Nalloy, LLC

TEST REPORT FOR

Model: VG8HYF

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (FHSS 902-928MHz)

Report No.: 106571-54

Date of issue: June 15, 2022

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 34 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	5
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	8
15.247(a) Transmitter Characteristics	
15.247(a)(1) 20 dB Bandwidth	
15.247(a)(1) Carrier Separation	11
15.247(a)(1)(iii) Number of Hopping Channels	12
15.247(a)(1)(iii) Time of Occupancy	13
15.247(b)(2) Output Power	16
15.247(d) Radiated Emissions & Band Edge	22
Supplemental Information	33
Measurement Uncertainty	33
Emissions Tost Datails	23

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Nalloy, LLC Darcy Thompson
2301 5th Avenue CKC Laboratories, Inc.
Seattle, WA 98108 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Naga Suryadevara Project Number: 106571

Customer Reference Number: 2D-07565727

DATE OF EQUIPMENT RECEIPT: April 8, 2022

DATE(S) OF TESTING: April 8 - May 19, 2022 and June 14, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Belon

Page 3 of 34 Report No.: 106571-54

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version	
EMITest Emissions	5.03.20	

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 34 Report No.: 106571-54

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	Pass
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NA1
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA2

NA = Not Applicable

NA1 = The manufacturer declares the EUT does not have an external antenna port.

NA2 = The manufacturer declares the EUT is battery powered only.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary	of	Conditions

None

Page 5 of 34 Report No.: 106571-54

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Under Test:

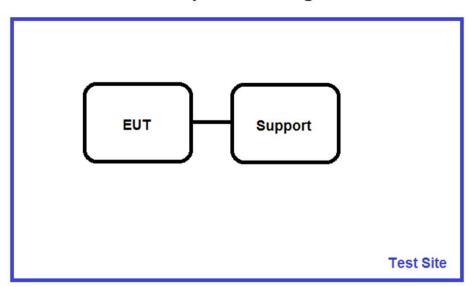
Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC.	VG8HYF	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
Battery	Luxshare	AWF28#*8C	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Radio Module
Type of Wideband System:	Proprietary FHSS
Operating Frequency Range:	902.4-927.6MHz
Number of Hopping Channels:	64
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	GFSK-2
Maximum Duty Cycle:	Assume 100% as worst case
Number of TX Chains:	1
Antenna Type(s) and Gain:	PCBA / 5.6dBi Gain
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery Powered, 5-24VDC Nominal
Firmware / Software used for Test:	Realterm 2.0.0.70 Rail test_v2.2.0


The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 6 of 34 Report No.: 106571-54

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Page 7 of 34 Report No.: 106571-54

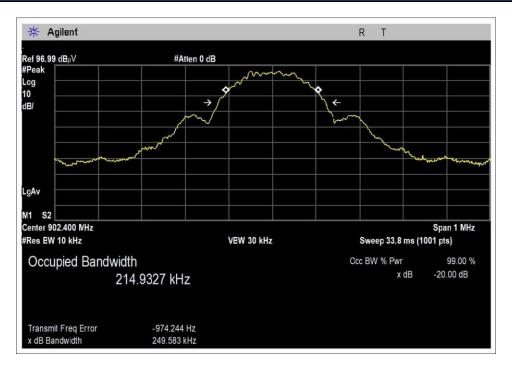
FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

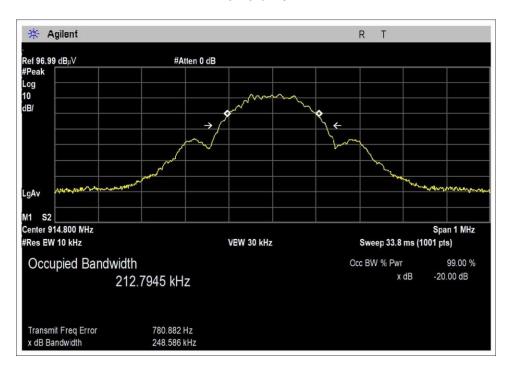
Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	4/8/2022 to 5/19/2022		
Configuration:	Configuration: 1				
Test Setup: EUT is continuously transmitting in the test chamber on a foam table 80cm high.					

Environmental Conditions					
Temperature (ºC)	Temperature (°C) 20-32 Relative Humidity (%): 35-45				

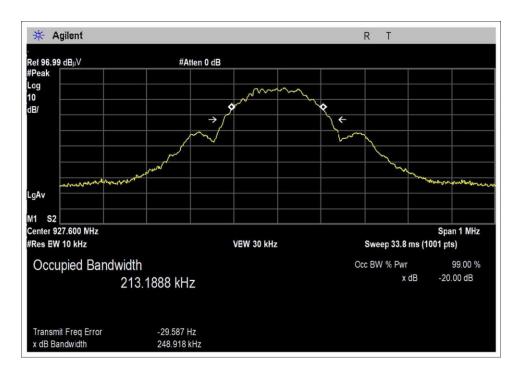
Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2021	2/3/2023	
P06540	Cable	Andrews	Heliax	1/17/2022	1/17/2024	
P06515	Cable	Andrews	Heliax	7/1/2020	7/1/2022	
P05360	Cable	Belden	RG214	2/4/2022	2/4/2024	
03628	Biconilog Antenna (Cal includes 6dB pad)	ETS	3142E	6/3/2021	6/3/2023	


