

CERTIFICATION TEST REPORT

Report Number : 13372962-E3V3

Applicant : CODAR OCEAN SENSORS LTD.
1914 PLYMOUTH S STREET,
MOUNTAIN VIEW, CA 94043, U.S.A.

Model : SSTX 100

FCC ID : 2AVPX-SSRS-100-2426

EUT Description : OCEANOGRAPHIC SURFACE WAVE RADAR SYSTEM

Test Standard : FCC 47 CFR PART 90 SUBPART F

Date Of Issue:
June 07, 2021

Prepared by:
UL Verification Services Inc.
47173 Benicia Street
Fremont, CA 94538
U.S.A.
TEL: (510) 319-4000
FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	03/16/2021	Initial Issue	GP Chin
V2	05/17/2021	Updated Description of EUT in Section 5.1 Added Antenna Gain in Section 5.2 Updated Peak EIRP with Ant. Gain in Section 5.3 and Section 8.3 Updated the Orientation of Loop Antenna on tabulated data in Section 8.6	GP Chin
V3	06/07/2021	Removed Rx Unit Model Updated Test Procedure in Section 8.6	GP Chin

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY	6
4.1. <i>METROLOGICAL TRACEABILITY</i>	6
4.2. <i>DECISION RULES</i>	6
4.3. <i>MEASUREMENT UNCERTAINTY</i>	6
5. EQUIPMENT UNDER TEST	7
5.1. <i>DESCRIPTION OF EUT</i>	7
5.2. <i>DESCRIPTION OF AVAILABLE ANTENNAS</i>	8
5.3. <i>OUTPUT POWER</i>	9
5.4. <i>SOFTWARE AND FIRMWARE</i>	9
6. DESCRIPTION OF TEST SETUP.....	10
7. TEST AND MEASUREMENT EQUIPMENT	14
8. APPLICABLE LIMITS AND TEST RESULTS	15
8.1. <i>DUTY CYCLE</i>	15
8.2. <i>OCCUPIED BANDWIDTHS</i>	17
8.3. <i>PEAK OUTPUT POWER</i>	19
8.4. <i>FREQUENCY STABILITY</i>	21
8.5. <i>TX CONDUCTED SPURIOUS EMISSIONS AND BANDEdge</i>	24
8.5.1. <i>SPURIOUS EMISSIONS</i>	26
8.5.2. <i>BANDEdge</i>	30
8.6. <i>TX RADIATED SPURIOUS EMISSIONS</i>	32
9. SETUP PHOTOS.....	40

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: CODAR OCEAN SENSORS, LTD.
1914 PLYMOUTH STREET,
MOUNTAIN VIEW, CA 94043, U.S.A.

EUT DESCRIPTION: OCEANOGRAPHIC SURFACE WAVE RADAR SYSTEM

MODEL: SSTX 100

SERIAL NUMBER: 2018536

DATE TESTED: OCTOBER 29TH – NOVEMBER 13TH, 2020

APPLICABLE STANDARDS		TEST RESULTS
STANDARD		
FCC PART 90.103F		Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Approved & Released For
UL Verification Services Inc. By:

GIA-PIAO (GP) CHIN
SENIOR TEST ENGINEER
UL Verification Services Inc.

Tested By:

STEVE AGUILAR
TEST ENGINEER
UL Verification Services Inc

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CRF 47 Part 2, Part 90 Subparts F & I, ANSI 63.26-2015 and Rec. ITU-R SM.329-10.

3. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company No.	FCC Registration
<input type="checkbox"/>	Building 1: 47173 Benicia Street, Fremont, California, USA	US0104	2324A	208313
<input type="checkbox"/>	Building 2: 47266 Benicia Street, Fremont, California, USA	US0104	22541	208313
<input checked="" type="checkbox"/>	Building 4: 47658 Kato Rd, Fremont, California, USA	US0104	2324B	208313

4. CALIBRATION AND UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{LAB}
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.39 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.07 dB
Worst Case Conducted Disturbance 30 MHz to 1GHz	2.90 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Temperature	±0.9 °C
Voltages	±0.45 %
Time	±0.02 %

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The SeaSonde® is a simplified, compact oceanographic Doppler radar system for use in coastal ocean observing systems. A network of two or more units, physically separated by tens of kilometers along the coast, can combine data to produce two-dimensional surface current maps. In some situations, measurements of wind direction, ocean surface waves and tsunamis can be made as well. The surface current maps are the primary data product and are used by ocean scientists for a variety of research topics and by organizations like the National Oceanic and Atmospheric Administration (NOAA) and the US Coast Guard (USCG) for applications such as Search & Rescue and Spill Response.

Near real-time surface current data for the U.S. can be accessed at:

<https://hfradar.ndbc.noaa.gov>

Introductory videos on oceanographic radar applications can be found at the following URLs:

Search and Rescue: <https://youtu.be/9A9LXT2cHZM>

Spill Response: <https://youtu.be/l83ob2cwhE>

Frequency bands defined by the International Telecommunications Union (ITU) for use by oceanographic radars are listed below.

ITU Ocean Radar Frequency Bands (MHz)	
4.438 - 4.488	26.200 - 26.350 ^a
5.250 - 5.275	26.200 - 26.420 ^b
9.305 - 9.355 ^a	39.000 - 39.500 ^a
13.450 - 13.550	41.015 - 41.665 ^c
16.100 - 16.200	42.000 - 42.500 ^d
24.450 - 24.600 ^a	43.350 - 44.000 ^c
24.450 - 24.650 ^b	
a – Regions 1 & 3 only	
b – Region 2 only	
c – U.S. and South Korea only	
d – Region 1 only	

The SeaSonde transmits a FMCW waveform over tens to hundreds of kHz, depending on the licensed bandwidth, with a center frequency in the HF or lower VHF frequency bands, between 4 & 50 MHz. Typically, SeaSondes are licensed to sweep over a frequency range that corresponds with all or part of one of the ITU Bands listed above, with radiated power up to 80 Watts peak and 40 Watts average. Patented high precision GPS-assisted sweep timing allows multiple SeaSondes to transmit simultaneously within the same frequency range without interference to each other and without data acquisition interruption.

Fc (kHz)	Bandwidth (kHz)		Power (W) ^{Note 2}		Antenna Gain (dBi)
	Maximum	Minimum ^{Note 1}	Min	Max	
24525	150	75	1	40	2.15
26275	150	75	1	40	2.15

Note 1: Device will support smaller bandwidths but values given above are considered minimum practical bandwidths.

Note 2: Typically, devices are operated in the 25 - 40 W (44 - 46 dBm) peak conducted power range with +1 dB tolerance and with a 50% duty cycle. This is the power at the antenna port.

Note 3: The pulse rate is determined by the expected range of the system and range from 300 Hz at the lower bands to as much as 5kHz for the highest bands. The duty factor approaches 50%, being reduced by increased tapering desired at the ends between 6.25% and 25%. Chirp (sweep) rates range from 1 Hz at the lowest bands to 8 Hz at the upper bands.

A Typical SeaSonde unit consists of the following core components:

- Model SSTX 100 Transmitter and 75 m coax cable
- Model SSRX 100 A Receiver and 100 m coax cable
- Data acquisition and processing computer
- Radial Suite Software Package
- Combined Transmit/Receive Antenna on a single mast, attached by three coaxial cables to transmitter and receiver

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radar system utilizes external antennas which come in the form of a co-located three element receive antenna system consisting of two receive loop antennas and one transmit/receive vertical dipole element with a maximum gain of 2.15 dBi. The transmit antenna is connected to the output port of transmitter via a minimum of 75 m coax cable. All antenna port measurements were made at the end of the minimum cable length to determine the power of fundamental and spurious emissions at the antenna input.

5.3. OUTPUT POWER

The highest peak output power under normal environmental conditions (+20°C and 110 VAC) in each mode is as followed:

Mode	Peak Power (dBm EIRP)	Peak Power (W)
24.45 to 24.65 MHz	48.12	64.86
26.20 to 26.42 MHz	48.59	72.28

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing were Radial Suite Release 8 update 2 and SeaSondeAcquisition Version 11.7.9.

The AWG Firmware used during testing was 3.42.

