Nalloy, LLC

TEST REPORT FOR

A2D0US

Tested to The Following Standards:

FCC Part 15 Subpart E Section(s)

15.207 & 15.407 (NII 5.470 – 5.725GHz)

Report No.: 106407-36

Date of issue: February 8, 2022

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 113 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

A	dministrative Information	3
	Test Report Information	3
	Report Authorization	3
	Test Facility Information	4
	Software Versions	4
	Site Registration & Accreditation Information	4
	Summary of Results	5
	Modifications During Testing	5
	Conditions During Testing	5
	Equipment Under Test	6
	General Product Information	7
F(CC Part 15 Subpart E	9
	15.215 Occupied Bandwidth	9
	15.407(a) Output Power	20
	15.407(a) Power Spectral Density	31
	15.407(b) Radiated Emissions & Band Edge	53
	15.207 AC Conducted Emissions	104
Sı	upplemental Information	. 112
	Measurement Uncertainty	112
	Emissions Test Details	112

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Nalloy, LLC
2301 5th Avenue
CKC Laboratories, Inc.
Seattle, WA 98108
5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Naga Suryadevara Project Number: 106407

Customer Reference Number: 2D-07350222

DATE OF EQUIPMENT RECEIPT:December 6, 2021 **DATE(S) OF TESTING:**December 6, 2021

December 6-10, 16, 21,& 23, 2021 January 5-7, 10-13, 17-21 & 24-28, 2022

Feburary 2, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Bell

Page 3 of 113 Report No.: 106407-36

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

 $[\]hbox{\tt *CKC's list of NIST designated countries can be found at: \tt https://standards.gov/cabs/designations.html}\\$

Page 4 of 113 Report No.: 106407-36

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart E - 15.407 (NII)

Test Procedure	Description	Modifications	Results
15.215	Occupied Bandwidth	NA	PASS
15.407(a)	Output Power	NA	PASS
15.407(a)	Power Spectral Density	NA	PASS
15.407(b)	Radiated Emissions & Band Edge	NA	PASS
15.407(g)	Frequency Stability	NA	NP1
15.207	AC Conducted Emissions	NA	PASS

NA = Not Applicable

NP1 = CKC was not contracted to perform the required testing.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions				
No modifications were made during testing.				

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summar	y of Condit	ions		
ov roforonco	100407.30	Took Cokun	Dhataa	

The Test Setup Photos are incorporated by reference 106407-36_Test Setup_Photos.

Page 5 of 113 Report No.: 106407-36

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
None	Nalloy, LLC	A2D0US	G3A1VF021386000B

Support Equipment:

Device	Manufacturer	Model #	S/N
Headphones	Poly	C5220T	NA
Laptop	HP	14-fq0032od	5CD12654D3
None	Nalloy, LLC	Gala	XXX
None	Nalloy, LLC	Gala	XXX
USB to Ethernet Adapter	Amazon	Gigabit Ethernet Adapter	0050B6E212BA
AC Adapter	Delta Electronics, Inc.	MDS-030AAC15	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
None	Nalloy, LLC	A2D0US	G3A1VF021386000G

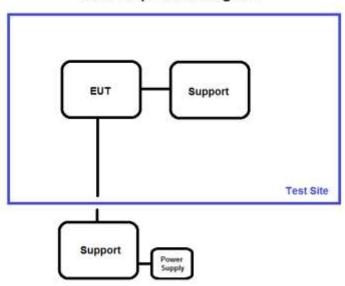
Support Equipment:

Device	Manufacturer	Model #	S/N
Headphones	Sony	WH-1000X M3	NA
Laptop	ASUS	E210M	M9N0CX21R750387
None	Nalloy, LLC	Gala	XXX
None	Nalloy, LLC	Gala	XXX
USB to Ethernet Adapter	Amazon	Gigabit Ethernet Adapter	0050B6E212BA
AC Adapter	Delta Electronics, Inc.	MDS-030AAC15	NA

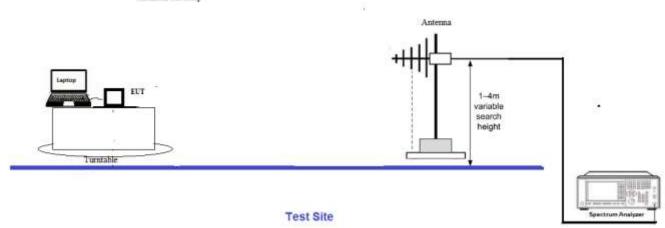
Page 6 of 113 Report No.: 106407-36

General Product Information:

Manufacturer-Provided Details
Stand-Alone Equipment
802.11a, 802.11ac (20, 40 and 80 MHz), 802.11n (20 and 40MHz BW)
5500-5700 MHz
BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
100% Modulated (tested worst-case)
1
Omnidirectional / 3.8dBi
N/A
Integral (External connector provided to facilitate testing)
120VAC
mainline-1.0.2137.0
Bin file- Golden 082621
Qualcomm radio control toolkit v4.0


The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 7 of 113 Report No.: 106407-36



Block Diagram of Test Setup(s)

Test Setup Block Diagram

Radiated test setup

Rev C

FCC Part 15 Subpart E

15.215 Occupied Bandwidth

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford	
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	1/18/2022	
Configuration:	Configuration: 1			
Test Setup:	Duty Cycle: 100% (Test Mode)			
	Test Mode: Continuously transmitting			
	Test Setup: EUT is transmitting through the antenna port connector and is attached to the			
	spectrum analyzer.			

Environmental Conditions					
Temperature (ºC)	21	Relative Humidity (%):	45		

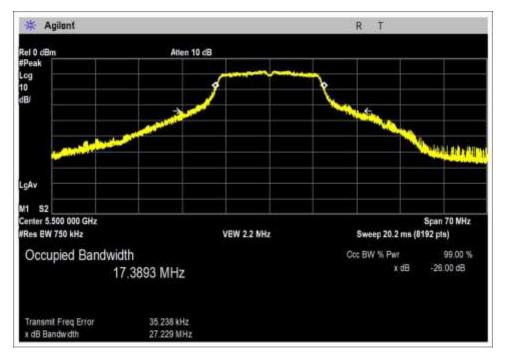
Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal						
02872	Spectrum Analyzer	Agilent	E4440A	11/29/2021	11/29/2023	
P07229	Attenuator	Pasternack	PE7004-20	8/9/2021	8/9/2023	
P07796	Cable	Andrews	Heliax	7/7/2021	7/7/2023	

26dB Occupied Bandwidth

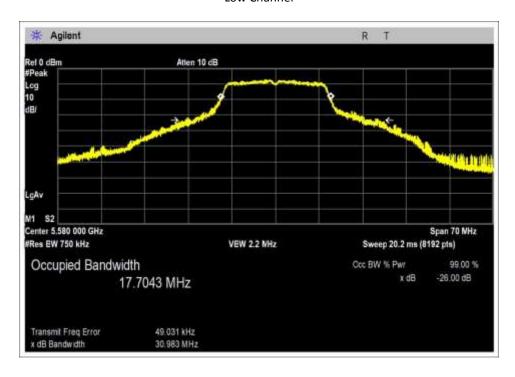
	Test Data Summary						
Frequency (MHz)	Nogulation		Limit (kHz)	Results			
5500	0	802.11a	27229				
5580	0	802.11a	30983	None	N/A		
5700	0	802.11a	30922				
5500	0	802.11n20	28785				
5580	0	802.11n20	30144	None	N/A		
5700	0	802.11n20	33064				
5510	0	802.11n40	47602				
5590	0	802.11n40	61712	None	N/A		
5670	0	802.11n40	64859				
5500	0	802.11ac20	28675				
5580	0	802.11ac20	31148	None	N/A		
5700	0	802.11ac20	33804				
5510	0	802.11ac40	49121				
5590	0	802.11ac40	62775	None	N/A		
5670	0	802.11ac40	68499				
5530	0	802.11ac80	90979	None	N/A		
5610	0	802.11ac80	146938	None	IN/A		

Page 9 of 113 Report No.: 106407-36

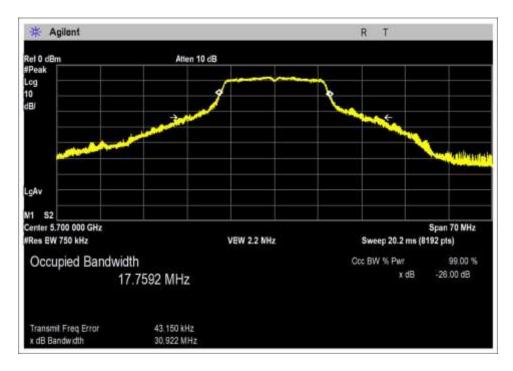
99% Occupied Bandwidth


Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
5500	0	802.11a	17389.3		
5580	0	802.11a	17704.3	None	N/A
5700	0	802.11a	17759.2		
5500	0	802.11n20	18546.7		
5580	0	802.11n20	18795.1	None	N/A
5700	0	802.11n20	19030.7		
5510	0	802.11n40	37380.4		
5590	0	802.11n40	37906.3	None	N/A
5670	0	802.11n40	38061.1		
5500	0	802.11ac20	18594.2		
5580	0	802.11ac20	18749.0	None	N/A
5700	0	802.11ac20	19302.1		
5510	0	802.11ac40	37341.7		
5590	0	802.11ac40	37906.8	None	N/A
5670	0	802.11ac40	38064.3		
5530	0	802.11ac80	76339.1	None	NI/A
5610	0	802.11ac80	77165.7	None	N/A

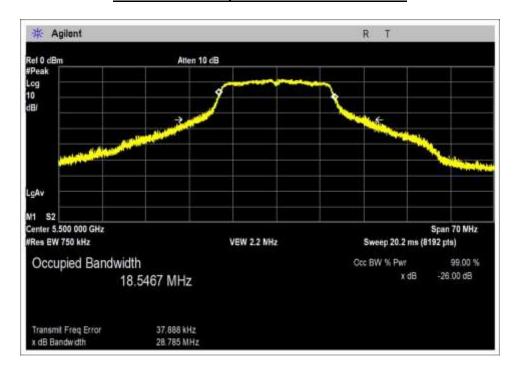
Page 10 of 113 Report No.: 106407-36

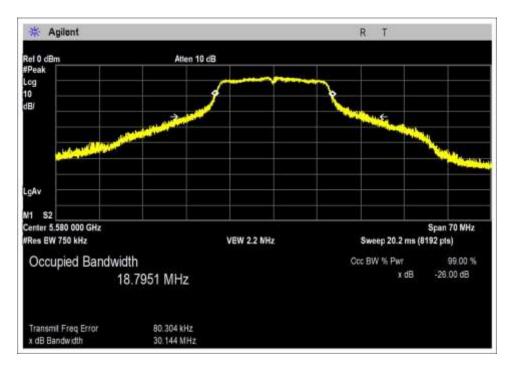


Plot(s)


99% & 26dB Occupied Bandwidth 802.11a

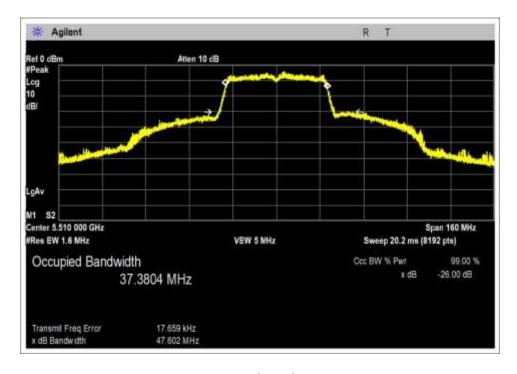
Low Channel

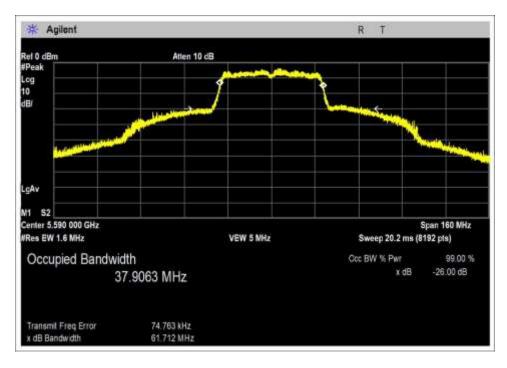


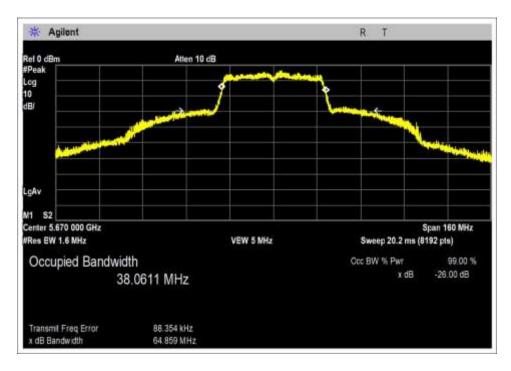



High Channel

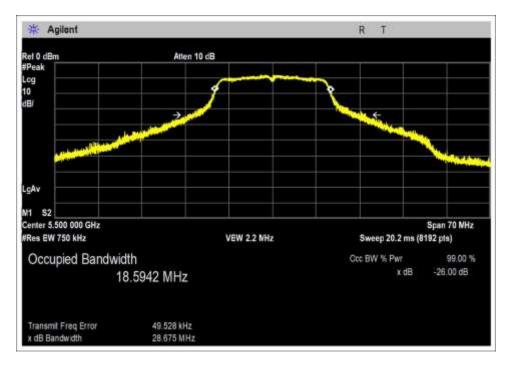
99% & 26dB Occupied Bandwidth 802.11n20

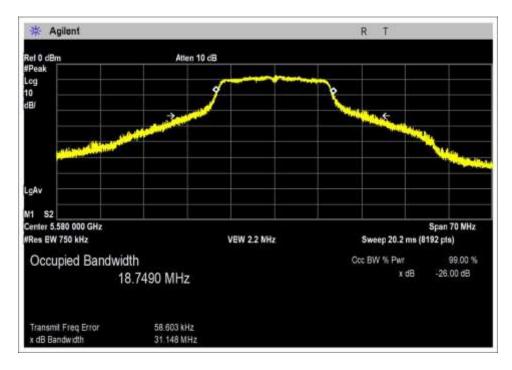


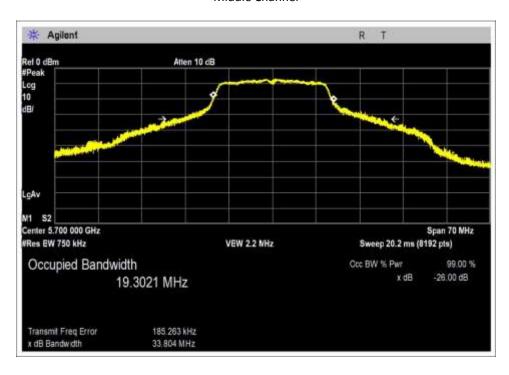

High Channel


99% & 26dB Occupied Bandwidth 802.11n40

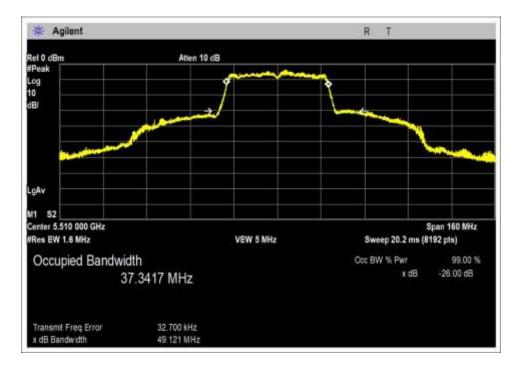
Low Channel

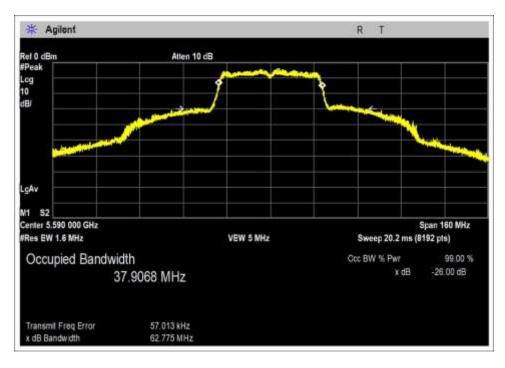


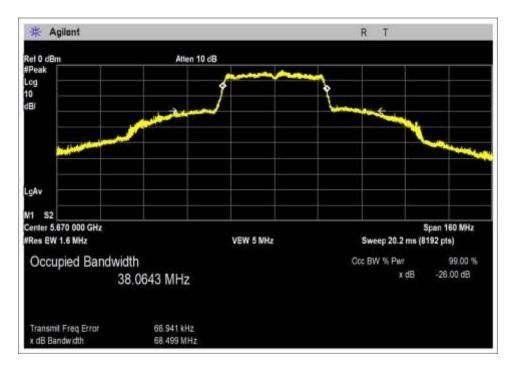



High Channel

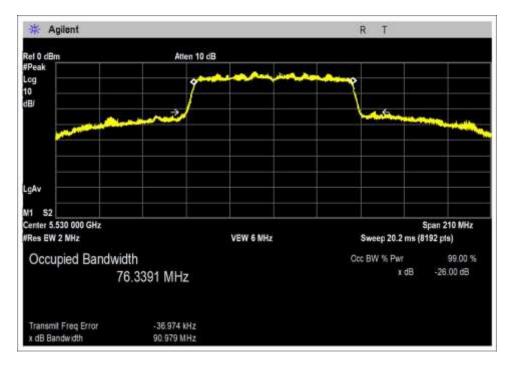
99% & 26dB Occupied Bandwidth 802.11ac20

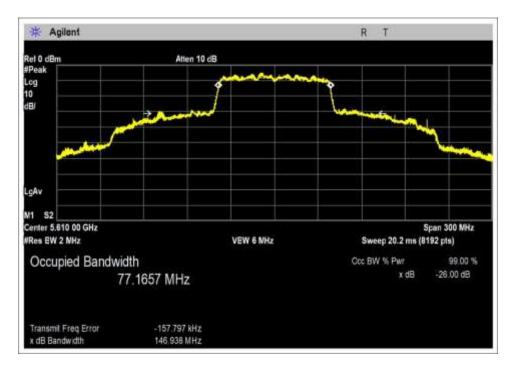



High Channel


99% & 26dB Occupied Bandwidth 802.11ac40

Low Channel





High Channel

99% & 26dB Occupied Bandwidth 802.11ac80

High Channel

15.407(a) Output Power

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison	
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	1/26/2022	
Configuration:	1			
Test Setup:	Duty Cycle: 100% (Test Mode)			
	Test Mode: Continuously transmittin	g		
	Test Setup: EUT is transmitting through a temporary connection to antenna port connector via UFL adapter and is attached to the spectrum analyzer. The UFL adapter has a declared manufacturer loss of 1.0 dB and will be accounted for in the measurement.			

