

Page 1 of 53 Report No.: EED32P80467601

TEST REPORT

Product Rais2.1 Base Station

Trade mark N/A

Model/Type reference Rais2.1

N/A **Serial Number**

Report Number EED32P80467601 FCC ID 2AVOR-BASE423

Date of Issue Jun. 08, 2023

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

Retail Aware, Inc

808 Conagra Dr; Ste 401; Omaha, Ne 68102

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by:

Report Seal

Reviewed by:

Tom Chen

Frazer Li

Date of issue:

Jun. 08, 2023

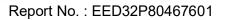
Aaron Ma

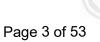
Check No.: 8012060423

Report No.: EED32P80467601

Content

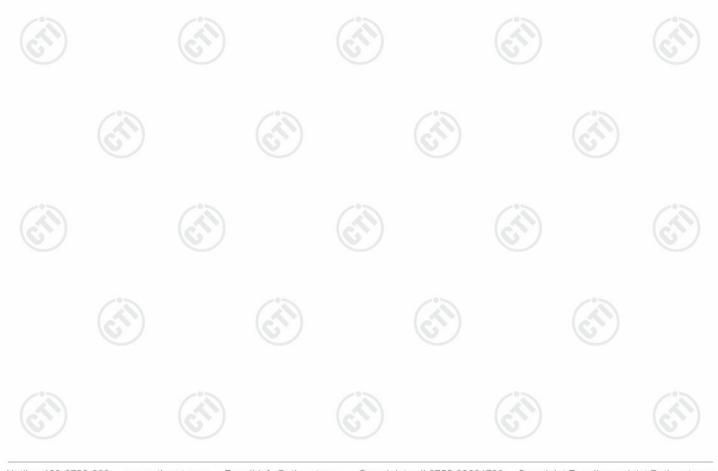
1 COVER PAGE			1
2 CONTENT			
3 VERSION			3
4 TEST SUMMARY			4
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION			6
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREMENT DAT	ГА		11
7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENSITY 7.6 BAND EDGE MEASUREMENTS AND CONDUCTOR RADIATED SPURIOUS EMISSION & RESTRIC	TED SPURIOUS EMISSION		
8 APPENDIX :DTS			29
9 PHOTOGRAPHS OF TEST SETUP			30
10 PHOTOGRAPHS OF EUT CONSTRUCTION	NAL DETAILS	W/	32





3 Version

Version No.	Date	Description		
00	Jun. 08, 2023 Origin		inal	
	(*)	Con		
(6,70)	(%)	(0,5)	(6	


Report No. : EED32P80467601 Page 4 of 53

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Report No. : EED32P80467601 Page 5 of 53

5 General Information

5.1 Client Information

Applicant:	Retail Aware, Inc
Address of Applicant:	808 Conagra Dr ; Ste 401 ; Omaha, Ne 68102
Manufacturer:	Retail Aware, Inc
Address of Manufacturer:	808 Conagra Dr ; Ste 401 ; Omaha, Ne 68102
Factory:	Retail Aware, Inc
Address of Factory:	808 Conagra Dr ; Ste 401 ; Omaha, Ne 68102

5.2 General Description of EUT

Product Name:	Rais2.1 Bas	se Station	(c'')	(0,1)	
Mode No.(EUT):	Rais2.1				
Trade mark:	N/A				
Product Type:	☐ Mobile	☐ Portable			
Device Type:	DTS	(6,7,2)	(6,2)		(62)
Operation Frequency:	902 MHz~9	28MHz			
Center Frequency:	914.88 MHz	<u>.</u>			
Number of Channel:	1		C*S	/°>	
Antenna Type:	External and	tenna			
Antenna Gain:	5.0dBi				
Power Supply:	Adapter:	AC 100-240	V~50/60Hz 0.25A		
Test Voltage:	AC 120V/60)Hz	(3)		(3)
Sample Received Date:	Apr. 06, 202	23	(6,7,2)		(6,7)
Sample tested Date:	Apr. 06, 202	23 to Apr. 22, 20	023		

Operation Frequency each of channel

Channel	Frequency
Only Channel	914.88 MHz

Report No. : EED32P80467601 Page 6 of 53

5.3 Test Configuration

EUT Test Software Setti	ngs:
Software:	RF test
EUT Power Grade:	Default (Power level is built-in set parameters and cannot be changed and selected)
	mit in a worse-case scenario with modulation on. For duty cycle, the highest sed. For other transmitter testes, the transmitter was set to transmit continuously.

