Nalloy, LLC

TEST REPORT FOR

JU3NF9

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.209

Report No.: 107516-20

Date of issue: November 21, 2022

;

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 32 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information
Test Report Information
Report Authorization
Test Facility Information4
Software Versions4
Site Registration & Accreditation Information4
Summary of Results5
Modifications During Testing5
Conditions During Testing5
Equipment Under Test6
General Product Information6
FCC Part 15 Subpart C
15.215(c) Occupied Bandwidth (20dB BW)7
15.209 Field Strength of Fundamental10
15.209 Radiated Emissions
15.207 AC Conducted Emissions20
Supplemental Information
Measurement Uncertainty
Emissions Test Details

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Nalloy, LLC 2301 5th Avenue Seattle, WA 98108 **REPORT PREPARED BY:**

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 107516

Representative: Naga Suryadevara Customer Reference Number: 2D-09331917

> September 15, 2022 September 15 and November 17, 2022

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.209

Test Procedure	Description	Modifications*	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.209	Field Strength of Fundamental	NA	Pass
15.209	Radiated Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of	f Conditions
Nono	

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:			
Device	Manufacturer	Model #	S/N
None	Nalloy LLC, Amazon retail LLC	JU3NF9	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
AC Adapter	Delta Electronics, Inc.	MDS-090AAS15B	NA
Laptop	HP	14-fq0032od	NA

General Product Information:

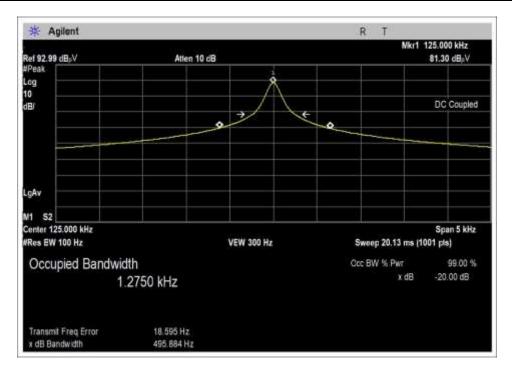
Product Information	Manufacturer-Provided Details			
Equipment Type:	Stand-Alone Equipment			
Modulation Type(s):	RFID			
Maximum Duty Cycle:	Tested as 100%			
Antenna Type(s) and Gain:	Loop			
Antenna Connection Type:	Integral			
Nominal Input Voltage:	120VAC/60Hz			
	IGT FW Version: 2229			
	Wisepad – WPS33.01-41027			
Firmware / Software used for Test:	Baxter - 1.0.62.0			
	RFIdeas configuration utility – 6.0.5			
	Putty – 0.77			
The validity of results is dependent of	on the stated product details, the accuracy of which the manufacturer			
assumes full responsibility.				

FCC Part 15 Subpart C

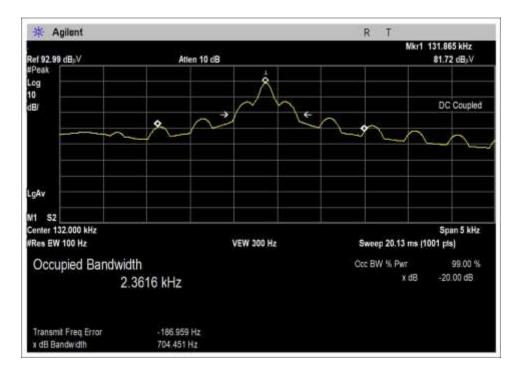
15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	9/15/2022	
Configuration:	Configuration: 1			
Test Setup: The EUT is on a test bench and near field probe is used to measure OBW.				

Environmental Conditions				
Temperature (ºC) 23 Relative Humidity (%): 53				


-

Test Equipment						
Asset#	Asset# Description Manufacturer Model Cal Date Cal Due					
02872	Spectrum Analyzer	Agilent	E4440A	11/29/2021	11/29/2023	


Test Data Summary					
FrequencyAntenna PortModulationMeasured (Hz)Limit (Hz)Result					Results
125kHz	NA	RFID	495.884	None	NA
132kHz	NA	RFID	704.451	None	NA

Plot(s)

125kHz

132kHz

Test Setup Photo(s)

