

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010

http://www.ltalab.com

Dates of Tests: December 13,2023 ~ January 26,2023

Test Report S/N: LR500112011R Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

APPLICANT

2AVQ5BT-CFEB-F

BT Inc.

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description : CPR and First Aid Training Model (Baby)

Manufacturer : BT Inc.

Model name : BT-CFEB-F
Variant Model name : BT-CFEB-B

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C ; ANSI C63.10 - 2013

Frequency Range : BLE 2402 ~ 2480 MHz

Max. Output Power : 0.00136 W

Data of issue : January 27, 2023

This test report is issued under the authority of:

The test was supervised by:

Jabeom. Koo

Ja-Beom Koo, Manager

Eun-Hwan Jung, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	- 3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	. 5
3.2 TECHNICAL CHARACTERISTICS TEST	-
APPENDIX APPENDIX TEST EQUIPMENT USED FOR TESTS	16

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 17159

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference	
NVLAP	U.S.A	200723-0	2023-09-28	ECT accredited Lab.	
RRA	KOREA	KR0049	-	EMC accredited Lab.	
FCC	U.S.A	649054	Updating	FCC CAB	
VCCI	JAPAN	C-4948,	2023-09-10	VCCI registration	
VCCI	JAPAN	T-2416,	2023-09-10	VCCI registration	
VCCI	JAPAN	R-4483(10 m),	2023-08-15	VCCI registration	
VCCI	JAPAN	G-847	2023-12-13	VCCI registration	
IC	CANADA	5799A-1	2023-10-18	IC filing	

Ref. No.: LR500112011R

2. Information about test item

2-1 Client & Manufacturer

Address

Client Company name : BT Inc.

A-313 Samsong Techno-valley, 140, Tongil-ro, Deogyang-gu, Goyang-

Address : si, Gyeonggi-do, 10594, Republic of Korea

Tel / Fax : TEL No: +82-01- 2756-2614 / FAX No: +82-303-3130-607

Manufacturer BT Inc.

A-313 Samsong Techno-valley, 140, Tongil-ro, Deogyang-gu, Goyang-

si, Gyeonggi-do, 10594, Republic of Korea

Tel / Fax TEL No: +82-01- 2756-2614 / FAX No: +82-303-3130-607

2-2 Equipment Under Test (EUT)

Model name : BT-CFEB-F

Serial number : Identical prototype

Date of receipt : December 13, 2022

EUT condition : Pre-production, not damaged

Antenna type : Chip Antenna (Max Gain : -1.10 dBi)

Frequency Range : BLE 2402 ~ 2480 MHz

Type of Modulation : GFSK

Power Source : DC 12 V by Adapter, DC 9 V by Battery

2-3 Tested frequency

	LOW	MID	HIGH	
Frequency (MHz) BLE	2402	2442	2480	

2-4 Ancillary Equipment

Equipment	Model No. Serial No.		Manufacturer	
Notebook	-	MS-1736	MSI	

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth		N/A ¹⁾
15.247(b)	Transmitter Peak Output Power	Conducted	N/A ¹⁾
15.247(e)	Transmitter Power Spectral Density	Spectral Density Conducted	
15.247(d)	Band Edge & Conducted Spurious emission		N/A ¹⁾
15.209	Transmitter emission	Radiated	С
15.207	AC Conducted Emissions	Conducted	N/A ¹⁾
15.203	Antenna requirement	-	С

 $N/A^{1)}$: The product replaces this test with a certificate using an authenticated module.

The above equipment was tested by LTA Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.

The tests were performed according to the method of measurements prescribed in KDB No.558074.

→ Antenna Requirement

BT Inc.. FCC ID: 2AVQ5BT-CFEB-F unit complies with the requirement of §15.203. The antenna type is Chip Antenna

3.2 Technical Characteristics Test

3.2.1 Radiated Spurious Emissions

Procedure:

Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013.

The EUT is a placed on as turn table. For emissions testing at or below 1 GHz, the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while

keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.