6. DESCRIPTION OF TEST SETUP

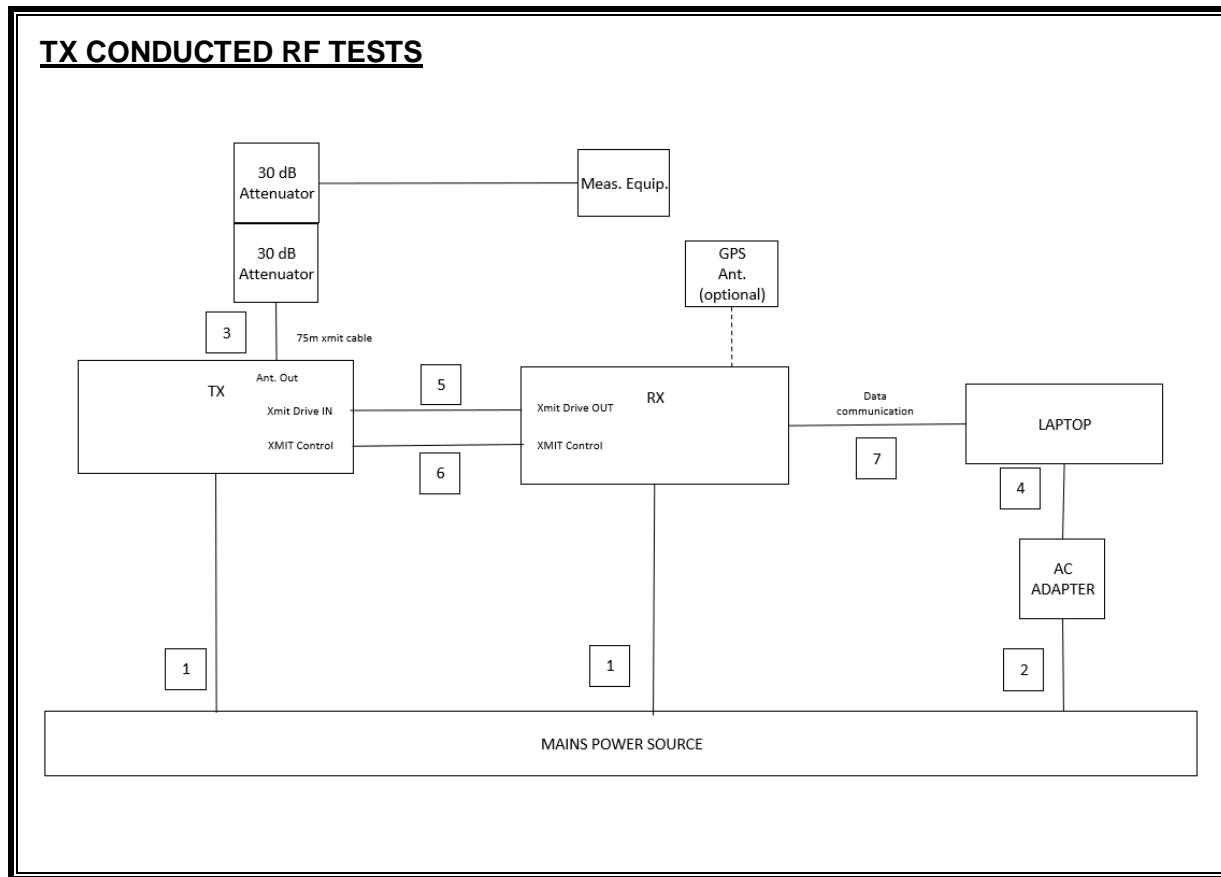
SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST			
Description	Manufacturer	Model	Serial Number
Laptop	Apple	A1342 Mac book	45168C2QFSW
Laptop Power supply	Delta Electronics	ADP-60ADP	--
GPS Antenna	Garmin	GA38GPS/GLONASS	--
Receiver	Codar	SSRX100 A (Rx)	2019558

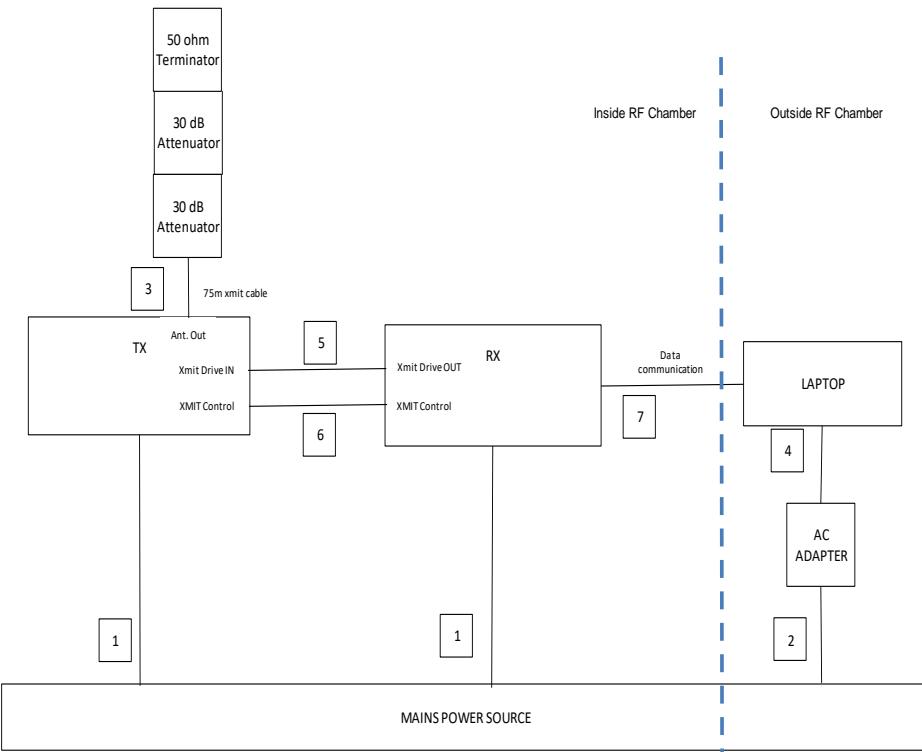
I/O CABLES

I/O Cable List						
Cable No.	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	2	3-prong	Unshielded	2	--
2	AC	1	3-prong	Unshielded	1.8	--
3	Ant	1	N-Type	Shielded	75	--
4	DC	1	Mag set	Shielded	1.8	--
5	Drive	1	BNC	Shielded	1	--
6	Xmit Cntrol	1	9-Pin RS232	Shielded	0.8	--
7	Data	1	USB A and B	Shielded	5-10	--
8	GPS	1	N-Type	Shielded	7	Optional

TEST SETUP


The EUT set (Tx and Rx) is connected to a laptop computer. Software within the computer is used to configure and exercise the EUT set.

All measurements of Duty Cycles, Occupied Bandwidth, Peak Output Power, TX Conducted Spurious Emissions and Bandedge were performed at 20°C and 110 VAC nominal, utilizing the conducted test setup with spectrum analyzer.


The total Correction Factor of attenuators and cables was applied as “Offset” to the taken plots of Measured Peak on this report, therefore,

$$\text{Peak EIRP (dBm)} = \text{Measured Peak (dBm)} + \text{EUT Ant. Gain (dBi)}$$

SETUP DIAGRAM FOR TESTS

TX RADIATED RF TESTS

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List					
Description	Manufacturer	Model	Local ID	Last Cal	Cal Due
EMI Test Receiver	Rohde & Schwarz	FSW50	PRE0211337	4/30/2020	4/30/2021
Variable Transformer	Powerstat	3PN126	SCL16981	CNR	CNR
Coaxial Attenuator, 30 dB 100W	Bird Electronic Corporation	8323	2147	CNR	CNR
Coaxial Attenuator, 30 dB 100W	Bird Electronic Corporation	8323	2181	CNR	CNR
50 Ohm Terminator	--	--	--	CNR	CNR
ESW EMI Test Receiver 44 GHz	Rohde & Schwartz	ESW44	PRE0179376	4/03/2020	4/03/2021
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T477	9/24/2020	9/24/2021
Amplifier, 9KHz to 1GHz, 32dB	Sonoma Instruments	310	175953	1/23/2020	1/23/2021
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T863	8/31/2020	8/31/2021
Amplifier, 100MHz-18GHz	AMPLICAL	AMPO.1G18-47-20	PRE0197319	5/4/2020	5/4/2021
30Hz-1MHz Loop Ant.	Electro-Metrics	EM-6871	PRE0179465	7/27/2020	7/27/2021
100KHz-30MHz Loop Ant	Electro-Metrics	EM-6872	PRE0179467	7/27/2020	7/27/2021
Temperature Chamber	Espec	EWPX 674(2)-(2)12NAL	135568	1/7/2020	1/31/2021
Digital Multimeter	Fluke	87V	PRE0073921	1/22/2020	1/22/2021
UL EMC Radiated Software	Version:	Rev 9.5.30 Apr 2020			

8. APPLICABLE LIMITS AND TEST RESULTS

8.1. DUTY CYCLE

LIMIT

For reporting purposes only.