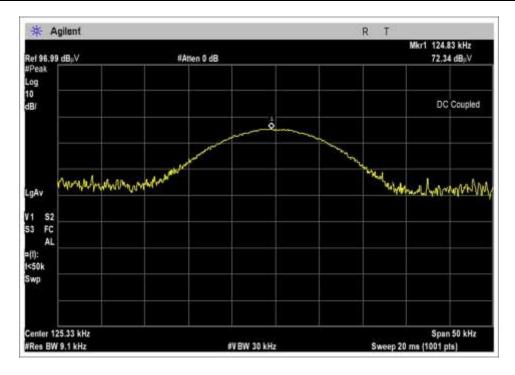
Bandwidth Measurements

15.209 Field Strength of Fundamental

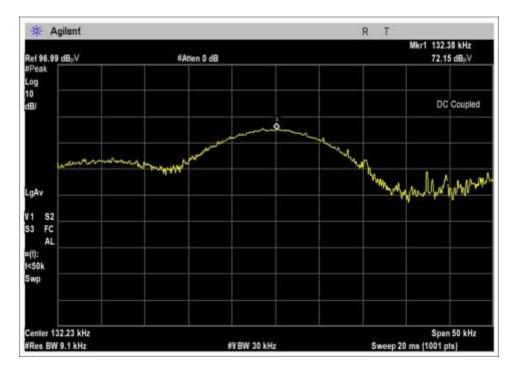
	Test Data Summary - Voltage Variations										
Frequency (MHz)	Modulation	V _{Minimum} (dBµV/m@300m)	V _{Nominal} (dBµV/m@300m)	V _{Maximum} (dBµV/m@300m)	Max Deviation from V _{Nominal} (dB)						
125kHz	RFID	-17.3	-17.3	-17.3	0.0						
132kHz	RFID	-17.5	-17.5	-17.5	0.0						

Test performed using operational mode with the highest output power, representing worst-case.

Parameter Definitions:


Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	120 VAC
V _{Minimum} :	102.00 VAC
V _{Maximum} :	138.00 VAC


	Test Data Summary – Radiated Field Strength Measurement									
Frequency Modulation Ant. Type Measured (dBμV/m @ 300m) Limit (dBμV/m @ 300m) Result										
125kHz	RFID	Loop	-17.3	≤25.2	Pass					
132kHz	RFID	Loop	-17.5	≤25.2	Pass					

Plot(s)

132kHz

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Nalloy, LLC		
Specification:	15.209 Radiated Emissions		
Work Order #:	106997	Date:	11/17/2022
Test Type:	Radiated Scan	Time:	08:49:26
Tested By:	M. Harrison/M. Atkinson	Sequence#:	36
Software:	EMITest 5.03.20		

Equipment Tested:

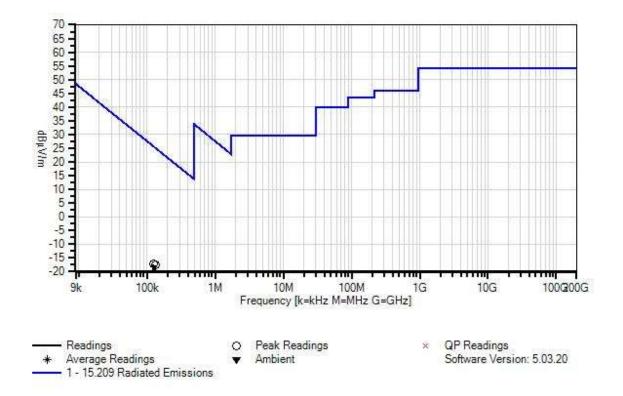
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 20°C Humidity: 34% Pressure: 102.9kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Fund


Test Setup:

EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply, connected to remote laptop via USB to run the 125kHz and 132kHz badge reader. 3 x orthogonal antenna axes investigated, worst-case reported.

Badge reader software is running a test to enable the 125kHz and 132kHz fundamental.