Environmental Conditions				
Temperature (°C)	21	Relative Humidity (%):	45	

Test Equipment						
Asset#	Asset# Description Manufacturer Model Cal Date Cal Duc					
02872	Spectrum Analyzer	Agilent	E4440A	11/29/2021	11/29/2023	
P06011	Cable	Andrew	Heliax	8/7/2020	8/7/2022	
03514	Multimeter	Fluke	87	12/3/2020	12/3/2022	
01505B	AC Power Supply	PPS	345AMXT-UPC32	6/15/2021	6/15/2023	

	Test Data Summary - Voltage Variations					
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)	
5500	802.11a	18.0	18.0	18.0	0.0	
5580	802.11n20	18.5	18.6	18.6	0.1	
5590	802.11n40	19.5	19.5	19.5	0.0	
5580	802.11ac20	17.8	17.9	17.9	0.1	
5590	802.11ac40	19.0	19.0	19.0	0.0	
5610	802.11ac80	18.9	18.9	18.9	0.0	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

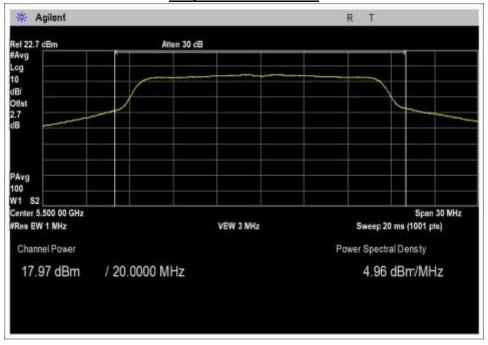
Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	120
V _{Minimum} :	102
V _{Maximum} :	138

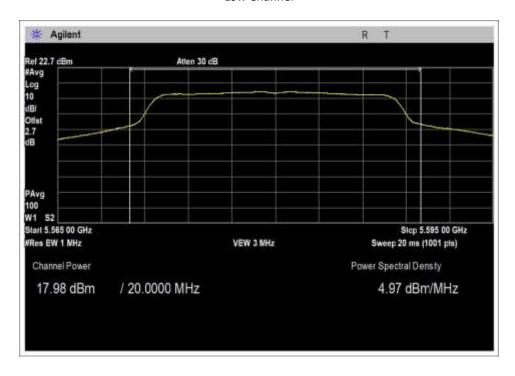
Page 20 of 113 Report No.: 106407-36

Test Data Summary - RF Conducted Measurement Measurement Option: AVGSA-1 Limit Frequency Measured Modulation Ant. Type / Gain (dBi) Results (MHz) (dBm) (dBm) 5500 802.11a Omnidirectional / 3.8dBi 18.0 ≤24 Pass Omnidirectional / 3.8dBi ≤24 5580 802.11a 18.0 Pass 5700 802.11a Omnidirectional / 3.8dBi 11.8 ≤24 **Pass** 5500 802.11n20 Omnidirectional / 3.8dBi 17.9 ≤24 Pass 5580 802.11n20 Omnidirectional / 3.8dBi 18.6 ≤24 **Pass** Omnidirectional / 3.8dBi 13.2 ≤24 5700 802.11n20 **Pass** 802.11n40 Omnidirectional / 3.8dBi 5510 15.4 ≤24 **Pass** 5590 802.11n40 Omnidirectional / 3.8dBi 19.5 ≤24 **Pass** Omnidirectional / 3.8dBi 5670 802.11n40 15.5 ≤24 **Pass** 5500 802.11ac20 Omnidirectional / 3.8dBi 17.8 ≤24 **Pass** 5580 802.11ac20 Omnidirectional / 3.8dBi 17.9 ≤24 **Pass** Omnidirectional / 3.8dBi 5700 802.11ac20 13.3 ≤24 **Pass** 5510 802.11ac40 Omnidirectional / 3.8dBi 14.5 ≤24 **Pass** 5590 Omnidirectional / 3.8dBi 19.0 802.11ac40 ≤24 Pass Omnidirectional / 3.8dBi 5670 802.11ac40 17.1 ≤24 **Pass** 5530 802.11ac80 Omnidirectional / 3.8dBi 16.4 ≤24 **Pass** Omnidirectional / 3.8dBi 5610 802.11ac80 18.9 ≤24 **Pass**

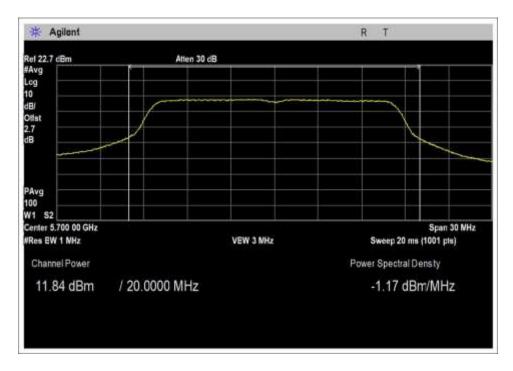
The limit is calculated in accordance with 15.407(a)(2):


$$Limit = The \ lesser \ of \ \begin{cases} 24 \ dBm - (G - 6) \\ 11 dBm + 10 LOG(B) - (G - 6) \end{cases}$$

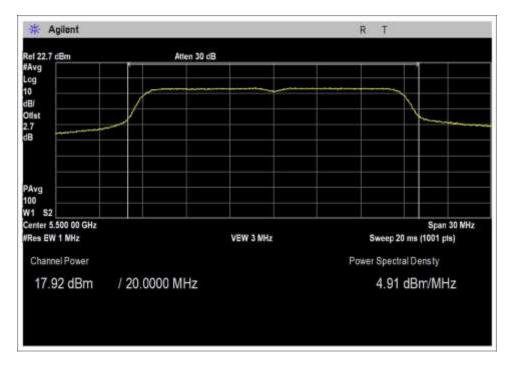
Page 21 of 113 Report No.: 106407-36

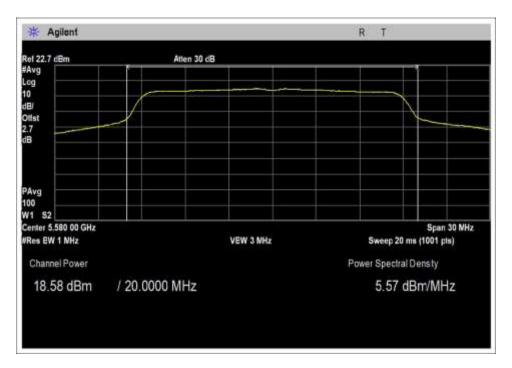


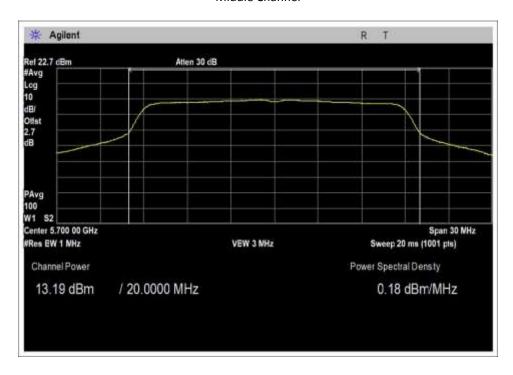
Plot Data - Radiated Measurement


Output Power 802.11a

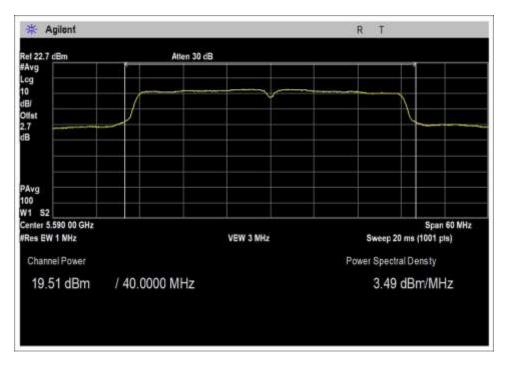
Low Channel

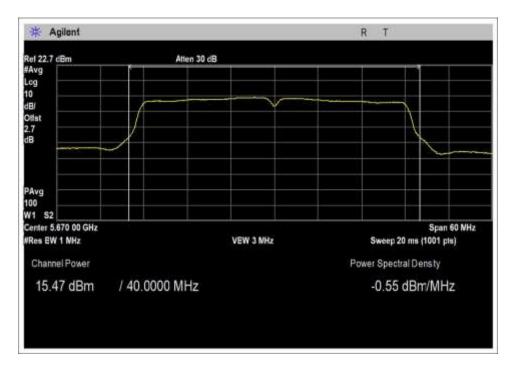




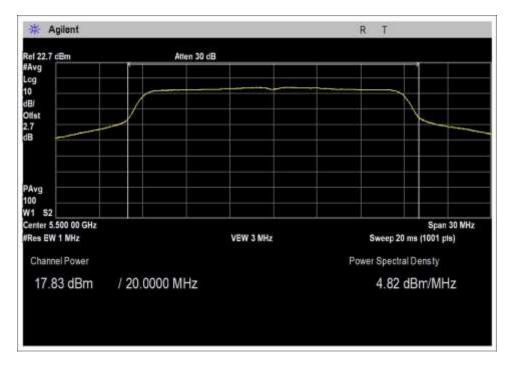

High Channel

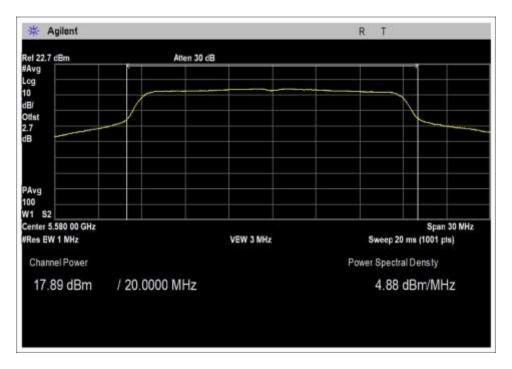
Output Power 802.11n20

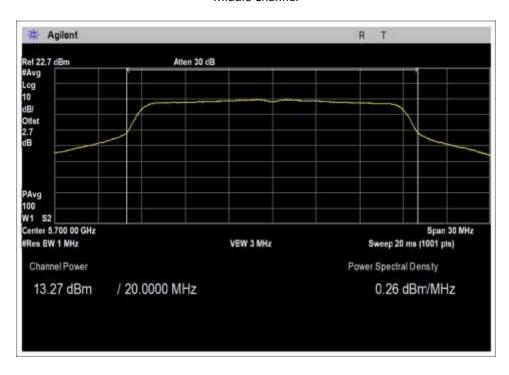

High Channel


Output Power 802.11n40

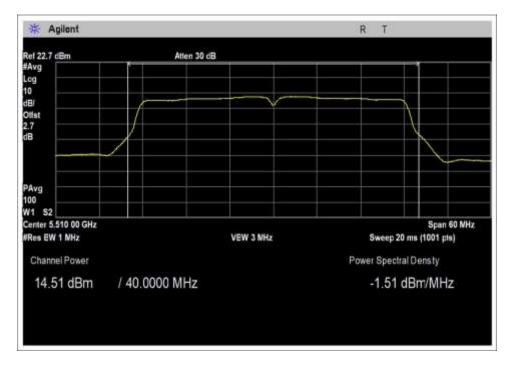
Low Channel

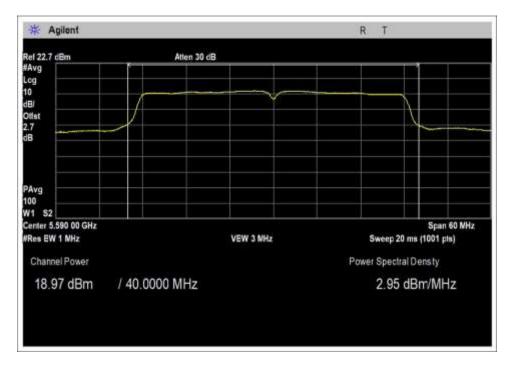


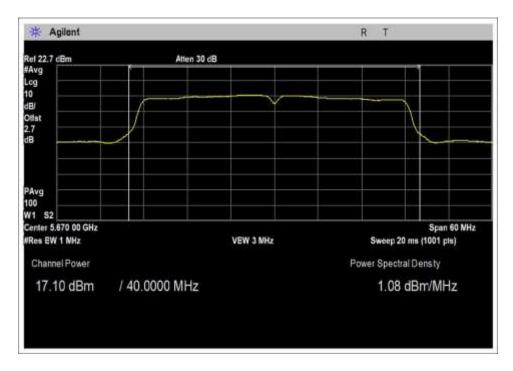



High Channel

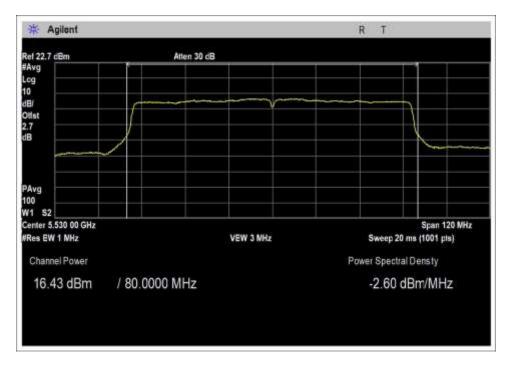
Output Power 802.11ac20

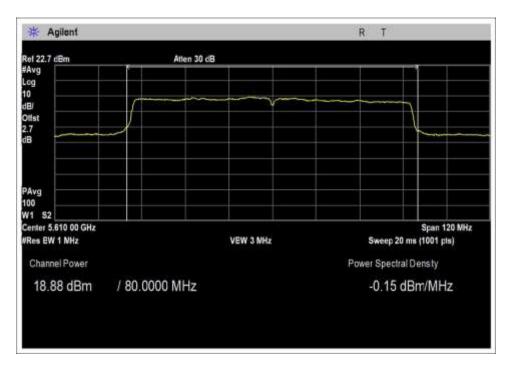



High Channel


Output Power 802.11ac40

Low Channel





High Channel

Output Power 802.11ac80

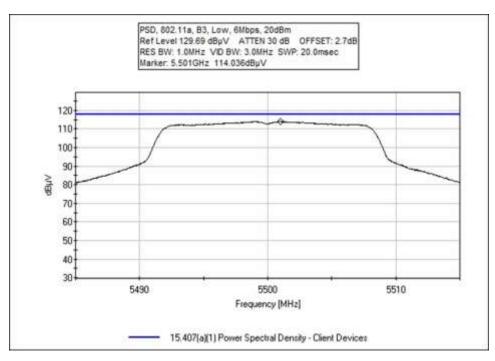
High Channel

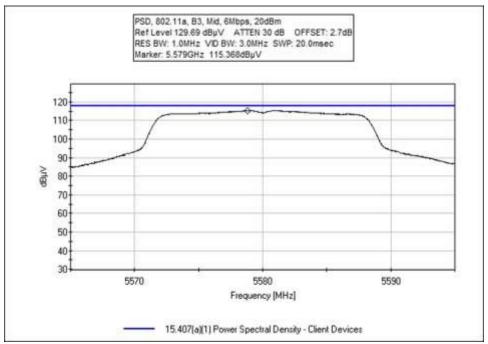
15.407(a) Power Spectral Density

Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison		
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	1/27/2022		
Configuration:	1				
Test Setup:	Duty Cycle: 100% (Test Mode)				
	Test Mode: Continuously transmitting				
	Test Setup: EUT is transmitting through a temporary connection to antenna port				
	connector via UFL adapter and is attached to the spectrum analyzer. The UFL adapter has				
	a declared manufacturer loss	of 1.0 dB and will be acc	ounted for in the measurement.		

