
Fig. 6.7.9: Result of the hand-eye calibration process displayed in the Web GUI

6.7.4 Parameters

The hand-eye calibration component is called rc_hand_eye_calibration in the REST-API and is represented
by the Hand-Eye Calibration tab in the Web GUI (Section 4.5). The user can change the calibration parameters
there or use the REST-API interface (Section 8.2).

Parameter overview

This component offers the following run-time parameters.

Table 6.7.1: The rc_hand_eye_calibration component’s run-time pa-
rameters

Name Type Min Max Default Description
grid_height float64 0.0 10.0 0.0 The height of the calibration pattern in meters
grid_width float64 0.0 10.0 0.0 The width of the calibration pattern in meters
robot_mounted bool False True True Whether the camera is mounted on the robot

This component reports no status values.

6.7. Hand-eye calibration 62

Description of run-time parameters

The parameter descriptions are given with the corresponding Web GUI names in brackets.

grid_width (Grid Width (m)) Width of the calibration grid in meters. The width should be measured with a very
great accuracy, preferably with sub-millimeter accuracy.

grid_height (Grid Height (m)) Height of the calibration grid in meters. The height should be measured with a
very great accuracy, preferably with sub-millimeter accuracy.

robot_mounted (Sensor Mounting) If set to 1, the rc_visard is mounted on the robot. If set to 0, the rc_visard
is mounted statically and the calibration grid is mounted on the robot.

(Pose) For convenience, the user can choose in the Web GUI between calibration in XYZABC format or in
XYZ+quaternion format (see Pose formats, Section 13.1). When calibrating using the REST-API, the cali-
bration result will always be given in XYZ+quaternion.

6.7.5 Services

The REST-API service calls offered to programmatically conduct the hand-eye calibration and to store or restore
this component’s parameters are explained below.

save_parameters With this service call, the current parameter settings of the hand-eye calibration component
are persisted to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults restores and applies the default values for this component’s parameters (“factory reset”). Does
not affect the calibration result itself or any of the slots saved during calibration. Only parameters such as
the grid dimensions and the mount type will be reset.

Warning: The user must be aware that calling this service causes the current parameter settings to be
irrecoverably lost.

This service requires no arguments.

This service returns no response.

set_pose provides a robot pose as calibration pose to the hand-eye calibration routine.

This service requires the following arguments:

{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

}

This service returns the following response:

6.7. Hand-eye calibration 63

{
"message": "string",
"status": "int32",
"success": "bool"

}

The slot argument is used to assign numbers to the different calibration poses. At each instant when
set_pose is called, an image is recorded. This service call fails if the grid was undetectable in the current
image.

Table 6.7.2: Return codes of the set_pose service call
status success Description

1 true pose stored successfully
3 true pose stored successfully; collected enough poses for calibration, i.e., ready to

calibrate
4 false calibration grid was not detected, e.g., not fully visible in camera image
8 false no image data available
12 false given orientation values are invalid

reset_calibration deletes all previously provided poses and corresponding images. The last saved calibration
result is reloaded. This service might be used to (re-)start the hand-eye calibration from scratch.

This service requires no arguments.

This service returns the following response:

{
"message": "string",
"status": "int32",
"success": "bool"

}

calibrate calculates and returns the hand-eye calibration transformation with the robot poses configured by the
set_pose service.

Note: For calculating the hand-eye calibration transformation at least three robot calibration poses are
required (see set_pose service). However, four calibration poses are recommended.

This service requires no arguments.

This service returns the following response:

{
"error": "float64",
"message": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"status": "int32",

(continues on next page)

6.7. Hand-eye calibration 64

(continued from previous page)

"success": "bool"
}

Table 6.7.3: Return codes of the calibrate service call
status success Description

0 true calibration successful; returned resulting calibration pose
1 false not enough poses to perform calibration
2 false calibration result is invalid, please verify the input data
3 false given calibration grid dimensions are not valid

save_calibration persistently saves the result of hand-eye calibration to the rc_visard and overwrites the ex-
isting one. The stored result can be retrieved any time by the get_calibration service.

This service requires no arguments.

This service returns the following response:

{
"message": "string",
"status": "int32",
"success": "bool"

}

Table 6.7.4: Return codes of the save_calibration service call
status success Description

0 true calibration saved successfully
1 false could not save calibration file
2 false calibration result is not available

remove_calibration removes the persistent hand-eye calibration on the rc_visard. After this call the
get_calibration service reports again that no hand-eye calibration is available.

This service requires no arguments.