TEST PROCEDURE

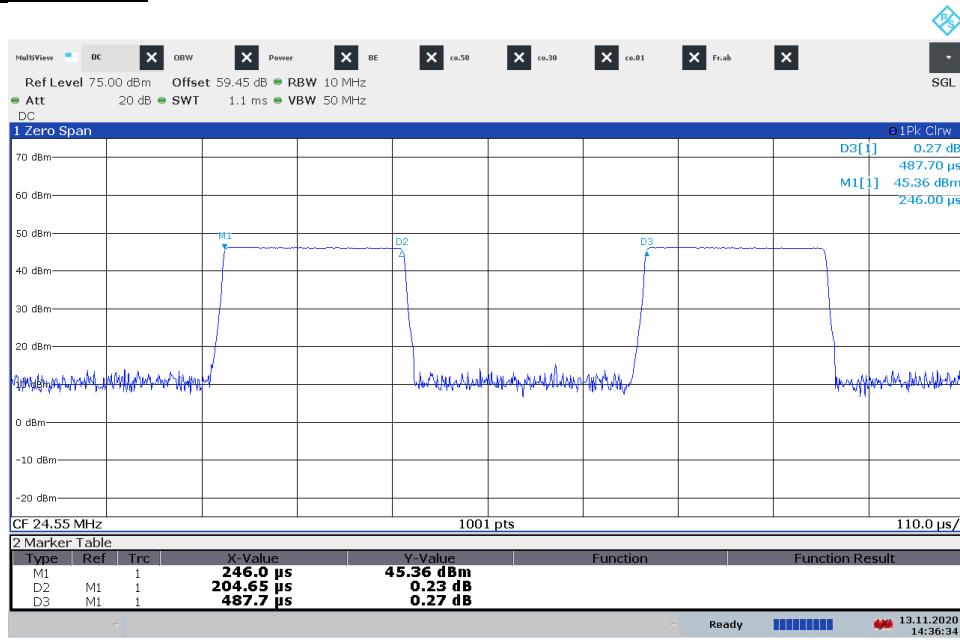
All measurements were performed with the CW signals of $F_c = 24.55$ MHz and $F_c = 26.31$ MHz, representing 24.45 to 24.65 MHz Mode and 26.2 to 26.42 MHz Mode, respectively.

The duty cycle factor is calculated as:

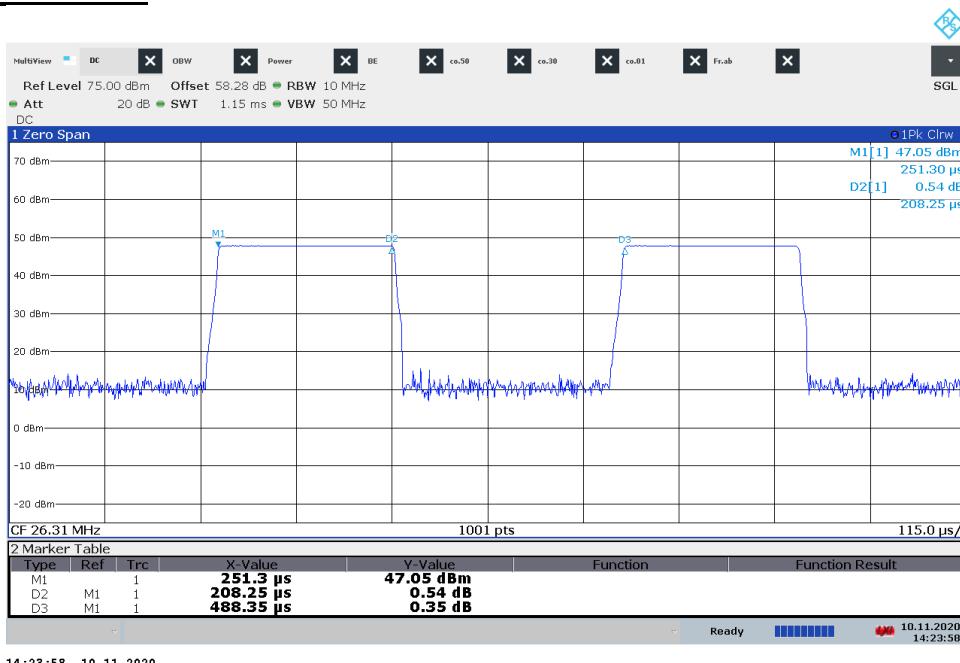
Duty Cycle Factor (dB) = $10 * \log (1 / x)$

Where X = Duty Cycle (linear)

RESULTS


Employee ID: 19470

Location: Environmental Chamber


Test Date: 11/10/2020 – 11/13/2020

Mode		ON Time	Period	Duty Cycle (linear)	Duty Cycle (%)
Band	CW (Fc)	(usec)	(usec)		
24.45 to 24.65 MHz	24.55 MHz	204.65	487.70	0.420	41.96
26.20 to 26.42 MHz	26.31 MHz	208.25	488.35	0.426	42.64

24.55 MHz CW Mode

26.31 MHz CW Mode

8.2. OCCUPIED BANDWIDTHS

APPLICABLE RULE

§2.1049

LIMIT

99% Bandwidth measured shall fall within the frequency band listed in FCC Part 90.103F.

Applicable limits for bands tested in this report is as follows:

Frequency Bands
24.45 to 24.65 MHz
26.20 to 26.42 MHz

TEST PROCEDURE

ANSI 63.26-2015 Clause 5.4.4

99% bandwidth measurement function of the spectrum analyzer was used to measure 99% occupied bandwidth.

RESULTS

Employee IDs: 19470 & 17774

Location: Environmental Chamber

Test Date: 11/10/2020 – 11/13/2020

Mode	Meas. 99% BW (KHz)	Meas. FL (MHz)	Limit (MHz)	Pass/Fail	Meas. FH (MHz)	Limit (MHz)	Pass/Fail
24.45 to 24.65 MHz	187.762	24.4559	> 24.45	Pass	24.6437	< 24.65	Pass
26.20 to 26.42 MHz	202.302	26.2088	> 26.20	Pass	26.4111	< 26.42	Pass

24.45 to 24.65 MHz Mode

26.20 to 26.42 MHz Mode

8.3. PEAK OUTPUT POWER

RULE PARTS

§2.1046 & §90.205 (r)

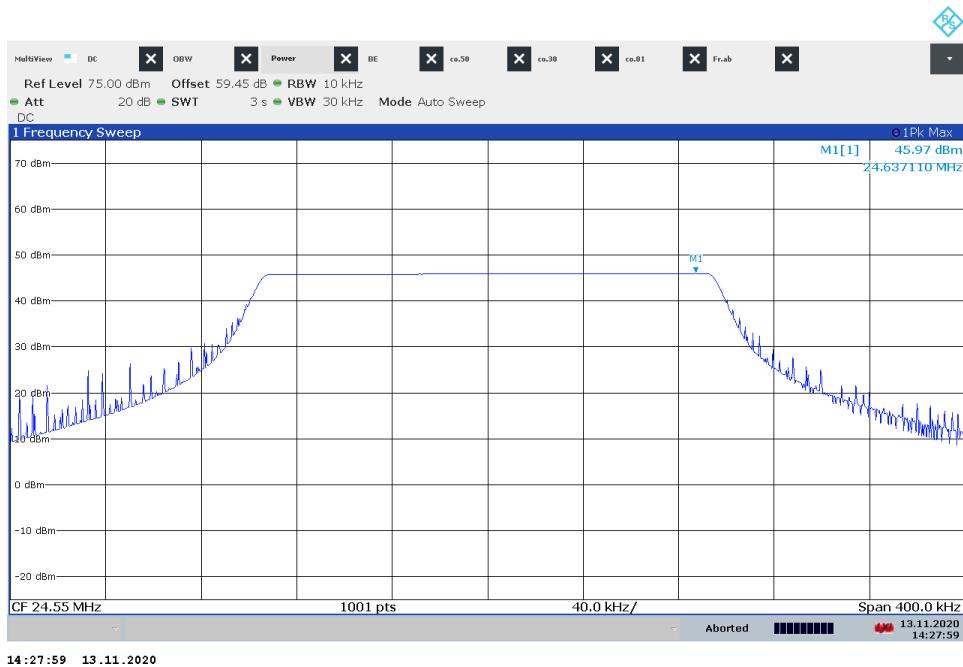
LIMIT

§90.103 (c)(3) Operations in this band are limited to oceanographic radars using transmitters with a peak equivalent isotropically radiated power (EIRP) not to exceed 25 dBW (316 W or +55 dBm). Oceanographic radars shall not cause harmful interference to, nor claim protection from interference caused by, stations in the fixed or mobile services as specified in §2.106, footnotes 5.132A, 5.145A, and US132A. See Resolution 612 of the ITU Radio Regulations for international coordination requirements and for recommended spectrum sharing techniques.

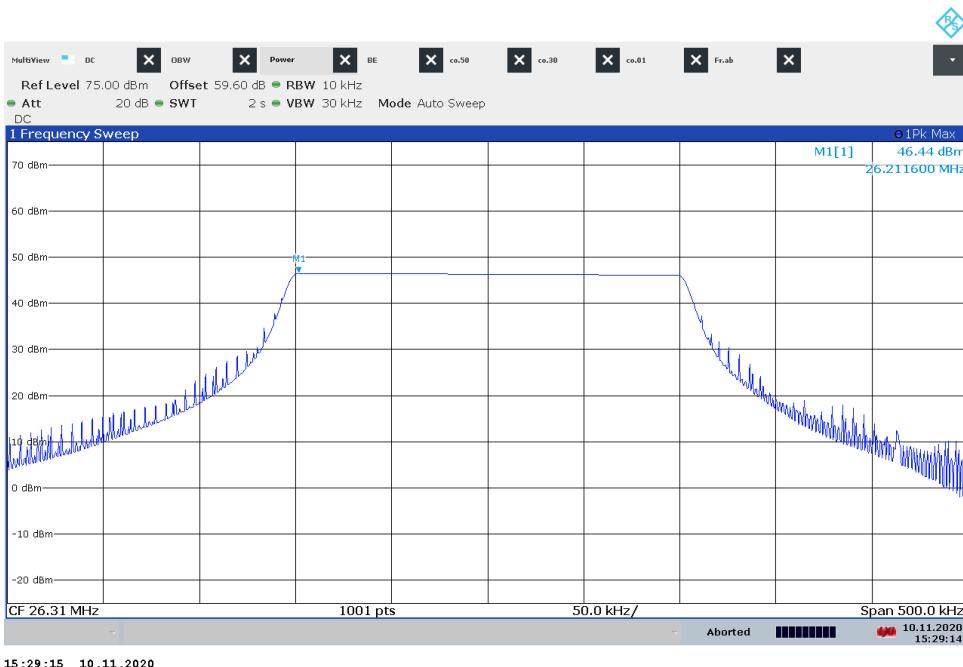
Resolution 612 (REV. WRC-12), Clause d) 2 that the Peak e.i.r.p. of an oceanographic radar shall not exceed 25 dBW (316 W or +55 dBm).