15.247(a)(1) 20 dB Bandwidth

	Test Data Summary				
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
902.4	1	GFSK-2	249.583		
914.8	1	GFSK-2	248.586	≤500	Pass
927.6	1	GFSK-2	248.918		

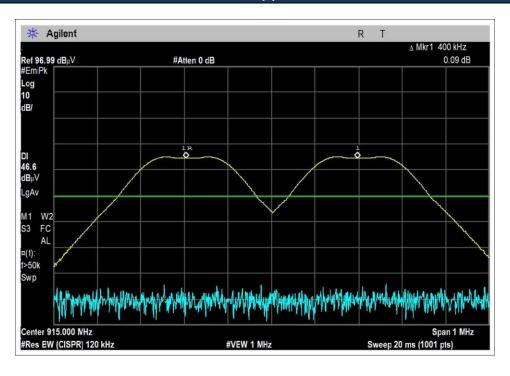

Page 8 of 34 Report No.: 106571-54

Plot(s)



Low Channel

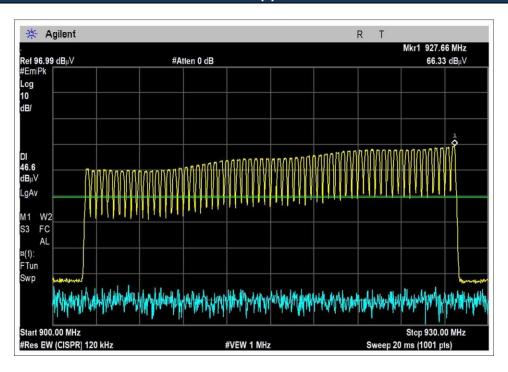
Middle Channel


High Channel

15.247(a)(1) Carrier Separation

	Test Data S	Test Data Summary									
Limit applied: 2	20dB bandwidth of the hopping channel.										
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results							
1	Transmitting GFSK-2	400.0	>249.583	Pass							

Plot(s)


Page 11 of 34 Report No.: 106571-54

15.247(a)(1)(iii) Number of Hopping Channels

	Test Data S	Summary		
$Limit = \begin{cases} 50.0 \\ 25.0 \end{cases}$	Channels 20 dB BW < 250kHz Channels 20 dB BW ≥ 250kHz			
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results
1	Transmitting GFSK-2	64	≥50	Pass

Plot(s)

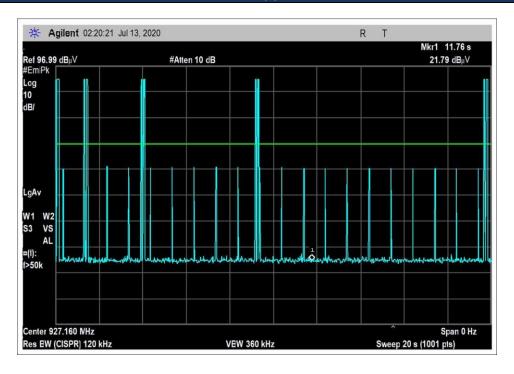
Page 12 of 34 Report No.: 106571-54

15.247(a)(1)(iii) Time of Occupancy

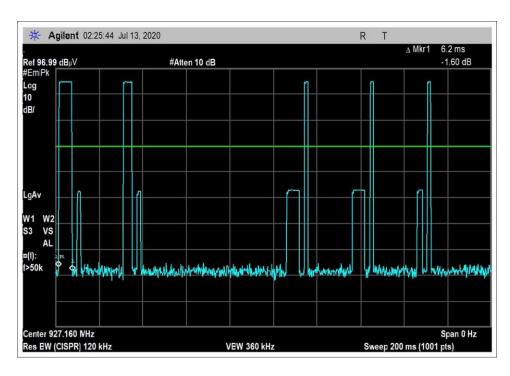
Test Data Summary Observation Period, Pobs is derived from the following: $P_{Obs} = \begin{cases} 20 \; Seconds \; | 20 \; dB \; BW < 250 kHz \\ 10 \; Seconds \; | 20 \; dB \; BW \geq 250 kHz \end{cases}$ Antenna Limit Measured **Operational Mode Results Port** (ms/Pobs) (ms) Transmitting 87.6 ≤400 1 Pass

Measured results are calculated as follows:

