	Туре	S/N	HW status	SW status
EUT A	19-1-01374S10	Vivatmo pro (Handheld)	System for quantitative measurement of fractional nitric oxide (FeNO) in human breath	BLE-DUT20	F09G10007 8	Prod_Test.hex Version 3.0.10.1

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short descrip tion *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE1	USB - UART cable	Cable	-	-	-
AE2	DELL Laptop	Latitude E6420	VVF52 A01	Intel Core i5	Windows 7

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report.

2.9 Connected cables

Cable			
short	Coble time	Connectore	Longth
descrip	Cable type	Connectors	Length
tion *)			
CAB 1			

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report.

2.10 EUT set-ups

et-up no.*)	Combination of EUT and AE	Description
1	EUT A + AE1 + AE2	Used for radiated measurements. AE1 and AE2 only used for configuration and were removed during measurement.

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.11 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
op. 1	Continuous TX-Mode	The EUT was put to continuous transmissions mode with help of command line tool "prodtest".

*) EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Product name	Vivatmo pro (Handheld)			
Kind of product	System for quantitative measurement of fractional nitric oxide (FeNO) in human breath			
Firmware	□ for normal use		Special ver	sion for test execution
	□ AC Mains	-		
	□ DC Mains	-		
	⊠ Battery Lithium Ion battery 3.7 V		V	
Operational conditions	T _{nom} =20 °C	T _{min} =1;	5 °C	T _{max} =27 °C
EUT sample type	Pre-Production			
Weight	180 g			
Size	237 x 54 x 44.5 mm			
Interfaces/Ports	-			
For further details refer Applicants Declaration & following technical documents				
For further details regarding radio parameters, please refer to Bluetooth Core Specification				

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	2.4 GHz ISM Band (2400 MH	lz - 2483.5 MHz)			
Number of Channels (USA/Canada -bands)	40 (37 Hopping + 3 Advertis	40 (37 Hopping + 3 Advertising)			
Nominal Channel Bandwidth	1 MHz				
Turne of Medulation Data Data	GFSK 1 Mbit / s		GFSK 2	2 Mbit / s	
Type of Modulation Data Rate	GFSK 500 kbit / s		GFSK 1	25 kbit / s	
	□ a/n/ac mode				
o u i i u	□ b/g/n mode				
Other wireless options	□ Bluetooth EDR (not tested within this report)				
	□ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)				
Max. Conducted Output Power					
(Measured RMS Power)		+0.10 dBm *1)			
EIRP Power (Calculated EIRP)	0.10 dBm – 0.6 dBi = -0.5 dB	0.10 dBm – 0.6 dBi = -0.5 dBm see remark 1			
Antenna Type(s)	Monopole Antenna see rema	ark 2			
Antenna Gain(s)	-0.6 dBi *2)				
FCC label attached	No				
Test firmware / software and storage location	See chapter 3.4				
For further details refer Applicants Declar	ation & following technical do	cuments			
Description of Reference Document (sup	blied by applicant)	Version			Total Pages
UM-B-008 DA14580_581_583		Version 1.7			19
Remark: *1) Based on results of test report "T	est Report_Murata_FCC ID VP	/LBZY_1030001	4H-A-R1" dat	ted June 4,	2014

*2) please see FCC Report 10300014H-A-R1

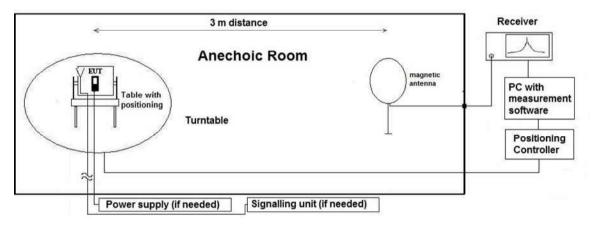
3.3 Modifications on Test sample

Additions/deviations or exclusions

3.4 Test Software

SW name	Version	Date	Storage
DA1458x Prodtest	SDK3.0.10.1	-	Saved on AE2

4 Measurements


4.1 Radiated field strength emissions below 30MHz

4.1.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0° to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$

M = L_T - E_C

 $\begin{array}{l} AF = Antenna \mbox{ factor} \\ C_L = Cable \mbox{ loss} \\ D_F = Distance \mbox{ correction factor (if used)} \\ E_C = Electrical \mbox{ field} - \mbox{ corrected value} \\ E_R = Receiver \mbox{ reading} \\ G_A = Gain \mbox{ of pre-amplifier (if used)} \\ L_T = Limit \\ M = Margin \end{array}$

All units are dB-units, positive margin means value is below limit.