5.4 Test Environment

Operating Environment	:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	-0-		~ ~	
RF Conducted:					
Temperature:	22~25.0 °C			(a)	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar		526		530

Report No. : EED32P80467601 Page 7 of 53

5.5 Description of Support Units

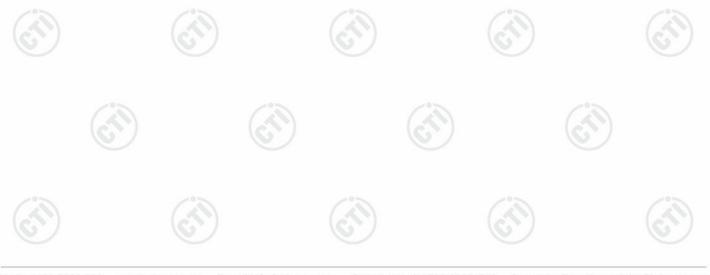
The EUT has been tested with associated equipment below. support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
	1 7			1

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
	DE verify soudinated	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No.: EED32P80467601 Page 8 of 53

6 Equipment List

RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(i)	(4)	

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-06-2022	05-05-2023
Temperature/ Humidity Indicator	Defu	TH128	/	_: <u></u>	
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023
Barometer	changchun	DYM3	1188		
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	07-13-2022	07-12-2023
ISN	TESEQ	ISN T800	30297	01-04-2022	12-29-2023

Page 9 of 53 Report No.: EED32P80467601

			(3)				
	3M Semi-and	echoic Chamber (2)	- Radiated disturb	pance Test			
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date		
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025		
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023		
Spectrum Analyzer	R&S	FSV40	101200	07/29/2022	07/28/2023		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024		
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/23/2022	12/23/2023		
Horn Antenna	A.H.SYSTEMS	SAS-574	374	05/29/2021	05/28/2024		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024		
Preamplifier	Agilent	11909A	12-1	03/28/2023	03/27/2024		
Preamplifier	CD	PAP-1840-60	6041.6042	07/05/2022	07/04/2023		
Cable line	Fulai(7M)	SF106	5219/6A				
Cable line	Fulai(6M)	SF106	5220/6A	(<u> </u>		
Cable line	Fulai(3M)	SF106	5216/6A		<u> </u>		
Cable line	Fulai(3M)	SF106	5217/6A	~~~~	/		

Report No. : EED32P80467601 Page 10 of 53

					10.	
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic JS Tonscend test software		JS36-RSE	10166		6	
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022 04-13-2023	04-19-2023 04-12-2024	
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023	
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023	
Temperature/	biaozhi	GM1360	EJ1611457	02-15-2023	02-14-2024	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	·	/0	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(61)	(6)	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	/		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(<u>(3)</u>	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		- /3	
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(6)	

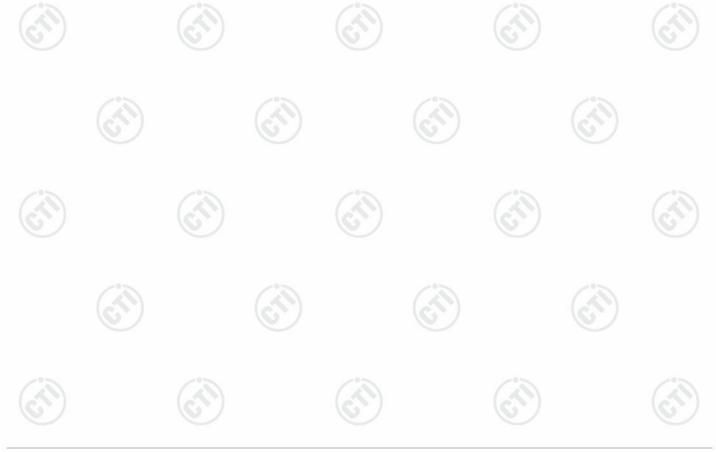
Report No. : EED32P80467601 Page 11 of 53