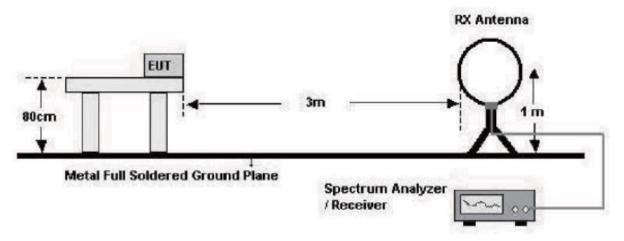
The spectrum analyzer is set to:

Center frequency = the worst channel

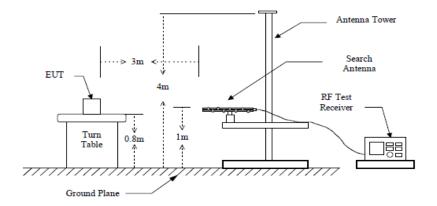
Frequency Range = $9 \text{ kHz} \sim 10^{\text{th}} \text{ harmonic.}$

 $RBW = 120 \text{ kHz} (30 \text{ MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

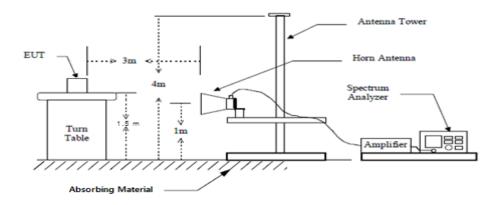
= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$


Trace = max hold Detector function = peak

Sweep = auto


Duty cycle: 98.89 %

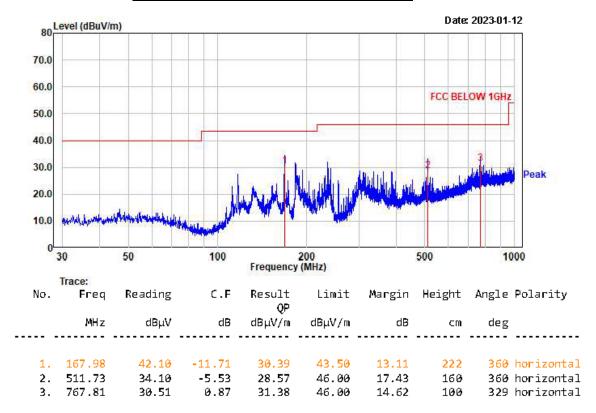
The EUT configureal to transmit continuously(D \geq 98%)/ Duty Factor = 0


below 30 MHz

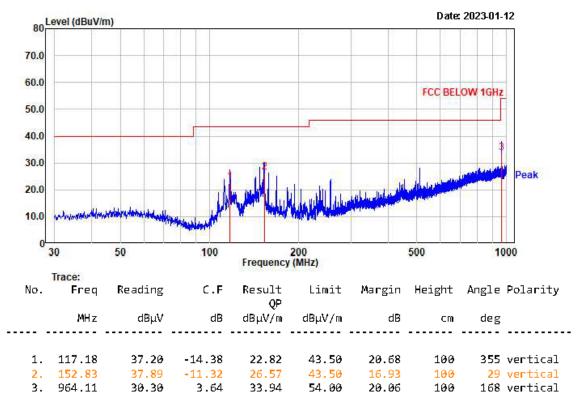
below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

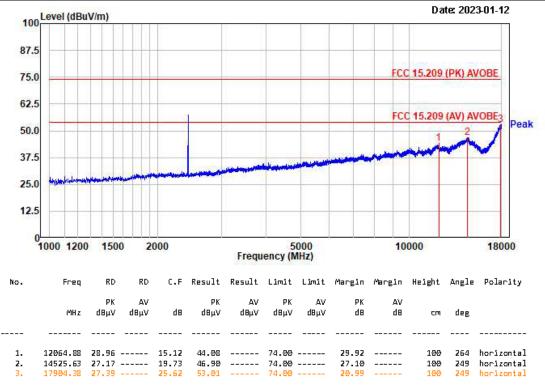
Measurement Data: Complies

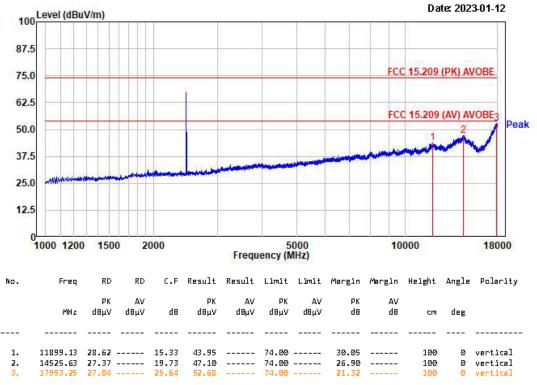

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30MHz.
- The test results for the worst of the various operating modes are presented in accordance with 6.3.4 of ANSI C63.10.
- Checked with a red circle is the fundamental frequency.
- At the request of the applicant, measurements of derived model products are also attached.