Nalloy, LLC WO#: 106997 Sequence#: 36 Date: 11/17/2022 15.209 Radiated Emissions Test Distance: 1 Meter Para

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06515	Cable	Heliax	5/23/2022	5/23/2024
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
Т3	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024

Measurement Data:		Reading listed by margin.			argin.		Test Distance: 1 Meter					
	#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
	1	132.380k	72.2	+0.0	+0.1	+9.3		-99.1	-17.5	25.2	-42.7	Para
	2	124.830k	72.3	+0.0	+0.1	+9.4		-99.1	-17.3	25.7	-43.0	Para

Test Setup Photo(s)

15.209 Radiated Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116	5 23rd Drive SE, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Nalloy, LLC		
Specification:	15.209 Radiated Emissions		
Work Order #:	106997	Date:	9/15/2022
Test Type:	Radiated Scan	Time:	08:32:11
Tested By:	Matt Harrison	Sequence#:	38
Software:	EMITest 5.03.20	-	

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Configuration				

Test Conditions / Notes:

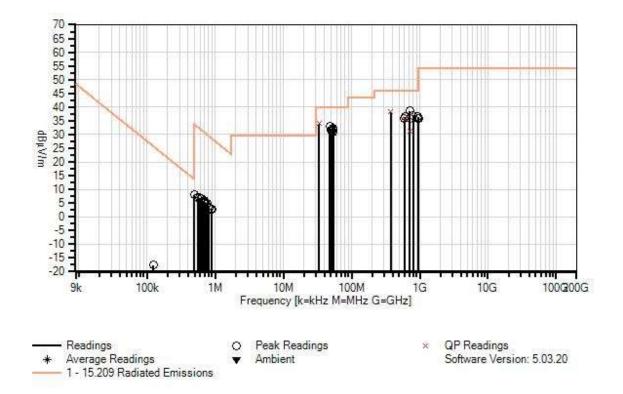
Test Environment Conditions: Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9k-1000MHz

Highest Clock: 3.6GHz

Test Setup:


EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply, and a remote laptop via USB to run the 125kHz and 132kHz badge reader. 3 x orthogonal antenna axes investigated below 30MHz, horizontal and vertical antenna polarities investigated above 30MHz; worst-case reported.

Badge reader software is running a test to enable the 125kHz and 132kHz fundamental.

Investigated with and without headphones, and the rest of the pedestal fully exercised as much as possible with the badge reader directly connected to support laptop.

Nalloy, LLC WO#: 106997 Sequence#: 38 Date: 9/15/2022 15.209 Radiated Emissions Test Distance: 3 Meters Para

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	AN02307	Preamp	8447D	1/6/2022	1/6/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	ANP05360	Cable	RG214	2/4/2022	2/4/2024