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

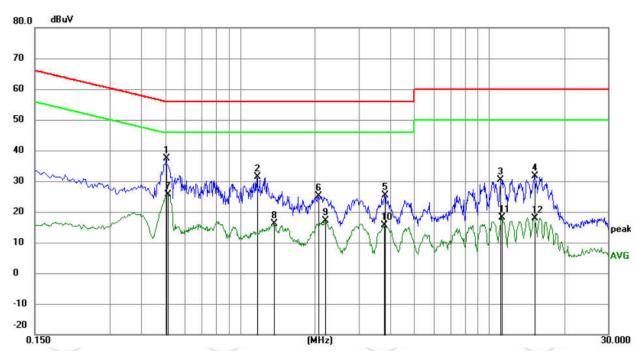
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is External antenna. The best case gain of the antenna is 5.0dBi.

Report No. : EED32P80467601 Page 12 of 53

7.2 Conducted Emissions


	7.2 Gondacted Enne	0.010	6.7		
	Test Requirement:	47 CFR Part 15C Section 15.2	207		
	Test Method:	ANSI C63.10: 2013			
	Test Frequency Range:	150kHz to 30MHz			
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto		
0.7	Limit:	F (A41 I=)	Limit (d	lBuV)	10
7		Frequency range (MHz)	Quasi-peak	Average	(()
_		0.15-0.5	66 to 56*	56 to 46*	
		0.5-5	56	46	7
		5-30	60	50	7
		* Decreases with the logarithm	n of the frequency.	700	_
	Test Setup:				1
- N		Shielding Room EUT AC Mains LISN1	AE LISN2 AC Mai	Test Receiver	5)
	Test Procedure:	The mains terminal disturb		conducted in a shi	ioldod
1 2 A.	rest i locedure.	room. 2) The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was pla ground reference plane. A placed on the horizontal gr 4) The test was performed with the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and bon mounted on top of the ground the closest points of the L and associated equipment in order to find the maximuland all of the interface calcalcalcalcalcalcalcalcalcalcalcalcalc	to AC power source etwork) which provides cables of all other SN 2, which was bonde as the LISN 1 for the was used to connect rating of the LISN was need upon a non-metand for floor-standing around reference plane. The a vertical ground reference plane was bonded to a ground refund reference plane. The LISN 1 and the EUT. A was at least 0.8 m frorum emission, the relativations of the standard of the changed as the standard of the changed as the standard of t	through a LISN 1 is a 50Ω/50μH + 5Ω units of the EUT d to the ground reference unit being measur multiple power cable not exceeded. Ilic table 0.8m above rangement, the EUT erence plane. The result of the horizontal grown the boundary derence plane for 1 in the LISN 2. The result of the matter than the LISN 2. The second requirements of the matter than the LISN 2.	(Line linear were rence red. A s to a re the T was ear of the LISNs tween e EUT
	Test Mode:	Transmitting			
	Test Results:	Pass			

Page 13 of 53 Report No.: EED32P80467601

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.5055	27.47	9.96	37.43	56.00	-18.57	QP	
2		1.1715	21.49	9.82	31.31	56.00	-24.69	QP	
3		11.1345	20.56	9.81	30.37	60.00	-29.63	QP	
4		15.2160	21.79	9.93	31.72	60.00	-28.28	QP	
5		3.8040	15.70	9.78	25.48	56.00	-30.52	QP	
6		2.0579	15.32	9.79	25.11	56.00	-30.89	QP	
7		0.5144	15.64	9.97	25.61	46.00	-20.39	AVG	
8		1.3695	6.20	9.82	16.02	46.00	-29.98	AVG	8
9		2.1929	7.35	9.79	17.14	46.00	-28.86	AVG	
10		3.7950	5.80	9.78	15.58	46.00	-30.42	AVG	
11		11.2065	8.37	9.82	18.19	50.00	-31.81	AVG	
12		15.2160	8.03	9.93	17.96	50.00	-32.04	AVG	6