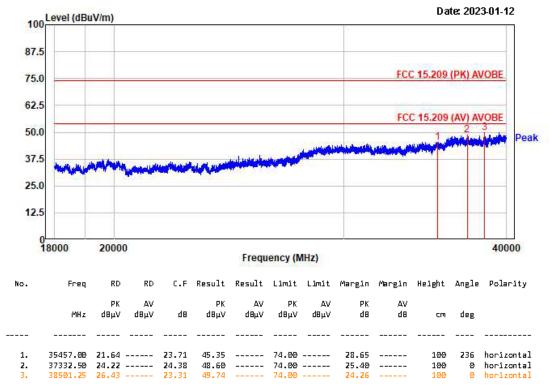
Minimum Standard: FCC Part 15.209(a)

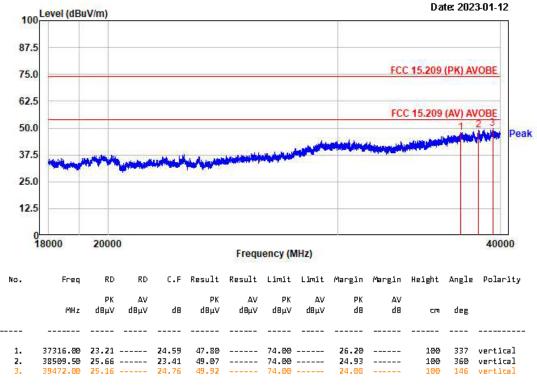

Frequency (MHz)	Limit (uV/m) @ 3 m	
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)	
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)	
1.705 ~ 30	30(@ 30 m)	
30 ~ 88	100 **	
88 ~ 216	150 **	
216 ~ 960	200 **	
Above 960	500	

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

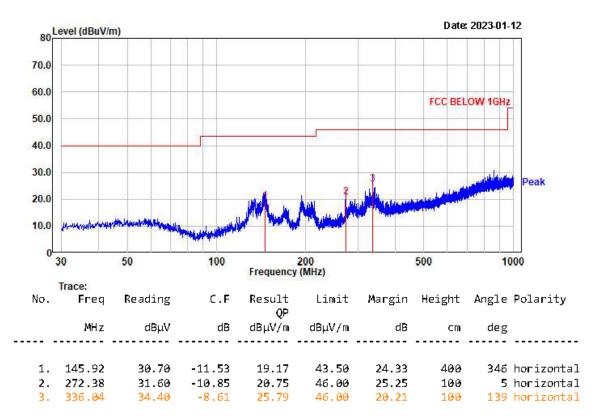

Radiated Emissions - BLE (BT-CFEB-F)


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

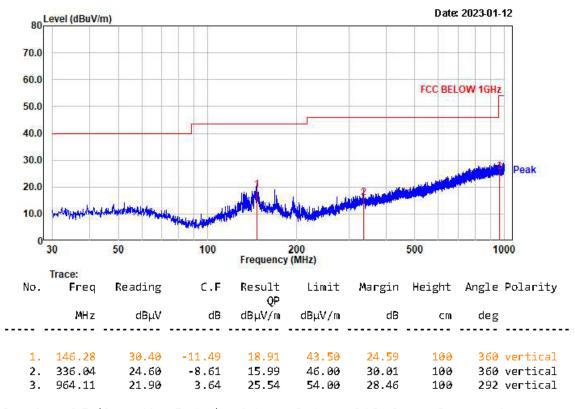

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

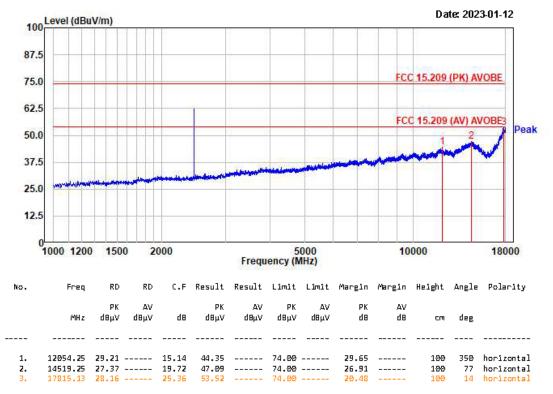
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

