Testing the Future

Nalloy, LLC

REVISED TEST REPORT FOR 107941-30

YRPOR7

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (HYBRID 902-928MHz)

Report No.: 107941-30A

Date of issue: January 5, 2024

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 51 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	9
15.247(a) Transmitter Characteristics	9
15.247(a)(1)(i) 20 dB Bandwidth	9
15.247(a)(1) Carrier Separation	12
15.247(a)(1)(i) Number of Hopping Channels	13
15.247(b)(2) Output Power	15
15.247(d) Radiated Emissions & Band Edge	21
15.247 (f) Hybrid Systems Time of Occupancy	35
15.247 (f) Hybrid Systems Power Spectral Density	37
15.207 AC Conducted Emissions	42
Appendix A – Antenna gain	49
Supplemental Information	50
Measurement Uncertainty	50
Emissions Tost Datails	EU

Page 2 of 51 Report No.: 107941-30A

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Nalloy, LLC
2301 5th Avenue
CKC Laboratories, Inc.
Seattle, WA 98108
5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Naga Suryadevara Project Number: 107941

Customer Reference Number: 2D-10266822

DATE OF EQUIPMENT RECEIPT:March 14, 2021DATE(S) OF TESTING:March 14 & 21, 2021

January 19, 2023 & March 13, 2023

Revision History

Original: Testing of the YRPOR7 to 15.207 & 15.247(HYBRID 902-928MHz).

Revision A: Updated antenna gain information.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Belon

Page 3 of 51 Report No.: 107941-30A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

 $[\]hbox{*CKC's list of NIST designated countries can be found at: $https://standards.gov/cabs/designations.html}$

Page 4 of 51 Report No.: 107941-30A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (Hybrid 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	NA1
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NA2
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.247 (f)	Hybrid Systems Time of Occupancy	NA	Pass
15.247 (f)	Hybrid Systems Power Spectral Density	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NA1 = This test is not applicable under Hybrid System requirements section 15.247 (f)

NA2 = The manufacturer declares the EUT does not have a conducted port.

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions	orial tions notice to the equipment during testing.
None	

Page 5 of 51 Report No.: 107941-30A

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC.	YRPOR7	None

Support Equipment:

- · r r · · · · · · · · ·			
Device	Manufacturer	Model #	S/N
Laptop	Lenovo	T430	PBPXKGW
Laptop PSU	Lenovo	92P1156	11S92P1156Z1ZDXN0AVB44
Power Supply	ZKTeco Co LTD	ZK-MSS-PS	Power Supply

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC.	YRPOR7	None

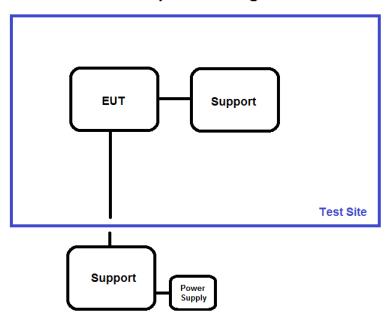
Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Lenovo	T430	PBPXKGW
Laptop PSU	Lenovo	92P1156	11S92P1156Z1ZDXN0AVB44
Battery Pack	Nalloy, LLC.	PN 51-006541	G6A2RE0124360022

Page 6 of 51 Report No.: 107941-30A

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Radio Module
Type of Wideband System:	FHSS
Operating Frequency Range:	902.4-927.6 MHz
Number of Hopping Channels:	64
Receiver Bandwidth	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	GFSK-2
Maximum Duty Cycle:	Tested at 100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	PCB Antenna / 2.4 dBi
Beamforming Type:	N/A
Antenna Connection Type:	Integral
Nominal Input Voltage:	5-30 VDC
Firmware / Software used for	Railtest_v2.2.0
Test:	Realterm 2.0.0.70


The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 7 of 51 Report No.: 107941-30A

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Radiated test setup Antenna Laptop EUT Turntable Test Site Spectrum Analyzer

Page 8 of 51 Report No.: 107941-30A

FCC Part 15 Subpart C

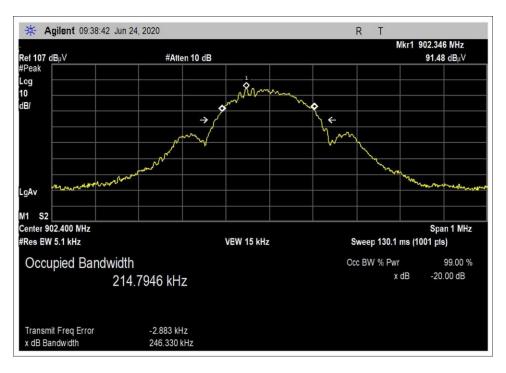
15.247(a) Transmitter Characteristics

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/21/2021	
Configuration:	1			
Test Setup:	Test Mode: Continuously Modul	ated		
The spectrum analyzer is connected to a near field probe located near EUT antenna.				

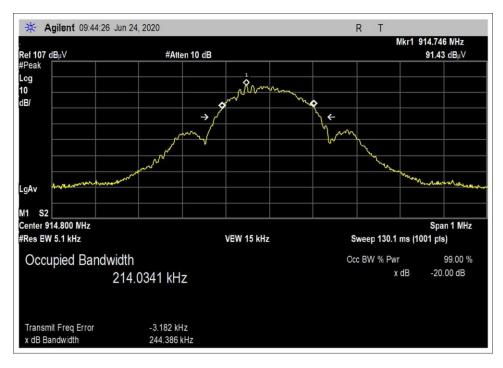
Environmental Conditions				
Temperature (°C)	23	Relative Humidity (%):	40	

Test Equipment									
Asset#	Asset# Description Manufacturer Model Cal Date Cal Due								
2871	Spectrum Analyzer	Agilent	E4440A	3/12/2020	3/12/2022				