Distance correction:

Reference for applied correction (extrapolating) factors due to reduced measurement distance: ANSI C63.10:2013, §6.4.4.2 - Equations (2) + (3) + (4)

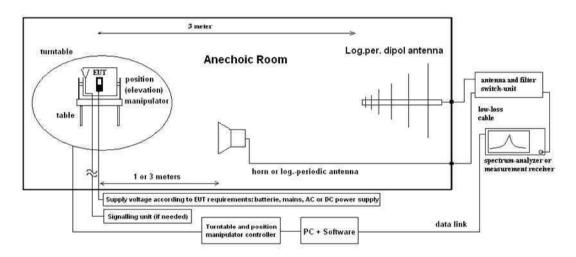
4.1.2 Limit

Radiated emissions limits, (3 meters)					
Frequency Range	Limit [µV/m]	Limit [dBµV/m] *	Distance	Detector	RBW [kHz]
[MHz]			[m]		
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2
0.09 – 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2
0.11 – 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2
0.15 – 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9
0.49 – 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9
1.705 - 30	30	29.5	30	Quasi peak	9

*Remark: In Canada same limits apply, just unit reference is different

4.1.3 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 0.009 – 30MHz	Result
2.01	01	GFSK-1Mbps	20.83	PASSED
2.02	01	GFSK-1Mbps	20.74	PASSED



4.2 Radiated field strength emissions 30MHz – 1GHz

4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A} \quad (1)$

 $M = L_T - E_C$ (2)

 $\begin{array}{l} \mathsf{AF} = \mathsf{Antenna} \ \mathsf{factor} \\ \mathsf{C}_\mathsf{L} = \mathsf{Cable} \ \mathsf{loss} \\ \mathsf{D}_\mathsf{F} = \mathsf{Distance} \ \mathsf{correction} \ \mathsf{factor} \ (\mathsf{if} \ \mathsf{used}) \\ \mathsf{Ec} = \mathsf{Electrical} \ \mathsf{field} - \mathsf{corrected} \ \mathsf{value} \\ \mathsf{E}_\mathsf{R} = \mathsf{Receiver} \ \mathsf{reading} \\ \mathsf{G}_\mathsf{A} = \mathsf{Gain} \ \mathsf{of} \ \mathsf{pre-amplifier} \ (\mathsf{if} \ \mathsf{used}) \\ \mathsf{L}_\mathsf{T} = \mathsf{Limit} \\ \mathsf{M} = \mathsf{Margin} \end{array}$

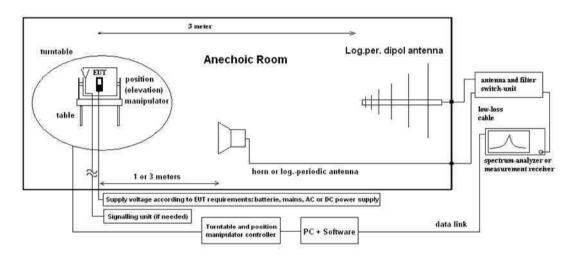
All units are dB-units, positive margin means value is below limit.

4.2.2 Limit

	Radiated emissions limits, (3 meters)					
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
30 - 88	100	40.0	Quasi peak	100 / 300		
88 - 216	150	43.5	Quasi peak	100 / 300		
216 - 960	200	46.0	Quasi peak	100 / 300		
960 - 1000	500	54.0	Quasi peak	100 / 300		

4.2.3 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 30 – 1000MHz	Result
3.01	01	GFSK-1Mbps	41.62	PASSED
3.02	01	GFSK-1Mbps	42.26	PASSED



4.3 Radiated field strength emissions above 1GHz

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$E_C = E_R + A_F + C$	L + DF - GA (1)	E _C = Electrical field – corrected value
		E_R = Receiver reading
$M = L_T - E_C$	(2)	M = Margin
		L⊤ = Limit
		A _F = Antenna factor
		C_L = Cable loss
		D _F = Distance correction factor (if used)
		G _A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.3.2 RSS 210 B.10 (a) Limits

Field strength (mV/m) Fundamental emissions, (3 meters)						
Frequency Range [MHz]	Limit [mV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
2400-2483.5	50	94	Average	1000 / 3000		

Field strength (mV/m) Harmonic emissions, (3 meters)						
Frequency Range [MHz]	Limit [mV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
2400-2483.5	0.5	54	Average	1000 / 3000		

4.3.3 §15.209(a) and §15.247(d) Limits

Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]			
Above 1000	500	54	Average	1000 / 3000			
Above 1000	5000	74	Peak	1000 / 3000			

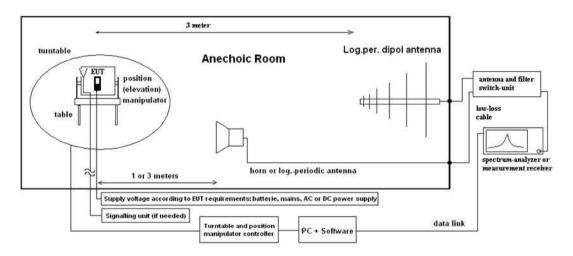
4.3.4 Result

Diagram	Channel	Mode	Maximum Fieldstrength Fundamental Emissions[dBµV/m]	Result
4.01	01	GFSK-1Mbps	90.280 (PK) 89.495(AV)	PASSED

