Report No: 709502219901-00B

MPE Calculation

Applicant:	Nilfisk A/S.
Address:	Korrnmarksvej 1, DK-2605 Broendby, DENMARK
Product:	Radio Module
FCC ID:	2AVNE-AW1
Model No.:	Aero P53 PCBA
Reference RF report #	709502219901-00A

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	1	f/1500	30		
1,500–100,000	1	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm²);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Report No: 709502219901-00B

Calculated Data: PCB antenna

Maximum peak output power at antenna input terminal (dBm):	2.5
Maximum peak output power at antenna input terminal (mW):	1.78
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	3.42
Maximum Antenna Gain (numeric):	2.20
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.00078
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

The max power density 0.00078 (mW/cm2) < 1 (mW/cm2)

Result: Compliant

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by: Prepared by: Tested by:

SUD

Hui TONG

Wengiang LU

Huali CHENG

EMC Section Manager

EMC Project Engineer

EMC Test Engineer

Date: 2022-10-27

Date: 2022-10-27

Date: 2022-10-27