Measu	rement Data:	Re	eading list	ted by ma	ırgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant
1	33.395M	41.5	+0.1	+0.0	+0.3	-27.8	+0.0	34.0	40.0	-6.0	Vert
	QP		+19.5	+0.4							
^	33.395M	45.1	+0.1	+0.0	+0.3	-27.8	+0.0	37.6	40.0	-2.4	Vert
			+19.5	+0.4							
3	47.968M	47.1	+0.1	+0.0	+0.3	-27.8	+0.0	33.0	40.0	-7.0	Vert
			+12.8	+0.5							
4	710.002M	34.4	+0.3	+0.0	+1.3	-27.9	+0.0	38.6	46.0	-7.4	Vert
			+28.4	+2.1							
5	53.558M	47.0	+0.1	+0.0	+0.3	-27.8	+0.0	32.4	40.0	-7.6	Vert
			+12.3	+0.5							
6	374.991M	41.4	+0.2	+0.0	+1.0	-27.4	+0.0	38.2	46.0	-7.8	Vert
	QP		+21.7	+1.3							
^	374.991M	43.8	+0.2	+0.0	+1.0	-27.4	+0.0	40.6	46.0	-5.4	Vert
			+21.7	+1.3							
8	54.024M	46.5	+0.1	+0.0	+0.3	-27.8	+0.0	31.9	40.0	-8.1	Vert
			+12.3	+0.5							
9	50.431M	46.2	+0.1	+0.0	+0.3	-27.8	+0.0	31.7	40.0	-8.3	Vert
1.0			+12.4	+0.5							
10	50.098M	46.1	+0.1	+0.0	+0.3	-27.8	+0.0	31.6	40.0	-8.4	Vert
		4.5.4	+12.4	+0.5	0.0				10.0	0.7	
11	50.896M	46.1	+0.1	+0.0	+0.3	-27.8	+0.0	31.5	40.0	-8.5	Vert
10	50.00.43.6	45.0	+12.3	+0.5	0.0	27.0	0.0	21.2	10.0	0.0	X 7 .
12	52.094M	45.8	+0.1	+0.0	+0.3	-27.8	+0.0	31.2	40.0	-8.8	Vert
10	000 (05) (21.5	+12.3	+0.5	1.4	27.7	0.0	26.0	16.0	0.1	X 7 .
13	803.695M	31.5	+0.3	+0.0	+1.4	-27.7	+0.0	36.9	46.0	-9.1	Vert
1.4	002.00514	21.5	+29.2	+2.2	. 1. 4	27.7	.0.0	26.0	16.0	0.1	N.C
14	803.095M	31.5	+0.3	+0.0	+1.4	-27.7	+0.0	36.9	46.0	-9.1	Vert
15	706 24914	21.6	+29.2	+2.2	.1.4	27.7	.0.0	26.0	16.0	0.1	Vart
15	796.248M	31.6	+0.3	+0.0	+1.4	-27.7	+0.0	36.9	46.0	-9.1	Vert
16	52 02CM	15.2	+29.1	+2.2	+0.2	27.9	10.0	20.7	40.0	0.2	Vart
16	53.026M	45.3	+0.1	+0.0	+0.3	-27.8	+0.0	30.7	40.0	-9.3	Vert
17	050 076M	20.2	+12.3	+0.5	+1.5	27.2		36.4	16.0	-9.6	Horiz
1/	950.976M	28.3	+0.3 +31.1	+0.0 +2.4	+1.3	-27.2	+0.0	30.4	46.0	-9.0	HOLIZ
18	608.981M	34.2	+31.1 +0.3	+2.4 +0.0	+1.2	-28.1	+0.0	36.4	46.0	-9.6	Horiz
10	000.20111	34.2	+0.3 +26.9	+0.0 +1.9	+1.2	-20.1	± 0.0	50.4	40.0	-9.0	TIOUZ
19	952.416M	27.9	+20.9 $+0.3$	+1.9 +0.0	+1.5	-27.2	+0.0	36.0	46.0	-10.0	Horiz
19	952.+10WI	21.7	+0.3 +31.1	+0.0 +2.4	± 1.3	-21.2	± 0.0	50.0	40.0	-10.0	TIOUTZ
20	596.969M	34.3	+0.3	+2.4 +0.0	+1.2	-28.1	+0.0	36.0	46.0	-10.0	Horiz
20	570.707141	54.5	+0.3 +26.4	+0.0 +1.9	11.4	-20.1	10.0	50.0	-0.0	-10.0	TIOUZ
21	710.963M	31.7	+20.4 +0.3	+1.9 +0.0	+1.3	-27.9	+0.0	35.9	46.0	-10.1	Horiz
21	/10./05101	51.7	+0.3 +28.4	+0.0 +2.1	11.5	-21.9	10.0	55.7	-0.0	-10.1	TIOUZ
22	711.323M	31.6	+28.4 +0.3	+2.1 +0.0	+1.3	-27.9	+0.0	35.8	46.0	-10.2	Horiz
22	/11.32311	51.0	+0.3 +28.4	+0.0 +2.1	71.5	-21.7	± 0.0	55.0	40.0	-10.2	TIOUTZ
23	938.954M	27.8	+0.3	+2.1 +0.0	+1.5	-27.3	+0.0	35.8	46.0	-10.2	Horiz
23	750.75 4 1 v 1	27.0	+0.3 +31.1	+0.0 +2.4	11.5	21.5	10.0	55.0	-10.U	10.2	TIOUT
l			1,1,1	12.4							