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line: dBuV 80.0 70 60 50 40 30 20 10 AVG 0 -10 -20 0.150 (MHz) 30.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.5190	30.97	9.97	40.94	56.00	-15.06	QP	
2		0.6765	25.24	9.92	35.16	56.00	-20.84	QP	
3		10.2435	22.11	9.79	31.90	60.00	-28.10	QP	
4		15.6795	22.27	9.94	32.21	60.00	-27.79	QP	
5		2.8500	18.51	9.79	28.30	56.00	-27.70	QP	
6		1.0590	23.20	9.83	33.03	56.00	-22.97	QP	
7		0.5055	19.30	9.96	29.26	46.00	-16.74	AVG	
8		0.6270	13.65	10.02	23.67	46.00	-22.33	AVG	
9		1.0320	11.47	9.83	21.30	46.00	-24.70	AVG	
10		2.8320	6.06	9.79	15.85	46.00	-30.15	AVG	
11		10.9409	10.60	9.81	20.41	50.00	-29.59	AVG	
12		15.6795	10.89	9.94	20.83	50.00	-29.17	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

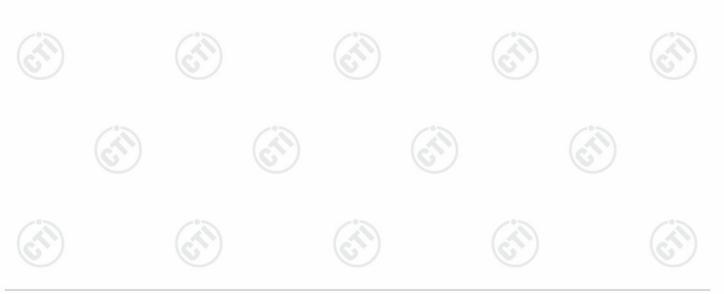
7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power Supply Power Port Port Table EUT Control Control System System Attenuator Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	(0,0)
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	(64)
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix DTS	

Report No. : EED32P80467601 Page 16 of 53

7.4 DTS Bandwidth

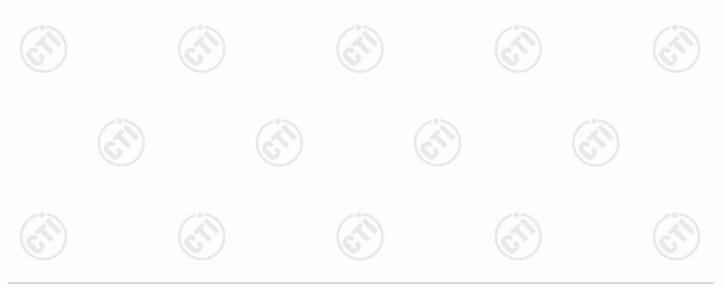
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Congrues Power port TEMPERATURE CABRIET RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix DTS