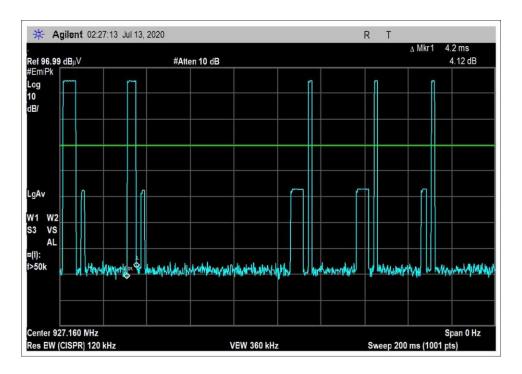
$$\textit{Dwell time} = \left(\sum_{\textit{Bursts}} \textit{RF Burst On Time} + \sum_{\textit{Control}} \textit{Control Signal On time} \right) \bigg|_{P_{obs}}$$


Actual Calculated Values:

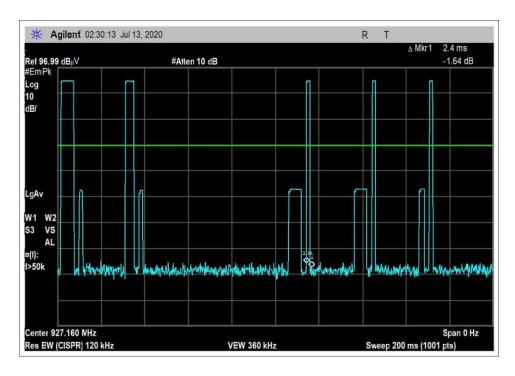
Parameter	Value
Observation Period (Pobs):	20s
Number of RF Bursts / Pobs:	5
On time of RF Burst:	17.52
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	87.6


Page 13 of 34 Report No.: 106571-54

Plot(s)



20s



Pulse 1

Pulse 2

Pulse 3

15.247(b)(2) Output Power

		Test Equipme	ent		
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
03515	Multimeter	Fluke	87	12/3/2020	12/3/2022
AN02673	Spectrum Analyzer	Agilent	E4446A	2/3/2021	2/3/2023
AN03628	Biconilog Antenna	ETS	3142E	6/3/2021	6/3/2023
ANP05360	Cable	Belden	RG214	2/4/2022	2/4/2024
ANP06515	Cable	Andrews	Heliax	7/1/2020	7/1/2022
ANP06540	Cable	Andrews	Heliax	1/17/2022	1/17/2024

Test Data Summary - Voltage Variations									
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)				
902.4	GFSK-2	14.0	14.0	14.0	0.0				
914.8	GFSK-2	13.3	13.3	13.3	0.0				
927.6	GFSK-2	13.1	13.1	13.1	0.0				

The fundamental was evaluated with a fresh battery installed and for voltage variation testing, where an external power supply was used to vary the voltage ±15% from the manufacture's supported range of 5 to 24VDC for the externally powered configuration.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

Parameter	Value
V _{Nominal} :	Fresh Battery (3.3VDC)
V _{Minimum} :	4.25VDC
V _{Maximum} :	27.6VDC

Test Data Summary - Voltage Variations

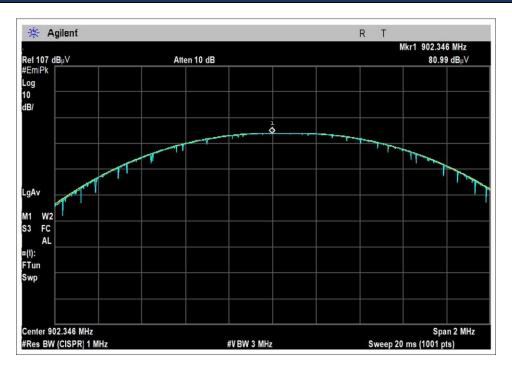
This equipment is battery powered. Power output tests were performed using a fresh battery.

Page 16 of 34 Report No.: 106571-54

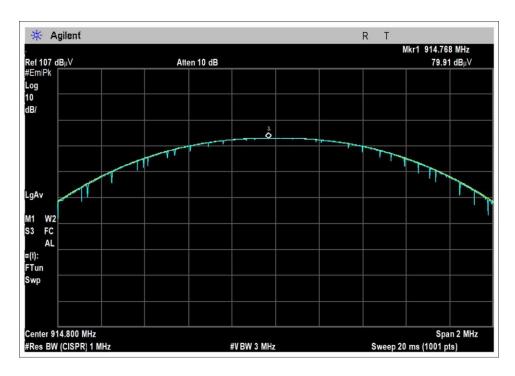
$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \geq 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min 25) \end{cases}$										
Frequency (MHz)	Modulation	## ETRP < 50 Ant. Type / Gain (dBi)	Field Strength (dBuV/m @3m)	Calculated (dBm)	Limit (dBm)	Results				
902.4	GFSK-2	PCBA / 5.6dBi Gain	114.8	14.0	≤30	Pass				
914.8	GFSK-2	PCBA / 5.6dBi Gain	114.1	13.3	≤30	Pass				
927.6	GFSK-2	PCBA / 5.6dBi Gain	113.9	13.1	≤30	Pass				

Conducted RF output power calculated in accordance with ANSI C63.10.