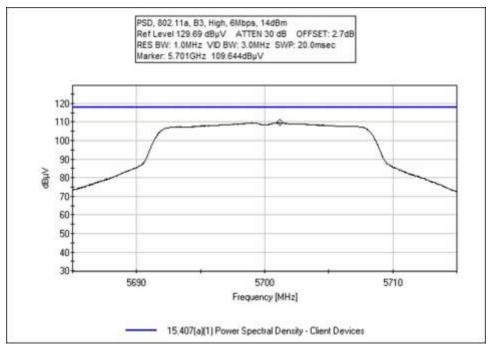
Environmental Conditions				
Temperature (°C)	21	Relative Humidity (%):	45	

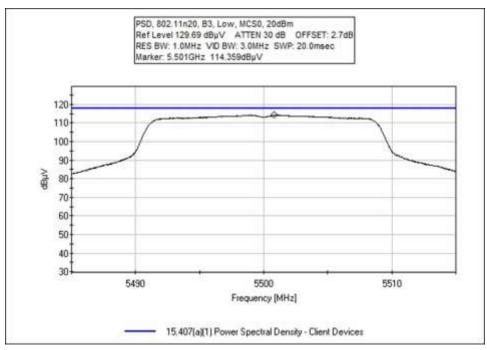
	Test Data Summary - RF Conducted Measurement						
Measurement (Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results		
5500	802.11a	Omnidirectional / 3.8dBi	7.0	≤ 11	Pass		
5580	802.11a	Omnidirectional / 3.8dBi	8.4	≤ 11	Pass		
5700	802.11a	Omnidirectional / 3.8dBi	2.6	≤ 11	Pass		
5500	802.11n20	Omnidirectional / 3.8dBi	7.4	≤ 11	Pass		
5580	802.11n20	Omnidirectional / 3.8dBi	7.2	≤ 11	Pass		
5700	802.11n20	Omnidirectional / 3.8dBi	4.0	≤ 11	Pass		
5510	802.11n40	Omnidirectional / 3.8dBi	1.9	≤ 11	Pass		
5590	802.11n40	Omnidirectional / 3.8dBi	5.4	≤ 11	Pass		
5670	802.11n40	Omnidirectional / 3.8dBi	2.9	≤ 11	Pass		
5500	802.11ac20	Omnidirectional / 3.8dBi	6.7	≤ 11	Pass		
5580	802.11ac20	Omnidirectional / 3.8dBi	7.3	≤ 11	Pass		
5700	802.11ac20	Omnidirectional / 3.8dBi	3.3	≤ 11	Pass		
5510	802.11ac40	Omnidirectional / 3.8dBi	1.0	≤ 11	Pass		
5590	802.11ac40	Omnidirectional / 3.8dBi	5.4	≤ 11	Pass		
5670	802.11ac40	Omnidirectional / 3.8dBi	4.5	≤ 11	Pass		
5530	802.11ac80	Omnidirectional / 3.8dBi	-0.2	≤ 11	Pass		
5610	802.11ac80	Omnidirectional / 3.8dBi	2.4	≤ 11	Pass		

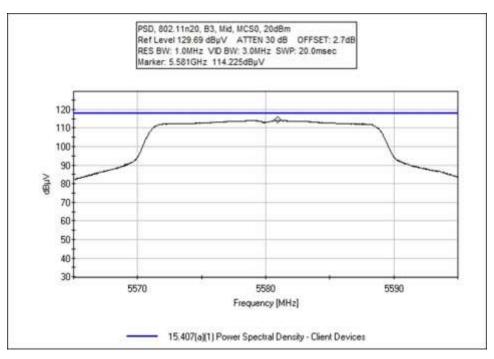

The limit is calculated in accordance with 15.407(a)(2):

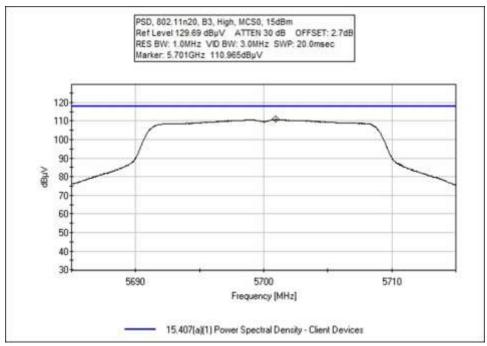

Limit = 11 - Roundup(G - 6)

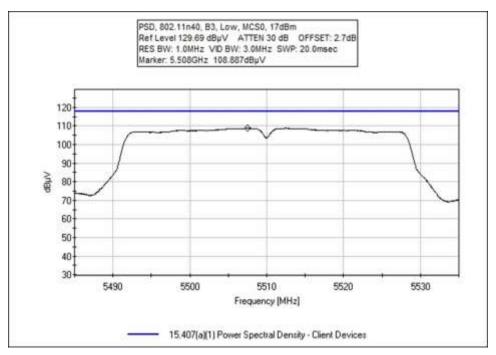
Page 31 of 113 Report No.: 106407-36

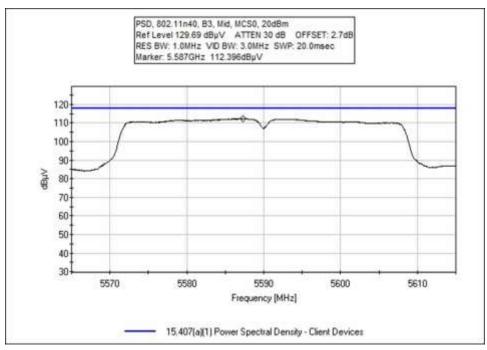


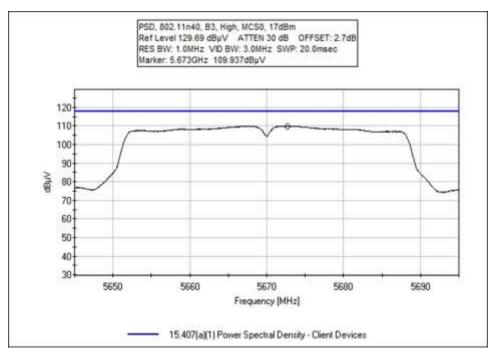

Plots

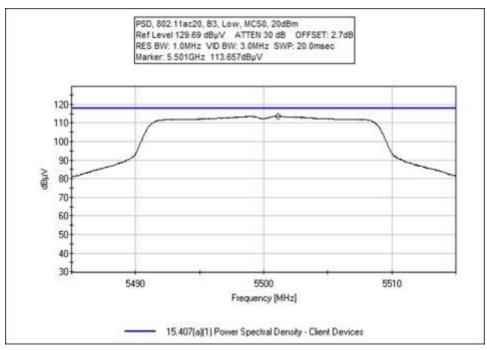


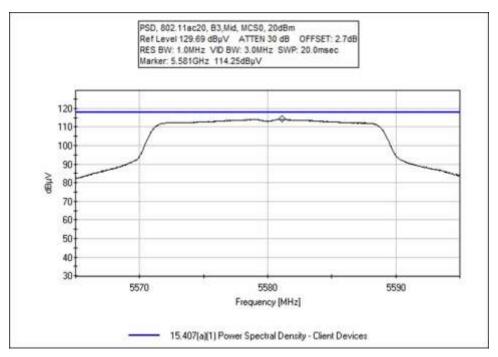


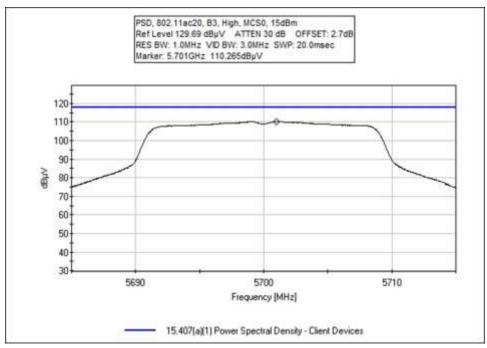


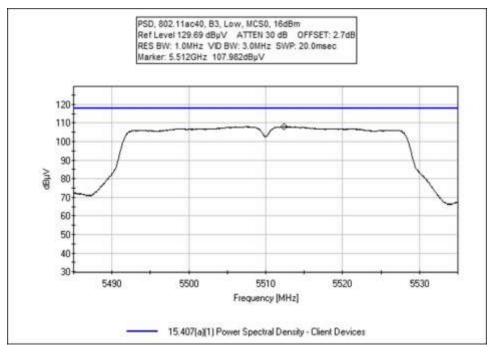


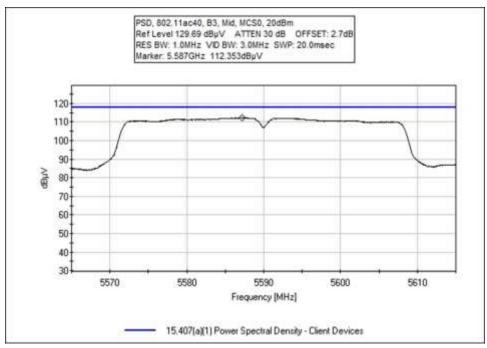


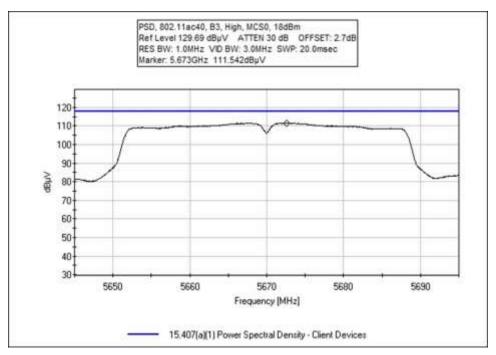


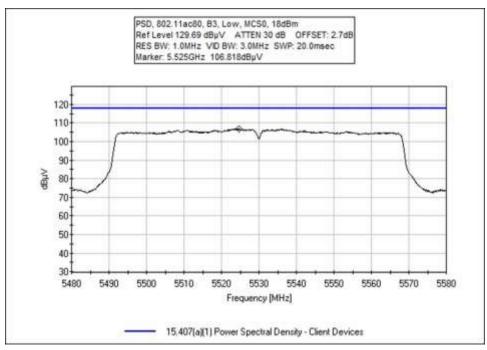


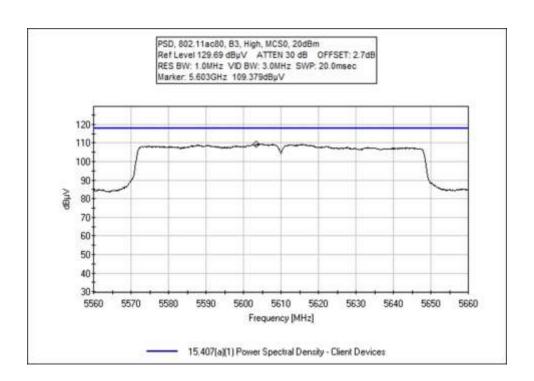












Test Data - RF Conducted Measurement

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.407(a)(1) Power Spectral Density - Client Devices

Work Order #: 106407 Date: 1/27/2022
Test Type: Conducted Emissions Time: 12:22:58
Tested By: M. Harrison Sequence#: 55

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5500-5700 MHz

Setup: Antenna 0

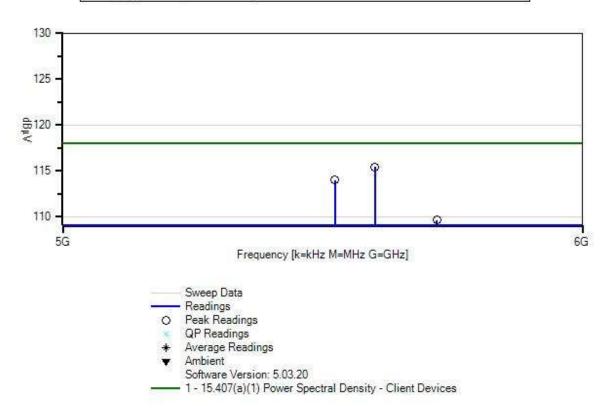
Channels: 5500, 5580, 5700 MHz

802.11a Band 3 Rate: 6-54Mbps

PWR Output: Low/Mid: 20 dBm, High: 14 dBm

100% Duty Cycle

Notes:


PSD Measurements were performed with corresponding correction factors applied as an offset in the

Spectrum Analyzer

Page 41 of 113 Report No.: 106407-36

Nalloy, LLC WO#: 106121 Sequence#: 55 Date: 1/27/2022 15.407(a)(1) Power Spectral Density - Client Devices Test Lead: 120V 60Hz Antenna Port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANUFL Adapter	Test Data		1/14/2022	1/14/2024
		Adjustment			
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

Me	asurement Data:	Reading listed by margin.				Test Lead: Antenna Port					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	1 5578.830M	115.4	+0.0				+0.0	115.4	118.0	-2.6	Anten
									6Mbps, 20)dBm	
	2 5501.020M	114.0	+0.0				+0.0	114.0	118.0	-4.0	Anten
									6Mbps, 20)dBm	
	3 5701.200M	109.6	+0.0				+0.0	109.6	118.0	-8.4	Anten
									6Mbps, 14	ldBm	

Page 42 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(a)(1) Power Spectral Density - Client Devices

Work Order #: 106407 Date: 1/27/2022
Test Type: Conducted Emissions Time: 12:40:39
Tested By: M. Harrison Sequence#: 56

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5500-5700 MHz

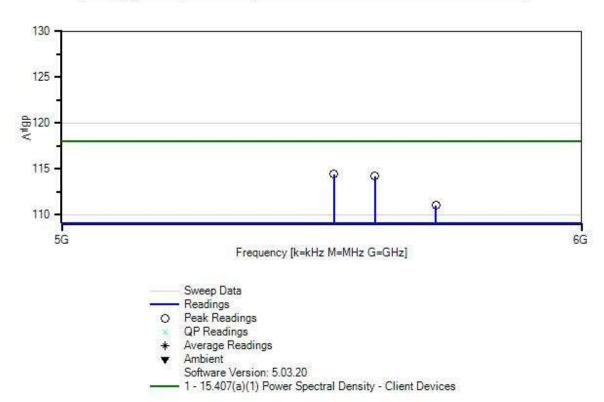
Setup: Antenna 0

Channels: 5500, 5580, 5700 MHz

802.11n20 Band 3 Rate: MCS0-7

PWR Output: Low/Mid: 20 dBm, High: 15 dBm

100% Duty Cycle


Notes:

PSD Measurements were performed with corresponding correction factors applied as an offset in the Spectrum Analyzer

Page 43 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANUFL Adapter	Test Data		1/14/2022	1/14/2024
		Adjustment			
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

M	leasi	rement Data:	Re	Reading listed by margin.				Test Lead: Antenna Port						
	#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar		
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant		
	1	5500.840M	114.4	+0.0				+0.0	114.4	118.0	-3.6	Anten		
										MCS0, 20	dBm			
	2	5580.960M	114.2	+0.0				+0.0	114.2	118.0	-3.8	Anten		
										MCS0, 20	dBm			
	3	5700.960M	111.0	+0.0				+0.0	111.0	118.0	-7.0	Anten		
										MCS0, 14	dBm			

Customer: Nalloy, LLC

Specification: 15.407(a)(1) Power Spectral Density - Client Devices

Work Order #: 106407 Date: 1/27/2022
Test Type: Conducted Emissions Time: 12:55:17
Tested By: M. Harrison Sequence#: 58

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5510-5670 MHz

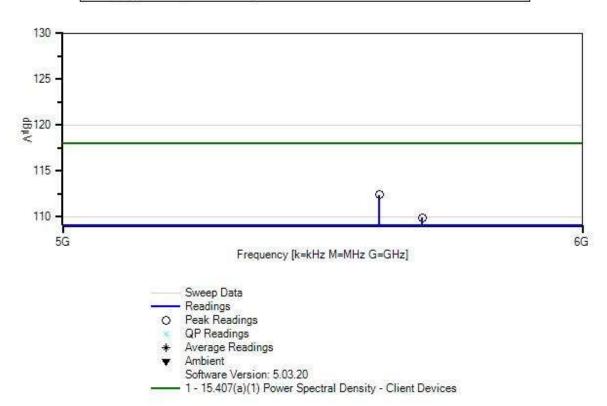
Setup: Antenna 0

Channels: 5510, 5590, 5670 MHz

802.11n40 Band 3 Rate: MCS0-7

PWR Output: Low: 17dBm, Mid: 20 dBm, High: 17 dBm

100% Duty Cycle


Notes:

PSD Measurements were performed with corresponding correction factors applied as an offset in the Spectrum Analyzer

Page 45 of 113 Report No.: 106407-36

Nalloy, LLC WO#: 106121 Sequence#: 58 Date: 1/27/2022 15.407(a)(1) Power Spectral Density - Client Devices Test Lead: 120V 60Hz Antenna Port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANUFL Adapter	Test Data		1/14/2022	1/14/2024
		Adjustment			
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