This service returns the following response:

{
"message": "string",
"status": "int32",
"success": "bool"

}

Table 6.7.5: Return codes of the get_calibration service call
status success Description

0 true removed persistent calibration, sensor reports as uncalibrated
1 true no persistent calibration found, sensor reports as uncalibrated
2 false could not remove persistent calibration

get_calibration returns the hand-eye calibration currently stored on the rc_visard.

This service requires no arguments.

This service returns the following response:

{
"error": "float64",
"message": "string",

(continues on next page)

6.7. Hand-eye calibration 65

(continued from previous page)

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"status": "int32",
"success": "bool"

}

Table 6.7.6: Return codes of the get_calibration service call
status success Description

0 true returned valid calibration pose
2 false calibration result is not available

6.7. Hand-eye calibration 66

7 Optional software components

The rc_visard offers optional software components that can be activated by purchasing a separate license (Section
9.6).

The rc_visard’s optional software consists of the following components:

• SLAM (rc_slam, Section 7.1) performs simultaneous localization and mapping for correcting accumu-
lated poses. The rc_visard’s covered trajectory is offered via the REST-API interface (Section 8.2).

• IO and Projector Control (rc_iocontrol, Section 7.2) provides control over the general purpose inputs
and outputs with special modes for controlling an external random dot projector.

• TagDetect (rc_april_tag_detect and rc_qr_code_detect, Section 7.3) allows the detection of April-
Tags and QR codes, as well as the estimation of their poses.

• ItemPick and BoxPick (rc_itempick and rc_boxpick, Section 7.4) provides an out-of-the-box percep-
tion solution for robotic pick-and-place applications of unknown objects or boxes.

• SilhouetteMatch (rc_silhouettematch, Section 7.5) provides an object detection solution for objects
placed on a plane.

7.1 SLAM

The SLAM component is part of the sensor dynamics component. It provides additional accuracy for the pose
estimate of the stereo INS. When the rc_visard moves through the world, the pose estimate slowly accumulates
errors over time. The SLAM component can correct these pose errors by recognizing previously visited places.

The acronym SLAM stands for Simultaneous Localization and Mapping. The SLAM component creates a map
consisting of the image features as used in the visual odometry component. The map is later used to correct
accumulated pose errors. This is most apparent in applications where, e.g., a robot returns to a previously visited
place after covering a large distance (this is called a loop closure). In this case, the robot can re-detect image
features that are already stored in its map and can use this information to correct the drift in the pose estimate that
accumulated since the last visit.

When closing a loop, not only the current pose, but also the past pose estimates (the trajectory of the rc_visard),
are corrected. Continuous trajectory correction leads to a more accurate map. On the other hand, the accuracy of
the full trajectory is important when it is used to build an integrated world model, e.g., by projecting the 3D point
clouds obtained (see Computing depth images and point clouds, Section 6.2.2) into a common coordinate frame.
The full trajectory can be requested from the SLAM component for this purpose.

Note: The SLAM component is optionally available for the rc_visard and will run on board the sensor. If a
SLAM license is stored on the rc_visard, then the SLAM component is shown as Available on the Web GUI’s
Overview page and in the License section of the System page.

7.1.1 Usage

The SLAM component can be activated at any time, either via the rc_dynamics interface (see the documentation
of the respective Services, Section 6.3.3) or from the Dynamics page of the Web GUI.

67

The pose estimate of the SLAM component will be initialized with the current estimate of the stereo INS - and
thus the origin will be where the stereo INS was started.

Since the SLAM component builds on the motion estimates of the stereo INS component, the latter will automat-
ically be started up if it is not yet running when SLAM is started.

When the SLAM component is running, the corrected pose estimates will be available via the datastreams pose,
pose_rt, and dynamics of the rc_dynamics component.

The full trajectory is available through the service get_trajectory, see Services (Section 7.1.4) below for details.

To store the feature map on the rc_visard, the SLAM component provides the service save_map, which can be
used only during runtime (state “RUNNING”) or after stopping (state “HALTED”). A stored map can be loaded
before startup using the service load_map, which is only applicable in state “IDLE” (use the reset service to go
back to “IDLE” when SLAM is in state “HALTED”).

Note that mistaken localization at (visually) similar places may happen more easily when initially localizing in
a loaded map than when localizing during continuous operation. Choosing a starting point with a unique visual
appearance avoids this problem.

The SLAM component will therefore assume that the rc_visard is started in the rough vincinity (a few meters)
of the origin of the map. The origin of the map is where the Stereo INS module was started when the map was
recorded.