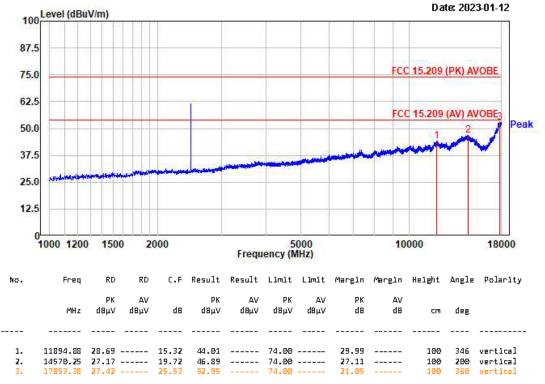


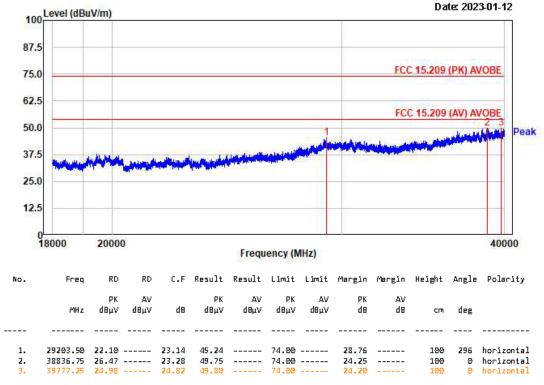
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

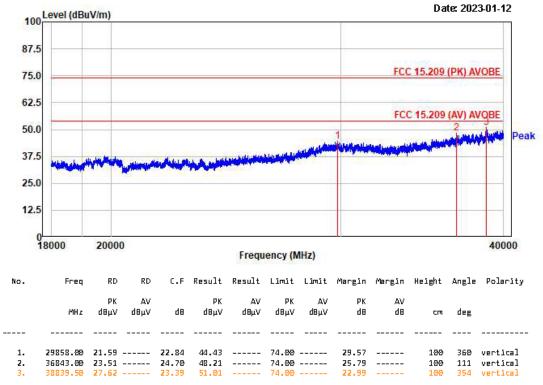


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Radiated Emissions – BLE (BT-CFEB-B)


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Ref. No.: LR500112011R

3.2.7 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: N/A

Minimum Standard: FCC Part 15.207(a) / EN 55022

Class B

Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

Ref. No.: LR500112011R

APPENDIX TEST EQUIPMENT USED FOR TESTS

	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Next Cal. Date
1		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2022-09-06
2		Signal Generator (~3.2 GHz)	8648C	3623A02597	HP	1 year	2023-03-16
3		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2023-03-16
4		Attenuator (3 dB)	8491A	37822	HP	1 year	2023-08-30
5		Attenuator (10 dB)	8491A	63196	HP	1 year	2023-08-30
6		EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2023-08-30
7		RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	HP	1 year	2023-08-30
8		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	HP	1 year	2023-03-16
9		Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2024-09-06
10		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2024-03-18
11		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2024-03-18
12		TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2023-03-20
13		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2023-03-16
14		Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
15		DC Power Supply	6674A	3637A01657	Agilent	-	-
17		Power Meter	EPM-441A	GB32481702	HP	1 year	2023-03-16
18		Power Sensor	8481A	3318A94972	НР	1 year	2023-08-30
19		Audio Analyzer	8903B	3729A18901	HP	1 year	2023-08-30
20		Moduleation Analyzer	8901B	3749A05878	НР	1 year	2023-08-30
21		TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2023-08-30
22		Stop Watch	HS-3	812Q08R	CASIO	2 year	2024-03-18
23		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2023-08-30
24		Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2023-03-16
25		UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2023-03-16
26		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2023-03-16
27		Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2023-03-16
28		OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2023-03-16
29		Signal Generator(100 kHz ~ 40 GHz)	SMB100A03	177621	R&S	1 year	2023-03-16
30		Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2023-03-16
31		Active Loop Antenna	FMZB 1519	1519-031	SCHWARZBECK	2 year	2023-02-26