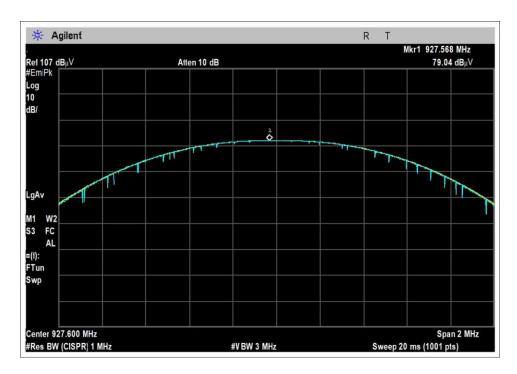
$$P(W) = \frac{(E \cdot d)^2}{30 \ G}$$


Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$


Page 17 of 34 Report No.: 106571-54

Plots



Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 425-402-1717

Customer: Nalloy, LLC

Specification: 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Work Order #: 106571 Date: 6/14/2022
Test Type: Radiated Scan Time: 16:45:33
Tested By: Matt Harrison/Mike Atkinson Sequence#: 4

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Environmental Conditions: Temperature: 20°C to 23°C

Humidity: 33-45%

Pressure: 102.0-102.1kPa

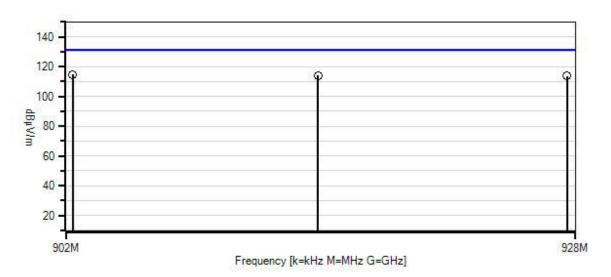
Method: ANSI C63.10: 2013

Frequency range: Fundamental

Setup:

Continuously Transmitting

Antenna 1


Channels measured: (0) 902.4 MHz, (31) 914.8MHz High (63) 927.6MHz

The equipment was evaluated with a fresh battery installed, and voltage variations were performed with an external power supply.

Page 20 of 34 Report No.: 106571-54

Nalloy, LLC WO#: 106571 Sequence#: 4 Date: 6/14/2022 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) Test Distance: 3 Meters Vert

----- Readings

O Peak Readings

× QP Readings

* Average Readings

Ambient

Software Version: 5.03.20

1 - 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T2	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	ANP06540	Cable	Heliax	1/17/2022	1/17/2024

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

1,100000					8						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	902.346M	81.0	+29.6	+2.3	+1.6	+0.3	+0.0	114.8	131.2	-16.4	Vert
2	914.768M	79.9	+29.9	+2.4	+1.6	+0.3	+0.0	114.1	131.2	-17.1	Vert
3	927.568M	79.0	+30.6	+2.4	+1.6	+0.3	+0.0	113.9	131.2	-17.3	Vert

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 425-402-1717 Test Location:

Customer: Nalloy, LLC

15.247(d) / 15.209 Radiated Spurious Emissions Specification:

Work Order #: 106571 Date: 4/11/2022 Test Type: **Maximized Emissions** Time: 12:48:39 Sequence#: 1

Tested By: Michael Atkinson / Matt Harrison

Software: EMITest 5.03.20

Equipment Tested:

Device Model # S/N Manufacturer Configuration 1

Support Equipment:

Device Manufacturer Model # S/N Configuration 1

Test Conditions / Notes:

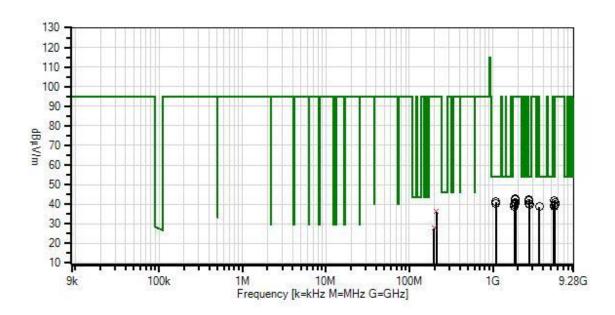
Environmental Conditions:

Temperature: 21°C Humidity: 44% Pressure: 102.1kPa

Method: ANSI C63.10: 2013

Frequency range: 9k-10GHz

Setup: AoH Tx Spurs


Notes:

No emissions found within 20dB of the limit below 30MHz.