7.1.2 Memory limitations

In contrast to the other software components running on the rc_visard, the SLAM component needs to accumulate
data over time, e.g., motion measurements and image features. Further, the optimization of the trajectory requires
substantial amounts of memory, particularly when closing large loops. Therefore the memory requirements of the
SLAM component increase over time.

Given the memory limitations of the hardware, the SLAM component needs to reduce its own memory footprint
when running continuously. When the available memory runs low, the SLAM component will fix parts of the
trajectory, i.e. no further optimization will be done on these parts. A minimum of 10 minutes of the trajectory will
be kept unfixed at all times.

When the available memory runs low despite the above measures, two options are available. The first option is
that the SLAM component automatically goes to the HALTED state, where it stops processing, but the trajectory
(up to the stopping time) is still available. This is the default behavior.

The second option is to keep running until the memory is exhausted. In that case, the SLAM component will be
restarted. If the autorecovery parameter is set to true, the SLAM component will recover its previous position
and resume mapping. Otherwise it will go to FATAL state, requiring to be restarted via the rc_dynamics interface
(see Services, Section 6.3.3).

The operation time until the memory limit is reached is strongly dependent on the trajectory of the sensor.

Warning: Because of the memory limitations, it is not recommended to run SLAM at the same time as Stereo
matching in full resolution, because the memory available to SLAM will be greatly reduced. In the worst case,
a long running SLAM process may even be forcefully reset, when full-resolution stereo matching is turned on.

7.1.3 Parameters

The SLAM component is called rc_slam in the REST-API. The user can change the SLAM parameters using the
REST-API interface.

Parameter overview

This component offers the following run-time parameters.

7.1. SLAM 68

Table 7.1.1: The rc_slam component’s run-time parameters
Name Type Min Max Default Description
autorecovery bool False True True In case of fatal errors recover corrected position

and restart mapping
halt_on_low_memory bool False True True When the memory runs low, go to halted state

This component reports the following status values.

Table 7.1.2: The rc_slam component’s status values
Name Description
map_frames Number of frames that constitute the map
state The current state of the rc_slam node
trajectory_poses Number of poses in the estimated trajectory

The reported state can take one of the following values.

Table 7.1.3: Possible states of the rc_slam component
State name Description
IDLE The component is ready, but idle. No trajectory data is available.
WAITING_FOR_DATA The component was started but is waiting for data from stereo INS or VO.
RUNNING The component is running.
HALTED The component is stopped. The trajectory data is still available. No new information is processed.
RESETTING The component is being stopped and the internal data is being cleared.
RESTARTING The component is being restarted.
FATAL A fatal error has occured.

7.1.4 Services

The SLAM component offers the following services.

Note: Activation and deactivation of the SLAM component is done via the service interface of rc_dynamics
(see Services, Section 6.3.3).

reset clears the internal state of the SLAM component. This service is to be used after stopping the SLAM com-
ponent using the rc_dynamics interface (see the respective Services, Section 6.3.3). The SLAM component
maintains the estimate of the full trajectory even when stopped. This service clears this estimate and frees
the respective memory. The returned status is RESETTING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

get_trajectory With this service call the trajectory can be retrieved. The service arguments allow to select a
subsection of the trajectory by defining a start_time and an end_time. Both are optional, i.e., they could
be left empty or filled with zero values, which results in the subsection to include the trajectory from the
very beginning, or to the very end, respectively, or both. If not empty or zero, they can be defined either as
absolute timestamps or to be relative to the trajectory (start_time_relative and end_time_relative
flags). If defined to be relative, the values’ signs indicate to which point in time they relate to: Positive
values define an offset to the start time of the trajectory; negative values are interpreted as an offset from the
end time of the trajectory. The below diagram illustrates three examples for the relative parameterization.

7.1. SLAM 69

rc_slam
started

rc_slam
stopped

Time (hh:mm:ss)

Whole trajectory

+60s

+15s

– 60s

+15s
–15s

Selected subset

–15s

1
2:

0
0:

00

12
:0

0:
15

1
2:

0
1:

00

12
:0

1:
15

start_time

end_time

Parameters
(relative)

Fig. 7.1.1: Examples for combinations of relative start and end times for the get_trajectory service. All
combinations shown select the same subset of the trajectory.

Note: A relative start_time of zero will select everything from the start of the trajectory, whereas
a relative end_time of zero will select everything to the end of the trajectory. Absolute zero values
effectively do the same, so one can set all values zero to get the full trajectory.

The field return_code in the answer contains a status value and message. The value will be zero or greater
on success, where zero is the regular case and positive values indicate a special condition. Negative values
signal an error.