TEST PROCEDURE

ANSI 63.26-2015 Clause 5.2.3.5


RESULTS

Employee IDs: 19470 & 17774
Location: Environmental Chamber
Test Date: 11/10/2020 – 11/13/2020


Mode	Frequency	Meas. Peak	EUT Ant. Gain	Peak EIRP	Peak EIRP	Limit	Pass or
	(MHz)	(dBm)	(dBi)	(dBm)	(W)	(W)	Fail
24.45 to 24.65 MHz	24.637	45.97	2.15	48.12	64.9	316	Pass
26.20 to 26.42MHz	26.211	46.44	2.15	48.59	72.3	316	Pass

Peak EIRP is based on the use of dipole antenna which has a maximum gain of 2.15 dBi. The actual peak EIRP values are based on a minimum cable length of 75m between the RF output and the antenna (power measurement was made at the end of the cable).

24.45 to 24.55 MHz Mode

26.20 to 26.42 MHz Mode

8.4. FREQUENCY STABILITY

RULE PARTS

§2.1055 (a)(1) From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

§2.1055 (d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

The EUT is operated near the coast and installed only in climate-controlled enclosure or building with the following conditions:

Temperature: -18°C to $+32^{\circ}\text{C}$ (0°F to $+90^{\circ}\text{F}$).

Nominal Voltage: 110 VAC

LIMIT

§90.213 (a)

TABLE 1 TO §90.213(a)—MINIMUM FREQUENCY STABILITY

[Parts per million (ppm)]

Frequency range (MHz)	Fixed and base stations	Mobile stations	
		Over 2 watts output power	2 watts or less output power
Below 25	1 2 3 100	100	200

Applicable Limit: 100 ppm

TEST PROCEDURES

ANSI C63.26-2015 Clause 5.6.5

Both 24.45 to 24.65 MHz and 26.20 to 26.42 MHz Modes operate on the same circuitry, all measurements were performed with the CW signal of $F_c = \sim 26.301$ MHz on 26.20 – 26.42 MHz Mode, representing the frequency stability performance on both modes.

Test procedures for temperature variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C, stabilize the EUT for at least 45 minutes and record the Fc.
- c. Adjust chamber temperature from -18°C to +32°C at 10°C interval. Record maximum change in Fc at each temperature.
- d. A period of at least 45 minutes is provided to allow stabilization of the equipment at each temperature level.

Test procedures for voltage variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C.
- c. The primary supply voltage is varied from 85% to 115% of the nominal value.

- Voltages:

Nominal: 110 VAC
85% of the Nominal: 93.5 VAC
115% of the Nominal: 126.5 VAC

RESULTS

Employee ID: 17774
Location: Environmental Chamber
Test Date: 11/10/2020

26.20 to 26.42 MHz Mode				
Temp (°C)	Input Power (AC)	CW (Fc)		
		Meas. Freq. (MHz)	Freq. Drift (ppm)	Pass/Fail
32	Nominal	26.30999	0.0000	Pass
30	Nominal	26.30999	0.0000	Pass
20	Nominal	26.30999	-	-
10	Nominal	26.31000	0.380	Pass
0	Nominal	26.30999	0.000	Pass
-10	Nominal	26.31000	0.380	Pass
-18	Nominal	26.30999	0.000	Pass
20	85%	26.30999	0.000	Pass
20	115%	26.30999	0.000	Pass

8.5. TX CONDUCTED SPURIOUS EMISSIONS AND BANDEDGE

RULE PARTS

§2.1057 (a) (1) In all of the measurements set forth in §§2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental freq = $10 * (26.42 \text{ MHz}) = 264.2 \text{ MHz}$
Thus, the spurious emission is investigated from 9 kHz to 1 GHz.

LIMIT

§ 90.210 (n) Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b) Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions and bandedge.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT = 46 dBm (40 W)

Applicable Peak Limit: $46 - (43 + 10 \log (46)) = 46 - 59 = -13 \text{ dBm}$

TEST PROCEDURE

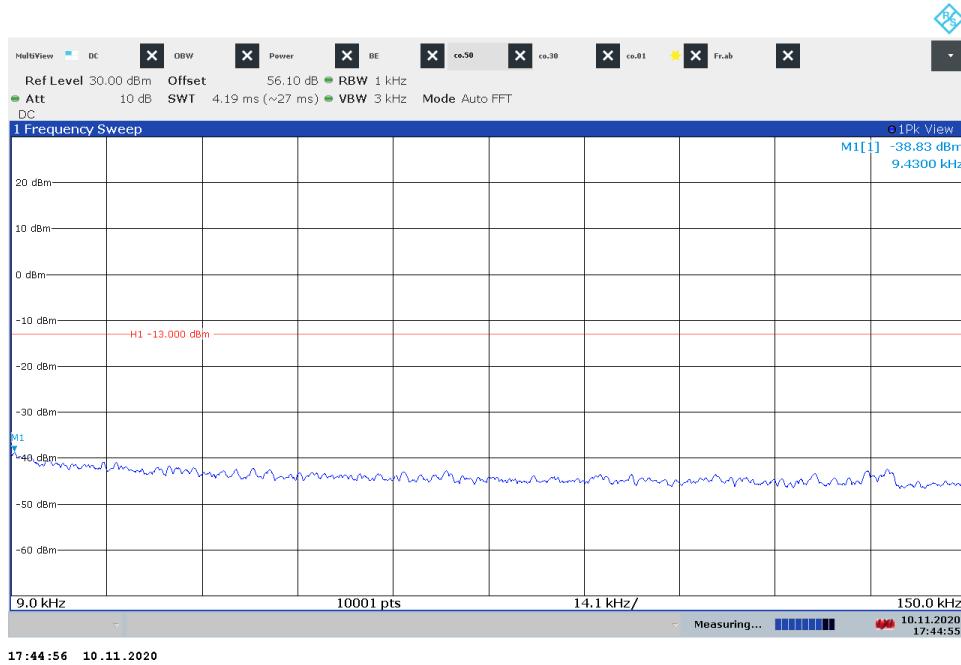
ANSI 63.26-2015 Clause 5.7

The widest emission bandwidth of EUT was used at 9 kHz – 1 GHz spurious emission tests.

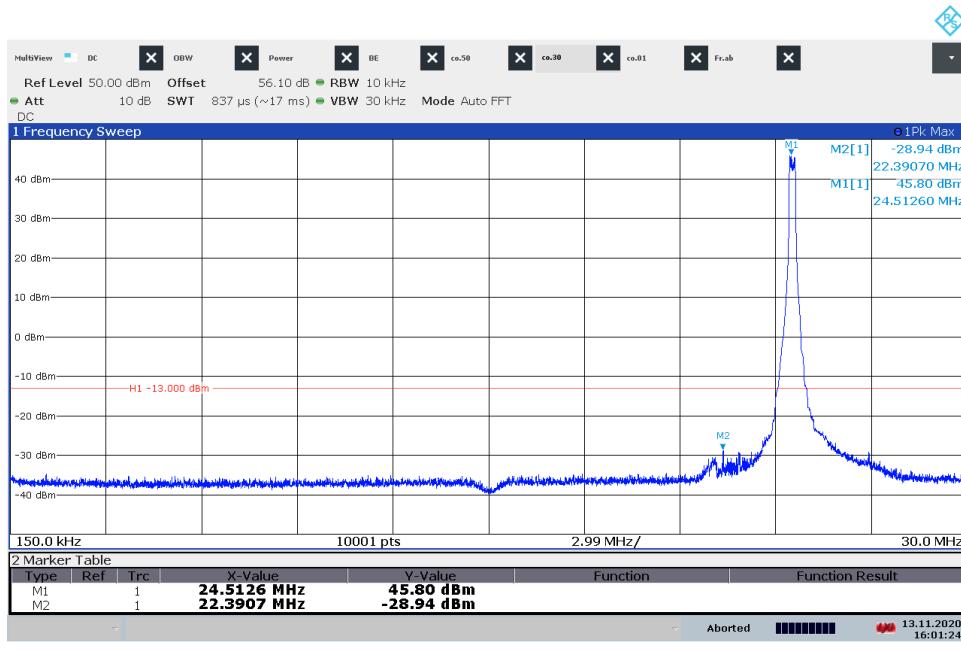
The Bandedge measurements were measured by transmitting the CW signals of low-end (F_L) and the high-end (F_H) of each frequency band.