Page 22 of 34 Report No.: 106571-54

Nalloy, LLC WO#: 106571 Sequence#: 1 Date: 4/11/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 × QP Readings
 ▼ Ambient

--- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

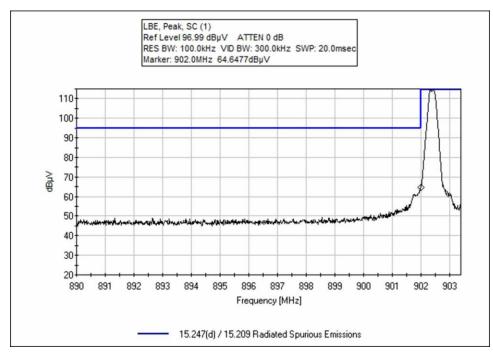
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
Т6	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
Т8	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т9	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T10	ANP05360	Cable	RG214	2/4/2022	2/4/2024
	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

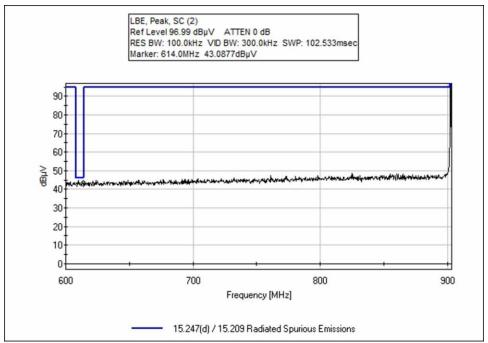
Page 23 of 34 Report No.: 106571-54

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T5 T6 T7 T8 T9 T10 dB dB dB dB dB Table dBμV/m dBμV/m dB 8 +0.0 +0.5 +2.9 -34.1 +0.0 42.3 54.0 -11.7 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 6 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0	V	Ant Vert
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T9 T10 dB dB dB dB dB Table dBμV/m dBμV/m dB 8 +0.0 +0.5 +2.9 -34.1 +0.0 42.3 54.0 -11.7 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 6 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dB dB dB dB dB (dB) dB (dB) Table (dBμV/m) dBμV/m dB 8 +0.0 +0.5 +2.9 -34.1 +0.0 42.3 54.0 -11.7 +0.5 +29.5 +0.2 +0.0 not a harmonic 2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 41.3 54.0 -12.7 +0.0 +0.0 +0.0 +0.0 41.3 54.0 -12.7	V	
1 2700.000M	8 +0.0 +0.5 +2.9 -34.1 +0.0 42.3 54.0 -11.7 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 6 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0	V	
+0.5	+0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0		Vert
+0.0 +0.0 +0.0 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 Volume +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.	+0.0 +0.0 2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 6 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0	V	
2 2700.060M 42.2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 Vo +0.5 +29.5 +0.0 +0.0 +0.0 not a harmonic not a harmonic Vo 3 1081.000M 43.6 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 Ho 4 1090.000M 44.4 +0.0 +0.3 +1.8 -36.6 +0.0 40.5 54.0 -13.5 Vo +0.2 +24.5 +5.9 +0.0 <t< td=""><td>2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0</td><td>V</td><td></td></t<>	2 +0.0 +0.5 +2.9 -34.1 +0.0 41.7 54.0 -12.3 +0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0	V	
+0.5 +29.5 +0.0 +0.0 not a harmonic 3 1081.000M	+0.5 +29.5 +0.2 +0.0 not a harmonic +0.0 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0	V	
+0.0	+0.0 +0.0 6 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0		Vert
3 1081.000M	6 +0.0 +0.3 +1.8 -36.6 +0.0 41.3 54.0 -12.7 +0.2 +24.4 +7.6 +0.0 +0.0 +0.0		
+0.2 +24.4 +7.6 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0	+0.2 +24.4 +7.6 +0.0 +0.0 +0.0		
+0.0 +0.0 4 1090.000M 44.4 +0.0 +0.3 +1.8 -36.6 +0.0 40.5 54.0 -13.5 Vol +0.2 +24.5 +5.9 +0.0	+0.0 +0.0	H	Horiz
4 1090.000M 44.4 +0.0 +0.3 +1.8 -36.6 +0.0 40.5 54.0 -13.5 Vol +0.2 +24.5 +5.9 +0.0 +0.0 +0.0 +0.0 -13.5 Vol 5 2707.250M 40.7 +0.0 +0.5 +2.9 -34.1 +0.0 40.2 54.0 -13.8 Ho +0.5 +29.5 +0.0 +0.0 Low Low -13.9 Ho +0.5 +29.5 +0.2 +0.0 40.1 54.0 -13.9 Ho +0.5 +29.3 +0.3 +0.0 Mid Mid -13.9 Ho +0.0 +0.0 +0.0 +0.0 Mid -14.6 Ho +0.6 +34.7 +0.4 +0.0 39.4 54.0 -14.6 Ho +0.6 +34.7 +0.4 +0.0 38.8 54.0 -15.2 Vol +0.6 +34.7 +0.4 +0.0 14.0 15.4 Ho +0.0 +0.0 +0.0 +0.0 15.4 Ho <td></td> <td></td> <td></td>			