M	easi	rement Data:	Reading listed by margin.			nargin.	Test Lead: Antenna Port						
	#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar	
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant	
	1	5587.350M	112.4	+0.0				+0.0	112.4	118.0	-5.6	Anten	
										MCS0, 20	dBm		
	2	5672.650M	109.9	+0.0				+0.0	109.9	118.0	-8.1	Anten	
										MCS0, 17	dBm		
	3	5507.550M	108.9	+0.0				+0.0	108.9	118.0	-9.1	Anten	
										MCS0, 17	dBm		

Customer: Nalloy, LLC

Specification: 15.407(a)(1) Power Spectral Density - Client Devices

Work Order #: 106407 Date: 1/27/2022
Test Type: Conducted Emissions Time: 12:47:23
Tested By: M. Harrison Sequence#: 57

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5500-5700 MHz

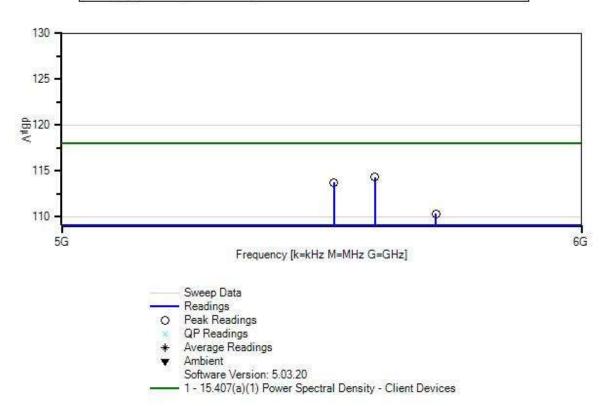
Setup: Antenna 0

Channels: 5500, 5580, 5700 MHz

802.11ac20 Band 3 Rate: MCS0-8

PWR Output: Low/Mid: 20 dBm, High: 15 dBm

100% Duty Cycle


Notes:

PSD Measurements were performed with corresponding correction factors applied as an offset in the Spectrum Analyzer

Page 47 of 113 Report No.: 106407-36

Nalloy, LLC WO#: 106121 Sequence#: 57 Date: 1/27/2022 15.407(a)(1) Power Spectral Density - Client Devices Test Lead: 120V 60Hz Antenna Port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANUFL Adapter	Test Data		1/14/2022	1/14/2024
		Adjustment			
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

M	easi	rement Data:	Reading listed by margin.			nargin.	Test Lead: Antenna Port					
	#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	1	5581.110M	114.3	+0.0				+0.0	114.3	118.0	-3.7	Anten
										MCS0, 20	dBm	
	2	5501.110M	113.7	+0.0				+0.0	113.7	118.0	-4.3	Anten
										MCS0, 20	dBm	
	3	5701.020M	110.3	+0.0				+0.0	110.3	118.0	-7.7	Anten
										MCS0, 15	dBm	

Page 48 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(a)(1) Power Spectral Density - Client Devices

Work Order #: 106407 Date: 1/27/2022
Test Type: Conducted Emissions Time: 13:25:02
Tested By: M. Harrison Sequence#: 59

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5510-5670 MHz

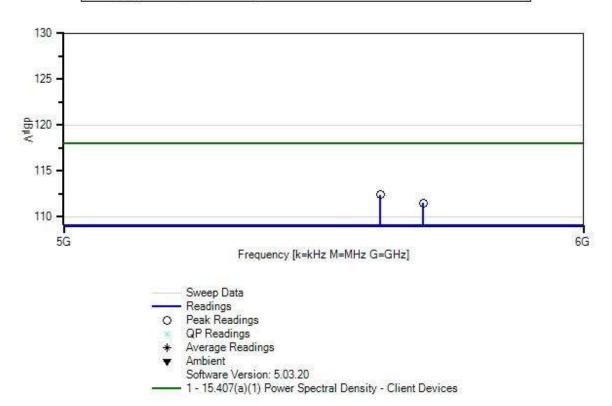
Setup: Antenna 0

Channels: 5510, 5590, 5670 MHz

802.11ac40 Band 3 Rate: MCS0-9

PWR Output: Low: 16dBm, Mid: 20 dBm, High: 18 dBm

100% Duty Cycle


Notes:

PSD Measurements were performed with corresponding correction factors applied as an offset in the Spectrum Analyzer

Page 49 of 113 Report No.: 106407-36

Nalloy, LLC WO#: 106121 Sequence#: 59 Date: 1/27/2022 15.407(a)(1) Power Spectral Density - Client Devices Test Lead: 120V 60Hz Antenna Port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANUFL Adapter	Test Data		1/14/2022	1/14/2024
		Adjustment			
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

Measi	urement Data:	Re	Reading listed by margin.				Test Lead: Antenna Port				
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	5587.250M	112.4	+0.0				+0.0	112.4	118.0	-5.6	Anten
									MCS0, 20	dBm	
2	5672.550M	111.5	+0.0				+0.0	111.5	118.0	-6.5	Anten
									MCS0, 18	dBm	
3	5512.350M	108.0	+0.0				+0.0	108.0	118.0	-10.0	Anten
									MCS0, 16	dBm	

Page 50 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(a)(1) Power Spectral Density - Client Devices

Work Order #: 106407 Date: 1/27/2022
Test Type: Conducted Emissions Time: 13:32:06
Tested By: M. Harrison Sequence#: 60

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5530-5610 MHz

Setup: Antenna 0

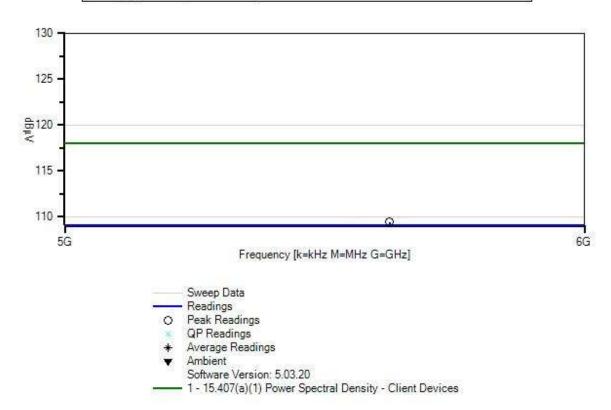
Channels: 5530, 5610 MHz

802.11ac80 Band 3

Rate: MCS7

PWR Output: Low: 18 dBm, High: 20 dBm

100% Duty Cycle


Notes:

PSD Measurements were performed with corresponding correction factors applied as an offset in the Spectrum Analyzer

Page 51 of 113 Report No.: 106407-36

Nalloy, LLC WO#: 106121 Sequence#: 60 Date: 1/27/2022 15.407(a)(1) Power Spectral Density - Client Devices Test Lead: 120V 60Hz Antenna Port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANUFL Adapter	Test Data		1/14/2022	1/14/2024
		Adjustment			
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

Measi	urement Data:	Reading listed by margin.			Test Lead: Antenna Port						
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	5603.400M	109.4	+0.0				+0.0	109.4	118.0	-8.6	Anten
									MCS0, 20	dBm	
2	5524.700M	106.8	+0.0		•	•	+0.0	106.8	118.0	-11.2	Anten
							MCS0, 18dBm				

Page 52 of 113 Report No.: 106407-36

15.407(b) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nallov, LLC

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/18/2022
Test Type: Maximized Emissions Time: 10:33:51
Tested By: M. Harrison Sequence#: 35

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

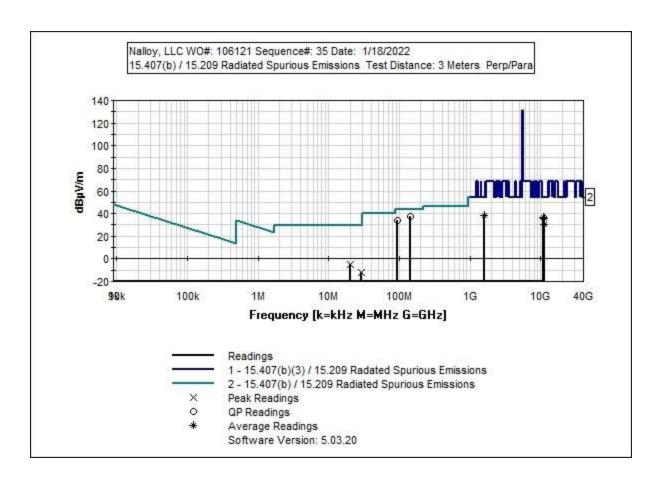
Frequency range: 9k-40 GHz

Setup: Antenna 0

Channels: 5500, 5580, 5700 MHz

802.11a Band 3 Rate: 54Mbps

PWR Output: Low/Mid: 20 dBm, High: 20 dBm


100% Duty Cycle

Notes:

No EUT Emissions found within 20 dB of the limit above 18GHz

Page 53 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
Т6	ANP07505	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
Т7	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	5/13/2021	5/13/2023
Т8	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	11/11/2020	11/11/2022
Т9	AN02743	Active Horn Antenna	AMFW-5F- 260400-33-8P	5/11/2021	5/11/2023
T10	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
T11	AN02764-70	Waveguide	Multiple	4/28/2020	4/28/2022
T12	ANP06678	Cable	32026-29801- 29801-144	2/20/2020	2/20/2022
T13	ANP07211	Cable	32026-29801- 29801-18	6/16/2021	6/16/2023
T14	ANP07504	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
T15	AN02307	Preamp	8447D	1/6/2022	1/6/2024
T16	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T17	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T18	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T19	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Page 55 of 113 Report No.: 106407-36

# Freq Rdng	Meast	urement Data:	R	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
MHz												
MHz				T9	T10	T11	T12					
MHz				T13	T14		T16					
1 143,304M 49.8 +0.0 +0.6 +0.0 +0.0 +0.0 37.6 43.5 -5.9 Vert +0.0 +0.0 +0.0 +0.0 +0.0 37.6 43.5 -5.9 Vert +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.												
QP												
+0.0	1		49.8					+0.0	37.6	43.5	-5.9	Vert
+0.0		QP										
+0.7												
^ 143.304M 54.0 +0.0 +0.6 +0.0 +0.0 +0.0 41.8 43.5 -1.7 Vert +0.0							+13.9					
+0.0												
+0.0	_ ^	143.304M	54.0					+0.0	41.8	43.5	-1.7	Vert
+0.0												
10												
3 94.395M							+13.9					
QP		0.4.2053.5					0.0	0.0		10.7	0.0	**
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	3		47.1					+0.0	33.7	43.5	-9.8	Vert
+0.0		QP										
Note **Parameters **Param												
^ 94.395M 50.4 +0.0 +0.5 +0.0 +0.0 +0.0 37.0 43.5 -6.5 Vert +0.0							+13.1					
+0.0		0.4.2053.4	50 A				. 0. 0	. 0. 0	27.0	12.5		X7 .
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		94.395M	50.4					+0.0	37.0	43.5	-6.5	Vert
+0.0 +0.0 +2.7 +13.1 +0.6 +0.1 +0.0 5 1576.000M 35.0 +0.8 +2.2 +25.6 -35.1 +0.0 38.4 54.0 -15.6 Vert Ave +9.7 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2 +0.2												
+0.6 +0.1 +0.0 5 1576.000M												
5 1576.000M 35.0 +0.8 +2.2 +25.6 -35.1 +0.0 38.4 54.0 -15.6 Vert Ave +9.7 +0.2 +0.2 +0.2 +0.2 +0.2 +0.0 +0.2 +0.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +9.7 +0.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +9.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -17.3 Vert 7 11001.800 40.7 +2.0 +6.6 +0.0 +0.0 +0.0 54.0 -17.3 Vert M +0.0							+13.1					
Ave	- 5	1576 000M	25.0				25 1	+ΩΩ	29.4	540	15.6	Vort
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		33.0					+0.0	30.4	34.0	-13.0	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		AVC										
+0.0 +0.0 +0.0 +0.0 ^ 1576.000M												
^ 1576.000M							10.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^	1576 000M	47.0				-35 1	+0.0	50.4	54.0	-3.6	Vert
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0		13 / 0.0001/1	17.0					. 0.0	20.1	2 1.0	5.0	, 011
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 7 11001.800 40.7 +2.0 +6.6 +0.0 +0.0 +0.0 36.7 54.0 -17.3 Vert M +0.0 +0.0 -12.6 +0.0 Ave +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0												
+0.0 +0.0 +0.0 7 11001.800 40.7 +2.0 +6.6 +0.0 +0.0 +0.0 36.7 54.0 -17.3 Vert M +0.0 +0.0 -12.6 +0.0 Ave +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0												
7 11001.800 40.7 +2.0 +6.6 +0.0 +0.0 +0.0 36.7 54.0 -17.3 Vert M +0.0 +0.0 -12.6 +0.0 Ave +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0												
M +0.0 +0.0 -12.6 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	7	11001.800	40.7				+0.0	+0.0	36.7	54.0	-17.3	Vert
Ave $\begin{array}{cccccccccccccccccccccccccccccccccccc$												
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0												
+0.0 +0.0 +0.0												
^ 11001.800 56.2 +2.0 +6.6 +0.0 +0.0 +0.0 52.2 54.0 -1.8 Vert	^	11001.800	56.2	+2.0	+6.6	+0.0	+0.0	+0.0	52.2	54.0	-1.8	Vert
M +0.0 +0.0 -12.6 +0.0												
+0.0 +0.0 +0.0 +0.0												
+0.0 +0.0 +0.0 +0.0												
+0.0 +0.0 +0.0				+0.0	+0.0							

9 11161.640	39.4	+2.1	+6.7	+0.0	+0.0	+0.0	35.7	54.0	-18.3	Vert
M		+0.0	+0.0	-12.5	+0.0					
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 11161.640	54.7	+2.1	+6.7	+0.0	+0.0	+0.0	51.0	54.0	-3.0	Vert
M		+0.0	+0.0	-12.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
11 11395.040	34.3	+2.3	+6.9	+0.0	+0.0	+0.0	30.6	54.0	-23.4	Vert
M		+0.0	+0.0	-12.9	+0.0					
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 11395.040	48.7	+2.3	+6.9	+0.0	+0.0	+0.0	45.0	54.0	-9.0	Vert
M		+0.0	+0.0	-12.9	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
13 20.269M	27.1	+0.0	+0.2	+0.0	+0.0	-40.0	-5.4	29.5	-34.9	Perp/
		+0.0	+0.0	+0.0	+0.0					_
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+7.3						
14 28.687M	23.1	+0.0	+0.3	+0.0	+0.0	-40.0	-11.7	29.5	-41.2	Perp/
		+0.0	+0.0	+0.0	+0.0					-
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.1	+4.8						

Customer: Nalloy, LLC

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/18/2022
Test Type: Maximized Emissions Time: 10:53:56
Tested By: M. Harrison Sequence#: 36

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

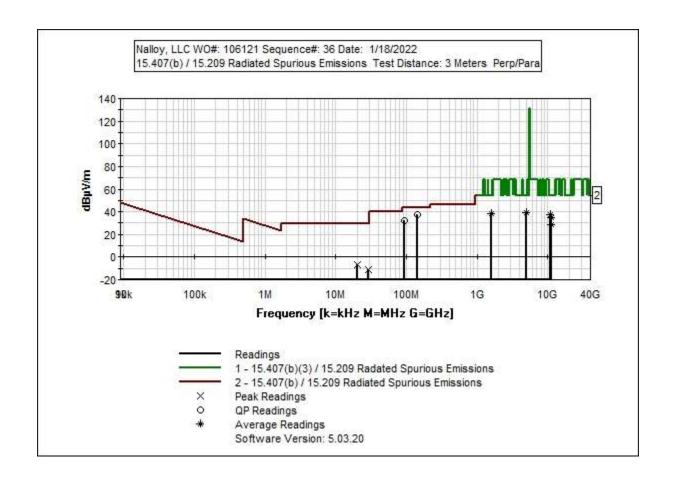
Frequency range: 9k-40 GHz

Setup: Antenna 0

Channels: 5500, 5580, 5700 MHz

802.11n20 Band 3 Rate: MCS0

PWR Output: Low/Mid: 20 dBm, High: 20 dBm


100% Duty Cycle

Notes:

No EUT Emissions found within 20 dB of the limit above 18GHz

Page 58 of 113 Report No.: 106407-36

Test Equipr	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
Т6	ANP07505	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
Т7	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	5/13/2021	5/13/2023
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	11/11/2020	11/11/2022
	AN02743	Active Horn Antenna	AMFW-5F- 260400-33-8P	5/11/2021	5/11/2023
	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
	AN02764-70	Waveguide	Multiple	4/28/2020	4/28/2022
	ANP06678	Cable	32026-29801- 29801-144	2/20/2020	2/20/2022
	ANP07211	Cable	32026-29801- 29801-18	6/16/2021	6/16/2023
	ANP07504	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
T8	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т9	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T10	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T11	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T12	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Page 60 of 113 Report No.: 106407-36