RESULTS

Employee IDs: 19470 & 17774

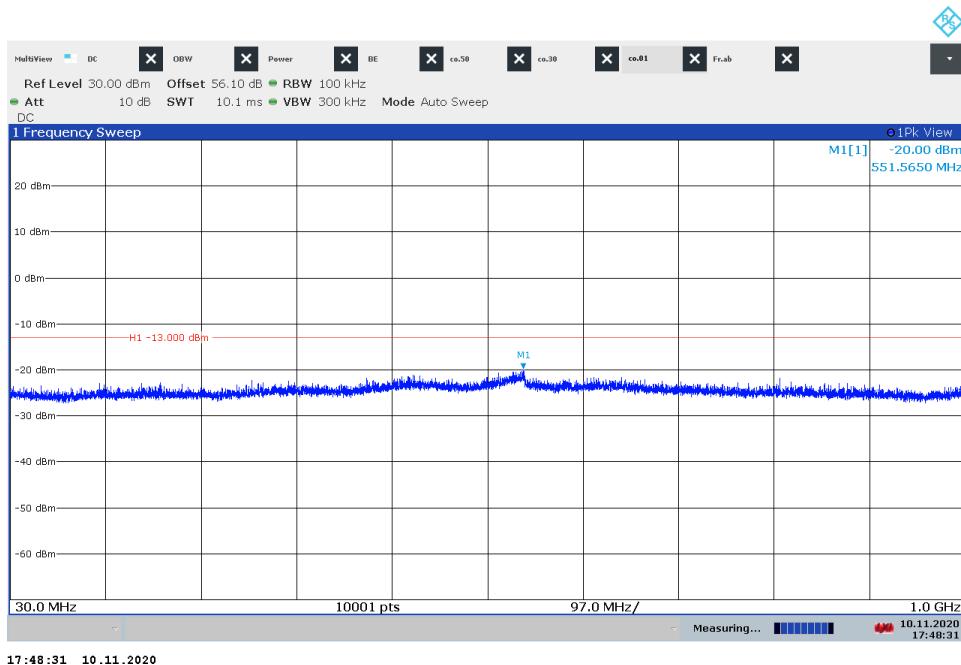

Location: Environmental Chamber

Test Date: 11/10/2020 – 11/13/2020


Mode	9 - 150 kHz	150 kHz - 30 MHz	30 MHz - 1 GHz	Bandedge
24.45 to 24.65 MHz	Pass	Pass	Pass	Pass
26.20 to 26.42 MHz	Pass	Pass	Pass	Pass

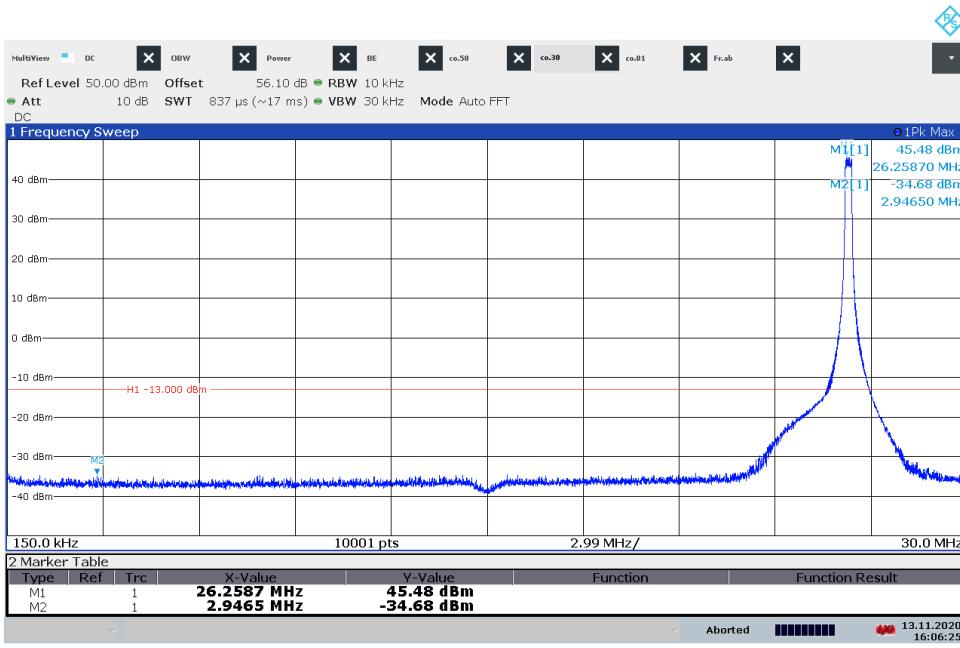
8.5.1. SPURIOUS EMISSIONS

24.45 to 24.65 MHz Mode, 9 - 150 kHz

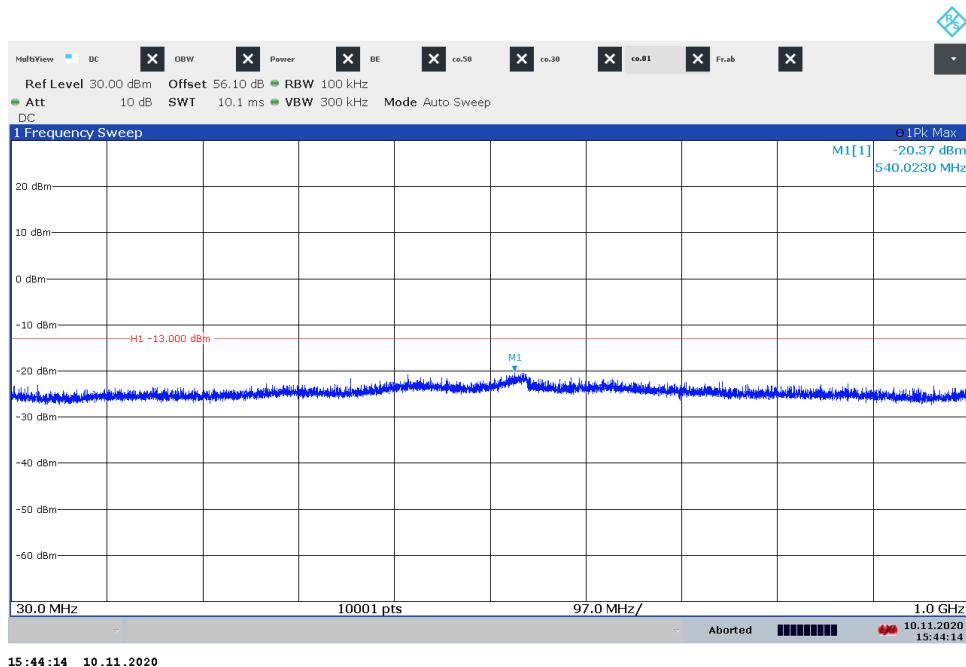


24.45 to 24.65 MHz Mode, 150 kHz to 30 MHz

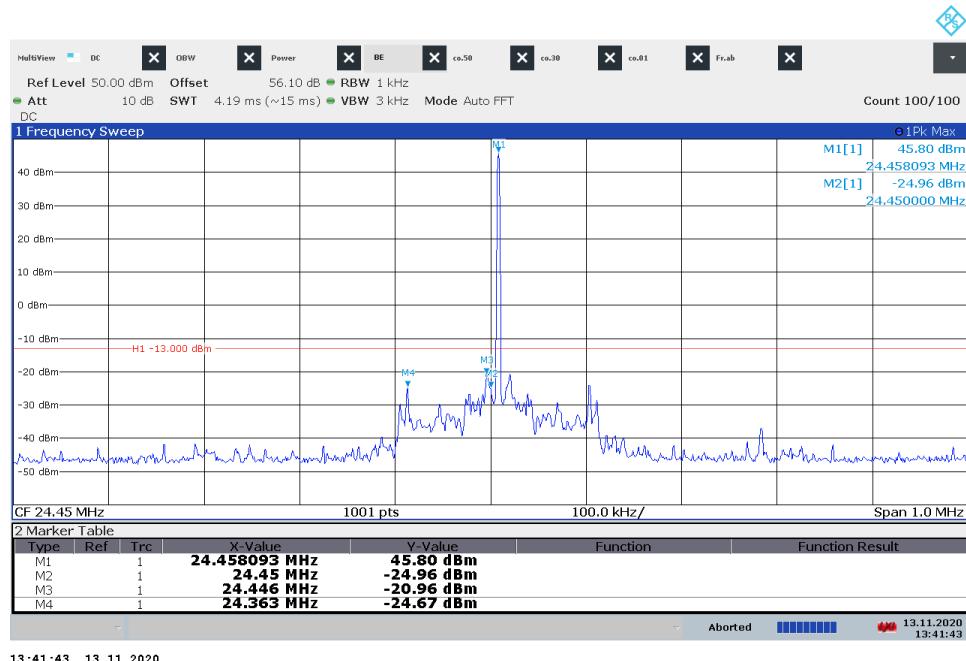
*Marker M1 is the fundamental signal.