	602.995M QP	33.6	+0.3 +26.6	+0.0 +1.9	+1.2	-28.1	+0.0	35.5	46.0	-10.5	Horiz
	602.995M	35.7	+0.3 +26.6	+1.9 +0.0 +1.9	+1.2	-28.1	+0.0	37.6	46.0	-8.4	Horiz
26	711.782M QP	27.2	+20.0 +0.3 +28.3	+1.9 +0.0 +2.1	+1.3	-27.9	+0.0	31.3	46.0	-14.7	Vert
^	711.782M	36.2	+0.3 +28.3	+2.1 +0.0 +2.1	+1.3	-27.9	+0.0	40.3	46.0	-5.7	Vert
28	630.861k	37.2	+0.1 +0.0	+9.4 +0.0	+0.0	+0.0	-40.0	6.7	31.6	-24.9	Para
29	775.119k	35.2	+0.1 +0.0	+9.6 +0.0	+0.0	+0.0	-40.0	4.9	29.8	-24.9	Para
30	689.401k	36.2	+0.1 +0.0	+9.5 +0.0	+0.0	+0.0	-40.0	5.8	30.8	-25.0	Para
31	597.410k	37.5	+0.1 +0.0	+9.4 +0.0	+0.0	+0.0	-40.0	7.0	32.1	-25.1	Para
32	704.036k	35.9	+0.1 +0.0	+9.5 +0.0	+0.0	+0.0	-40.0	5.5	30.6	-25.1	Para
33	714.489k	35.8	+0.1 +0.0	+9.5 +0.0	+0.0	+0.0	-40.0	5.4	30.5	-25.1	Para
34	559.777k	37.7	+0.1 +0.0	+9.4 +0.0	+0.0	+0.0	-40.0	7.2	32.6	-25.4	Para
35	494.965k	38.7	$^{+0.1}_{+0.0}$	+9.3 +0.0	+0.0	+0.0	-40.0	8.1	33.7	-25.6	Para
36	798.117k	34.2	+0.1 +0.0	+9.6 +0.0	+0.0	+0.0	-40.0	3.9	29.5	-25.6	Para
37	745.850k	34.8	+0.1 +0.0	+9.5 +0.0	+0.0	+0.0	-40.0	4.4	30.1	-25.7	Para
38	693.582k	35.3	+0.1 +0.0	+9.5 +0.0	+0.0	+0.0	-40.0	4.9	30.8	-25.9	Para
39	791.845k	34.0	+0.1 +0.0	+9.6 +0.0	+0.0	+0.0	-40.0	3.7	29.6	-25.9	Para
40	873.382k	33.1	+0.1 +0.0	+9.6 +0.0	+0.0	+0.0	-40.0	2.8	28.7	-25.9	Para
41	890.108k	32.9	+0.1 +0.0	+9.6 +0.0	+0.0	+0.0	-40.0	2.6	28.6	-26.0	Para
42	808.571k	33.6	+0.1 +0.0	+9.6 +0.0	+0.0	+0.0	-40.0	3.3	29.4	-26.1	Para
43	124.997k	53.0	+0.1 +0.0	+9.3 +0.0	+0.0	+0.0	-80.0	-17.6	25.7	-43.3	Para

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 2	3rd Drive SE, Suite A • I	Bothell, WA 98021 • (425) 402-1717
Customer:	Nalloy, LLC		
Specification:	15.207 AC Mains - Average		
Work Order #:	106997	Date:	9/15/2022
Test Type:	Conducted Emissions	Time:	09:07:26
Tested By:	Matt Harrison	Sequence#:	39
Software:	EMITest 5.03.20		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 150k-30MHz

Highest Clock: 3.6GHz

Test Setup:

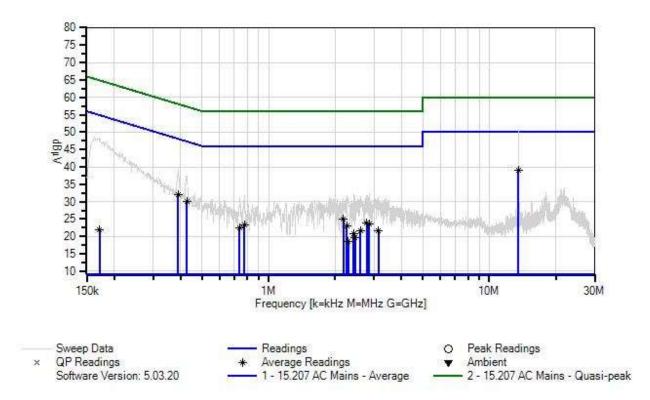
EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply, headphones, and a remote laptop via Ethernet Cable.

Mode 1: Honecrisp: Fuji- CPU DDR MMC Stress Audio 1kHz Tone on Headphone at 100% Volume Display Max Brightness USB to Caramel 480Mbps

Opal: No Stressor

Caramel: Ethernet 100Mbps USB 2.0 x1 12Mbps to Wisepad USB B No Stressor to Baxter

Wisepad: Tap Mode at 13.56MHz USB 2.0 12Mbps



Baxter: Ethernet 100Mbps Prefect- Stressors on CPU DDR MMC Relay continuously cycling Tamper sensor enabled Audio over speaker playing representative tone Microphone on USB on Baxter Mass Storage devices no cable USB A to B from Baxter to Caramel No Stressor

Badge Reader: On at 13.56MHz, 125kHz, and 132kHz.