Report No. : EED32P80467601 Page 17 of 53

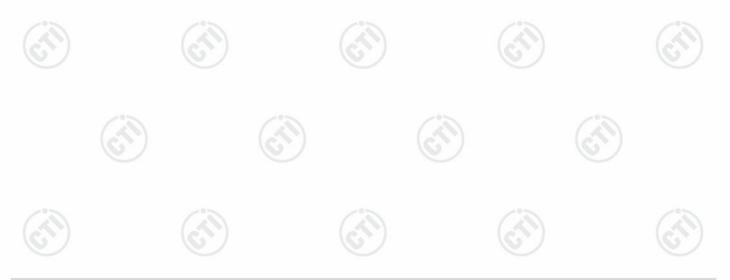
7.5 Maximum Power Spectral Density

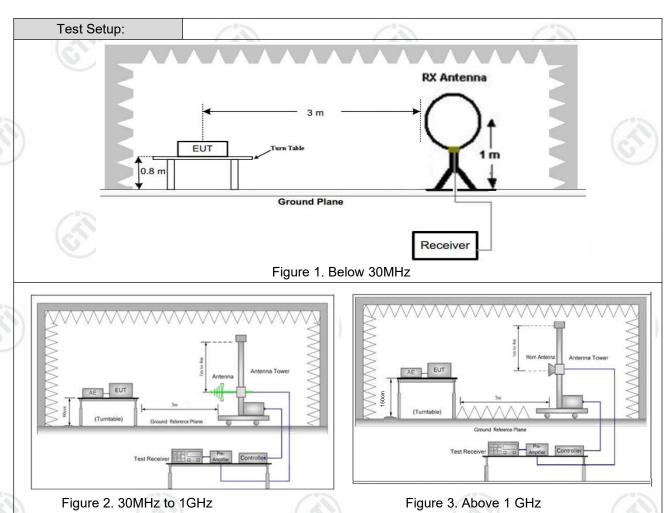
Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power Supply Power For Table RF test System System Instrument Table	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = RMS. f) Sweep time = auto couple. g) Trace mode = average. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amp within the RBW. j) If measured value exceeds requirement, then reduce RBW (buthan 3 kHz) and repeat. 	litude level
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix DTS	



7.6 Band Edge measurements and Conducted Spurious Emission

	(6,0)	
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10 2013
27007	Test Setup:	Control Compute Control Compute Actenna Power Supply Figure Table RF test System System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = RMS. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
27400	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix DTS

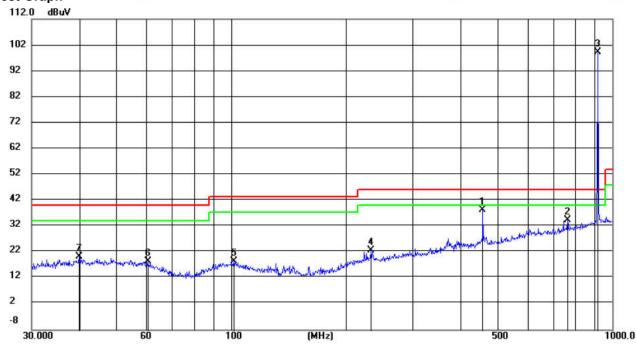



7.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	6				
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance	: 3m	(Semi-Anech	noic Cham	ber)	-570			
Receiver Setup:	Frequency	11	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak			
	Abovo 1CHz		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10kHz	Average				
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m			
	0.009MHz-0.490MHz	2400/F(kHz)		-	-/05	300			
	0.490MHz-1.705MHz	24	000/F(kHz)	-	(8)	30			
	1.705MHz-30MHz		30	-	16	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz	6	200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz	Above 1GHz 500		54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	B above the i	maximum est. This p	permitted av	erage emissior			