24.45 to 24.65 MHz Mode, 30 MHz to 1 GHz

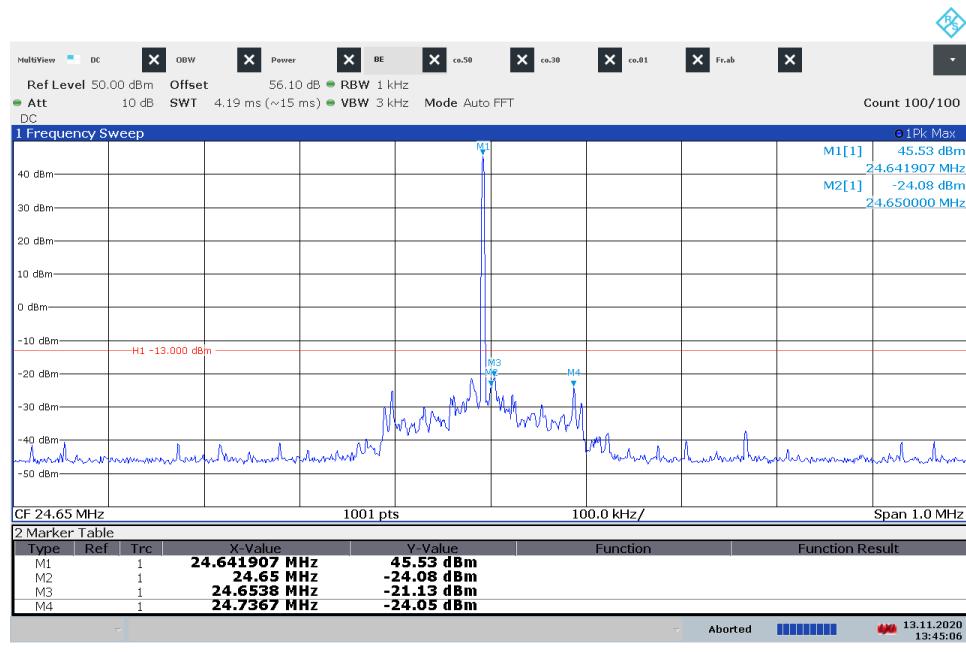
26.20 to 26.42 MHz Mode, 9 - 150 kHz



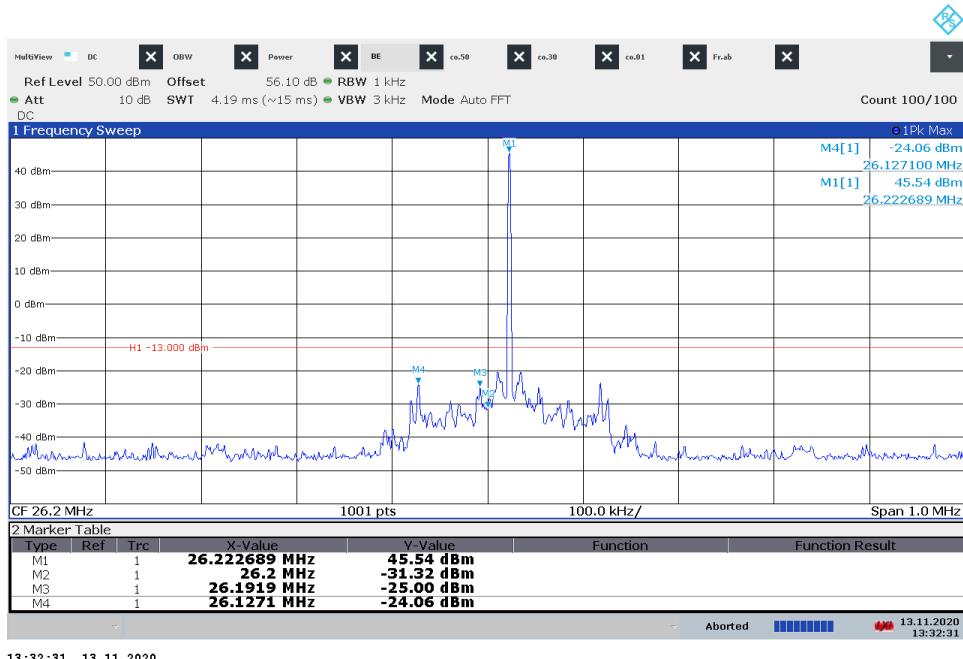
26.20 to 26.42 MHz Mode, 150 kHz to 30 MHz

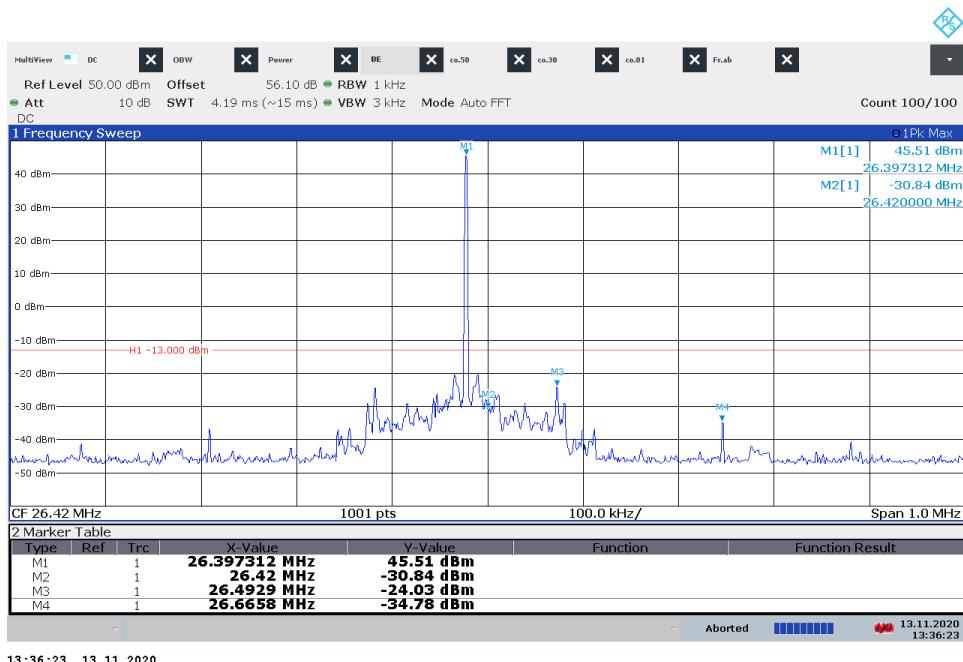

*Marker M1 is the fundamental signal.

26.20 to 26.42 MHz Mode, 30 MHz – 1 GHz



8.5.2. BANDEDGE


24.45 to 24.65 MHz Mode, Low End


24.45 to 24.65 MHz Mode, High End

26.20 to 26.42 MHz Mode, Low End

26.20 to 26.42 MHz Mode, High End

8.6. TX RADIATED SPURIOUS EMISSIONS

RULE PARTS

§2.1057 (a) (1) In all of the measurements set forth in §§2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental freq = $10 * (26.42 \text{ MHz}) = 264.2 \text{ MHz}$
Thus, the spurious emission is investigated from 9 kHz to 1 GHz.

LIMIT

§ 90.210 (n) Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b) Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT = 46 dBm (40 W)

Applicable Peak Limit: $46 - (43 + 10 \log (46)) = 46 - 59 = -13 \text{ dBm}$

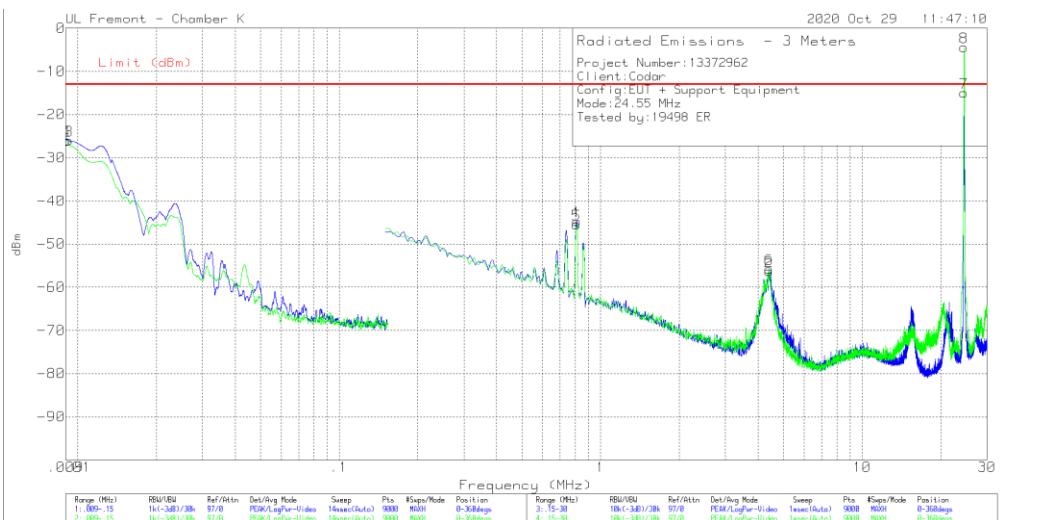
TEST PROCEDURE

ANSI C63.26-2015 Clause 5.5.4

Below 30 MHz spurious emission testing was performed in chamber other than open area test site. Adequate comparison measurements were confirmed against 30 meter open area test site and sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