The field producer indicates where the trajectory data comes from and is always slam.

The following table contains a list of common codes:

Code Description
0 Success
-1 An invalid argument was provided (e.g., an invalid time range)
101 Trajectory is empty, because there is no data in the given time range
102 Trajectory is empty, because there is no data at all (e.g., when SLAM is IDLE)

This service requires the following arguments:

{
"end_time": {

"nsec": "int32",
"sec": "int32"

},
"end_time_relative": "bool",
"start_time": {
"nsec": "int32",
"sec": "int32"

},
"start_time_relative": "bool"

}

This service returns the following response:

7.1. SLAM 70

{
"return_code": {
"message": "string",
"value": "int16"

},
"trajectory": {

"name": "string",
"parent": "string",
"poses": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

],
"producer": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

save_map Stores the current state as a map to persistent memory. The map consists of a set of fixed map frames.
It does not contain the full trajectory that has been covered.

Note: Only abstract feature positions and descriptions are stored in the map. No actual footage of the
cameras is stored with the map, nor is it possible to reconstruct images or image parts from the stored
information.

Warning: The map is lost on software updates or rollbacks

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

load_map Loads a previously saved map. This is only applicable when the SLAM component is IDLE. It is not
possible to load a map into a running system. A loaded map can be cleared with the reset service call.

7.1. SLAM 71

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

remove_map Removes the stored map from the persistent memory.

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

7.2 IO and Projector Control

The IOControl component allows reading the status of the general purpose digital inputs and controlling the digital
general purpose outputs (Wiring, Section 3.5). The outputs can be set to low or high, or configured to be high for
the exposure time of every image. Additionally, the outputs can be configured to be high for the exposure time of
every second image.

Note: The IOControl component is optional and requires the purchase of a separate license (Section 9.6).

7.2.1 Parameters

The IOControl component is called rc_iocontrol in the REST-API. The user can change the parame-
ters via REST-API (REST-API interface, Section 8.2) or GigE Vision using the DigitalIOControl parameters
LineSelector and LineSource (Category: DigitalIOControl, Section 8.1.1).

Parameter overview

This component offers the following run-time parameters.

Table 7.2.1: The rc_iocontrol component’s run-time parameters
Name Type Min Max Default Description
out1_mode string - - ExposureActive Low, High, ExposureActive,

ExposureAlternateActive
out2_mode string - - Low Low, High, ExposureActive,

ExposureAlternateActive

This component reports no status values.

7.2. IO and Projector Control 72

Description of run-time parameters

out1_mode and out2_mode (Out1 and Out2) The output modes for GPIO Out 1 and Out 2 can be set individu-
ally:

Low sets the ouput permanently to low. This is the factory default of Out 2.

High sets the output permanently to high.

ExposureActive sets the output to high for the exposure time of every image. This is the factory default
of Out 1.

ExposureAlternateActive sets the output to high for the exposure time of every second image.

Note: The parameters can only be changed if the IOControl license is available on the rc_visard. Otherwise,
the parameters will stay at their factory defaults, i.e. out1_mode = ExposureActive and out2_mode = Low.

Figure Fig. 7.2.1 shows which images are used for stereo matching and transmission via GigE Vision in
ExposureActive mode with a user defined frame rate of 8 Hz.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 7.2.1: Example of using the ExposureActive mode for GPIO Out 1 with a user defined frame rate setting of
8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is high for the exposure time of every image.
A disparity image is computed for camera images that are send out via GigE Vision according to the user defined
frame rate.

The mode ExposureAlternateActive is meant to be used when an external random dot projector is connected
to the GPIO Out 1 of the rc_visard. A side effect of setting output 1 to ExposureAlternateActive is that
the stereo matching (Section 6.2) component only uses images if output 1 is high, i.e. projector is on. The
maximum framerate that is used for stereo matching is therefore halve of the frame rate configured by the user
(see FPS, Section 6.1.3). All other components like visual odometry (Section 6.4), TagDetect (Section 7.3) and
ItemPick (Section 7.4) use images where the output is low, i.e. projector is off. Figure Fig. 7.2.2 shows an example.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 7.2.2: Example of using the ExposureAlternateActive mode for GPIO Out 1 with a user defined frame
rate setting of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is high for the exposure time
of every second image. A disparity image is computed for images where Out 1 is high and that are send out via
GigE Vision according to the user defined frame rate. In ExposureAlternateActive mode, images are always
transmitted pairwise. One with Out 1 high for which a disparity image might be available and one with Out 1 low.