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	143.290M	50.0	+0.0	+0.6	+0.0	+0.0	+0.0	37.8	43.5	-5.7	Vert
	QP		+0.0	+0.0	+0.0	-27.6					
			+13.9	+0.7	+0.2	+0.0					
^	143.290M	53.9	+0.0	+0.6	+0.0	+0.0	+0.0	41.7	43.5	-1.8	Vert
			+0.0	+0.0	+0.0	-27.6					
			+13.9	+0.7	+0.2	+0.0					
3		45.7	+0.0	+0.5	+0.0	+0.0	+0.0	32.3	43.5	-11.2	Vert
	QP		+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
^	94.430M	50.0	+0.0	+0.5	+0.0	+0.0	+0.0	36.6	43.5	-6.9	Vert
			+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
5	4987.000M	22.7	+1.7	+3.8	+33.8	-33.4	+0.0	38.8	54.0	-15.2	Vert
	Ave		+9.7	+0.5	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
^	4987.000M	39.9	+1.7	+3.8	+33.8	-33.4	+0.0	56.0	54.0	+2.0	Vert
			+9.7	+0.5	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
7	1576.000M	35.0	+0.8	+2.2	+25.6	-35.1	+0.0	38.4	54.0	-15.6	Vert
	Ave		+9.7	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
^	1576.000M	47.2	+0.8	+2.2	+25.6	-35.1	+0.0	50.6	54.0	-3.4	Vert
			+9.7	+0.2	+0.0	+0.0					
	10007.760	44.4	+0.0	+0.0	+0.0	+0.0	0.0	27.2	7.4.0	160	¥7 .
9	10997.760	41.1	+2.0	+6.6	+0.0	+0.0	+0.0	37.2	54.0	-16.8	Vert
	M		+0.0	+0.0	-12.5	+0.0					
	Ave	500	+0.0	+0.0	+0.0	+0.0	. 0. 0	55.0	540	. 1.0	X7 4
^	10997.760	58.9	+2.0	+6.6	+0.0	+0.0	+0.0	55.0	54.0	+1.0	Vert
	M		+0.0	$^{+0.0}_{+0.0}$	-12.5	+0.0					
11	11157.840	207	+0.0	+6.7	+0.0	+0.0	10.0	35.0	540	10.0	V/ 4
11	11157.840 M	38.7	+2.1 +0.0	+6.7 +0.0	+0.0 -12.5	+0.0 +0.0	+0.0	33.0	54.0	-19.0	Vert
			+0.0	+0.0 +0.0	-12.5 +0.0	+0.0					
	Ave 11157.840	56.0	+2.1	+6.7	+0.0	+0.0	+0.0	52.3	54.0	-1.7	Vert
	M	30.0	+2.1 +0.0	+0.7 +0.0	+0.0 -12.5	+0.0	+0.0	32.3	34.0	-1./	vert
	1V1		+0.0	+0.0 +0.0	-12.5 +0.0	+0.0 +0.0					
			+0.0	+0.0	+0.0	+0.0					

13 11397.960	32.5	+2.3	+6.9	+0.0	+0.0	+0.0	28.8	54.0	-25.2	Vert
M		+0.0	+0.0	-12.9	+0.0					
Ave		+0.0	+0.0	+0.0	+0.0					
^ 11397.960	48.7	+2.3	+6.9	+0.0	+0.0	+0.0	45.0	54.0	-9.0	Vert
M		+0.0	+0.0	-12.9	+0.0					
		+0.0	+0.0	+0.0	+0.0					
15 20.329M	26.2	+0.0	+0.2	+0.0	+0.0	-40.0	-6.4	29.5	-35.9	Perp/
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+7.2					
16 28.687M	23.7	+0.0	+0.3	+0.0	+0.0	-40.0	-11.1	29.5	-40.6	Perp/
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.1	+4.8					

Page 62 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/18/2022
Test Type: Maximized Emissions Time: 11:13:56
Tested By: M. Harrison Sequence#: 37

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

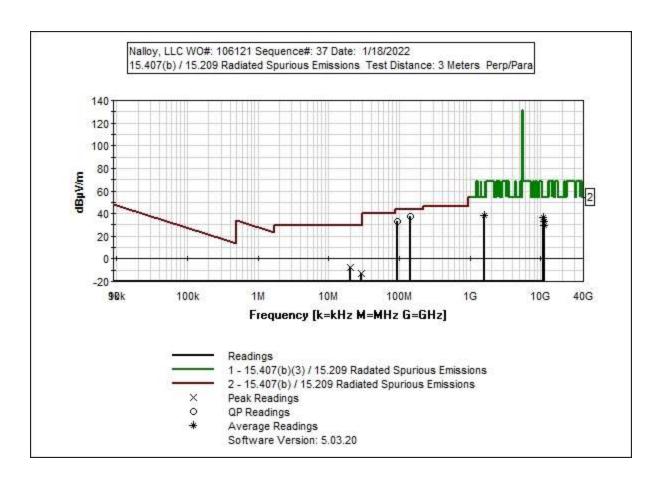
Frequency range: 9k-40 GHz

Setup: Antenna 0

Channels: 5510, 5590, 5670 MHz

802.11n40 Band 3 Rate: MCS0

PWR Output: Low/Mid: 20 dBm, High: 20 dBm


100% Duty Cycle

Notes:

No EUT Emissions found within 20 dB of the limit above 18GHz

Page 63 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
T6	ANP07505	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
Т7	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	5/13/2021	5/13/2023
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	11/11/2020	11/11/2022
	AN02743	Active Horn Antenna	AMFW-5F- 260400-33-8P	5/11/2021	5/11/2023
	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
	AN02764-70	Waveguide	Multiple	4/28/2020	4/28/2022
	ANP06678	Cable	32026-29801- 29801-144	2/20/2020	2/20/2022
	ANP07211	Cable	32026-29801- 29801-18	6/16/2021	6/16/2023
	ANP07504	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
T8	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т9	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T10	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T11	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T12	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Page 65 of 113 Report No.: 106407-36

#	<i>irement Data:</i> Freq	Rdng	T1	ted by ma	T3	T4	Dist	Corr	e: 3 Meters Spec	Margin	Pola
#	rieq	Kung	T5	T6	T7	T8	Dist	Con	Spec	Margin	roia
			T9	T10	T11	T12					
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBuV/m	dB	Ant
1	143.315M	49.8	+0.0	+0.6	+0.0	+0.0	+0.0	37.6	43.5	-5.9	Vert
1	QP	47.0	+0.0	+0.0	+0.0	-27.6	+0.0	37.0	43.3	-3.9	V CI (
	Q1		+13.9	+0.7	+0.2	+0.0					
٨	143.315M	52.8	+0.0	+0.6	+0.0	+0.0	+0.0	40.6	43.5	-2.9	Ver
	1 13.31314	32.0	+0.0	+0.0	+0.0	-27.6	10.0	10.0	13.3	2.7	V C1
			+13.9	+0.7	+0.2	+0.0					
3	94.365M	46.6	+0.0	+0.5	+0.0	+0.0	+0.0	33.2	43.5	-10.3	Ver
	QP		+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
٨	94.365M	51.0	+0.0	+0.5	+0.0	+0.0	+0.0	37.6	43.5	-5.9	Ver
			+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
5	1567.000M	34.6	+0.8	+2.2	+25.6	-35.1	+0.0	38.0	54.0	-16.0	Ver
	Ave		+9.7	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
٨	1567.000M	49.4	+0.8	+2.2	+25.6	-35.1	+0.0	52.8	54.0	-1.2	Ver
			+9.7	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
7	11020.240	41.0	+2.0	+6.6	+0.0	+0.0	+0.0	37.0	54.0	-17.0	Ver
	M		+0.0	+0.0	-12.6	+0.0					
	Ave		+0.0	+0.0	+0.0	+0.0					
٨	11020.210	56.3	+2.0	+6.6	+0.0	+0.0	+0.0	52.3	54.0	-1.7	Ver
	M		+0.0	+0.0	-12.6	+0.0					
			+0.0	+0.0	+0.0	+0.0					
9	11169.200	36.5	+2.1	+6.7	+0.0	+0.0	+0.0	32.8	54.0	-21.2	Ver
	M		+0.0	+0.0	-12.5	+0.0					
	Ave		+0.0	+0.0	+0.0	+0.0					
^	11169.200	51.7	+2.1	+6.7	+0.0	+0.0	+0.0	48.0	54.0	-6.0	Ver
	M		+0.0	+0.0	-12.5	+0.0					
	11225200		+0.0	+0.0	+0.0	+0.0	0.0	20.5	7.1. 0	24.4	* * *
11	11336.300	33.2	+2.3	+6.9	+0.0	+0.0	+0.0	29.6	54.0	-24.4	Ver
	M		+0.0	+0.0	-12.8	+0.0					
	Ave	47.7	+0.0	+0.0	+0.0	+0.0	. 0. 0	4.4.1	540	0.0	* 7
۸	11330.300	47.7	+2.3	+6.9	+0.0	+0.0	+0.0	44.1	54.0	-9.9	Ver
	M		+0.0	+0.0	-12.8	+0.0					
12	20.22014	245	+0.0	+0.0	+0.0	+0.0	40.0	0.0	20.5	27.5	Darri
13	20.239M	24.5	+0.0	+0.2	+0.0	+0.0	-40.0	-8.0	29.5	-37.5	Perp
			$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0 +7.3					
1.4	20 607NA	22.2					-40.0	-12.5	29.5	42.0	Down
14	28.687M	22.3	+0.0 +0.0	+0.3 +0.0	+0.0 +0.0	+0.0 +0.0	-40.0	-12.3	29.3	-42.0	Perp
			+0.0	+0.0 +0.0	+0.0	+4.8					

Page 66 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/18/2022
Test Type: Maximized Emissions Time: 11:26:26
Tested By: M. Harrison Sequence#: 38

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 9k-40 GHz

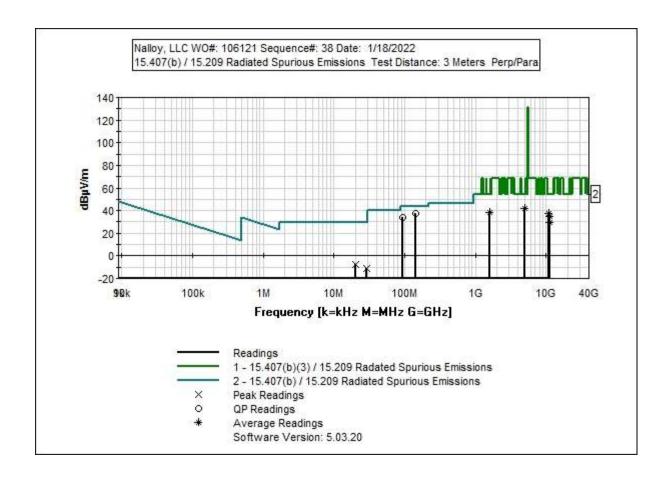
Setup: Antenna 0

Channels: 5500, 5580, 5700 MHz

802.11ac20 Band 3

Rate: MCS0

PWR Output: Low/Mid: 20 dBm, High: 20 dBm


100% Duty Cycle

Notes:

No EUT Emissions found within 20 dB of the limit above 18GHz

Page 67 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
T6	ANP07505	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
Т7	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	5/13/2021	5/13/2023
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	11/11/2020	11/11/2022
	AN02743	Active Horn Antenna	AMFW-5F- 260400-33-8P	5/11/2021	5/11/2023
	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
	AN02764-70	Waveguide	Multiple	4/28/2020	4/28/2022
	ANP06678	Cable	32026-29801- 29801-144	2/20/2020	2/20/2022
	ANP07211	Cable	32026-29801- 29801-18	6/16/2021	6/16/2023
	ANP07504	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
T8	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т9	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T10	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T11	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T12	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Page 69 of 113 Report No.: 106407-36

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	;	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
	MHz	dΒμV	dB	dB	dB	dB		$dB\mu V/m$		dB	Ant
1	143.300M	50.1	+0.0	+0.6	+0.0	+0.0	+0.0	37.9	43.5	-5.6	Vert
	QP		+0.0	+0.0	+0.0	-27.6					
			+13.9	+0.7	+0.2	+0.0					
/	143.300M	53.3	+0.0	+0.6	+0.0	+0.0	+0.0	41.1	43.5	-2.4	Vert
			+0.0	+0.0	+0.0	-27.6					
			+13.9	+0.7	+0.2	+0.0					
3	94.370M	46.9	+0.0	+0.5	+0.0	+0.0	+0.0	33.5	43.5	-10.0	Vert
	QP		+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
/	94.370M	50.7	+0.0	+0.5	+0.0	+0.0	+0.0	37.3	43.5	-6.2	Vert
			+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
5	5 4978.000M	26.0	+1.7	+3.8	+33.8	-33.4	+0.0	42.1	54.0	-11.9	Vert
	Ave		+9.7	+0.5	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
′	4978.000M	39.4	+1.7	+3.8	+33.8	-33.4	+0.0	55.5	54.0	+1.5	Vert
			+9.7	+0.5	+0.0	+0.0					
_			+0.0	+0.0	+0.0	+0.0					
7	7 1576.000M	35.3	+0.8	+2.2	+25.6	-35.1	+0.0	38.7	54.0	-15.3	Vert
	Ave		+9.7	+0.2	+0.0	+0.0					
<u> </u>	1556 00016	50.6	+0.0	+0.0	+0.0	+0.0	0.0	7.4.0	540	0.0	X7 .
'	1576.000M	50.6	+0.8	+2.2	+25.6	-35.1	+0.0	54.0	54.0	+0.0	Vert
			+9.7	+0.2	+0.0	+0.0					
	11001 100	41.4	+0.0	+0.0	+0.0	+0.0	. 0. 0	27.4	540	16.6	X7 .
,	9 11001.400 M	41.4	+2.0	+6.6	+0.0	+0.0	+0.0	37.4	54.0	-16.6	Vert
			+0.0 +0.0	$^{+0.0}_{+0.0}$	-12.6 +0.0	$+0.0 \\ +0.0$					
<u> </u>	Ave 11001.400	57.5	+2.0	+6.6	+0.0	+0.0	+0.0	53.5	54.0	-0.5	Vert
'	M	31.3	+2.0	+0.0 +0.0	+0.0 -12.6	+0.0	+0.0	33.3	34.0	-0.3	vert
	1 V1		+0.0 +0.0	+0.0 +0.0	-12.6 +0.0	+0.0					
1 1	11158.050	38.3	+2.1	+6.7	+0.0	+0.0	+0.0	34.6	54.0	-19.4	Vert
1.1	M	30.3	+2.1 +0.0	+0.7	+0.0 -12.5	+0.0	+0.0	54.0	54.0	-17.4	v ei i
	Ave		+0.0	+0.0	+0.0	+0.0					
/	11158.050	56.2	+2.1	+6.7	+0.0	+0.0	+0.0	52.5	54.0	-1.5	Vert
	M	30.2	+0.0	+0.7	+0.0 -12.5	+0.0	+0.0	34.3	54.0	-1.5	v CI t
	171		+0.0	+0.0 +0.0	+0.0	+0.0					
			±0.0	70.0	±0.0	±0.0					

13 11395.850	32.8	+2.3	+6.9	+0.0	+0.0	+0.0	29.1	54.0	-24.9	Vert
M		+0.0	+0.0	-12.9	+0.0					
Ave		+0.0	+0.0	+0.0	+0.0					
^ 11395.850	49.1	+2.3	+6.9	+0.0	+0.0	+0.0	45.4	54.0	-8.6	Vert
M		+0.0	+0.0	-12.9	+0.0					
		+0.0	+0.0	+0.0	+0.0					
15 20.329M	25.0	+0.0	+0.2	+0.0	+0.0	-40.0	-7.6	29.5	-37.1	Perp/
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+7.2					
16 28.687M	23.5	+0.0	+0.3	+0.0	+0.0	-40.0	-11.3	29.5	-40.8	Perp/
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.1	+4.8					

Page 71 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/18/2022
Test Type: Maximized Emissions Time: 12:22:39
Tested By: M. Harrison Sequence#: 39

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 9k-40 GHz

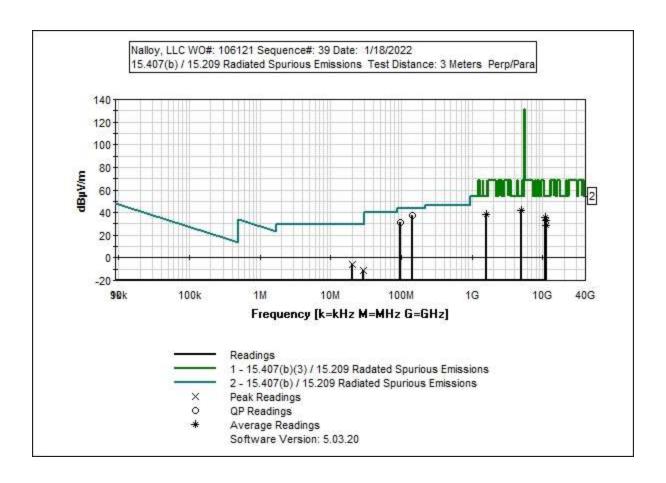
Setup: Antenna 0

Channels: 5510, 5590, 5670 MHz

802.11ac40 Band 3

Rate: MCS0

PWR Output: Low/Mid: 20 dBm, High: 20 dBm


100% Duty Cycle

Notes:

No EUT Emissions found within 20 dB of the limit above 18GHz

Page 72 of 113 Report No.: 106407-36

rest Equipi	nent:				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T2	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T5	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т6	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
Т7	ANP07505	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
Т8	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	5/13/2021	5/13/2023
	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	11/11/2020	11/11/2022
	AN02743	Active Horn Antenna	AMFW-5F- 260400-33-8P	5/11/2021	5/11/2023
	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
	AN02764-70	Waveguide	Multiple	4/28/2020	4/28/2022
	ANP06678	Cable	32026-29801- 29801-144	2/20/2020	2/20/2022
	ANP07211	Cable	32026-29801- 29801-18	6/16/2021	6/16/2023
	ANP07504	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
Т9	AN02307	Preamp	8447D	1/6/2022	1/6/2024
T10	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T11	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T12	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T13	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022
		·	· · · · · · · · · · · · · · · · · · ·	·	·

Page 74 of 113 Report No.: 106407-36

Measurement Data:	<u> </u>			Test Distance: 3 Meters						
# Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	_	T5	T6	T7	T8			_	_	
		T9	T10	T11	T12					
		T13								
MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
1 143.320M	49.8	+0.0	+0.0	+0.6	+0.0	+0.0	37.6	43.5	-5.9	Vert
QP		+0.0	+0.0	+0.0	+0.0					
		-27.6	+13.9	+0.7	+0.2					
		+0.0								
^ 143.320M	53.4	+0.0	+0.0	+0.6	+0.0	+0.0	41.2	43.5	-2.3	Vert
		+0.0	+0.0	+0.0	+0.0					
		-27.6	+13.9	+0.7	+0.2					
		+0.0								
3 4978.000M	25.9	+0.0	+1.7	+3.8	+33.8	+0.0	42.0	54.0	-12.0	Vert
Ave		-33.4	+9.7	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4978.000M	40.9	+0.0	+1.7	+3.8	+33.8	+0.0	57.0	54.0	+3.0	Vert
		-33.4	+9.7	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
5 95.180M	44.6	+0.0	+0.0	+0.5	+0.0	+0.0	31.3	43.5	-12.2	Vert
QP		+0.0	+0.0	+0.0	+0.0					
		-27.7	+13.2	+0.6	+0.1					
		+0.0								
^ 95.180M	49.8	+0.0	+0.0	+0.5	+0.0	+0.0	36.5	43.5	-7.0	Vert
		+0.0	+0.0	+0.0	+0.0					
		-27.7	+13.2	+0.6	+0.1					
		+0.0								
7 1572.650M	34.9	+0.0	+0.8	+2.2	+25.6	+0.0	38.3	54.0	-15.7	Vert
Ave		-35.1	+9.7	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 1572.650M	50.0	+0.0	+0.8	+2.2	+0.0	+0.0	53.4	54.0	-0.6	Vert
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
9 11007.250	39.6	+0.0	+2.0	+6.6	+0.0	+0.0	35.6	54.0	-18.4	Vert
M		+0.0	+0.0	+0.0	-12.6					
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 11007.250	54.2	+0.0	+2.0	+6.6	+0.0	+0.0	50.2	54.0	-3.8	Vert
M	ے . .۔	+0.0	+0.0	+0.0	-12.6	. 0.0	- v. -		2.0	. 510
		+0.0	+0.0	+0.0	+0.0					
		+0.0	. 0.0	. 0.0	. 0.0					
11 11169.400	37.1	+0.0	+2.1	+6.7	+0.0	+0.0	33.4	54.0	-20.6	Vert
M	3,11	+0.0	+0.0	+0.0	-12.5	. 0.0			_0.0	. 510
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0	. 0.0	. 0.0	. 0.0					
		. 0.0								

^ 11169.400	52.0	+0.0	+2.1	+6.7	+0.0	+0.0	48.3	54.0	-5.7	Vert
M		+0.0	+0.0	+0.0	-12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
13 11337.700	32.6	+0.0	+2.3	+6.9	+0.0	+0.0	29.0	54.0	-25.0	Vert
M		+0.0	+0.0	+0.0	-12.8					
Ave		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 11337.700	48.2	+0.0	+2.3	+6.9	+0.0	+0.0	44.6	54.0	-9.4	Vert
M		+0.0	+0.0	+0.0	-12.8					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
15 20.329M	26.5	+0.0	+0.0	+0.2	+0.0	-40.0	-6.1	29.5	-35.6	Perp/
		+0.0	+0.0	+0.0	+0.0					_
		+0.0	+0.0	+0.0	+0.0					
		+7.2								
16 28.687M	23.8	+0.0	+0.0	+0.3	+0.0	-40.0	-11.0	29.5	-40.5	Perp/
		+0.0	+0.0	+0.0	+0.0					-
		+0.0	+0.0	+0.0	+0.1					
		+4.8								

Page 76 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/18/2022
Test Type: Maximized Emissions Time: 12:43:44
Tested By: M. Harrison Sequence#: 40

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 9k-40 GHz

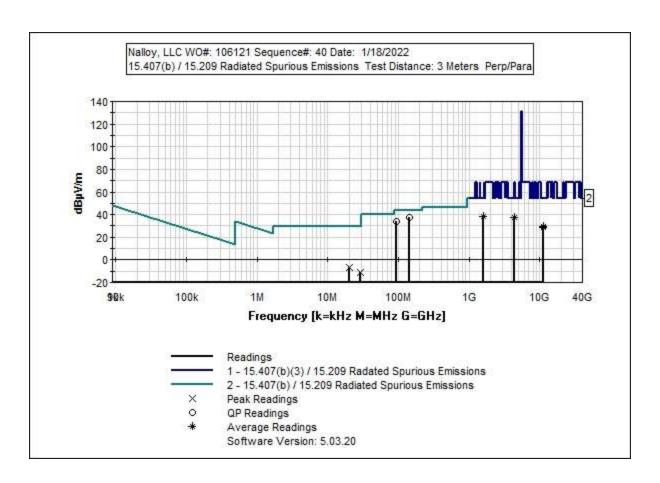
Setup: Antenna 0

Channels: 5530, 5610 MHz

802.11ac80 Band 3

Rate: MCS7

PWR Output: Low: 18 dBm, High: 20 dBm


100% Duty Cycle

Notes:

No EUT Emissions found within 20 dB of the limit above 18GHz

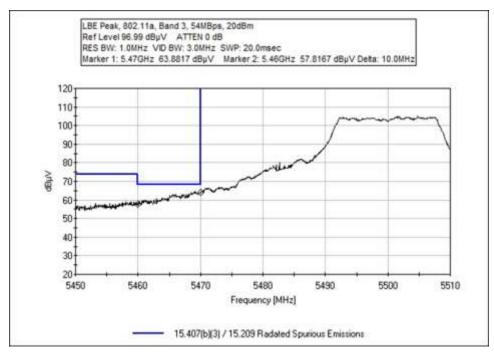
Page 77 of 113 Report No.: 106407-36

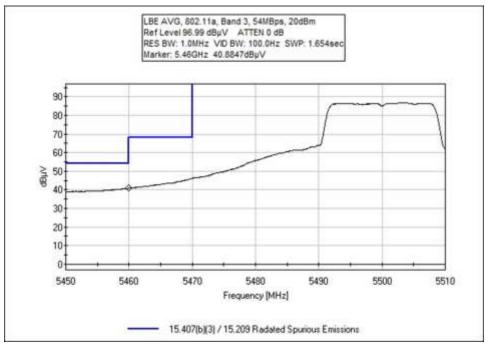
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
T6	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T7	AN02741	Active Horn	AMFW-5F-	5/13/2021	5/13/2023
		Antenna	12001800-20-		
			10P		
	AN02742	Active Horn	AMFW-5F-	11/11/2020	11/11/2022
		Antenna	18002650-20-		
			10P	· · ·	
	AN02743	Active Horn	AMFW-5F-	5/11/2021	5/11/2023
		Antenna	260400-33-8P	· · ·	
	AN02763-69	Waveguide	Multiple	4/28/2020	4/28/2022
	AN02764-70	Waveguide	Multiple	4/28/2020	4/28/2022
	ANP06678	Cable	32026-29801-	2/20/2020	2/20/2022
			29801-144		
	ANP07211	Cable	32026-29801-	6/16/2021	6/16/2023
			29801-18		
	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T8	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т9	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T10	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T11	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T12	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022
T10 T11	ANP05360 ANP06011	Cable Cable	RG214 Heliax	2/3/2020 8/7/2020	2/3/2022 8/7/2022

Page 79 of 113 Report No.: 106407-36

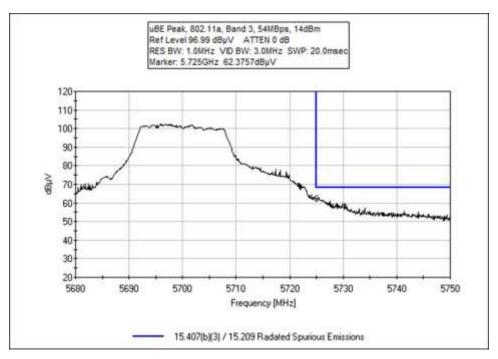
Measi	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
	MHz	dΒμV	dB	dB	dB	dB		dBµV/m		dB	Ant
1	- 1010 - 011	50.0	+0.0	+0.6	+0.0	+0.0	+0.0	37.8	43.5	-5.7	Vert
	QP		+0.0	+0.0	+0.0	-27.6					
			+13.9	+0.7	+0.2	+0.0					
^	143.310M	53.8	+0.0	+0.6	+0.0	+0.0	+0.0	41.6	43.5	-1.9	Vert
			+0.0	+0.0	+0.0	-27.6					
			+13.9	+0.7	+0.2	+0.0					
3		47.0	+0.0	+0.5	+0.0	+0.0	+0.0	33.6	43.5	-9.9	Vert
	QP		+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
^	94.390M	50.8	+0.0	+0.5	+0.0	+0.0	+0.0	37.4	43.5	-6.1	Vert
			+0.0	+0.0	+0.0	-27.7					
			+13.1	+0.6	+0.1	+0.0					
5	1574.850M	34.8	+0.8	+2.2	+25.6	-35.1	+0.0	38.2	54.0	-15.8	Vert
	Ave		+9.7	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
^	1574.850M	49.9	+0.8	+2.2	+25.6	-35.1	+0.0	53.3	54.0	-0.7	Vert
			+9.7	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0	0.0	27.1	710	1.50	**
1	4348.000M	23.6	+1.5	+3.6	+32.2	-33.4	+0.0	37.1	54.0	-16.9	Vert
	Ave		+9.3	+0.3	+0.0	+0.0					
	12.10.0003.5	20.5	+0.0	+0.0	+0.0	+0.0	0.0	<u> </u>	7.1.0	0.0	**
,	4348.000M	39.6	+1.5	+3.6	+32.2	-33.4	+0.0	53.1	54.0	-0.9	Vert
			+9.3	+0.3	+0.0	+0.0					
	11201 100	22.5	+0.0	+0.0	+0.0	+0.0	. 0. 0	20.0	540	24.1	X7
9	11201.100	33.5	+2.2	+6.8	+0.0	+0.0	+0.0	29.9	54.0	-24.1	Vert
	M		+0.0	+0.0	-12.6	+0.0					
	Ave	50.5	+0.0	+0.0	+0.0	+0.0	.00	46.0	54 O	7 1	X /4
,	11201.100	50.5	+2.2	+6.8	+0.0	+0.0	+0.0	46.9	54.0	-7.1	Vert
	M		+0.0 +0.0	$+0.0 \\ +0.0$	-12.6 +0.0	$+0.0 \\ +0.0$					
11	11058.900	32.6	+2.0	+6.6			+0.0	28.5	54.0	-25.5	Vert
11	M	32.0	+2.0	+0.0	+0.0 -12.7	+0.0 +0.0	+0.0	28.3	34.0	-23.3	vert
	Ave		+0.0	+0.0	+0.0	+0.0					
^		49.5					+0.0	45.4	54.0	-8.6	Vort
•	M	47.3	+2.0 +0.0	+6.6 +0.0	+0.0 -12.7	+0.0 +0.0	+0.0	43.4	34.0	-0.0	Vert
	1 V1		+0.0	+0.0	+0.0	+0.0 +0.0					
13	20.329M	26.3	+0.0	+0.0	+0.0	+0.0	-40.0	-6.3	29.5	-35.8	Perp/
13	20.329111	20.3	+0.0 +0.0	+0.2 $+0.0$	+0.0 +0.0	+0.0	-40.0	-0.3	49.3	-55.0	r erp/
			+0.0	+0.0	+0.0	+7.2					
14	28.687M	23.4	+0.0	+0.3	+0.0	+0.0	-40.0	-11.4	29.5	-40.9	Perp/
14	20.00/WI	43.4	+0.0	+0.3	+0.0	+0.0	-40.0	-11. 4	47.3	-1 0.7	r crp/
			+0.0	+0.0	+0.0	+4.8					
			10.0	10.0	10.1	1-4.0					

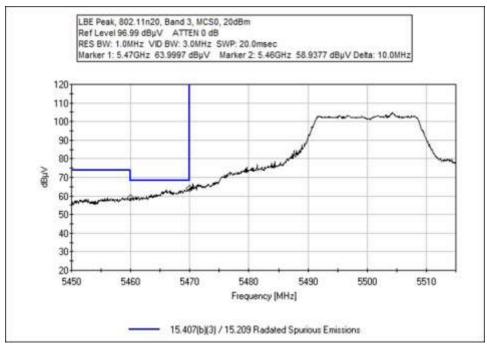
Band Edge

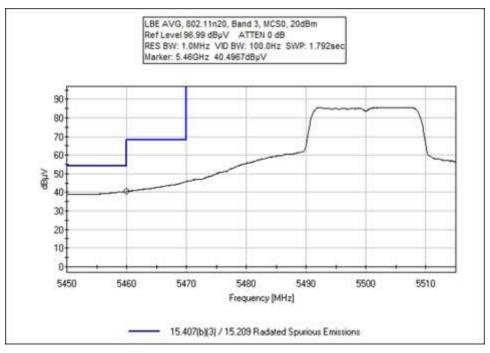

		Band Edge S	ummary		
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
5460*	802.11a	Omnidirectional / 3.8dBi	40.9	< 54.0 Av	Pass
5470	802.11a	Omnidirectional / 3.8dBi	63.9	< 68.2 PK	Pass
5725	802.11a	Omnidirectional / 3.8dBi	62.4	< 68.2 PK	Pass
5460*	802.11n20	Omnidirectional / 3.8dBi	40.5	< 54.0 Av	Pass
5470	802.11n20	Omnidirectional / 3.8dBi	64.0	< 68.2 PK	Pass
5725	802.11n20	Omnidirectional / 3.8dBi	65.2	< 68.2 PK	Pass
5460*	802.11n40	Omnidirectional / 3.8dBi	43.0	< 54.0 Av	Pass
5470	802.11n40	Omnidirectional / 3.8dBi	65.2	< 68.2 PK	Pass
5725	802.11n40	Omnidirectional / 3.8dBi	61.9	< 68.2 PK	Pass
5460*	802.11ac20	Omnidirectional / 3.8dBi	39.0	< 54.0 Av	Pass
5470	802.11ac20	Omnidirectional / 3.8dBi	62.7	< 68.2 PK	Pass
5725	802.11ac20	Omnidirectional / 3.8dBi	61.4	< 68.2 PK	Pass
5460*	802.11ac40	Omnidirectional / 3.8dBi	40.8	< 54.0 Av	Pass
5470	802.11ac40	Omnidirectional / 3.8dBi	62.7	< 68.2 PK	Pass
5725	802.11ac40	Omnidirectional / 3.8dBi	64.6	< 68.2 PK	Pass
5460*	802.11ac80	Omnidirectional / 3.8dBi	43.8	< 54.0 Av	Pass
5470	802.11ac80	Omnidirectional / 3.8dBi	63.7	< 68.2 PK	Pass
5725	802.11ac80	Omnidirectional / 3.8dBi	58.0	< 68.2 PK	Pass