Report No.: EED32P80467601 Page 21 of 53

Test Procedure:	meters above the ground was rotated 360 degree radiation. 2) Above 1G: The EUT meters above the ground	at a 3 meter semi- es to determine the was placed on the at a 3 meter semi- es to determine the	top of a rotating table 0.8 anechoic camber. The table ne position of the highes top of a rotating table 1.8 anechoic camber. The table ne position of the highes GHz:
	determined to be a source distance, while keeping to of emissions at each frequence oriented for maximum reto be higher or lower than the emission and staying maximum signal. The final which maximizes the emfor maximum emissions of 1 m to 4 m above the group. b. The EUT was set 3 mantenna, which was more	ce of emissions at the measurement a uency of significant sponse. The measurement aimed at the emissions. The measurement and inssions. The measurement are that or reference grameters away from	the specified measurement the specified measurement antenna aimed at the source emissions, with polarization urement antenna may have agon the radiation pattern of source for receiving the tenna elevation shall be that surement antenna elevation a range of heights of from bound plane. The interference-receiving for a variable-height antenna
	ground to determine the horizontal and vertical pomeasurement.	e maximum value blarizations of the a	er to four meters above the of the field strength. Both ntenna are set to make the
	the test frequency of belo meter) and the rotatable degrees to find the maxim	s tuned to heights for low 30MHz, the ante e table was turne num reading.	rom 1 meter to 4 meters (fo enna was tuned to heights of d from 0 degrees to 360
	limit specified, then testin EUT would be reported. (n Hold Mode. he EUT in peak mod ng could be stopped Otherwise the emiss hted one by one	de was 10dB lower than the l and the peak values of the sions that did not have 10dE using peak, quasi-peak o
	(2440MHz),the Highest cl	hannel (2480MĤz) ents are performed	o2MHz),the middle channe in X, Y, Z axis positioning s positioning which it is the
	i. Repeat above procedures	s until all frequencie	s measured was complete.
Test Mode:	Refer to clause 5.3	-0-	
Test Results:	Pass	(41)	
10.0.7	1607	6.7	1602



Page 22 of 53 Report No.: EED32P80467601

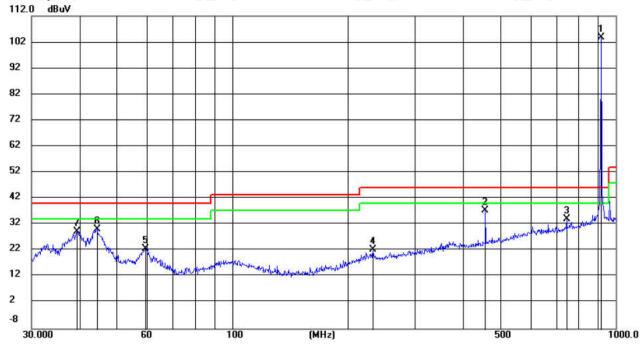
Radiated Spurious Emission below 1GHz:

Horizontal:

Test Graph

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		457.5073	17.60	20.63	38.23	46.00	-7.77	peak	100	226	
2		763.3757	8.68	25.78	34.46	46.00	-11.54	peak	200	39	
3	*	916.0686	70.89	28.49	99.38	46.00	53.38	peak	100	237	
4		233.3486	7.81	14.93	22.74	46.00	-23.26	peak	200	356	
5		101.6443	4.60	13.81	18.41	43.50	-25.09	peak	200	356	
6		60.4918	5.08	13.39	18.47	40.00	-21.53	peak	200	244	
7		39.9942	5.87	14.53	20.40	40.00	-19.60	peak	200	356	

- 1.Margin=Measurement-Limit;
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The test data of NO. 3 point is fundamental wave.



Page 23 of 53 Report No.: EED32P80467601

Vertical:

Test Graph

		NAC I-			ment	Limit	Margin		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	916.0686	75.21	28.49	103.70	46.00	57.70	peak	100	80	
2		457.5073	16.93	20.63	37.56	46.00	-8.44	peak	100	356	
3		744.8660	8.71	25.48	34.19	46.00	-11.81	peak	100	356	
4		232.5318	7.59	14.91	22.50	46.00	-23.50	peak	100	356	
5		59.4405	9.10	13.60	22.70	40.00	-17.30	peak	100	177	
6		44.4307	15.91	14.41	30.32	40.00	-9.68	peak	100	356	
7		39.4371	15.07	14.43	29.50	40.00	-10.50	peak	100	15	

- 1.Margin=Measurement-Limit;
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The test data of NO. 1 point is fundamental wave.