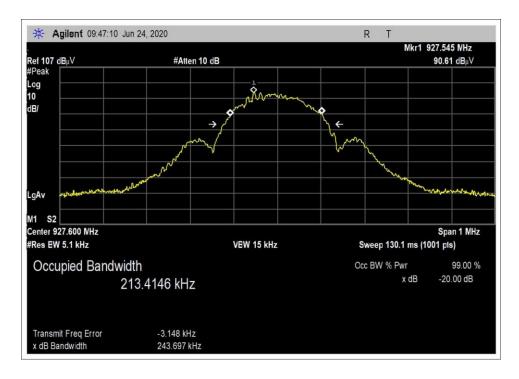
15.247(a)(1)(i) 20 dB Bandwidth


	Test Data Summary									
Frequency Antenna Modulation Measured Limit (MHz) Port (kHz)										
902.4	1	GFSK-2	246.3							
914.8	1	GFSK-2	244.4	*See Note	N/A					
927.6	1	GFSK-2	243.7							

^{*}For this Hybrid mode there is no requirement to meet the FHSS or DTS bandwidth limits. See Supplemental Section of data in 15.247 (f) Hybrid Systems.


Page 9 of 51 Report No.: 107941-30A

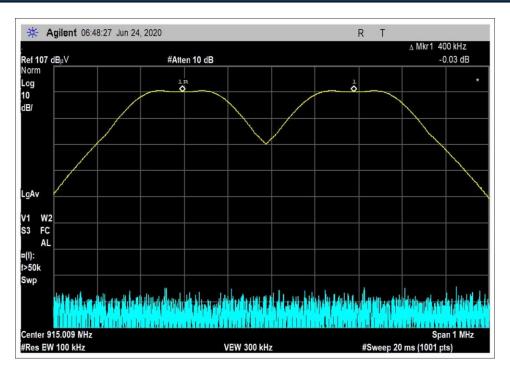
Plot(s)


Low Channel

Middle Channel

Page 10 of 51 Report No.: 107941-30A

High Channel

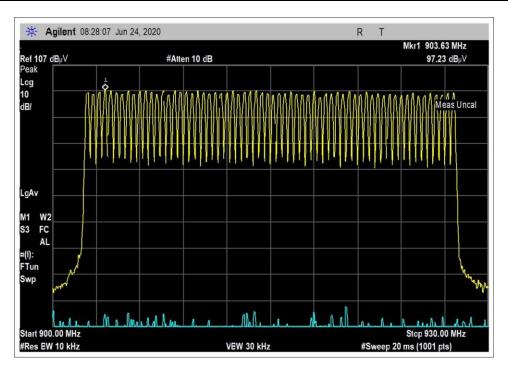

Page 11 of 51 Report No.: 107941-30A

15.247(a)(1) Carrier Separation

	Test Data Summary								
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.								
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results					
1	Transmitting	400	≥ 246.3	Pass					

Plot(s)

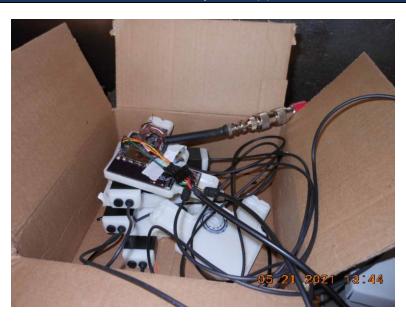
Page 12 of 51 Report No.: 107941-30A



15.247(a)(1)(i) Number of Hopping Channels

	Test Data Summary							
$Limit = \begin{cases} 50 & 0 \\ 25 & 0 \end{cases}$	$Limit = \begin{cases} 50 \text{ Channels } 20 \text{ dB } BW < 250 \text{kHz} \\ 25 \text{ Channels } 20 \text{ dB } BW \ge 250 \text{kHz} \end{cases}$							
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results				
1	Transmitting	64	≥ 50	Pass				

^{*}For this Hybrid Mode there is no minimum number of hopping channels.


Plot(s)

Page 13 of 51 Report No.: 107941-30A

Test Setup Photo(s)

Page 14 of 51 Report No.: 107941-30A

15.247(b)(2) Output Power

	Test Equipment									
Asset#	Description	Model	Cal Date	Cal Due						
2871	Spectrum Analyzer	Agilent	E4440A	3/12/2020	3/12/2022					
1995	Biconilog Antenna	Chase	CBL6111C	4/14/2020	4/14/2022					
02307	Preamp	HP	8447D	1/10/2020	1/10/2022					
P05275	P05275 Attenuator		1W	3/26/2020	3/26/2022					
D06122	Power Supply	Lambda	GEN 125-80	1/18/2021	1/18/2023					

	Test Data Summary - Voltage Variations								
Frequency (MHz)	Modulation	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)				
927.6	GFSK-2	17.3	17.4	17.3	0.1				

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

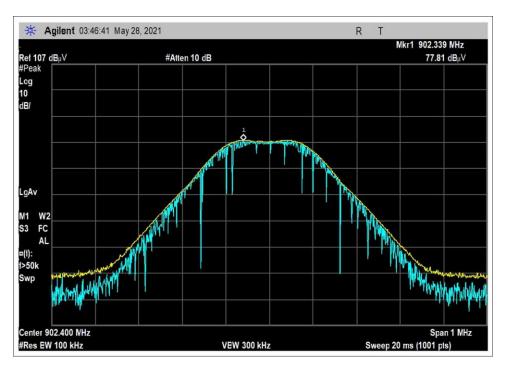
Parameter	Value
V _{Nominal} :	5-30 VDC
V _{Minimum} :	4. 5 VDC (EUT Shut off below 4.5VDC)
V _{Maximum} :	34.5 VDC

	Test Data Summary - Radiated Measurement										
Limit = 30a	Limit = 30dBm Conducted/36dBm EIRP										
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Field Strength (dBuV/m @3m)	Calculated (dBm)	Limit (dBm)	Results					
902.4	GFSK-2	PCB Antenna / 2.4 dBi	111.5	13.9	≤ 30	Pass					
914.8	GFSK-2	PCB Antenna / 2.4 dBi	110.7	13.1	≤ 30	Pass					
927.6	GFSK-2	PCB Antenna / 2.4 dBi	112.6	15.0	≤ 30	Pass					

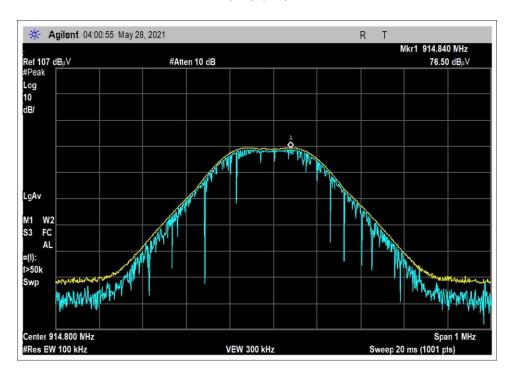
^{*}For this Hybrid Mode there is no minimum number of hopping channels required for the 1 Watt (30dBm) limit.