Nalloy, LLC WO#: 106997 Sequence#: 39 Date: 9/15/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP06515	Cable	Heliax	5/23/2022	5/23/2024
T4	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T5	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		

	rement Data:		ading list			T 4	D	Test Lead			D 1
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.560M	29.5	+9.1	+0.2	+0.2	+0.1	+0.0	39.1	50.0	-10.9	Line
	Ave		+0.0								
^	13.560M	41.2	+9.1 +0.0	+0.2	+0.2	+0.1	+0.0	50.8	50.0	+0.8	Line
3	389.978k	22.7	+0.0	+0.0	+0.0	+0.1	+0.0	32.0	48.1	-16.1	Line
	Ave		+0.1								
٨	389.977k	30.1	+9.1 +0.1	+0.0	+0.0	+0.1	+0.0	39.4	48.1	-8.7	Line
5	425.611k	20.8	+9.1	+0.0	+0.0	+0.1	+0.0	30.1	47.3	-17.2	Line
-	Ave	20.0	+0.1	10.0	10.0	10.1	10.0	50.1	77.5	17.2	Line
^	425.611k	28.2	+9.1	+0.0	+0.0	+0.1	+0.0	37.5	47.3	-9.8	Line
	120.011K	20.2	+0.1	10.0	10.0	10.1	10.0	51.5		2.0	2000
7	2.183M	15.4	+9.1	+0.1	+0.1	+0.1	+0.0	24.9	46.0	-21.1	Line
	Ave	1011	+0.1		1011		1010	>	1010		2
٨	2.183M	21.6	+9.1	+0.1	+0.1	+0.1	+0.0	31.1	46.0	-14.9	Line
		_110	+0.1		1011		1010	0111	1010	1.112	2
9	2.782M Ave	14.4	+9.1 +0.0	+0.1	+0.1	+0.1	+0.0	23.8	46.0	-22.2	Line
^	2.782M	22.5	+0.0 +9.1	+0.1	+0.1	+0.1	+0.0	31.9	46.0	-14.1	Line
	2.782111	22.3	+9.1 +0.0	+0.1	+0.1	+0.1		51.9	40.0	-14.1	Line
11	2.855M Ave	14.2	+9.1 +0.0	+0.1	+0.1	+0.1	+0.0	23.6	46.0	-22.4	Line
^	2.855M	23.0	+9.1	+0.1	+0.1	+0.1	+0.0	32.4	46.0	-13.6	Line
	2.055101	23.0	+9.1 +0.0	± 0.1	± 0.1	+0.1	+0.0	52.4	40.0	-13.0	Line
13	776.852k	13.9	+9.1	+0.0	+0.0	+0.1	+0.0	23.2	46.0	-22.8	Line
	Ave		+0.1								
۸	776.851k	22.4	+9.1	+0.0	+0.0	+0.1	+0.0	31.7	46.0	-14.3	Line
			+0.1								
15	2.259M	13.5	+9.1	+0.1	+0.1	+0.1	+0.0	23.0	46.0	-23.0	Line
	Ave		+0.1								
۸	2.259M	22.3	+9.1	+0.1	+0.1	+0.1	+0.0	31.8	46.0	-14.2	Line
			+0.1								
17	739.764k	13.3	+9.1	+0.0	+0.0	+0.1	+0.0	22.6	46.0	-23.4	Line
	Ave		+0.1								
٨	739.764k	22.0	+9.1	+0.0	+0.0	+0.1	+0.0	31.3	46.0	-14.7	Line
			+0.1								
19		12.3	+9.1	+0.1	+0.1	+0.1	+0.0	21.7	46.0	-24.3	Line
	Ave		+0.0								
^	3.140M	21.7	+9.1	+0.1	+0.1	+0.1	+0.0	31.1	46.0	-14.9	Line
01	0.61014	10.0	+0.0	.0.1	.0.1	.0.1		01.6	160	24.4	<u>т</u> .
21		12.2	+9.1 +0.0	+0.1	+0.1	+0.1	+0.0	21.6	46.0	-24.4	Line
^	Ave 2.612M	22.1	+0.0 +9.1	+0.1	+0.1	+0.1	+0.0	31.5	46.0	-14.5	Line
	2.012IVI	22.1	+9.1 +0.0	+0.1	+0.1	± 0.1	+0.0	51.5	40.0	-14.3	Line