RADIATED EMISSION

Where relevant, the following sample calculations are provided:


EIRP (dBm) = Meter Reading (dBuV) + Antenna Factor (dB/m) + Pre-Amp Gain/Cbl Loss (dB)
+ dBuV-to-dBm Unit Conversion Factor @ 3m
= 34.27 dBm + 48.3 dB/m + (-32.2) dB + (-95.2)
= -44.83 dBm

EIRP (dBm) = Meter Reading (dBm) + Antenna Factor (dB/m) + Pre-Amp Gain/Cbl Loss (dB)
+ dBm-to-dBm Unit Conversion Factor @ 3m
= -60 dBm + 28 dB/m + (-27) dB + 11.7
= -48.3 dBm

RESULTS

Employee ID: 19498
Location: Chamber K
Test Date: 10/29/2020

24.45 – 24.65 MHz Mode, 9 kHz to 30 MHz

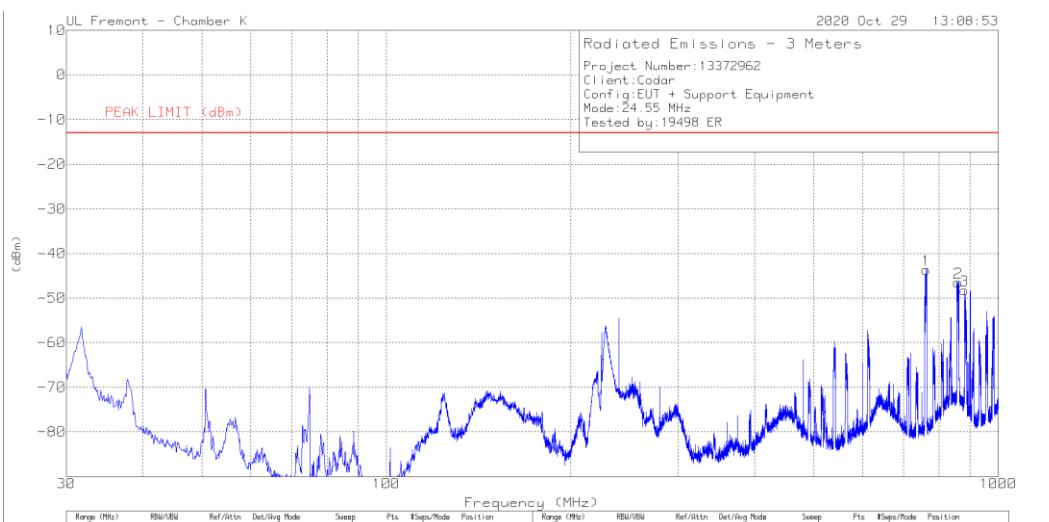
24.55MHz_Below_30MHz.DAT Jm4163 28 Oct 2020

Rev. 9.5 30 Apr. 2020

Trace Markers Pre-scan

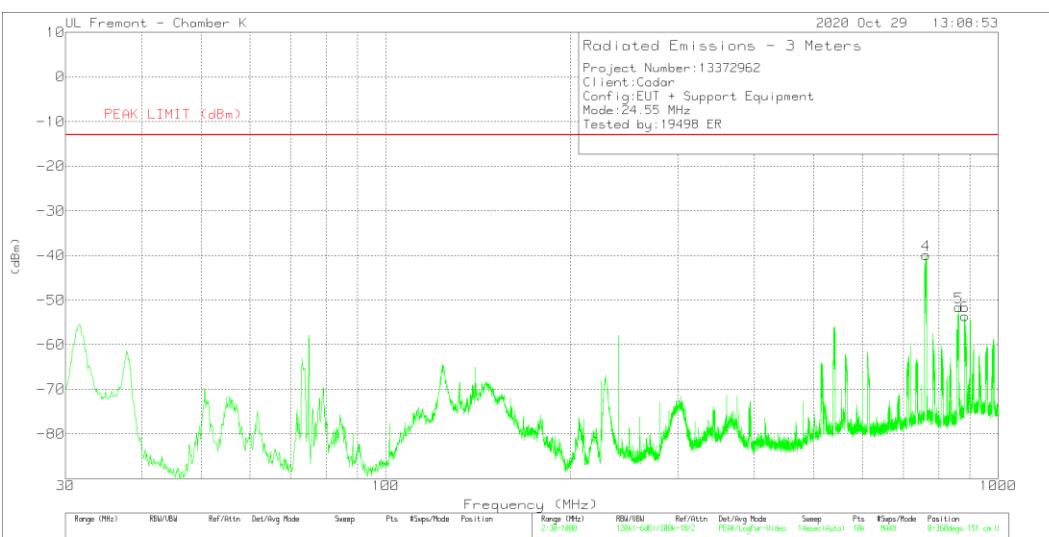
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion @ 3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
3	.00927	39.68	Pk	60.8	-31.3	-95.2	-26.02	-13	-13.02	0-360	On
4	.00905	39.3	Pk	61	-31.3	-95.2	-26.2	-13	-13.2	0-360	Off
1	.81008	34.38	Pk	48.3	-32.2	-95.2	-44.72	-13	-31.72	0-360	On
2	4.41235	34.25	Pk	36.7	-32	-95.2	-56.25	-13	-43.25	0-360	On
7*	24.5399	77.71	Pk	34.1	-31.6	-95.2	-14.99	--	--	0-360	On
5	.80677	33.65	Pk	48.3	-32.2	-95.2	-45.45	-13	-32.45	0-360	Off
6	4.41235	34.69	Pk	36.7	-32	-95.2	-55.81	-13	-42.81	0-360	Off
8*	24.46693	88.27	Pk	34.1	-31.6	-95.2	-4.43	--	--	0-360	Off

Pk - Peak detector


Note: Marker 7 & 8 are the leakage of fundamental signals.

Radiated Emissions Final Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion @ 3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
3	.01101	39.4	Pk	60	-31.4	-95.2	-27.2	-13	-14.2	309	On
4	.01098	36.4	Pk	60	-31.4	-95.2	-30.2	-13	-17.2	9	Off
1	.81124	33.87	Pk	48.3	-32.2	-95.2	-45.23	-13	-32.23	181	On
2	4.41902	35.44	Pk	36.7	-32	-95.2	-55.06	-13	-42.06	322	On
5	.80921	33.9	Pk	48.3	-32.2	-95.2	-45.2	-13	-32.2	245	Off
6	4.41982	31.37	Pk	36.7	-32	-95.2	-59.13	-13	-46.13	37	Off


Pk - Peak detector

24.45 – 24.65 MHz Mode, 30 to 1000 MHz

FCC Part 90F 30-1000 MHz Tx: Cedar- TST 02978 22 Aug 2019

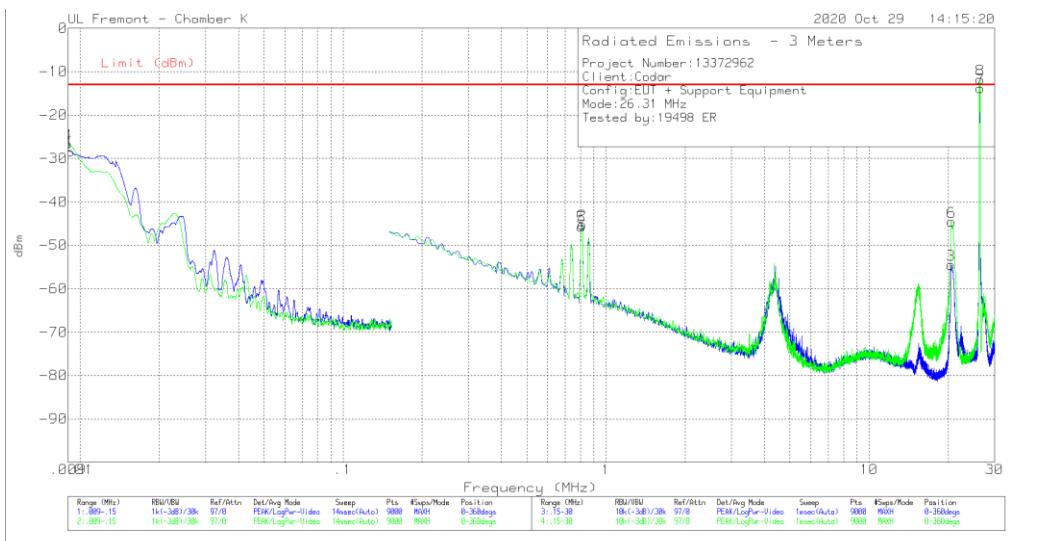
Rev. 9.5 30 Apr. 2020

FCC Part 90F 30-1000 MHz Tx: Cedar- TST 02978 22 Aug 2019

Rev. 9.5 30 Apr. 2020

Trace Markers
Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	AF 81560 (dB/m)	Amp/Cbl (dB)	Unit Conversion @ 3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	762.835	-47.32	Pk	27.3	-28.1	11.7	-36.42	-13	-23.42	0-360	151	H
2	859.738	-57.38	Pk	28.3	-27.4	11.7	-44.78	-13	-31.78	0-360	151	H
3	880.496	-57.38	Pk	28.2	-27.3	11.7	-44.78	-13	-31.78	0-360	151	H
4	762.35	-47.03	Pk	27.3	-28.1	11.7	-36.13	-13	-23.13	0-360	151	V
5	862.648	-59.16	Pk	28.3	-27.4	11.7	-46.56	-13	-33.56	0-360	151	V
6	881.757	-62.26	Pk	28.3	-27.2	11.7	-49.46	-13	-36.46	0-360	151	V