Conducted RF output power calculated in accordance with ANSI C63.10.

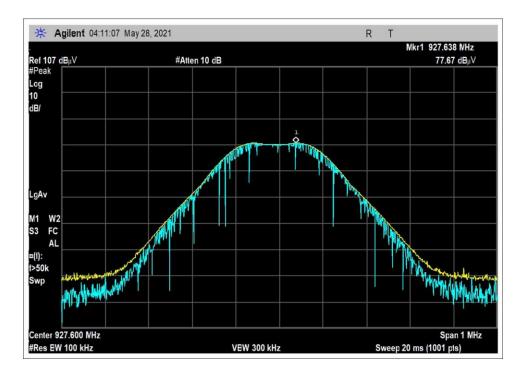
$$P(W) = \frac{(E \cdot d)^2}{30 \ G}$$


Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$


Page 15 of 51 Report No.: 107941-30A

Plots


Low Channel

Middle Channel

Page 16 of 51 Report No.: 107941-30A

High Channel

Page 17 of 51 Report No.: 107941-30A

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(b) Power Output (902-928 MHz DTS)

Work Order #: 104760 Date: 1/19/2023
Test Type: Maximized Emissions Time: 10:03:07
Tested By: M. Harrison Sequence#: 8

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

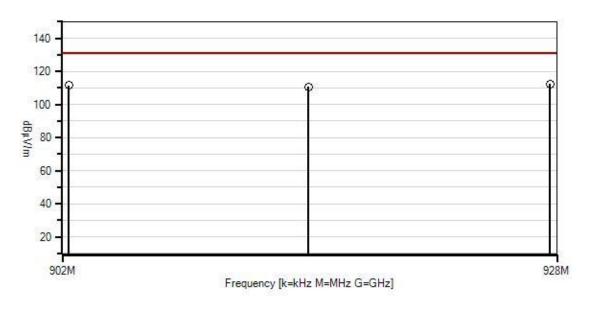
Method: ANSI C63.10: 2013

Frequency range: 902.4-927.6 MHz

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

> Page 18 of 51 Report No.: 107941-30A

Nalloy, LLC WO#: 104760 Sequence#: 8 Date: 1/19/2023 15.247(b) Power Output (902-928 MHz DTS) Test Distance: 3 Meters Horiz

Readings

× QP Readings

▼ Ambient

1 - 15.247(b) Power Output (902-928 MHz DTS)

Peak Readings
 Average Readings
 Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T2	ANP05333	Cable	Heliax	3/14/2022	3/14/2024
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T5	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023

Measurement Data: Reading listed by margin.			ırgin.		Τe	est Distance	e: 3 Meters				
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	_	_	T5						_	_	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	927.642M	77.7	+30.6	+1.6	+2.4	+0.3	+0.0	112.6	131.2	-18.6	Horiz
			+0.0								
2	902.339M	77.8	+29.6	+1.5	+2.3	+0.3	+0.0	111.5	131.2	-19.7	Horiz
			+0.0								
3	914.840M	76.5	+29.9	+1.6	+2.4	+0.3	+0.0	110.7	131.2	-20.5	Horiz
			+0.0								

Page 19 of 51 Report No.: 107941-30A

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Page 20 of 51 Report No.: 107941-30A

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 104760 Date: 5/14/2021
Test Type: Maximized Emissions Time: 10:02:00
Tasted Park

Tested By: M. Harrison Sequence#: 3

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

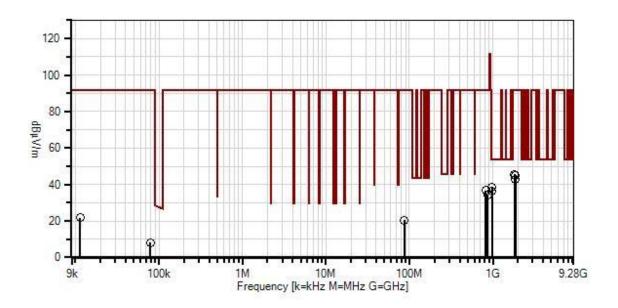
Method: ANSI C63.4: 2014

Frequency range: 9k-10GHz (Highest Frequency Generated = 927.6MHz)

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

> Page 21 of 51 Report No.: 107941-30A

Nalloy, LLC WO#: 104760 Sequence#: 3 Date: 5/14/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp/Para

× Readings × QP Readings ▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings
Software Version: 5.03.19

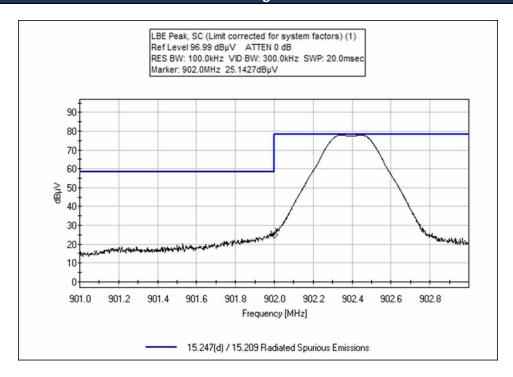
Test Equipment:

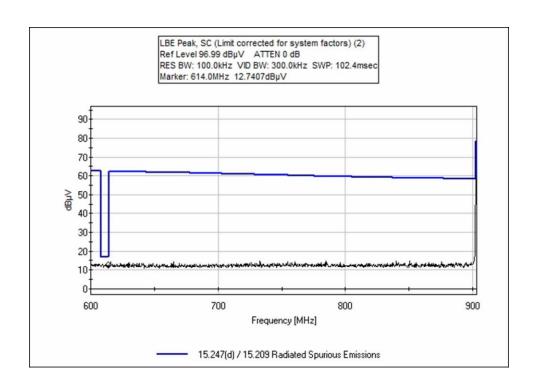
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T2	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T3	AN01467	Horn Antenna-	3115	7/5/2019	7/5/2021
		ANSI C63.5			
		Calibration			
T4	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T6	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T7	AN03170	High Pass Filter	HM1155-11SS	10/23/2019	10/23/2021
T8	AN02307	Preamp	8447D	1/10/2020	1/10/2022
Т9	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T10	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T11	AN01995	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T12	ANP05275	Attenuator	1W	3/26/2020	3/26/2022
T13	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Page 22 of 51 Report No.: 107941-30A

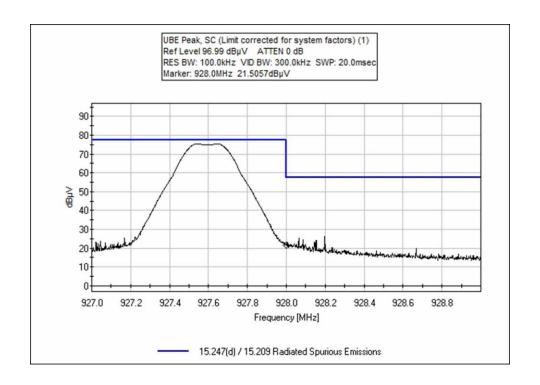
Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	3	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	978.700M	30.8	+0.0	+0.0	+0.0	+0.0	+0.0	38.6	54.0	-15.4	Vert/
			+0.4	+0.0	+0.0	-27.1					
			+1.5	+2.3	+24.6	+6.1					
			+0.0								
2	979.600M	28.8	+0.0	+0.0	+0.0	+0.0	+0.0	36.6	54.0	-17.4	Vert/
			+0.4	+0.0	+0.0	-27.1					
			+1.5	+2.3	+24.6	+6.1					
			+0.0								
3	1805.046M	50.8	+0.0	-34.8	+26.1	+2.3	+0.0	45.7	91.7	-46.0	Vert/
			+0.5	+0.3	+0.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	1855.170M	49.5	+0.0	-34.7	+26.5	+2.4	+0.0	44.9	91.7	-46.8	Vert/
			+0.5	+0.3	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
5	1829.475M	47.5	+0.0	-34.8	+26.3	+2.4	+0.0	42.6	91.7	-49.1	Vert/
			+0.5	+0.3	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	825.400M	31.9	+0.0	+0.0	+0.0	+0.0	+0.0	36.7	91.7	-55.0	Vert/
			+0.3	+0.0	+0.0	-27.6					
			+1.4	+1.9	+22.7	+6.1					
			+0.0								
7	864.200M	28.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	91.7	-57.4	Vert/
			+0.3	+0.0	+0.0	-27.5					
			+1.4	+2.0	+23.1	+6.1					
			+0.0								
8	11.397k	46.8	+0.0	+0.0	+0.0	+0.0	-40.0	21.9	91.7	-69.8	Perp/
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+15.1								
9	86.300M	33.0	+0.0	+0.0	+0.0	+0.0	+0.0	20.4	91.7	-71.3	Vert/
			+0.1	+0.0	+0.0	-27.8					
			+0.4	+0.5	+8.2	+6.0					
			+0.0								
10	79.218k	38.5	+0.0	+0.0	+0.0	+0.0	-40.0	8.1	91.7	-83.6	Perp/
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+9.6								
11	18.209M	11.5	+0.0	+0.0	+0.0	+0.2	-20.0	-0.2	91.7	-91.9	Perp/
			+0.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+8.0								

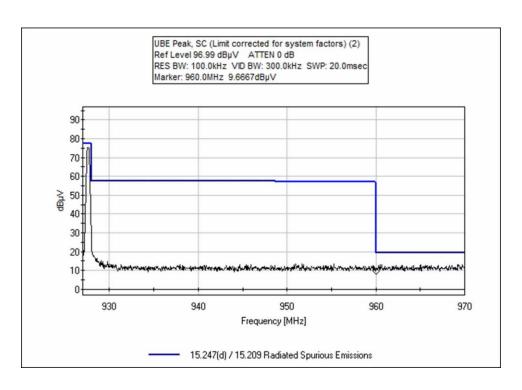
Page 23 of 51 Report No.: 107941-30A


Band Edge

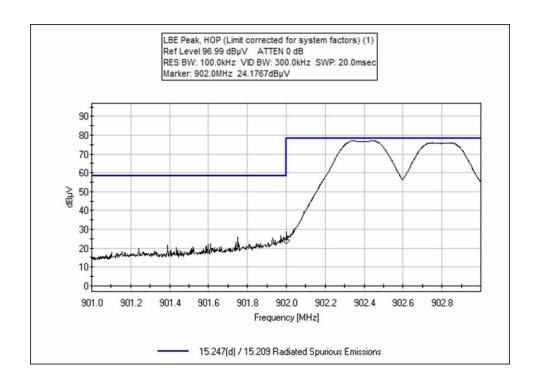

Band Edge Summary						
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results	
614			42	< 46	Pass	
902	GFSK-2 (Single	PCB Antenna	58.4	< 91.7	Pass	
928	Channel)		55.5	< 91.7	Pass	
960			44.2	<54	Pass	
614			41.8	<46	Pass	
902	GFSK-2	DCD Antonno	57.5	< 91.7	Pass	
928	(Hopping)	PCB Antenna	57.6	< 91.7	Pass	
960			47.8	<54	Pass	