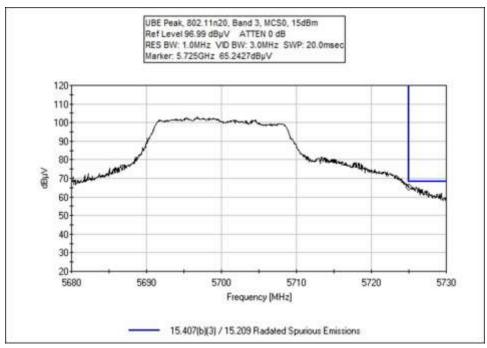

^{*} restricted band

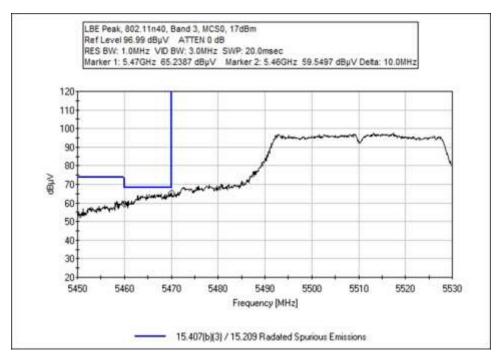
Page 81 of 113 Report No.: 106407-36

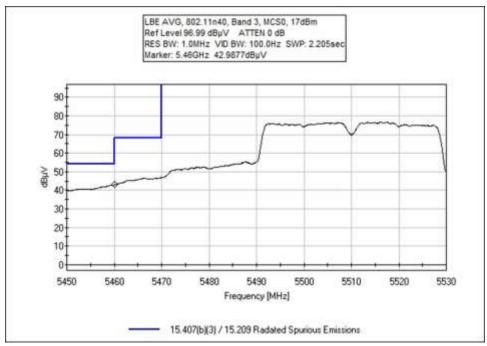


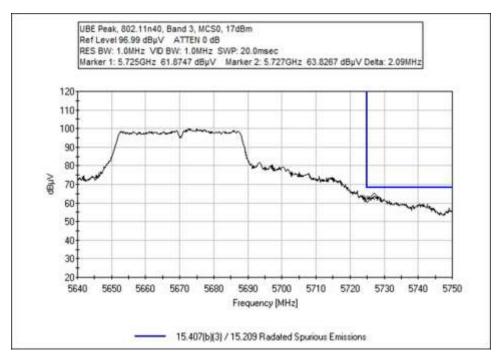

Band Edge Plots

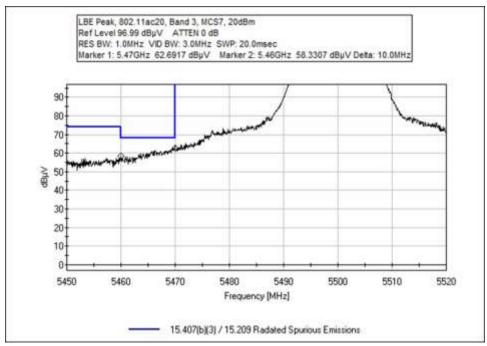


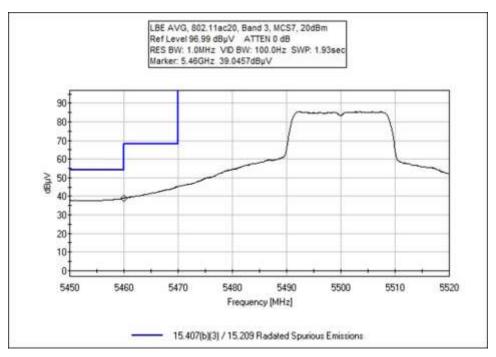


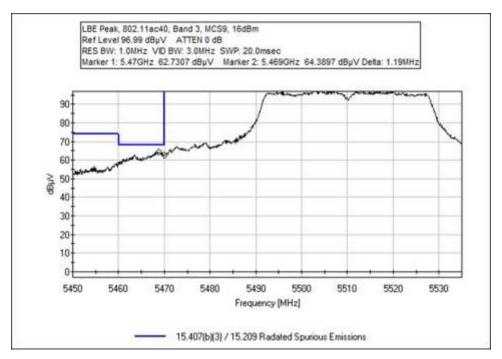


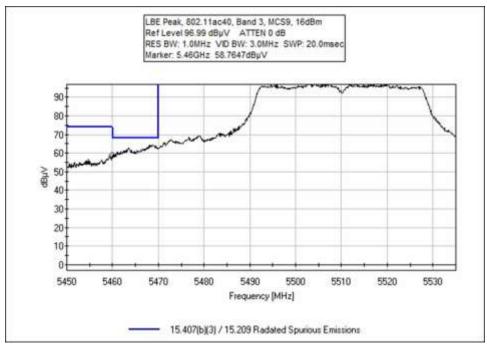


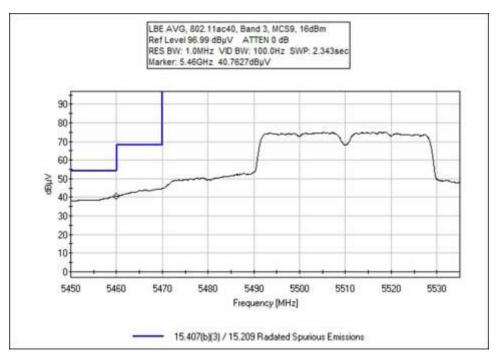


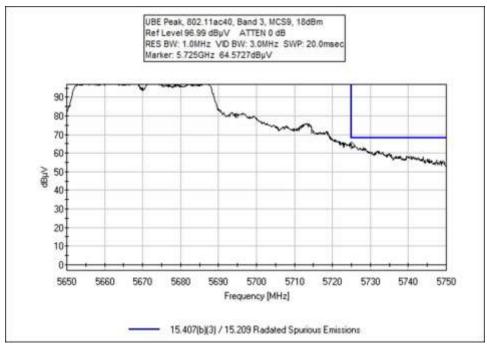


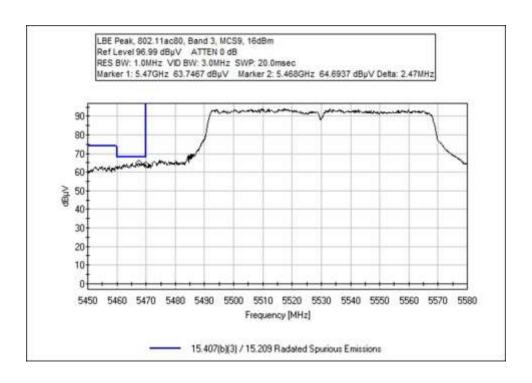


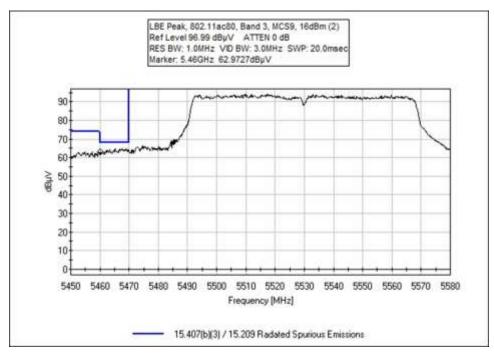


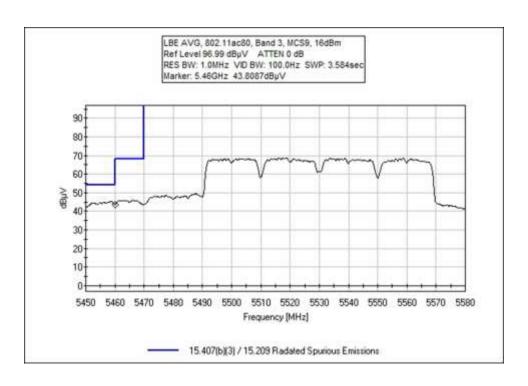


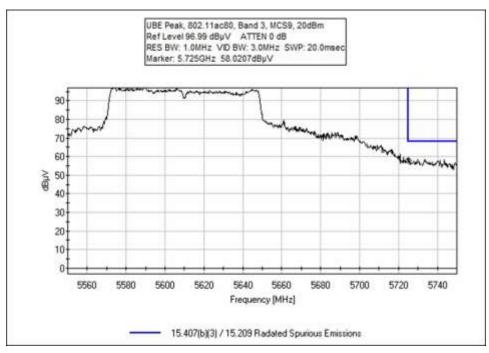












Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/19/2022
Test Type: Maximized Emissions Time: 13:21:25
Tested By: M. Harrison Sequence#: 17

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5.47-5.725 GHz

Setup: Antenna 0

Channels: 5500, 5700 MHz

802.11a Band 3 Rate: 54 Mbps

PWR Output: Low/Mid: 20 dBm, High: 14 dBm

100% Duty Cycle

Notes:

All data rates explored, worst case provided.

Band Edge Measurements were performed with correct factors loaded into Spectrum Analyzer.

Page 92 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
	AN03540	Preamp	83017A	5/14/2021	5/14/2023
	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023

Measi	irement Data:	Re	υ , υ				Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5470.000M	63.9	+0.0				+0.0	63.9	68.2	-4.3	Horiz
						5500, 54Mbps,					
									20dBm		
2	5725.000M	62.4	+0.0				+0.0	62.4	68.2	-5.8	Horiz
									5700, 54M	bps,	
									14dBm		
3	5460.000M	40.9	+0.0				+0.0	40.9	54.0	-13.1	Horiz
	Ave								5500, 54M	bps,	
									20dBm		
٨	5460.000M	57.8	+0.0				+0.0	57.8	68.2	-10.4	Horiz
									5500, 54M	bps,	
									20dBm	-	

Page 93 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/19/2022
Test Type: Maximized Emissions Time: 13:58:06
Tested By: M. Harrison Sequence#: 18

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5.47-5.725 GHz

Setup: Antenna 0

Channels: 5500, 5700 MHz

802.11n20 Band 3 Rate: MCS0-7

PWR Output: Low/Mid: 20 dBm, High: 15 dBm

100% Duty Cycle

Notes:

All data rates explored, worst case provided.

Band Edge Measurements were performed with correct factors loaded into Spectrum Analyzer.

Page 94 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
	AN03540	Preamp	83017A	5/14/2021	5/14/2023
	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		

Measi	ırement Data:	Re	Reading listed by margin.			in. Test Distance: 3 Meters					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5725.000M	65.2	+0.0				+0.0	65.2	68.2	-3.0	Horiz
									5700, MCS	S7,	
									15dBm		
2	5470.000M	64.0	+0.0				+0.0	64.0	68.2	-4.2	Horiz
									5500, MCS	S7,	
									20dBm		
3	5460.000M	40.5	+0.0				+0.0	40.5	54.0	-13.5	Horiz
	Ave								5500, MCS	S7,	
									20dBm		
٨	5460.000M	58.9	+0.0				+0.0	58.9	68.2	-9.3	Horiz
									5500, MCS	S7,	
									20dBm		

Page 95 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/20/2022
Test Type: Maximized Emissions Time: 09:38:43
Tested By: M. Harrison Sequence#: 19

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5.47-5.725 GHz

Setup: Antenna 0

Channels: 5510, 5670 MHz

802.11n40 Band 3 Rate: MCS0-7 PWR Output: 17 dBm 100% Duty Cycle

Notes:

All data rates explored, worst case provided.

Band Edge Measurements were performed with correct factors loaded into Spectrum Analyzer.

Page 96 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
	AN03540	Preamp	83017A	5/14/2021	5/14/2023
	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		

Measu	rement Data:	Re	eading lis	ted by r	nargin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5470.000M	65.2	+0.0				+0.0	65.2	68.2	-3.0	Horiz
									5510, MCS	S7,	
									17dBm		
2	5727.090M	63.8	+0.0				+0.0	63.8	68.2	-4.4	Horiz
									5670, MCS	S7,	
									17dBm		
3	5725.000M	61.9	+0.0				+0.0	61.9	68.2	-6.3	Horiz
									5670, MCS	S7,	
									17dBm		
4	5460.000M	43.0	+0.0				+0.0	43.0	54.0	-11.0	Horiz
	Ave								5510, MCS	S7,	
									17dBm		
^	5460.000M	59.5	+0.0				+0.0	59.5	68.2	-8.7	Horiz
									5510, MCS	S7,	
									17dBm		

Page 97 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/20/2022
Test Type: Maximized Emissions Time: 10:39:04
Tested By: M. Harrison Sequence#: 20

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5.47-5.725 GHz

Setup: Antenna 0

Channels: 5500, 5700 MHz

802.11ac20 Band 3 Rate: MCS0-8

PWR Output: Low/Mid: 20 dBm, High: 15 dBm

100% Duty Cycle

Notes:

All data rates explored, worst case provided.

Band Edge Measurements were performed with correct factors loaded into Spectrum Analyzer.

Page 98 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
	AN03540	Preamp	83017A	5/14/2021	5/14/2023
	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		

Measu	rement Data:	Re	eading list	ted by 1	nargin.	n. Test Distance: 3 Meters					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5726.330M	63.6	+0.0				+0.0	63.6	68.2	-4.6	Horiz
									5700, MCS	S7,	
									15dBm		
2	5470.000M	62.7	+0.0				+0.0	62.7	68.2	-5.5	Horiz
									5500, MCS	S7,	
									20dBm		
3	5725.000M	61.4	+0.0				+0.0	61.4	68.2	-6.8	Horiz
									5700, MCS	S7,	
									15dBm		
4	5460.000M	39.0	+0.0				+0.0	39.0	54.0	-15.0	Horiz
	Ave								5500, MCS	S7,	
									20dBm		
^	5460.000M	58.3	+0.0				+0.0	58.3	68.2	-9.9	Horiz
									5500, MCS	S7,	
									20dBm		

Page 99 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/20/2022
Test Type: Maximized Emissions Time: 11:13:39
Tested By: M. Harrison Sequence#: 21

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5.47-5.725 GHz

Setup: Antenna 0

Channels: 5510, 5670 MHz

802.11ac40 Band 3 Rate: MCS0-9

PWR Output: Low: 16 dBm, High: 18 dBm

100% Duty Cycle

Notes:

All data rates explored, worst case provided.

Band Edge Measurements were performed with correct factors loaded into Spectrum Analyzer.

Page 100 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
	AN03540	Preamp	83017A	5/14/2021	5/14/2023
	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		

Measu	rement Data:	Re	eading list	rading listed by margin. Test Distance: 3 Meters							
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5725.000M	64.6	+0.0				+0.0	64.6	68.2	-3.6	Horiz
									5670, MCS	59,	
									18dBm		
2	5468.810M	64.4	+0.0				+0.0	64.4	68.2	-3.8	Horiz
									5510, MCS	S9,	
									16dBm		
3	5470.000M	62.7	+0.0				+0.0	62.7	68.2	-5.5	Horiz
									5510, MCS	S 9,	
									16dBm		
4	5460.000M	40.8	+0.0				+0.0	40.8	54.0	-13.2	Horiz
	Ave								5510, MCS	S 9,	
									16dBm		
^	5460.000M	58.8	+0.0				+0.0	58.8	68.2	-9.4	Horiz
									5510, MCS	S 9,	
									16dBm		

Page 101 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 106407 Date: 1/20/2022
Test Type: Maximized Emissions Time: 11:56:20
Tested By: M. Harrison Sequence#: 22

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

Frequency range: 5.47-5.725 GHz

Setup: Antenna 0

Channels: 5530, 5610 MHz

802.11ac80 Band 3 Rate: MCS0-9

PWR Output: Low: 16 dBm, High: 20 dBm

100% Duty Cycle

Notes:

All data rates explored, worst case provided.

Band Edge Measurements were performed with correct factors loaded into Spectrum Analyzer.