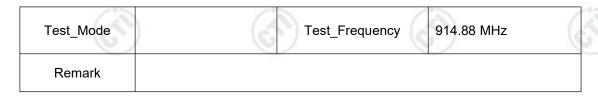
Report No.: EED32P80467601 Page 24 of 53

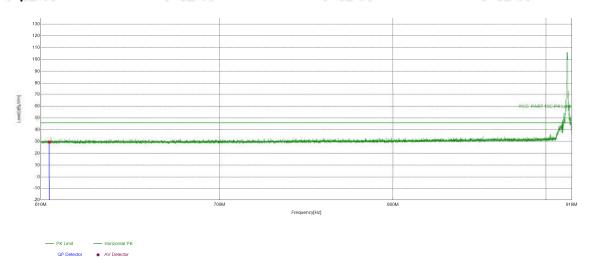
Radiated Spurious Emission above 1GHz:

	7 20 30 1						044.00.0411		
Mode) :		Single RF source	ces		Channel:		914.88 M	Hz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1011.2007	-25.40	63.74	38.34	74.00	35.66	Pass	Н	PK
2	1829.7887	-24.54	60.38	35.84	74.00	38.16	Pass	Н	PK
3	2745.4497	-22.09	70.60	48.51	74.00	25.49	Pass	Н	PK
4	3312.0208	-20.43	59.98	39.55	74.00	34.45	Pass	Н	PK
5	6403.4269	-12.89	59.43	46.54	74.00	27.46	Pass	Н	PK
6	10065.1377	-7.23	57.16	49.93	74.00	24.07	Pass	Н	PK
7	1125.075	-26.75	60.64	33.89	74.00	40.11	Pass	V	PK
8	2745.4497	-22.09	72.87	50.78	74.00	23.22	Pass	V	PK
9	3312.0208	-20.43	61.17	40.74	74.00	33.26	Pass	V	PK
10	4573.9716	-16.88	61.07	44.19	74.00	29.81	Pass	V	PK
11	6405.2937	-12.89	62.72	49.83	74.00	24.17	Pass	V	PK
12	8232.8822	-11.05	56.23	45.18	74.00	28.82	Pass	V	PK

	Mode:			Mu	ıltiple RF sou	rces	Channel:		914.88 MHz+2.4G WiFi+IOT module		
	NO	Freq. [MHz]	Facto [dB]	r	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1372.8373	1.30		40.29	41.59	74.00	32.41	Pass	Н	PK
	2	1829.683	3.51		45.15	48.66	74.00	25.34	Pass	Н	PK
ĺ	3	2794.1794	5.72		44.16	49.88	74.00	24.12	Pass	Н	PK
	4	4824.1216	-16.22	-	65.30	49.08	74.00	24.92	Pass	Н	PK
	5	6406.2271	-12.85	5	60.04	47.19	74.00	26.81	Pass	Н	PK
ſ	6	10066.4711	-7.08		58.08	51.00	74.00	23.00	Pass	Н	PK
	7	1226.8227	0.87		39.22	40.09	74.00	33.91	Pass	V	PK
Ī	8	1879.2879	3.87		48.24	52.11	74.00	21.89	Pass	V	PK
T	9	2744.3744	5.55		45.07	50.62	74.00	23.38	Pass	V	PK
	10	4824.1216	-16.22	2	68.33	52.11	74.00	21.89	Pass	V	PK
Ī	11	6406.2271	-12.85	,	63.98	51.13	74.00	22.87	Pass	V	PK
3	12	8236.3491	-10.98	3	59.71	48.73	74.00	25.27	Pass	V	PK