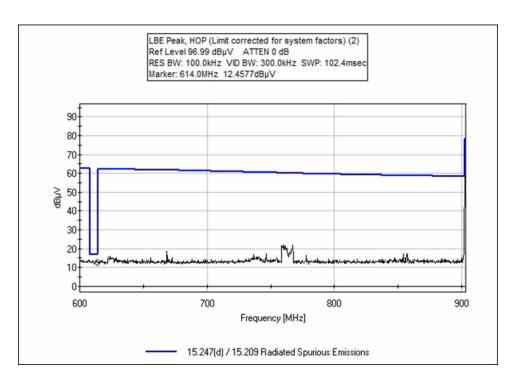
Page 24 of 51 Report No.: 107941-30A


Band Edge Plots

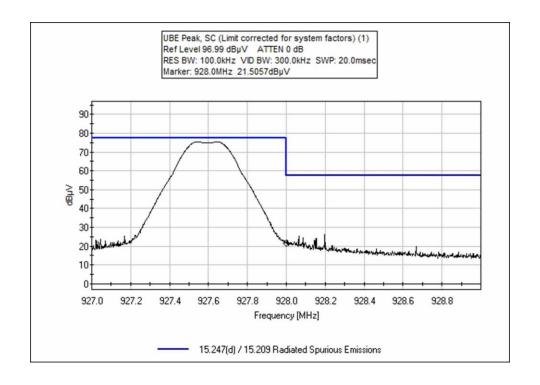


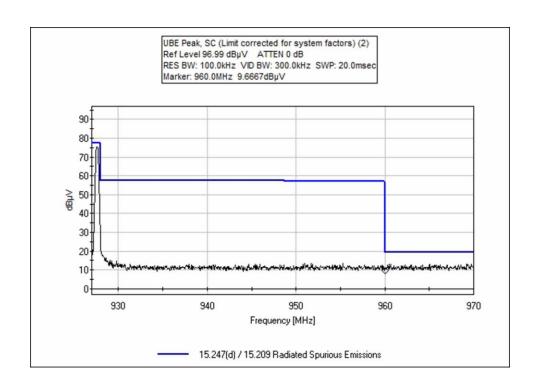
Page 25 of 51 Report No.: 107941-30A





Page 26 of 51 Report No.: 107941-30A





Page 27 of 51 Report No.: 107941-30A

Page 28 of 51 Report No.: 107941-30A

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 104760 Date: 5/14/2021
Test Type: Maximized Emissions Time: 08:40:47
Tested By: M. Harrison Sequence#: 6

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

Method: ANSI C63.10: 2013

Frequency range: 600-970MHz (Highest Frequency Generated = 927.6MHz)

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

> Page 29 of 51 Report No.: 107941-30A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T2	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
Т3	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T4	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T5	AN01995	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T6	ANP05275	Attenuator	1W	3/26/2020	3/26/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	902.345M	78.4	+0.0	+1.4	+2.1	+0.3	+0.0	111.7	111.7	+0.0	Vert
			+23.4	+6.1					SC		
2	614.000M	12.7	+0.0	+1.2	+1.7	+0.3	+0.0	42.0	46.0	-4.0	Vert
			+20.0	+6.1					SC		
3	614.000M	12.5	+0.0	+1.2	+1.7	+0.3	+0.0	41.8	46.0	-4.2	Vert
			+20.0	+6.1					Hop		
4	960.000M	13.3	+0.0	+1.5	+2.2	+0.4	+0.0	47.8	54.0	-6.2	Vert
			+24.3	+6.1					Hop		
5	960.000M	9.7	+0.0	+1.5	+2.2	+0.4	+0.0	44.2	54.0	-9.8	Vert
			+24.3	+6.1					SC		
6	902.000M	25.1	+0.0	+1.4	+2.1	+0.3	+0.0	58.4	91.7	-33.3	Vert
			+23.4	+6.1					SC		
7	928.000M	23.6	+0.0	+1.5	+2.2	+0.4	+0.0	57.6	91.7	-34.1	Vert
			+23.8	+6.1					Hop		
8	902.000M	24.2	+0.0	+1.4	+2.1	+0.3	+0.0	57.5	91.7	-34.2	Vert
			+23.4	+6.1					Hop		
9	928.000M	21.5	+0.0	+1.5	+2.2	+0.4	+0.0	55.5	91.7	-36.2	Vert
			+23.8	+6.1					SC		

Page 30 of 51 Report No.: 107941-30A

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Page 31 of 51 Report No.: 107941-30A

Above 1GHz; View 1

Above 1GHz; View 2

Page 32 of 51 Report No.: 107941-30A

X Axis

Y Axis

Page 33 of 51 Report No.: 107941-30A

Z Axis

Page 34 of 51 Report No.: 107941-30A

15.247 (f) Hybrid Systems Time of Occupancy

Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/21/2021		
Configuration:	1				
Test Setup:	Test Mode: Continuously Modulated				
	The spectrum analyzer is connected to a near field probe located near EUT antenna.				

Environmental Conditions					
Temperature (°C)	23	Relative Humidity (%):	40		

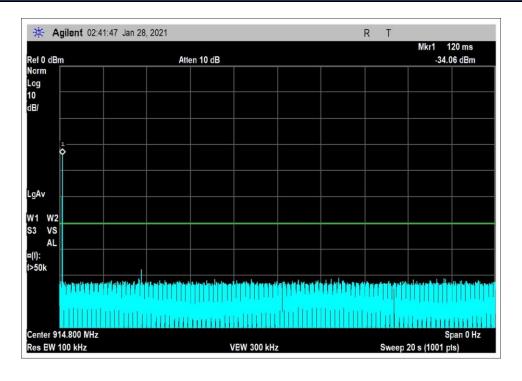
Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
2871	Spectrum Analyzer	Agilent	E4440A	3/12/2020	3/12/2022	