Note: In ExposureAlternateActive mode, an image with output high (i.e. with projection) is always 40 ms
away from an image with output low (i.e. without projection), regardless of the user configured frame rate.
This needs to be considered when synchronizing disparity and camera images without projection in this special
mode.

The functionality can also be controlled by the digital IO control parameters of the GenICam interface (Category:
DigitalIOControl, Section 8.1.1).

7.2. IO and Projector Control 73

7.2.2 Services

The IOControl component offers the following services.

get_io_values This service call retrieves the current state of the general purpose inputs and outputs. The re-
turned time stamp is the time of measurement. The call returns an error if the rc_visard does not have an
IOControl license.

This service requires no arguments.

This service returns the following response:

{
"in1": "bool",
"in2": "bool",
"out1": "bool",
"out2": "bool",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Possible return codes are shown below.

Table 7.2.2: Possible return codes of the get_io_values service call.
Code Description

0 Success
-2 Internal error
-9 License for iocontrol is not available

save_parameters With this service call, the component’s current parameter settings are persisted to the
rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults Restores and applies the default values for this component’s parameters (“factory reset”).

This service requires no arguments.

This service returns no response.

Warning: The user must be aware that calling this service causes the current parameter settings for the
IOControl component to be irrecoverably lost.

7.3 TagDetect

7.3.1 Introduction

The TagDetect components run on board the rc_visard and allow the detection of 2D bar codes and tags. Currently,
there are TagDetect components for QR codes and AprilTags. The components furthermore compute the position
and orientation of each tag in the 3D camera coordinate system, making it simple to manipulate a tag with a robot
or to localize the camera with respect to a tag.

7.3. TagDetect 74

Note: The TagDetect components are optional and require a separate license (Section 9.6) to be purchased.

Tag detection is made up of three steps:

1. Tag reading on the 2D image pair (see Tag reading, Section 7.3.2).

2. Estimation of the pose of each tag (see Pose estimation, Section 7.3.3).

3. Re-identification of previously seen tags (see Tag re-identification, Section 7.3.4).

In the following, the two supported tag types are described, followed by a comparison.

QR code

Fig. 7.3.1: Sample QR code

QR codes are two-dimensional bar codes that contain arbitrary user-defined data. There is wide support for
decoding of QR codes on commodity hardware such as smartphones. Also, many online and offline tools are
available for the generation of such codes.

The “pixels” of a QR code are called modules. Appearance and resolution of QR codes change with the amount
of data they contain. While the special patterns in the three corners are always 7 modules wide, the number of
modules between them increases the more data is stored. The lowest-resolution QR code is of size 21x21 modules
and can contain up to 152 bits.

Even though many QR code generation tools support generation of specially designed QR codes (e.g., containing
a logo, having round corners, or having dots as modules), a reliable detection of these tags by the rc_visard’s
TagDetect component is not guaranteed. The same holds for QR codes which contain characters that are not part
of regular ASCII.

7.3. TagDetect 75

AprilTag

Fig. 7.3.2: A 16h5 tag (left) and a 36h11 tag (right). AprilTags consist of a mandatory white (a) and black (b)
border and a variable amount of data bits (c).

AprilTags are similar to QR codes. However, they are specifically designed for robust identification at large
distances. As for QR codes, we will call the tag pixels modules. Fig. 7.3.2 shows how AprilTags are structured.
They are surrounded by a mandatory white and black border, each one module wide. In the center, they carry a
variable amount of data modules. Other than QR codes, they do not contain any user-defined information but are
identified by a predefined family and ID. The tags in Fig. 7.3.2 for example are of family 16h5 and 36h11 and have
id 0 and 11, respectively. All supported families are shown in Table 7.3.1.

Table 7.3.1: AprilTag families
Family Number of tag IDs Recommended
16h5 30 -
25h7 242 -
25h9 35 o
36h10 2320 o
36h11 587 +

For each family, the number before the “h” states the number of data modules contained in the tag: While a 16h5
tag contains 16 (4x4) data modules ((c) in Fig. 7.3.2), a 36h11 tag contains 36 (6x6) modules. The number behind
the “h” refers to the Hamming distance between two tags of the same family. The higher, the more robust is the
detection, but the fewer individual tag IDs are available for the same number of data modules (see Table 7.3.1).

The advantage of fewer data modules (as for 16h5 compared to 36h11) is the lower resolution of the tag. Hence,
each tag module is larger and the tag therefore can be detected from a larger distance. This, however, comes
at a price: First, fewer data modules lead to fewer individual tag IDs. Second, and more importantly, detection
robustness is significantly reduced due to a higher false positive rate; i.e, tags are mixed up or nonexistent tags are
detected in random image texture or noise.