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



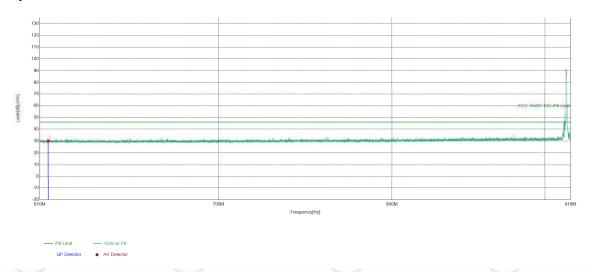


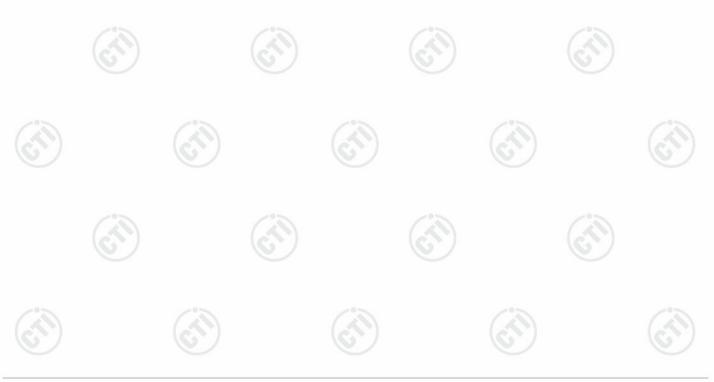
Restricted bands:


Test plot as follows:

Test Graph

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	614	-8.49	38.10	29.61	46.00	16.39	PASS	Horizontal	PK		

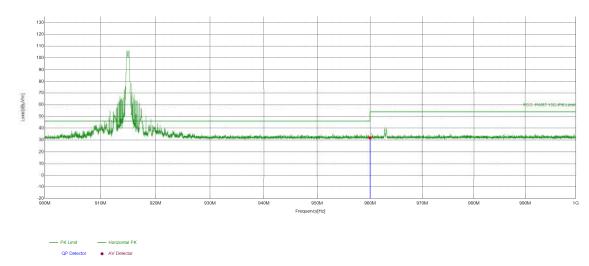


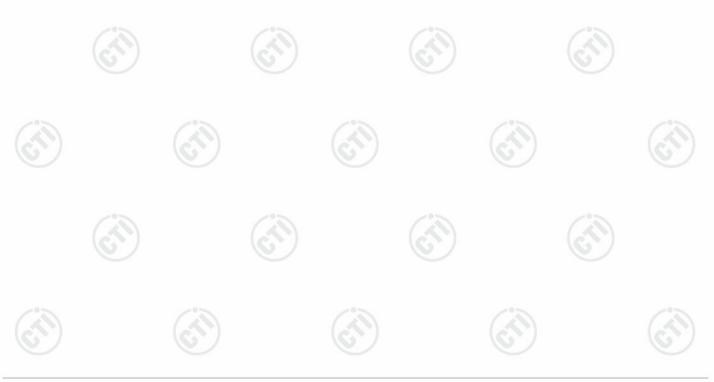

Page 26 of 53 Report No.: EED32P80467601

Test_Mode		Test_Frequency	914.88 MHz
Remark	0	(8)	

Test Graph

	Suspected List									
121	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	614	-8.49	38.76	30.27	46.00	15.73	PASS	Vertical	PK

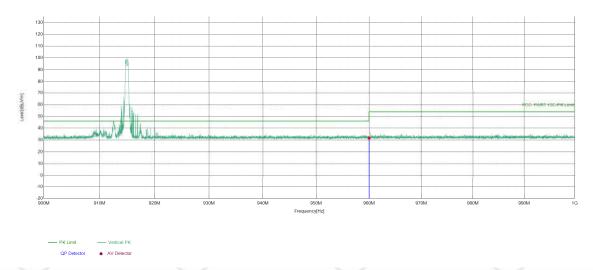



Report No.: EED32P80467601

Test_Mode	(6)	Test_Frequency	914.88 MHz
Remark	0	(6)	

Test Graph

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	960	-4.37	36.28	31.91	54.00	22.09	PASS	Horizontal	PK		


Page 27 of 53

Report No.: EED32P80467601 Page 28 of 53

Test_Mode	(6)	Test_Frequency	914.88 MHz
Remark	0	(6)	

Test Graph

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	960	-4.37	36.07	31.70	54.00	22.30	PASS	Vertical	PK		

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Refer to Appendix: DTS of EED32P80467601