+0.2 +24.5 +5.9 +0.0 +0.0 +0.0 5 2707.250M			
+0.0 +0.0 5 2707.250M		V	Vert
5 2707.250M 40.7 +0.0 +0.5 +2.9 -34.1 +0.0 40.2 54.0 -13.8 Ho +0.5 +29.5 +0.0 +0.0 Low Low Low -13.8 Ho 6 2744.450M 40.7 +0.0 +0.5 +2.9 -34.1 +0.0 40.1 54.0 -13.9 Ho +0.5 +29.3 +0.3 +0.0 Mid Mid Mid -13.9 Ho 7 5414.070M 32.2 +0.0 +0.8 +4.3 -33.6 +0.0 39.4 54.0 -14.6 Ho +0.6 +34.7 +0.4 +0.0 Low Low Low +0.6 +34.7 +0.4 +0.0 Low Low +0.0 +0.0 +0.0 +0.0 Low Low 9 3609.650M 36.1 +0.0 +0.5 +3.4 -33.8 +0.0 38.6 54.0 -15.4 Ho +0.4 +31.7 +0.3 +0.0 Low Low Low +0.0 +0.0 Low +0.0			
+0.5 +29.5 +0.2 +0.0 Low +0.0 +0.0 6 2744.450M			
+0.0 +0.0 6 2744.450M		H	Horiz
6 2744,450M			
+0.5 +29.3 +0.0		- 11	т
+0.0 +0.0 7 5414.070M 32.2 +0.0 +0.8 +4.3 -33.6 +0.0 39.4 54.0 -14.6 Ho +0.6 +34.7 +0.4 +0.0 Low +0.0 +0.0 8 5414.620M 31.6 +0.0 +0.8 +4.3 -33.6 +0.0 38.8 54.0 -15.2 Vo +0.6 +34.7 +0.4 +0.0 Low +0.0 +0.0 9 3609.650M 36.1 +0.0 +0.5 +3.4 -33.8 +0.0 38.6 54.0 -15.4 Ho +0.4 +31.7 +0.3 +0.0 Low +0.0 +0.0		H	Horiz
7 5414.070M 32.2 +0.0 +0.8 +4.3 -33.6 +0.0 39.4 54.0 -14.6 Ho +0.6 +34.7 +0.4 +0.0 Low +0.0 +0.0 8 5414.620M 31.6 +0.0 +0.8 +4.3 -33.6 +0.0 38.8 54.0 -15.2 Vo +0.6 +34.7 +0.4 +0.0 Low +0.0 +0.0 9 3609.650M 36.1 +0.0 +0.5 +3.4 -33.8 +0.0 38.6 54.0 -15.4 Ho +0.4 +31.7 +0.3 +0.0 Low +0.0 +0.0			
+0.6 +34.7 +0.4 +0.0 Low +0.0 +0.0 8 5414.620M 31.6 +0.0 +0.8 +4.3 -33.6 +0.0 38.8 54.0 -15.2 Verification of the second of th		11	T:-
+0.0 +0.0 8 5414.620M 31.6 +0.0 +0.8 +4.3 -33.6 +0.0 38.8 54.0 -15.2 Very 15.2 +0.6 +34.7 +0.4 +0.0 Low +0.0 +0.0 9 3609.650M 36.1 +0.0 +0.5 +3.4 -33.8 +0.0 38.6 54.0 -15.4 How +0.4 +31.7 +0.3 +0.0 Low +0.0 +0.0		H	1011Z
8 5414.620M 31.6 +0.0 +0.8 +4.3 -33.6 +0.0 38.8 54.0 -15.2 Verify the second se			
+0.6 +34.7 +0.4 +0.0 Low +0.0 +0.0 +0.0 Low 9 3609.650M 36.1 +0.0 +0.5 +3.4 -33.8 +0.0 38.6 54.0 -15.4 Ho +0.4 +31.7 +0.3 +0.0 Low +0.0 +0.0 +0.0			Vert
+0.0 +0.0 9 3609.650M 36.1 +0.0 +0.5 +3.4 -33.8 +0.0 38.6 54.0 -15.4 Ho +0.4 +31.7 +0.3 +0.0 Low +0.0 +0.0		V	vert
9 3609.650M 36.1 +0.0 +0.5 +3.4 -33.8 +0.0 38.6 54.0 -15.4 Ho +0.4 +31.7 +0.3 +0.0 Low +0.0 +0.0			
+0.4 +31.7 +0.3 +0.0 Low +0.0 +0.0		Н	Horiz
+0.0 +0.0		110	IOHZ
10 1033.33011 10.1 10.0 10.1 12.1 31.7 10.0 12.0 71.7 31.7 110			Horiz
+0.3 +27.7 +0.6 +0.0 High		11.	IOTIZ
+0.0 +0.0	e e e e e e e e e e e e e e e e e e e		
		V	Vert
+0.3 +27.7 +0.6 +0.0 High			
+0.0 +0.0	· · · · · · · · · · · · · · · · · · ·		
		H	Horiz
+0.5 +34.7 +0.4 +0.0 Mid			
+0.0 +0.0			
13 1829.500M 44.2 +0.0 +0.4 +2.4 -34.7 +0.0 40.7 94.7 -54.0 Ve	2 +0.0 +0.4 +2.4 -34.7 +0.0 40.7 94.7 -54.0	V	Vert
+0.3 +27.5 +0.6 +0.0 Mid			
+0.0 +0.0	+0.3 +27.5 +0.6 +0.0 Mid		
14 5563.350M 33.6 +0.0 +0.8 +4.4 -33.6 +0.0 40.7 94.7 -54.0 Ve		V	Vert
+0.5 +34.5 +0.5 +0.0 High	+0.0 +0.0		
+0.0 +0.0	+0.0 +0.0 6 +0.0 +0.8 +4.4 -33.6 +0.0 40.7 94.7 -54.0		
	+0.0 +0.0 6 +0.0 +0.8 +4.4 -33.6 +0.0 40.7 94.7 -54.0 +0.5 +34.5 +0.5 +0.0 High +0.0 +0.0		Horiz
+0.3 +27.5 +0.6 +0.0 Mid	+0.0 +0.0 6 +0.0 +0.8 +4.4 -33.6 +0.0 40.7 94.7 -54.0 +0.5 +34.5 +0.5 +0.0 High +0.0 +0.0 7 +0.0 +0.4 +2.4 -34.7 +0.0 40.2 94.7 -54.5	Н	
+0.0 +0.0	+0.0 +0.0 6 +0.0 +0.8 +4.4 -33.6 +0.0 40.7 94.7 -54.0 +0.5 +34.5 +0.5 +0.0 High +0.0 +0.0 7 +0.0 +0.4 +2.4 -34.7 +0.0 40.2 94.7 -54.5 +0.3 +27.5 +0.6 +0.0 Mid	Н	