Page 102 of 113 Report No.: 106407-36

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
	ANP05961	Cable	Heliax	6/9/2021	6/9/2023
	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
	AN03540	Preamp	83017A	5/14/2021	5/14/2023
	ANP06242	Attenuator	54A-10	1/27/2020	1/27/2022
	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		

Measu	rement Data:	Re	ading list	ted by n	nargin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	-			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5467.530M	64.7	+0.0				+0.0	64.7	68.2	-3.5	Horiz
									5530, MCS	S9,	
									16dBm		
2	5470.000M	63.7	+0.0				+0.0	63.7	68.2	-4.5	Horiz
									5530, MCS	S9,	
									16dBm		
3	5725.000M	58.0	+0.0				+0.0	58.0	68.2	-10.2	Horiz
									5610, MCS	S9,	
									20dBm		
4	5460.000M	43.8	+0.0				+0.0	43.8	54.0	-10.2	Horiz
	Ave								5530, MCS	S 9,	
									16dBm		
^	5460.000M	63.0	+0.0				+0.0	63.0	68.2	-5.2	Horiz
									5530, MCS	S 9,	
									16dBm		

Page 103 of 113 Report No.: 106407-36

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 106407 Date: 1/19/2022
Test Type: Conducted Emissions Time: 09:15:02
Tested By: M. Harrison Sequence#: 60

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

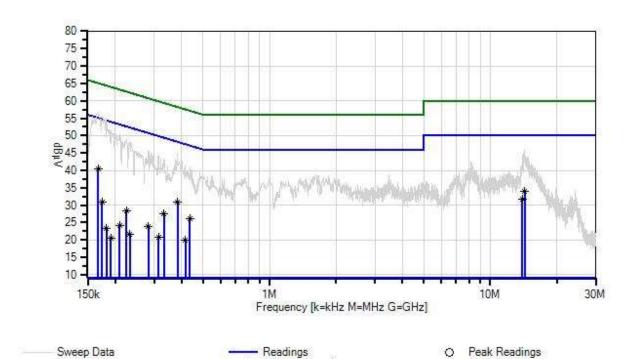
Frequency range: 150k-30 MHz

Setup: Antenna 0

Channels: 5500, 5580, 5700 MHz

802.11a Band 3 Rate: 54Mbps

PWR Output: Low/Mid: 20 dBm, High: 14 dBm


100% Duty Cycle

Notes:

Page 104 of 113 Report No.: 106407-36

Nalloy, LLC WO#: 106121 Sequence#: 60 Date: 1/19/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Average Readings

1 - 15.207 AC Mains - Average

Test Equipment:

QP Readings

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022
T5	AN02611	High Pass Filter	HE9615-150K- 50-720B	1/5/2022	1/5/2024
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023

Page 105 of 113 Report No.: 106407-36

Ambient

2 - 15.207 AC Mains - Quasi-peak

Measu	rement Data:	Re	eading list	ted by ma	ırgin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	T5 dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	167.452k	29.3	+9.1	+0.0	+0.0	+1.6	+0.0	40.3	55.1	-14.8	Line
-	Ave	27.5	+0.3	10.0	10.0	11.0	10.0	10.5	55.1	11.0	Line
٨	167.451k	45.7	+9.1 +0.3	+0.0	+0.0	+1.6	+0.0	56.7	55.1	+1.6	Line
3	14.337M Ave	24.0	+9.1 +0.0	+0.0	+0.2	+0.6	+0.0	33.9	50.0	-16.1	Line
^	14.337M	36.2	+9.1 +0.0	+0.0	+0.2	+0.6	+0.0	46.1	50.0	-3.9	Line
5	382.705k Ave	21.1	+9.1 +0.1	+0.0	+0.0	+0.5	+0.0	30.8	48.2	-17.4	Line
٨	382.704k	35.3	+9.1 +0.1	+0.0	+0.0	+0.5	+0.0	45.0	48.2	-3.2	Line
7	13.968M Ave	21.9	+9.1 +0.0	+0.0	+0.2	+0.6	+0.0	31.8	50.0	-18.2	Line
٨	13.968M	34.6	+9.1 +0.0	+0.0	+0.2	+0.6	+0.0	44.5	50.0	-5.5	Line
9	435.791k Ave	16.3	+9.1 +0.1	+0.0	+0.0	+0.5	+0.0	26.0	47.1	-21.1	Line
^	435.790k	31.3	+9.1 +0.1	+0.0	+0.0	+0.5	+0.0	41.0	47.1	-6.1	Line
11	333.255k Ave	17.9	+9.1 +0.0	+0.0	+0.0	+0.6	+0.0	27.6	49.4	-21.8	Line
٨	333.254k	33.7	+9.1 +0.0	+0.0	+0.0	+0.6	+0.0	43.4	49.4	-6.0	Line
13	173.997k Ave	20.0	+9.1 +0.3	+0.0	+0.0	+1.5	+0.0	30.9	54.8	-23.9	Line
٨	173.996k	44.7	+9.1 +0.3	+0.0	+0.0	+1.5	+0.0	55.6	54.8	+0.8	Line
15	224.901k Ave	18.1	+9.1 +0.1	+0.0	+0.0	+1.0	+0.0	28.3	52.6	-24.3	Line
٨	224.901k	38.9	+9.1 +0.1	+0.0	+0.0	+1.0	+0.0	49.1	52.6	-3.5	Line
17	283.078k Ave	14.1	+9.1 +0.0	+0.0	+0.0	+0.8	+0.0	24.0	50.7	-26.7	Line
٨	203.077K	36.0	+9.1 +0.0	+0.0	+0.0	+0.8	+0.0	45.9	50.7	-4.8	Line
	415.429k Ave	10.2	+9.1 +0.1	+0.0	+0.0	+0.5	+0.0	19.9	47.5	-27.6	Line
٨	413.427K	31.9	+9.1 +0.1	+0.0	+0.0	+0.5	+0.0	41.6	47.5	-5.9	Line
21	Ave	11.1	+9.1 +0.0	+0.0	+0.0	+0.7	+0.0	20.9	49.9	-29.0	Line
٨	313.620k	34.4	+9.1 +0.0	+0.0	+0.0	+0.7	+0.0	44.2	49.9	-5.7	Line
23	209.630k Ave	13.8	+9.1 +0.1	+0.0	+0.0	+1.1	+0.0	24.1	53.2	-29.1	Line

Page 106 of 113 Report No.: 106407-36

٨	209.629k	40.2	+9.1	+0.0	+0.0	+1.1	+0.0	50.5	53.2	-2.7	Line
			+0.1								
25	232.900k	11.5	+9.1	+0.0	+0.0	+1.0	+0.0	21.7	52.3	-30.6	Line
	Ave		+0.1								
^	232.900k	37.9	+9.1	+0.0	+0.0	+1.0	+0.0	48.1	52.3	-4.2	Line
			+0.1								
27	181.996k	12.4	+9.1	+0.0	+0.0	+1.4	+0.0	23.2	54.4	-31.2	Line
	Ave		+0.3								
^	181.996k	43.8	+9.1	+0.0	+0.0	+1.4	+0.0	54.6	54.4	+0.2	Line
			+0.3								
29	191.450k	10.1	+9.1	+0.0	+0.0	+1.3	+0.0	20.6	54.0	-33.4	Line
	Ave		+0.1								
٨	191.449k	40.8	+9.1	+0.0	+0.0	+1.3	+0.0	51.3	54.0	-2.7	Line
			+0.1								

Page 107 of 113 Report No.: 106407-36

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 106407 Date: 1/19/2022
Test Type: Conducted Emissions Time: 09:03:25
Tested By: M. Harrison Sequence#: 59

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions:

Temperature: 21°C Humidity: 45% Pressure: 101.2kPa

Method: ANSI C63.10: 2013

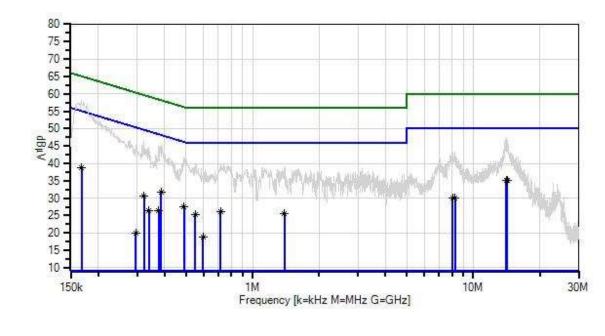
Frequency range: 150k-30 MHz

Setup: Antenna 0

Channels: 5500, 5580, 5700 MHz

802.11a Band 3 Rate: 54Mbps

PWR Output: Low/Mid: 20 dBm, High: 14 dBm


100% Duty Cycle

Notes:

Page 108 of 113 Report No.: 106407-36

Nalloy, LLC WO#: 106121 Sequence#: 59 Date: 1/19/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

× QP Readings Software Version: 5.03.20 Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06011	Cable	Heliax	8/7/2020	8/7/2022
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
T4	AN01311	50uH LISN-Line2	3816/2	2/24/2020	2/24/2022
		(N)			
T5	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023

Page 109 of 113 Report No.: 106407-36

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ant Neutr Neutr Neutr Neutr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Neutr Neutr Neutr Neutr
1 14.130M 25.3 +9.1 +0.0 +0.2 +0.6 +0.0 35.2 50.0 -14. Ave	Neutr Neutr Neutr Neutr
Ave +0.0 ^ 14.130M 37.5 +9.1 +0.0 +0.2 +0.6 +0.0 47.4 50.0 -2.0 3 14.256M 25.3 +9.1 +0.0 +0.2 +0.6 +0.0 35.2 50.0 -14. Ave +0.0 ^ 14.256M 36.7 +9.1 +0.0 +0.2 +0.6 +0.0 46.6 50.0 -3. +0.0 +0.1 +0.0 +0.0 +1.5 +0.0 38.7 55.0 -16. Ave +0.3 ^ 168.180k 47.3 +9.1 +0.0 +0.0 +1.5 +0.0 38.7 55.0 -16. Ave +0.3 ^ 384.888k 21.9 +9.1 +0.0 +0.5 +0.0 31.6 48.2 -50.0 Ave +0.1 ^ 490.332k 18.0 +9.1 +0.0 +0.0 +0.4 +0.0 27.6 46.2 -18. Ave +0.1 ^ 490.332k 32.2 +9.1 +0.0 +0.0 +0.4 +0.0	Neutr Neutr Neutr
+0.0 3 14.256M 25.3 +9.1 +0.0 +0.2 +0.6 +0.0 35.2 50.0 -14. Ave +0.0 ^ 14.256M 36.7 +9.1 +0.0 +0.2 +0.6 +0.0 46.6 50.0 -3.	Neutr Neutr
3 14.256M 25.3 +9.1 +0.0 +0.2 +0.6 +0.0 35.2 50.0 -14. Ave +0.0 +0.0 +0.2 +0.6 +0.0 46.6 50.0 -3. 14.256M 36.7 +9.1 +0.0 +0.2 +0.6 +0.0 46.6 50.0 -3. 5 168.180k 27.8 +9.1 +0.0 +0.0 +1.5 +0.0 38.7 55.0 -16. Ave +0.3 7 384.888k 21.9 +9.1 +0.0 +0.5 +0.0 31.6 48.2 -16. Ave +0.1 9 490.332k 18.0 +9.1 +0.0 +0.5 +0.0 45.6 48.2 -2.0 Ave +0.1 11 321.621k 21.0 +9.1 +0.0 +0.0 +0.4 +0.0 41.8 46.2 -4. Ave +0.0 Ave +0.0 +0.0 +0.6 +0.0 30.7 49.7 -3.6 13 8.058M <td>Neutr</td>	Neutr
^ 14.256M 36.7 +9.1 +0.0 +0.2 +0.6 +0.0 46.6 50.0 -3.4 5 168.180k 27.8 +9.1 +0.0 +0.0 +1.5 +0.0 38.7 55.0 -16. Ave +0.3 7 384.880k 21.9 +9.1 +0.0 +0.5 +0.0 31.6 48.2 -16. Ave +0.1 ^ 384.887k 35.9 +9.1 +0.0 +0.5 +0.0 45.6 48.2 -2.4 +0.1 9 490.332k 18.0 +9.1 +0.0 +0.0 +0.4 +0.0 27.6 46.2 -18. Ave +0.1 11 321.621k 21.0 +9.1 +0.0 +0.0 +0.4 +0.0 41.8 46.2 -4. +0.0 ^ 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.7 49.7 -3.6 13 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -19. Ave </td <td></td>	
5 168.180k 27.8 +9.1 +0.0 +0.0 +1.5 +0.0 38.7 55.0 -16. Ave +0.3 +0.3 +9.1 +0.0 +0.0 +1.5 +0.0 58.2 55.0 +3. 7 384.888k 21.9 +9.1 +0.0 +0.0 +0.5 +0.0 31.6 48.2 -16. Ave +0.1 +0.1 +0.0 +0.5 +0.0 45.6 48.2 -2.0 9 490.332k 35.9 +9.1 +0.0 +0.0 +0.5 +0.0 45.6 48.2 -2.0 Ave +0.1 +0.0 +0.0 +0.4 +0.0 27.6 46.2 -18. Ave +0.1 +0.0 +0.0 +0.4 +0.0 27.6 46.2 -18. Ave +0.0 +0.0 +0.0 +0.4 +0.0 41.8 46.2 -4. 11 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.7 49.7 -3.0 13 8.058M </td <td>Noutr</td>	Noutr
^ 168.180k 47.3 +9.1 +0.0 +0.0 +1.5 +0.0 58.2 55.0 +3. 7 384.888k 21.9 +9.1 +0.0 +0.0 +0.5 +0.0 31.6 48.2 -16. Ave +0.1 9 490.332k 18.0 +9.1 +0.0 +0.0 +0.4 +0.0 27.6 46.2 -18. Ave +0.1 11 321.621k 21.0 +9.1 +0.0 +0.0 +0.4 +0.0 41.8 46.2 -4. Ave +0.0 ^ 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.7 49.7 -19. Ave +0.0 ^ 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -6.9 ^ 8.058M 33.5 +9.1 +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9) Neuti
7 384.888k 21.9 +9.1 +0.0 +0.0 +0.5 +0.0 31.6 48.2 -16. Ave +0.1 +0.1 +0.0 +0.5 +0.0 45.6 48.2 -2.0 9 490.332k 18.0 +9.1 +0.0 +0.0 +0.4 +0.0 27.6 46.2 -18. Ave +0.1 11 321.621k 21.0 +9.1 +0.0 +0.0 +0.4 +0.0 49.7 -19. Ave +0.0 ^ 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.1 50.0 -19. Ave +0.0 ^ 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -6.9 ^ 8.058M 33.5 +9.1 +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9	2 Neutr
^ 384.887k 35.9 +9.1 +0.0 +0.0 +0.5 +0.0 45.6 48.2 -2.6 9 490.332k 18.0 +9.1 +0.0 +0.0 +0.4 +0.0 27.6 46.2 -18. Ave +0.1 11 321.621k 21.0 +9.1 +0.0 +0.0 +0.4 +0.0 30.7 49.7 -19. Ave +0.0 ^ 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.7 49.7 -3.0 13 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -19. Ave +0.0 ^ 8.058M 33.5 +9.1 +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9	6 Neutr
Ave +0.1 ^ 490.332k 32.2 +9.1 +0.0 +0.0 +0.4 +0.0 41.8 46.2 -4.0 11 321.621k 21.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.7 49.7 -19. Ave +0.0 ^ 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 46.7 49.7 -3.0 13 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -19. Ave +0.0 ^ 8.058M 33.5 +9.1 +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9	Neutr Neutr
+0.1 11 321.621k 21.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.7 49.7 -19. Ave +0.0 ^ 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 46.7 49.7 -3.6 +0.0 13 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -19. Ave +0.0 ^ 8.058M 33.5 +9.1 +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9	6 Neutr
11 321.621k 21.0 +9.1 +0.0 +0.0 +0.6 +0.0 30.7 49.7 -19. Ave +0.0 Ave +0.0	Neutr
^ 321.620k 37.0 +9.1 +0.0 +0.0 +0.6 +0.0 46.7 49.7 -3.0 13 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -19. Ave +0.0 ^ 8.058M 33.5 +9.1 +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9) Neutr
13 8.058M 20.5 +9.1 +0.0 +0.1 +0.4 +0.0 30.1 50.0 -19. Ave +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9) Neutr
^ 8.058M 33.5 +9.1 +0.0 +0.1 +0.4 +0.0 43.1 50.0 -6.9) Neutr
	Neutr
15 8.265M 20.3 +9.1 +0.0 +0.1 +0.5 +0.0 30.0 50.0 -20. Ave +0.0) Neutr
^ 8.265M 33.6 +9.1 +0.0 +0.1 +0.5 +0.0 43.3 50.0 -6.7 +0.0	Neutr
17 716.493k 16.4 +9.1 +0.0 +0.0 +0.3 +0.0 26.0 46.0 -20. Ave +0.2) Neutr
^ 716.493k 30.4 +9.1 +0.0 +0.0 +0.3 +0.0 40.0 46.0 -6.0 +0.2) Neutr
19 1.396M 15.9 +9.1 +0.0 +0.0 +0.3 +0.0 25.4 46.0 -20. Ave +0.1	6 Neutr
^ 1.396M 29.6 +9.1 +0.0 +0.0 +0.3 +0.0 39.1 46.0 -6.9	Neutr
21 549.963k 15.6 +9.1 +0.0 +0.0 +0.4 +0.0 25.2 46.0 -20. Ave +0.1	3 Neutr
^ 549.963k 30.0 +9.1 +0.0 +0.0 +0.4 +0.0 39.6 46.0 -6.4 +0.1	Neutr
23 375.434k 16.6 +9.1 +0.0 +0.0 +0.6 +0.0 26.4 48.4 -22. Ave +0.1) Neutr

Page 110 of 113 Report No.: 106407-36

٨	375.433k	35.1	+9.1	+0.0	+0.0	+0.6	+0.0	44.9	48.4	-3.5	Neutr
			+0.1								
25	339.074k	16.6	+9.1	+0.0	+0.0	+0.6	+0.0	26.3	49.2	-22.9	Neutr
	Ave		+0.0								
^	339.073k	34.9	+9.1	+0.0	+0.0	+0.6	+0.0	44.6	49.2	-4.6	Neutr
			+0.0								
27	595.777k	9.4	+9.1	+0.0	+0.0	+0.4	+0.0	19.0	46.0	-27.0	Neutr
	Ave		+0.1								
^	595.777k	29.9	+9.1	+0.0	+0.0	+0.4	+0.0	39.5	46.0	-6.5	Neutr
			+0.1								
29	296.168k	10.2	+9.1	+0.0	+0.0	+0.7	+0.0	20.0	50.3	-30.3	Neutr
	Ave		+0.0								
^	296.168k	35.4	+9.1	+0.0	+0.0	+0.7	+0.0	45.2	50.3	-5.1	Neutr
			+0.0								

Page 111 of 113 Report No.: 106407-36

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading	(dBµV)			
+	Antenna Factor	(dB/m)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBµV/m)			

Page 112 of 113 Report No.: 106407-36

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 113 of 113 Report No.: 106407-36