Pk - Peak detector

Radiated Emissions
Final Data

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	AF 81560 (dB/m)	Amp/Cbl (dB)	Unit Conversion @ 3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	764.0977	-44.17	Pk	27.3	-28.1	11.7	-33.27	-13	-20.27	37	117	H
2	862.5752	-54.97	Pk	28.3	-27.4	11.7	-42.37	-13	-29.37	323	161	H
3	880.836	-56.77	Pk	28.3	-27.2	11.7	-43.97	-13	-30.97	317	158	H
4	763.992	-46.18	Pk	27.3	-28.1	11.7	-35.28	-13	-22.28	275	173	V
5	862.693	-58.41	Pk	28.3	-27.4	11.7	-45.81	-13	-32.81	286	142	V
6	880.432	-61.01	Pk	28.2	-27.3	11.7	-48.41	-13	-35.41	289	129	V

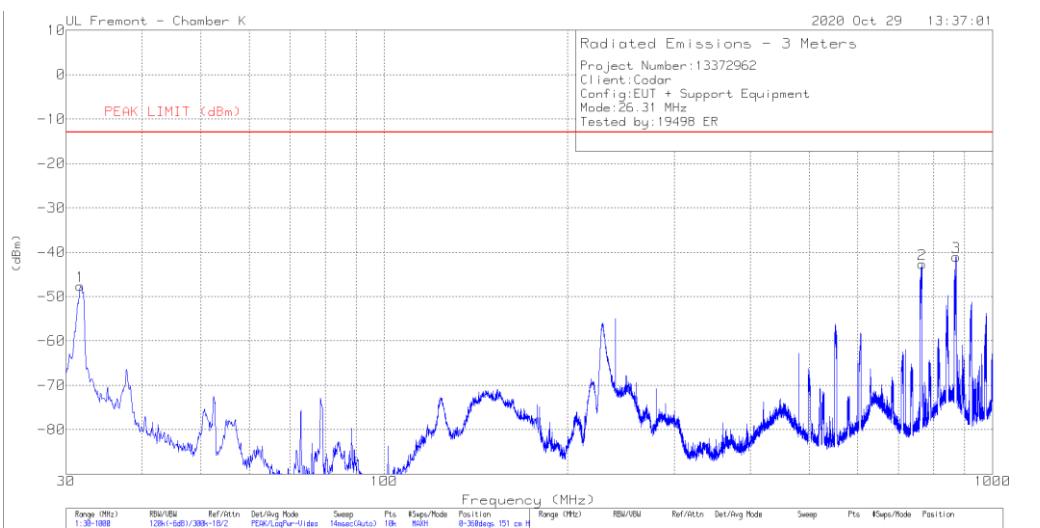
Pk - Peak detector

26.20 to 26.42 MHz Mode, 9 kHz to 30 MHz

Trace Markers Pre-scan

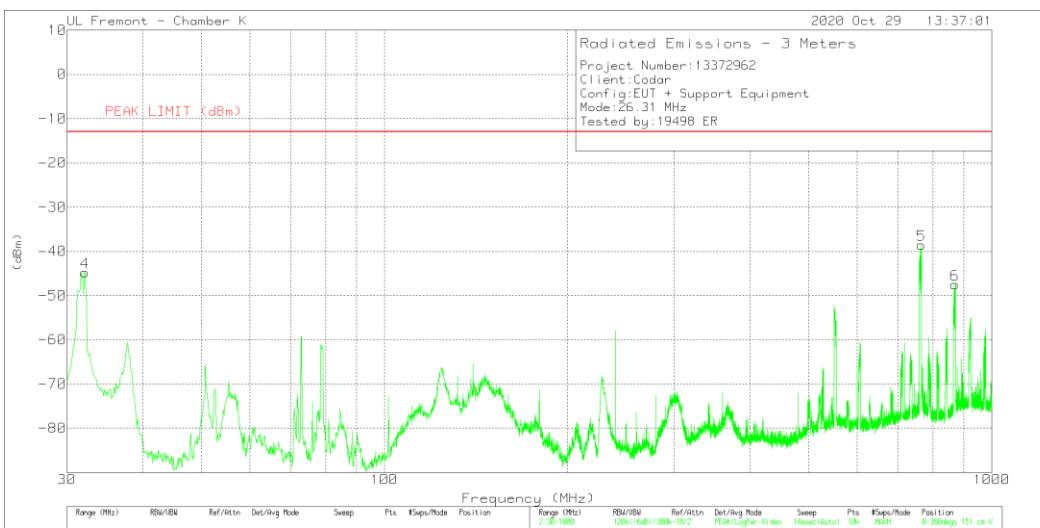
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion @3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
1	.00919	37.19	Pk	60.9	-31.3	-95.2	-28.41	-13	-15.41	0-360	On
4	.00902	38.72	Pk	61.1	-31.3	-95.2	-26.68	-13	-13.68	0-360	Off
2	.81008	33.92	Pk	48.3	-32.2	-95.2	-45.18	-13	-32.18	0-360	On
3	20.52467	38.27	Pk	34	-31.6	-95.2	-54.53	-13	-41.53	0-360	On
7*	26.41732	79.01	Pk	34	-31.6	-95.2	-13.79	--	--	0-360	On
5	.80677	33.45	Pk	48.3	-32.2	-95.2	-45.65	-13	-32.65	0-360	Off
6	20.54955	48.27	Pk	34	-31.6	-95.2	-44.53	-13	-31.53	0-360	Off
8*	26.40074	81.02	Pk	34	-31.6	-95.2	-11.78	--	--	0-360	Off

Pk - Peak detector


Note: Marker 7 & 8 are the leakage of fundamental signals.

Radiated Emissions Final Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion @3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
1	.01115	39.99	Pk	60	-31.4	-95.2	-26.61	-13	-13.61	308	On
4	.01114	37.24	Pk	60	-31.4	-95.2	-29.36	-13	-16.36	357	Off
3	20.4938	38.84	Pk	34	-31.6	-95.2	-53.96	-13	-40.96	212	On
2	.81076	34.89	Pk	48.3	-32.2	-95.2	-44.21	-13	-31.21	291	On
6	20.5109	49.48	Pk	34	-31.6	-95.2	-43.32	-13	-30.32	278	Off
5	.80969	34.61	Pk	48.3	-32.2	-95.2	-44.49	-13	-31.49	57	Off


Pk - Peak detector

26.20 – 26.42 MHz Mode, 30 to 1000 MHz

FCC Part 90F 30-1000 MHz Tx Cedar TST 02970 22 Aug 2019

Rev. 9.5 30 Apr 2023

FCC Part 90F 30-1000 MHz Tx Cedar TST 02970 22 Aug 2019

Rev. 9.5 30 Apr 2023

Trace Markers
Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	AF 81560 (dB/m)	Amp/Cbl (dB)	Unit Conversion @ 3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	31.649	-57.43	Pk	26.7	-31.6	11.7	-50.63	-13	-37.63	0-360	151	H
2	765.745	-46.61	Pk	27.4	-28.1	11.7	-35.61	-13	-22.61	0-360	151	H
3	870.699	-51.26	Pk	28.4	-27.3	11.7	-38.46	-13	-25.46	0-360	151	H
4	32.134	-43.75	Pk	26.4	-31.6	11.7	-37.25	-13	-24.25	0-360	151	V
5	766.036	-45.88	Pk	27.4	-28.1	11.7	-34.88	-13	-21.88	0-360	151	V
6	870.505	-55.66	Pk	28.4	-27.3	11.7	-42.86	-13	-29.86	0-360	151	V

Pk - Peak detector

Radiated Emissions
Final Data

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	AF 81560 (dB/m)	Amp/Cbl (dB)	Unit Conversion @ 3m	Corrected Reading (dBm)	Peak Limit (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	32.1114	-53.92	Pk	26.4	-31.6	11.7	-47.42	-13	-34.42	166	337	H
2	765.465	-43.8	Pk	27.4	-28.1	11.7	-32.8	-13	-19.8	37	123	H
3	870.954	-51.09	Pk	28.4	-27.3	11.7	-38.29	-13	-25.29	320	151	H
4	31.823	-40.72	Pk	26.6	-31.6	11.7	-34.02	-13	-21.02	69	98	V
5	766.081	-45.77	Pk	27.4	-28.1	11.7	-34.77	-13	-21.77	270	167	V
6	871.314	-55.67	Pk	28.4	-27.2	11.7	-42.77	-13	-29.77	294	127	V

Pk - Peak detector