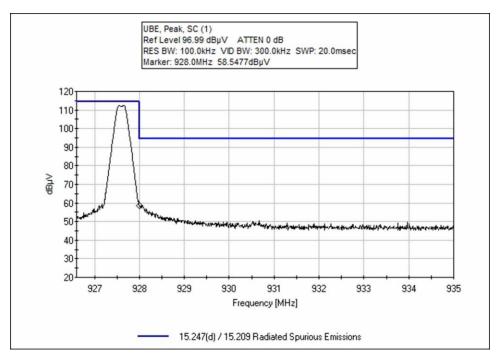
16 1804.690M	43.8	+0.0	+0.4	+2.3	-34.7	+0.0	40.0	94.7	-54.7	Vert
		+0.3	+27.3	+0.6	+0.0			Low		
		+0.0	+0.0							
17 5565.750M	32.7	+0.0	+0.8	+4.4	-33.6	+0.0	39.8	94.7	-54.9	Horiz
		+0.5	+34.5	+0.5	+0.0			High		
		+0.0	+0.0							
18 5488.700M	32.4	+0.0	+0.8	+4.4	-33.6	+0.0	39.6	94.7	-55.1	Vert
		+0.5	+34.7	+0.4	+0.0			Mid		
		+0.0	+0.0							
19 1804.894M	42.5	+0.0	+0.4	+2.3	-34.7	+0.0	38.7	94.7	-56.0	Horiz
		+0.3	+27.3	+0.6	+0.0			Low		
		+0.0	+0.0							
20 210.364M	45.1	+0.0	+0.1	+0.7	+0.0	+0.0	36.1	94.7	-58.6	Horiz
QP		+0.0	+0.0	+0.0	-27.2					
		+16.5	+0.9							
^ 210.364M	56.1	+0.0	+0.1	+0.7	+0.0	+0.0	47.1	94.7	-47.6	Horiz
		+0.0	+0.0	+0.0	-27.2					
		+16.5	+0.9							
22 196.878M	37.6	+0.0	+0.1	+0.7	+0.0	+0.0	27.7	94.7	-67.0	Horiz
QP		+0.0	+0.0	+0.0	-27.3					
		+15.7	+0.9							
^ 196.878M	51.3	+0.0	+0.1	+0.7	+0.0	+0.0	41.4	94.7	-53.3	Horiz
		+0.0	+0.0	+0.0	-27.3					
		+15.7	+0.9							