For these reasons we recommend using the 36h11 family and highly discourage the use of the 16h5 and 25h7
families. The latter families should only be used if a large detection distance really is necessary for an application.
However, the maximum detection distance increases only by approximately 25% when using a 16h5 tag instead
of a 36h11 tag.

Pre-generated AprilTags can be downloaded at the AprilTag project website (https://april.eecs.umich.edu/
software/apriltag.html). There, each family consists of multiple PNGs containing single tags and one PDF con-
taining each tag on a separate page. Each pixel in the PNGs corresponds to one AprilTag module. When printing
the tags, special care must be taken to also include the white border around the tag that is contained in the PNGs
as well as PDFs (see (a) in Fig. 7.3.2). Moreover, the tags should be scaled to the desired printing size without any
interpolation, so that the sharp edges are preserved.

7.3. TagDetect 76

https://april.eecs.umich.edu/software/apriltag.html
https://april.eecs.umich.edu/software/apriltag.html

Comparison

Both QR codes and AprilTags have their up and down sides. While QR codes allow arbitrary user-defined data
to be stored, AprilTags have a pre-defined and limited set of tags. On the other hand, AprilTags have a lower
resolution and can therefore be detected at larger distances. Moreover, the continuous white to black edge around
AprilTags allow for more precise pose estimation.

Note: If user-defined data is not required, AprilTags should be preferred over QR codes.

7.3.2 Tag reading

The first step in the tag detection pipeline is reading the tags on the 2D image pair. This step takes most of the
processing time and its precision is crucial for the precision of the resulting tag pose. To control the speed of
this step, the quality parameter can be set by the user. It results in a downscaling of the image pair before
reading the tags. “H” (High) yields the largest maximum detection distance and highest precision, but also the
highest processing time. “L” (Low) results in the smallest maximum detection distance and lowest precision,
but processing requires less than half of the time. “M” (Medium) lies in between. Please note that this quality
parameter has no relation to the quality parameter of Stereo matching (Section 6.2).

Fig. 7.3.3: Visualization of module size 𝑠, size of a tag in modules 𝑟, and size of a tag in meters 𝑡 for AprilTags
(left) and QR codes (right)

The maximum detection distance 𝑧 at quality “H” can be approximated by using the following formulae,

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

where 𝑓 is the focal length (Section 6.1.2) in pixels and 𝑠 is the size of a module in meters. 𝑠 can easily be
calculated by the latter formula, where 𝑡 is the size of the tag in meters and 𝑟 is the width of the code in modules
(for AprilTags without the white border). Fig. 7.3.3 visualizes these variables. 𝑝 denotes the number of image
pixels per module required for detection. It is different for QR codes and AprilTags. Moreover, it varies with the
tag’s angle to the camera and illumination. Approximate values for robust detection are:

• AprilTag: 𝑝 = 5 pixels/module

• QR code: 𝑝 = 6 pixels/module

The following tables give sample maximum distances for different situations, assuming a focal length of 1075
pixels and the parameter quality to be set to “H”.

7.3. TagDetect 77

Table 7.3.2: Maximum detection distance examples for AprilTags with a
width of 𝑡 = 4 cm

AprilTag family Tag width Maximum distance
36h11 (recommended) 8 modules 1.1 m
16h5 6 modules 1.4 m

Table 7.3.3: Maximum detection distance examples for QR codes with a
width of 𝑡 = 8 cm

Tag width Maximum distance
29 modules 0.49 m
21 modules 0.70 m

7.3.3 Pose estimation

For each detected tag, the pose of this tag in the camera coordinate frame is estimated. A requirement for pose
estimation is that a tag is fully visible in the left and right camera image. The coordinate frame of the tag is aligned
as shown below.

Fig. 7.3.4: Coordinate frames of AprilTags (left) and QR codes (right)

The z-axis is pointing “into” the tag. Please note that for AprilTags, although having the white border included
in their definition, the coordinate system’s origin is placed exactly at the transition from the white to the black
border. Since AprilTags do not have an obvious orientation, the origin is defined as the upper left corner in the
orientation they are pre-generated in.

During pose estimation, the tag’s size is also estimated, while assuming the tag to be square. For QR codes, the
size covers the full tag. For AprilTags, the size covers only the black part of the tag, hence ignoring the outermost
white border.

The user can also specify the approximate size (±10%) of tags with a specific ID. All tags not matching this size
contraint are automatically filtered out. This information is further used to resolve ambiguities in pose estimation
that may arise if multiple tags with the same ID are visible in the left and right image and these tags are aligned in
parallel to the image rows.