23	2.425M	11.3	+9.1	+0.1	+0.1	+0.1	+0.0	20.7	46.0	-25.3	Line
-	Ave	1110	+0.0		1011			2017		-010	2
Λ	2.425M	22.7	+9.1	+0.1	+0.1	+0.1	+0.0	32.1	46.0	-13.9	Line
			+0.0								
25	2.459M	10.3	+9.1	+0.1	+0.1	+0.1	+0.0	19.7	46.0	-26.3	Line
A	Ave		+0.0								
^	2.459M	22.3	+9.1	+0.1	+0.1	+0.1	+0.0	31.7	46.0	-14.3	Line
			+0.0								
27	2.298M	9.1	+9.1	+0.1	+0.1	+0.1	+0.0	18.6	46.0	-27.4	Line
A	Ave		+0.1								
۸	2.298M	21.9	+9.1	+0.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	Line
			+0.1								
29	171.816k	12.3	+9.1	+0.0	+0.0	+0.1	+0.0	21.8	54.9	-33.1	Line
A	Ave		+0.3								
۸	171.816k	38.8	+9.1	+0.0	+0.0	+0.1	+0.0	48.3	54.9	-6.6	Line
			+0.3								

Test Location: Customer:	CKC Laboratories, Inc. • 22116 Nalloy, LLC	23rd Drive SE, Suite A •]	Bothell, WA 98021 • (425) 402-1717
Specification:	15.207 AC Mains - Average		
Work Order #:	106997	Date:	9/15/2022
Test Type:	Conducted Emissions	Time:	09:25:08
Tested By:	Matt Harrison	Sequence#:	40
Software:	EMITest 5.03.20		120V 60Hz
Equipment Test	ed:		
Device	Manufacturer	Model #	S/N

Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 150k-30MHz

Highest Clock: 3.6GHz

Test Setup:

EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply, headphones, and a remote laptop via Ethernet Cable.

Mode 1:

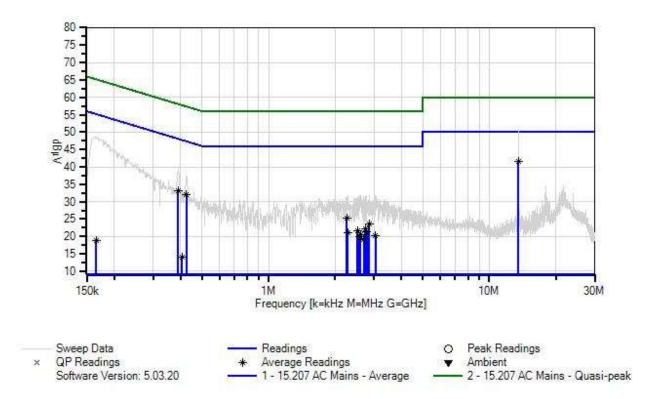
Honecrisp: Fuji- CPU DDR MMC Stress Audio 1kHz Tone on Headphone at 100% Volume Display Max Brightness USB to Caramel 480Mbps

Opal: No Stressor

Caramel: Ethernet 100Mbps USB 2.0 x1 12Mbps to Wisepad USB B No Stressor to Baxter

Wisepad: Tap Mode at 13.56MHz USB 2.0 12Mbps

Baxter: Ethernet 100Mbps Prefect- Stressors on CPU DDR MMC Relay continuously cycling



Tamper sensor enabled Audio over speaker playing representative tone Microphone on USB on Baxter Mass Storage devices no cable USB A to B from Baxter to Caramel No Stressor

Badge Reader: On at 13.56MHz, 125kHz, and 132kHz.

Nalloy, LLC WO#: 106997 Sequence#: 40 Date: 9/15/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP06515	Cable	Heliax	5/23/2022	5/23/2024
	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
T4	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T5	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		