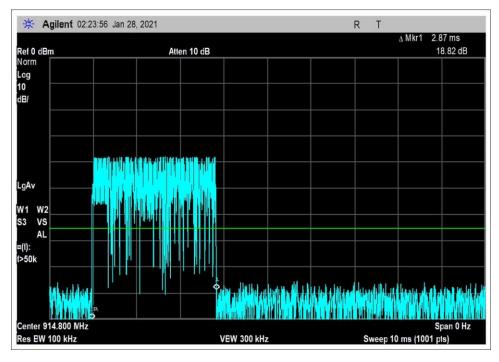
Test Data Summary					
Observation Pe	Observation Period, P _{obs} is derived from the following:				
P_{Obs} =	$P_{Obs} = (number\ of\ hopping\ frequencies)*0.4$				
Antenna	Operational Mode	Measured	Limit	Results	
Port	Operational Mode	(ms)	(ms/P _{obs})	Results	
1	Hopping	5.74	≤400	Pass	

Measured results are calculated as follows:

$$Dwell \ time = \left(\sum_{Bursts} RF \ Burst \ On \ Time + \sum_{Control} Control \ Signal \ On \ time \right) \bigg|_{P_{obs}}$$

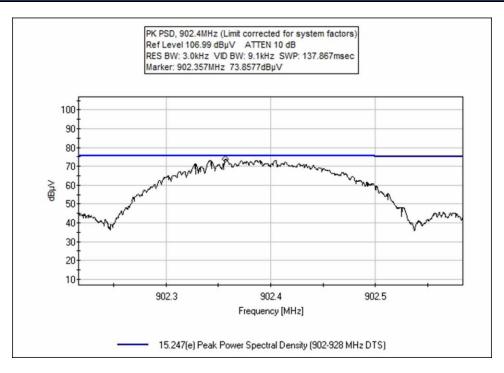
Actual Calculated Values:


Parameter	Value
Observation Period (Pobs):	25.6s
Number of RF Bursts / Pobs:	2
On time of RF Burst:	2.87ms
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	5.74

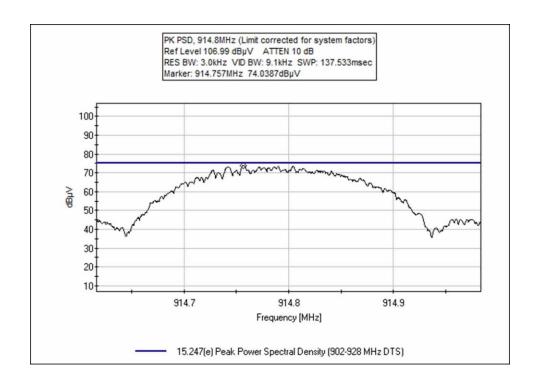

Note: The number of bursts in a 25.6 second window was extrapolated from a worst case 20 second measurement window (1 burst in 20 second window = 2 bursts in 25.6 second window).

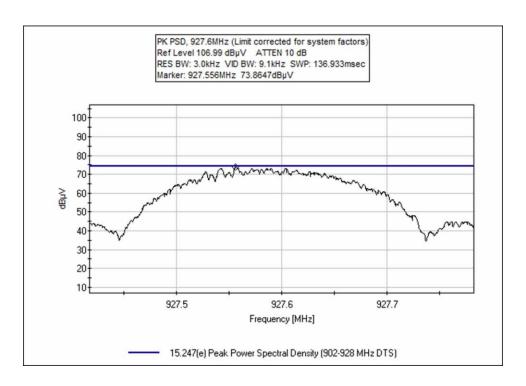
Page 35 of 51 Report No.: 107941-30A

Plot(s)


Page 36 of 51 Report No.: 107941-30A

15.247 (f) Hybrid Systems Power Spectral Density


	Test Data Summary - RF Conducted Measurement									
Measurement Method: PKPSD										
Frequency (MHz) Modulation Measured Limit Results (dBμV/3kHz) (dBμV /3kHz)										
902.4	GFSK-2	107.6	≤109.2	Pass						
914.8	GFSK-2	108.2	≤109.2	Pass						
927.6	GFSK-2	108.8	≤109.2	Pass						


Plot(s)

Page 37 of 51 Report No.: 107941-30A

Page 38 of 51 Report No.: 107941-30A

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(e) Peak Power Spectral Density (902-928 MHz DTS)

Work Order #: 107941 Date: 3/13/2023
Test Type: Maximized Emissions Time: 15:50:37
Tested By: M. Harrison Sequence#: 9

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

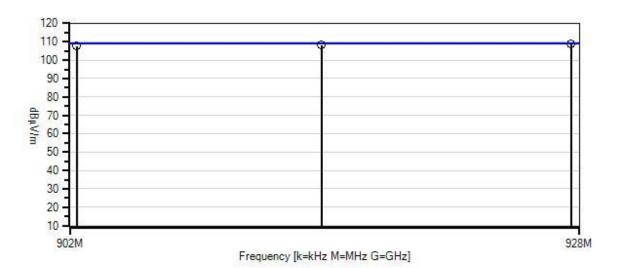
Method: ANSI C63.10: 2013

Frequency range: 902.4-927.6 MHz

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

> Page 39 of 51 Report No.: 107941-30A

Nalloy, LLC WO#: 107941 Sequence#: 9 Date: 3/13/2023 15.247(e) Peak Power Spectral Density (902-928 MHz DTS) Test Distance: 3 Meters Horiz

--- Readings

Peak Readings

× QP Readings

* Average Readings

▼ Ambient

Software Version: 5.03.20

1 - 15.247(e) Peak Power Spectral Density (902-928 MHz DTS)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T2	ANP05333	Cable	Heliax	3/14/2022	3/14/2024
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	,	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	927.556M	73.9	+30.6	+1.6	+2.4	+0.3	+0.0	108.8	109.2	-0.4	Horiz
2	914.757M	74.0	+29.9	+1.6	+2.4	+0.3	+0.0	108.2	109.2	-1.0	Horiz
3	902.357M	73.9	+29.6	+1.5	+2.3	+0.3	+0.0	107.6	109.2	-1.6	Horiz

Page 40 of 51 Report No.: 107941-30A

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Page 41 of 51 Report No.: 107941-30A

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nallov, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 104760 Date: 5/14/2021
Test Type: Conducted Emissions Time: 13:58:29
Tested By: M. Harrison Sequence#: 8