Note: For best pose estimation results one should make sure to accurately print the tag and to attach it to a rigid
and as planar as possible surface. Any distortion of the tag or bump in the surface will degrade the estimated
pose.

Warning: It is highly recommended to set the approximate size of a tag. Otherwise, if multiple tags with
the same ID are visible in the left or right image, pose estimation may compute a wrong pose if these tags

7.3. TagDetect 78

have the same orientation and are approximately aligned in parallel to the image rows. However, even if the
approximate size is not given, the TagDetect components try to detect such situations and filter out affected
tags.

Below tables give approximate precisions of the estimated poses of AprilTags and QR codes. We distinguish
between lateral precision (i.e., in x and y direction) and precision in z direction. It is assumed that quality is set
to “H” and that the rc_visard’s viewing direction is roughly parallel to the tag’s normal. The size of a tag does
not have a significant effect on the lateral or z precision; however, in general, larger tags improve precision. With
respect to precision of the orientation especially around the x and y axes, larger tags clearly outperform smaller
ones.

Table 7.3.4: Approximate pose precision for AprilTags
Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z
0.3 m 0.4 mm 0.9 mm 0.4 mm 0.8 mm
1.0 m 0.7 mm 3.3 mm 0.7 mm 3.3 mm

Table 7.3.5: Approximate pose precision for QR codes
Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z
0.3 m 0.6 mm 2.0 mm 0.6 mm 1.3 mm
1.0 m 2.6 mm 15 mm 2.6 mm 7.9 mm

7.3.4 Tag re-identification

Each tag has an ID; for AprilTags it is the family plus tag ID, for QR codes it is the contained data. However, these
IDs are not unique, since the same tag may appear multiple times in a scene.

For distinction of these tags, the TagDetect components also assign each detected tag a unique identifier. To help
the user identifying an identical tag over multiple detections, tag detection tries to re-identify tags; if successful,
a tag is assigned the same unique identifier again. Tag re-identification compares the positions of the corners
of the tags in a static coordinate frame to find identical tags. Tags are assumed identical if they did not or only
slightly move in that static coordinate frame. For that static coordinate frame to be available, dynamic-state
estimation (Section 6.3) must be switched on. If it is not, the sensor is assumed to be static; tag re-identification
will then not work across sensor movements.

By setting the max_corner_distance threshold, the user can specify how much a tag is allowed move in the static
coordinate frame between two detections to be considered identical. This parameter defines the maximum distance
between the corners of two tags, which is shown in Fig. 7.3.5. The Euclidean distances of all four corresponding
tag corners are computed in 3D. If none of these distances exceeds the threshold, the tags are considered identical.

Fig. 7.3.5: Simplified visualization of tag re-identification. Euclidean distances between associated tag corners in
3D are compared (red arrows).

7.3. TagDetect 79

After a number of tag detection runs, previously detected tag instances will be discarded if they are not detected
in the meantime. This can be configured by the parameter forget_after_n_detections.

7.3.5 Interfaces

There are two separate components for tag detection of the sensor, one for detecting AprilTags and one for QR
codes, named rc_april_tag_detect and rc_qr_code_detect, respectively. Apart from the component names
they share the same interface definition.

In addition to the REST-API, the TagDetect components provide tabs on the Web GUI, on which they can be tried
out and configured manually.

Parameters and status values

In the following, the parameters and status values are listed based on the example of rc_qr_code_detect. They
are the same for rc_april_tag_detect.

This component offers the following run-time parameters.

Table 7.3.6: The rc_qr_code_detect component’s run-time parameters
Name Type Min Max Default Description
detect_inverted_tags bool False True False Detect tags with black and

white exchanged
forget_after_n_detections int32 1 1000 30 Number of detection runs

after which to forget about a
previous tag during tag
re-identification

max_corner_distance float64 0.001 0.01 0.005 Maximum distance of
corresponding tag corners in
meters during tag
re-identification

quality string - - H Quality of tag detection (H,
M or L)

use_cached_images bool False True False Use most recently received
image pair instead of waiting
for a new pair

This component reports the following status values.

Table 7.3.7: The rc_qr_code_detect component’s status values
Name Description
state The current state of the node

The reported state can take one of the following values.

Table 7.3.8: Possible states of the TagDetect components
State name Description
IDLE The component is idle.
RUNNING The component is running and ready for tag detection.
FATAL A fatal error has occurred.

Services

The TagDetect components implement a state machine for starting and stopping. The actual tag detection can be
triggered via detect.