	rement Data:		eading list			T 4	D'		d: Neutral	Maria	D . 1
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.560M	32.0	+9.1	+0.2	+0.2	+0.0	+0.0	41.5	50.0	-8.5	Neutr
	Ave		+0.0								
۸	13.560M	41.1	+9.1	+0.2	+0.2	+0.0	+0.0	50.6	50.0	+0.6	Neutr
			+0.0								
3	389.250k	23.7	+9.1	+0.0	+0.0	+0.1	+0.0	33.0	48.1	-15.1	Neutr
	Ave		+0.1								
^	389.249k	29.8	+9.1	+0.0	+0.0	+0.1	+0.0	39.1	48.1	-9.0	Neut
			+0.1								
5	424.156k	22.7	+9.1	+0.0	+0.0	+0.1	+0.0	32.0	47.4	-15.4	Neut
	Ave		+0.1								
۸	424.155k	28.2	+9.1	+0.0	+0.0	+0.1	+0.0	37.5	47.4	-9.9	Neut
			+0.1								
7	2.255M	15.9	+9.1	+0.1	+0.1	+0.1	+0.0	25.4	46.0	-20.6	Neut
	Ave		+0.1								
۸	2.255M	21.7	+9.1	+0.1	+0.1	+0.1	+0.0	31.2	46.0	-14.8	Neut
			+0.1								
9	2.855M	14.1	+9.1	+0.1	+0.1	+0.1	+0.0	23.5	46.0	-22.5	Neut
	Ave		+0.0								
۸	2.855M	22.3	+9.1	+0.1	+0.1	+0.1	+0.0	31.7	46.0	-14.3	Neut
			+0.0								
11	2.744M	12.8	+9.1	+0.1	+0.1	+0.1	+0.0	22.2	46.0	-23.8	Neuti
	Ave		+0.0								
^	2.744M	22.1	+9.1	+0.1	+0.1	+0.1	+0.0	31.5	46.0	-14.5	Neut
			+0.0								
13	2.532M	12.3	+9.1	+0.1	+0.1	+0.1	+0.0	21.7	46.0	-24.3	Neuti
	Ave		+0.0								
^	2.532M	21.8	+9.1	+0.1	+0.1	+0.1	+0.0	31.2	46.0	-14.8	Neut
			+0.0								
15	2.778M	12.0	+9.1	+0.1	+0.1	+0.1	+0.0	21.4	46.0	-24.6	Neut
	Ave		+0.0								
^	2.778M	22.3	+9.1	+0.1	+0.1	+0.1	+0.0	31.7	46.0	-14.3	Neut
			+0.0								
17	2.285M	11.5	+9.1	+0.1	+0.1	+0.1	+0.0	21.0	46.0	-25.0	Neut
<u>.</u>	Ave		+0.1								
٨	2.285M	22.3	+9.1	+0.1	+0.1	+0.1	+0.0	31.8	46.0	-14.2	Neut
			+0.1								
19	2.612M	11.2	+9.1	+0.1	+0.1	+0.1	+0.0	20.6	46.0	-25.4	Neut
	Ave		+0.0								
^	2.612M	22.3	+9.1	+0.1	+0.1	+0.1	+0.0	31.7	46.0	-14.3	Neut
			+0.0								
21	3.059M	10.9	+9.1	+0.1	+0.1	+0.1	+0.0	20.3	46.0	-25.7	Neut
	Ave		+0.0								
۸	3.059M	22.4	+9.1	+0.1	+0.1	+0.1	+0.0	31.8	46.0	-14.2	Neut
			+0.0								

23	2.578M	10.5	+9.1	+0.1	+0.1	+0.1	+0.0	19.9	46.0	-26.1	Neutr
_		10.5		± 0.1	± 0.1	± 0.1	± 0.0	19.9	40.0	-20.1	INCULI
A	Ave		+0.0								
^	2.578M	22.3	+9.1	+0.1	+0.1	+0.1	+0.0	31.7	46.0	-14.3	Neutr
			+0.0								
25	2.706M	9.6	+9.1	+0.1	+0.1	+0.1	+0.0	19.0	46.0	-27.0	Neutr
A	Ave		+0.0								
^	2.706M	22.2	+9.1	+0.1	+0.1	+0.1	+0.0	31.6	46.0	-14.4	Neutr
			+0.0								
27	404.521k	4.7	+9.1	+0.0	+0.0	+0.1	+0.0	14.0	47.8	-33.8	Neutr
A	Ave		+0.1								
^	404.521k	23.7	+9.1	+0.0	+0.0	+0.1	+0.0	33.0	47.8	-14.8	Neutr
			+0.1								
29	165.270k	9.3	+9.1	+0.0	+0.0	+0.1	+0.0	18.9	55.2	-36.3	Neutr
A	Ave		+0.4								
^	165.270k	39.0	+9.1	+0.0	+0.0	+0.1	+0.0	48.6	55.2	-6.6	Neutr
			+0.4								

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.