Software: EMITest 5.03.19 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

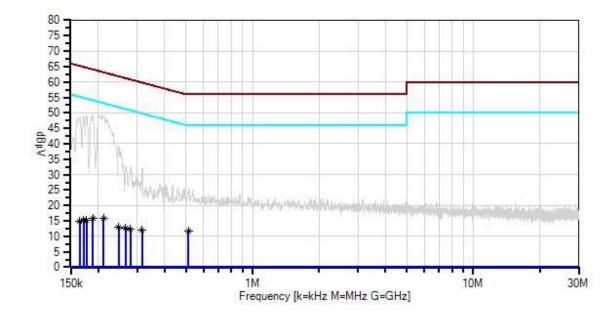
Method: ANSI C63.10: 2013

Frequency range: 150k-30MHz

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

> Page 42 of 51 Report No.: 107941-30A

Nalloy, LLC WO#: 104760 Sequence#: 8 Date: 5/14/2021 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Sweep Data

× QP Readings
Software Version: 5.03.19

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T4	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2	3816/2	2/24/2020	2/24/2022
		(N)			
	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T5	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022
			50-720B		

Page 43 of 51 Report No.: 107941-30A

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MII	1D. 37	T5	ID.	1D	JD.	T.1.1.	1D 17	ID V	JD.	A 4
1	MHz 512.876k	dBμV 2.8	dB +9.1	dB +0.0	dB +0.0	-0.4	Table +0.0	dBµV	dBμV	-34.3	Ant Line
_	Ave	2.0	+9.1	+0.0	+0.0	-0.4	+0.0	11.7	46.0	-34.3	Lille
٨	512.875k	16.8	+9.1	+0.0	+0.0	-0.4	+0.0	25.7	46.0	-20.3	Line
			+0.2								
3	211.085k	7.4	+9.1	+0.0	+0.0	-1.1	+0.0	15.7	53.2	-37.5	Line
	Ave		+0.3								
^	211.085k	41.1	+9.1	+0.0	+0.0	-1.1	+0.0	49.4	53.2	-3.8	Line
5	316.530k	2.4	+0.3	ι Ο Ο	ι Ο Ο	-0.7	+0.0	11.9	49.8	-37.9	Line
	310.330k Ave	3.4	+9.1 +0.1	+0.0	+0.0	-0.7	+0.0	11.9	49.8	-37.9	Line
^	316.530k	23.5	+9.1	+0.0	+0.0	-0.7	+0.0	32.0	49.8	-17.8	Line
	010.00011	20.0	+0.1	. 0.0	. 0.0	0.,	. 0.0	02.0	.,.0	17.10	2
7	189.269k	7.6	+9.1	+0.0	+0.0	-1.3	+0.0	15.7	54.1	-38.4	Line
	Ave		+0.3								
^	189.269k	41.1	+9.1	+0.0	+0.0	-1.3	+0.0	49.2	54.1	-4.9	Line
	250 4421	2.0	+0.3	0.0	0.0	0.0	0.0	12.2	70.0	20.7	
9	279.443k	3.9	+9.1 +0.1	+0.0	+0.0	-0.8	+0.0	12.3	50.8	-38.5	Line
^	Ave 279.442k	24.3	+9.1	+0.0	+0.0	-0.8	+0.0	32.7	50.8	-18.1	Line
	21).442K	24.5	+0.1	10.0	10.0	-0.6	10.0	32.7	50.0	-10.1	Line
11	266.353k	4.2	+9.1	+0.0	+0.0	-0.8	+0.0	12.7	51.2	-38.5	Line
	Ave		+0.2								
^	266.352k	24.3	+9.1	+0.0	+0.0	-0.8	+0.0	32.8	51.2	-18.4	Line
10	247 4461	4.5	+0.2	0.0	0.0	0.0	0.0	12.0	71. 0	20.0	т.
13	247.446k Ave	4.5	+9.1 +0.2	+0.0	+0.0	-0.9	+0.0	12.9	51.8	-38.9	Line
^	247.445k	30.9	+9.1	+0.0	+0.0	-0.9	+0.0	39.3	51.8	-12.5	Line
	247.443K	30.7	+0.2	10.0	10.0	0.7	10.0	37.3	31.0	12.3	Line
15	176.907k	7.0	+9.1	+0.0	+0.0	-1.4	+0.0	15.1	54.6	-39.5	Line
	Ave		+0.4								
^	176.906k	41.0	+9.1	+0.0	+0.0	-1.4	+0.0	49.1	54.6	-5.5	Line
	454.04.0		+0.4	0.0	0.0			1.7.0	710	20.5	
17	171.816k	7.2	+9.1	+0.0	+0.0	-1.5	+0.0	15.2	54.9	-39.7	Line
^	Ave 171.816k	40.8	+0.4	+0.0	+0.0	_1 5	+0.0	48.8	54.9	-6.1	Line
	1/1.01UK	40.0	+9.1	+0.0	+0.0	-1.3	+0.0	+0.0	J4.7	-0.1	LIIIC
19	164.544k	6.9	+9.1	+0.0	+0.0	-1.6	+0.0	14.9	55.2	-40.3	Line
	Ave		+0.5								
^	164.544k	40.8	+9.1	+0.0	+0.0	-1.6	+0.0	48.8	55.2	-6.4	Line
			+0.5								

Page 44 of 51 Report No.: 107941-30A

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 104760 Date: 5/14/2021 Test Type: Conducted Emissions Time: 14:10:26

Tested By: M. Harrison Sequence#: 9

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

120V 60Hz

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

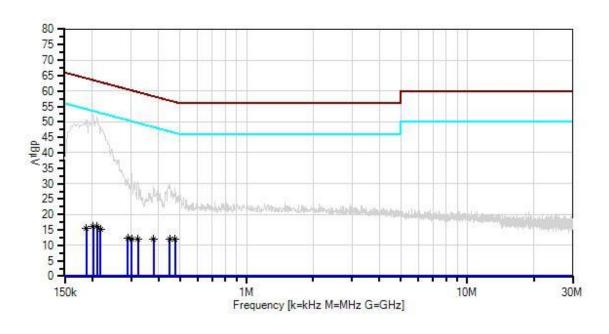
Method: ANSI C63.10: 2013

Frequency range: 150k-30MHz

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

> Page 45 of 51 Report No.: 107941-30A

Nalloy, LLC WO#: 104760 Sequence#: 9 Date: 5/14/2021 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