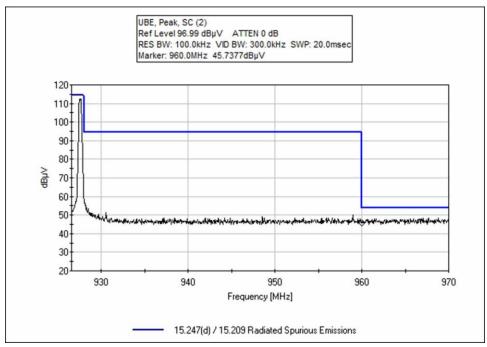
Band Edge

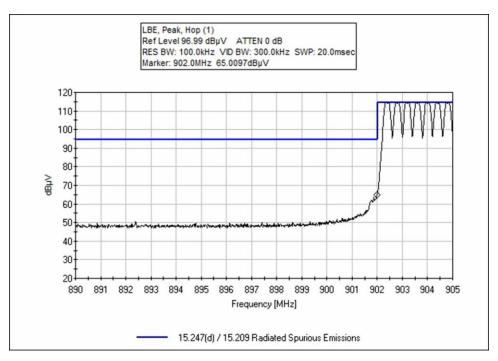

Band Edge Summary								
Operating Mo	Operating Mode: Single Channel (Low and High)							
Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @3m) Results								
614	GFSK-2	PCBA	39.5	< 46	Pass			
902	GFSK-2	PCBA	64.6	< 94.7	Pass			
928	GFSK-2	PCBA	58.5	< 94.7	Pass			
960	GFSK-2	PCBA	45.7	< 54	Pass			

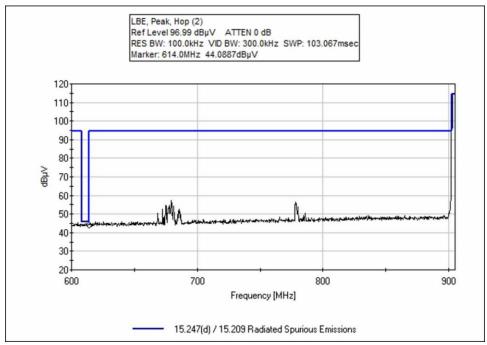

Band Edge Summary								
Operating Mo	Operating Mode: Hopping							
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	GFSK-2	PCBA	39.5	< 46	Pass			
902	GFSK-2	PCBA	65.0	< 94.7	Pass			
928	GFSK-2	PCBA	60.3	< 94.7	Pass			
960	GFSK-2	PCBA	47.8	< 54	Pass			

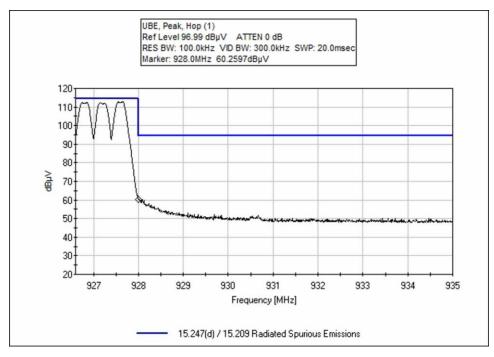
Page 26 of 34 Report No.: 106571-54

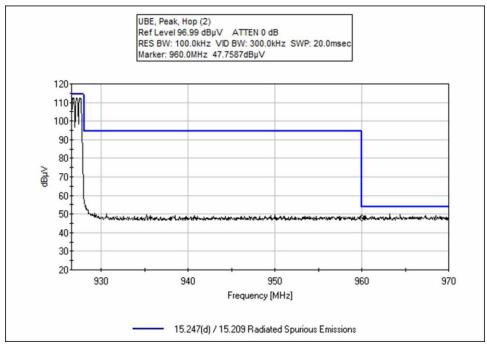



Band Edge Plots









Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 425-402-1717

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 106571 Date: 4/11/2022
Test Type: Radiated Scan Time: 10:55:59
Tested By: Matt Harrison Sequence#: 3

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Environmental Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

Method: ANSI C63.10: 2013

Frequency range: 600-970 MHz

Setup:

Continuously Transmitting

Antenna 1

Channels measured: (0) 902.4 MHz, High (63) 927.6MHz

Notes:

Correct factors loaded directly into PSA to display corrected plots.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
	ANP05360	Cable	RG214	2/4/2022	2/4/2024
	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	ANP06540	Cable	Heliax	1/17/2022	1/17/2024

Page 31 of 34 Report No.: 106571-54

Measurement Data: Reading listed by margin.		Τe	Test Distance: 3 Meters								
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	960.000M	47.8					+0.0	47.8	54.0	-6.2	Horiz
									Hop		
2	614.000M	39.5					+0.0	39.5	46.0	-6.5	Horiz
	QP								Hop		
3	614.000M	39.5					+0.0	39.5	46.0	-6.5	Horiz
	QP								SC		
^	614.000M	44.1					+0.0	44.1	46.0	-1.9	Horiz
									Hop		
٨	614.000M	43.1					+0.0	43.1	46.0	-2.9	Horiz
									SC		
6	960.000M	45.7					+0.0	45.7	54.0	-8.3	Horiz
									SC		
7	902.000M	65.0					+0.0	65.0	94.7	-29.7	Horiz
									Hop		
8	902.000M	64.6					+0.0	64.6	94.7	-30.1	Horiz
									SC		
9	928.000M	60.3					+0.0	60.3	94.7	-34.4	Horiz
									Нор		
10	928.000M	58.5					+0.0	58.5	94.7	-36.2	Horiz
									SC		

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
	Meter reading (dBμV)						
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBμV/m)					

Page 33 of 34 Report No.: 106571-54

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 34 of 34 Report No.: 106571-54