Radiated Harmonic emissions:

Diagram	Channel	Mode Maximum Level [dBµV/m] Frequency Range 1 – 18GHz		Result			
4.01	01	GFSK-1Mbps	63.326(PK) @ 17238.400 MHz 51.342(AV) @ 17229.600 MHz	PASSED			
Demark: for more information and graphical plot and annov A1 CETECOM TB10 1 0127401T010 A1							

Remark: for more information and graphical plot see annex A1 CETECOM_TR19_1_0137401T01a_A1


Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 18 – 26.5GHz	Result
4.02	01	GFSK-1Mbps	56.32 (PK) @ 26294.510 MHz 48.35 (AV) @ 25912.440 MHz	PASSED

4.4 Radiated Band-Edge emissions

4.4.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-ofband emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.4.2 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Avg Limit [dBc]	Avg Limit [dBµV/m]	Pk Limit [dBµV/m]	Detector	RBW / VBW [kHz]
Below 2390	-	-	54	74	Average / Peak	100 / 300
Above 2483.5	-	-	54	74	Average / Peak	1000 / 3000
2390 - 2400	-20	-	-	-	Peak	100 / 300
2390 - 2400	-	-30	-	-	Average	100 / 300

4.4.3 Result

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
9.01	01	GFSK-1Mbps	89.49	82.78	PASSED

Remark: for more information and graphical plot see annex A1

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBµV/m]	Average [dBµV/m]	Result
9.02	39	GFSK-1Mbps	88.39	87.31	PASSED

4.5 Results from external laboratory

None

4.6 Opinions and interpretations

-

None

5 Equipment list

ID	Description	Manufacturer	SerNo	Cal Date	
	120901 - SAC - Radiated Emission < 1GHz				
20021	Loop Antenna (H-Field)	EMCO Elektronik GmbH	9206-2770	30.05.2021	
20482	Filter Matrix (SAR1)				
20494	Power supply	Agilent	AG6632A		
20574	Biconilog Hybrid Antenna	Frankonia	980026L	03.05.2022	
20612	E3632A	Agilent	MY 40001321		
20620	EMI Test Receiver ESU 26	Rohde & Schwarz Messgerätebau GmbH	100362	30.05.2020	
	120904 - FAC1 - Radiated Emissions				
20720	EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx		
20552	High Pass Filter WHKX 2.8/18G-10SS (2,8-18GHz)	Wainwright Instruments GmbH	4		
20020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	19.07.2021	
20549	Log.Per-Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	31.07.2021	
20700	PC ctc662012 [FAC]	Dell Inc.			
20262	Power Meter NRV-S	Rohde & Schwarz Messgerätebau GmbH	825770/0010	15.05.2020	
20357	power sensor NRV-Z1	Rohde & Schwarz Messgerätebau GmbH	861761/002	21.05.2021	
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600-38-5P	Miteq Inc.	838697		
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-02501800-25-10P	Miteq Inc.	1244554		
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-100M4G-35-10P	Miteq Inc.	379418		
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	23.05.2021	
20302	BBHA9170	Schwarzbeck Mess-Elektronik	155	30.04.2023	
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH	104023	30.05.2021	
20608	UltraLog-Antenna HL 562	Rohde & Schwarz Messgerätebau GmbH	830547/009	10.04.2023	

6 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

RF-Measurement	Reference	Frequency range	Calcul	Calculated uncertainty based on a confidence level of 95%		Remarks			
Conducted emissions (U _{CISPR})	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dB 3.6 dB						-
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz	4.2 dB 5.1 dB						E-Field
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz	-						-
Power Output radiated	-	30 MHz - 4 GHz	3.17 dł	3					Substitution method
Dawar Outaut conducted		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		-
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77		
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79		
Occupied bandwidth	-	9 kHz - 4 GHz	0.1272 ppm (Delta Marker)				Frequency error Power		
Emission bandwidth	-	9 kHz - 4 GHz	0.1272 ppm (Delta Marker) See above: 0.70 dB				Frequency error Power		
Frequency stability	-	9 kHz - 20 GHz	0.0636	ppm					-
Radiated emissions Enclosure	-	150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 20 GHz	5.0 dB 4.2 dB 3.17 dB	3					Magnetic field E-field Substitution

7 Versions of test reports (change history)

	Version	Applied changes	Date of release
Γ		Initial release	2020-Apr-02
	C01	Updated equipment list, References for ISED Standard RSS-247 removed and replaced with RSS-210 accordingly	2021-May-03

End of Test Report