× QP Readings Software Version: 5.03.19 Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
Т3	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
T4	AN01311	50uH LISN-Line2	3816/2	2/24/2020	2/24/2022
		(N)			
	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T5	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022
			50-720B		

Page 46 of 51 Report No.: 107941-30A

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MII	1D 17	T5	ID	ID	ID	T 11	1D 17	1D. V	1D	
1	MHz 473.607k	dBμV 3.0	dB +9.1	dB +0.0	dB	-0.4	Table +0.0	dBμV 11.9	dBµV	-34.6	Ant
1	4/3.00/K Ave	3.0	+9.1	+0.0	+0.0	-0.4	+0.0	11.9	46.5	-34.0	Neutr
٨	473.606k	19.5	+9.1	+0.0	+0.0	-0.4	+0.0	28.4	46.5	-18.1	Neutr
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17.0	+0.2	. 0.0	. 0.0	0	. 0.0	_0		10.1	1,000
3	448.882k	3.1	+9.1	+0.0	+0.0	-0.5	+0.0	11.9	46.9	-35.0	Neutr
	Ave		+0.2								
^	448.881k	20.9	+9.1	+0.0	+0.0	-0.5	+0.0	29.7	46.9	-17.2	Neutr
	270 0701	2.2	+0.2	.00	.00	0.5	.00	10.0	40.2	26.2	NT 4
5	379.070k Ave	3.2	+9.1 +0.2	+0.0	+0.0	-0.5	+0.0	12.0	48.3	-36.3	Neutr
^	379.069k	20.4	+9.1	+0.0	+0.0	-0.5	+0.0	29.2	48.3	-19.1	Neutr
	379.009K	20.4	+0.2	+0.0	+0.0	-0.5	+0.0	29.2	40.5	-19.1	Neuti
7	210.358k	7.7	+9.1	+0.0	+0.0	-1.1	+0.0	16.0	53.2	-37.2	Neutr
	Ave		+0.3								
٨	210.358k	43.2	+9.1	+0.0	+0.0	-1.1	+0.0	51.5	53.2	-1.7	Neutr
			+0.3								
9		7.9	+9.1	+0.0	+0.0	-1.2	+0.0	16.0	53.5	-37.5	Neutr
-	Ave		+0.2		0.0		0.0				
^	201.631k	44.1	+9.1	+0.0	+0.0	-1.2	+0.0	52.2	53.5	-1.3	Neutr
11	218.357k	7.0	+0.2	+0.0	+0.0	-1.1	+0.0	15.3	52.9	-37.6	Neutr
	Ave	7.0	+0.3	+0.0	+0.0	-1.1	+0.0	13.3	32.9	-37.0	Neuti
٨	218.357k	40.1	+9.1	+0.0	+0.0	-1.1	+0.0	48.4	52.9	-4.5	Neutr
			+0.3								
13	321.621k	3.3	+9.1	+0.0	+0.0	-0.6	+0.0	11.9	49.7	-37.8	Neutr
	Ave		+0.1								
^	321.620k	22.1	+9.1	+0.0	+0.0	-0.6	+0.0	30.7	49.7	-19.0	Neutr
1.5	201 2501	2.6	+0.1	0.0	0.0	0.7	0.0	10.1	50.2	20.1	NT .
15		3.6	+9.1 +0.1	+0.0	+0.0	-0.7	+0.0	12.1	50.2	-38.1	Neutr
^	Ave 301.258k	24.7	+9.1	+0.0	+0.0	-0.7	+0.0	33.2	50.2	-17.0	Neutr
	301.236K	24.7	+0.1	+0.0	+0.0	-0.7	+0.0	33.2	30.2	-17.0	Neuti
17	290.351k	3.7	+9.1	+0.0	+0.0	-0.7	+0.0	12.2	50.5	-38.3	Neutr
	Ave		+0.1								
^	290.350k	23.1	+9.1	+0.0	+0.0	-0.7	+0.0	31.6	50.5	-18.9	Neutr
			+0.1								
19		7.5	+9.1	+0.0	+0.0	-1.3	+0.0	15.6	54.1	-38.5	Neutr
	Ave	42.0	+0.3	.0.0	.00	1.0	.00	<i>5</i> 0.0	F 4 1	2.2	NT.
^	188.541k	42.8	+9.1	+0.0	+0.0	-1.3	+0.0	50.9	54.1	-3.2	Neutr
			+0.3								

Page 47 of 51 Report No.: 107941-30A

Test Setup Photo(s)

Front View

Side View

Page 48 of 51 Report No.: 107941-30A

APPENDIX A – ANTENNA GAIN

Based on field strength measurements, antenna gain can be calculated according to the following formula:

Conducted RF output power calculated in accordance with ANSI C63.10.

$$P(W) = \frac{(E \cdot d)^2}{30 \ G}$$

Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$

Therefore:

$$G(dBi) = E(dBuV/m) + 20LOG(d) - 104.77 - P(dBm)$$

Where P(dBm) is the RF conducted output power.

The manufacturer declares the RF conducted output to be set at 15dBm at the input to the transmit antenna.

Test Data Summary - Radiated Measurement									
Frequency (MHz) Antenna Type RF Power Field Strength (dBuV/m @3m) (dBi) Calculated Gain (dBi)									
902.4	PCB Antenna	15	111.5	1.3					
914.8	PCB Antenna	15	110.7	0.5					
927.6	PCB Antenna	15	112.6	2.4					

For the purposes of this report, the maximum peak gain is used as the declared antenna gain.

Page 49 of 51 Report No.: 107941-30A

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS								
	Meter reading (dBμV)								
+	Antenna Factor	(dB/m)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	(dBμV/m)							

Page 50 of 51

Report No.: 107941-30A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz						

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 51 of 51 Report No.: 107941-30A