7.3. TagDetect 80

start starts the component by transitioning from IDLE to RUNNING.

When running, the component receives images from the stereo camera and is ready to perform tag detec-
tions. To save computing resources on the sensor, the component should only be running when necessary.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

stop stops the component by transitioning to IDLE.

This transition can be performed from state RUNNING and FATAL. All tag re-identification information is
cleared during stopping.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

restart restarts the component. If in RUNNING or FATAL, the component will be stopped and then started. If in
IDLE, the component will be started.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

detect triggers a tag detection. Depending on the use_cached_images parameter, the component will use the
latest received image pair (if set to true) or wait for a new pair that is captured after the service call was
triggered (if set to false, this is the default). Even if set to true, tag detection will never use one image pair
twice.

It is recommended to call detect in state RUNNING only. It is also possible to be called in state IDLE,
resulting in an auto-start and stop of the component. This, however, has some drawbacks: First, the call will
take considerably longer; second, tag re-identification will not work. It is therefore highly recommended to
manually start the component before calling detect.

This service requires the following arguments:

{
"tags": [

{
"id": "string",
"size": "float64"

}
]

}

This service returns the following response:

{
"return_code": {

(continues on next page)

7.3. TagDetect 81

(continued from previous page)

"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"size": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

],
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Request: tags is the list of tag IDs that the TagDetect component should detect. For QR codes, the ID is
the contained data. For AprilTags, it is “<family>_<id>”, so, e.g., for a tag of family 36h11 and ID
5, it is “36h11_5”. Naturally, the AprilTag component can only be triggered for AprilTags, and the
QR code component only for QR codes.

The tags list can also be left empty. In that case, all detected tags will be returned. This feature should
be used only during development and debugging of an application. Whenever possible, the concrete
tag IDs should be listed, on the one hand avoiding some false positives, on the other hand speeding up
tag detection by filtering tags not of interest.

For AprilTags, the user can not only specify concrete tags but also a complete family by setting the ID
to “<family>”, so, e.g., “36h11”. All tags of this family will then be detected. It is further possible to
specify multiple complete tag families or a combination of concrete tags and complete tag families;
for instance, triggering for “36h11”, “25h9_3”, and “36h10” at the same time.

In addition to the ID, the approximate size (±10%) of a tag can be set with the size parameter.
As described in Pose estimation, Section 7.3.3, this information helps to resolve ambiguities in pose
estimation that may arise in certain situations.

Response: timestamp is set to the timestamp of the image pair the tag detection ran on.

tags contains all detected tags. id is the ID of the tag, similar to id in the request. instance_id
is the random unique identifier of the tag assigned by tag re-identification. pose contains position
and orientation. The orientation is in quaternion format. pose_frame is set to the coordinate frame
above pose refers to. It will always be “camera”. size will be set to the estimated tag size in meters;
for AprilTags, the white border is not included.

return_code holds possible warnings or error codes in value, which are represented by a value
greater than or less than 0, respectively. The respective error message can be found in message. The

7.3. TagDetect 82

following table contains a list of common codes:

Code Description
0 Success
-1 An invalid argument was provided
-4 A timeout occurred while waiting for the image pair
-9 The license is not valid
-101 Internal error
-102 There was a backwards jump of system time
-200 A fatal internal error occurred
101 A warning occurred during tag reading
102 A warning occurred during pose estimation
200 Multiple warnings occurred; see list in message

201 The component was not in state RUNNING

Tags might be omitted from the detect response due to several reasons, e.g., if a tag is visible in only one
of the cameras or if pose estimation did not succeed. These filtered-out tags are noted in the log, which can
be accessed as described in Downloading log files (Section 9.7).

A visualization of the latest detection is shown on the Web GUI tabs of the TagDetect components. Please
note that this visualization will only be shown after calling the detection service at least once. On the Web
GUI, one can also manually try the detection by clicking the Detect button.

Due to changes in system time on the sensor there might occur jumps of timestamps, forward as well as
backward (see Time synchronization, Section 8.5). Forward jumps do not have an effect on the TagDetect
component. Backward jumps, however, invalidate already received images. Therefore, in case a backwards
time jump is detected, an error of value -102 will be issued on the next detect call, also to inform the user
that the timestamps included in the response will jump back.

save_parameters With this service call, the TagDetect component’s current parameter settings are persisted to
the rc_visard. That is, these values are applied even after reboot.

reset_defaults Restores and applies the default values for this component’s parameters (“factory reset”) as
given in the table above.

7.4 ItemPick and BoxPick

7.4.1 Introduction

The ItemPick and BoxPick components are optional on-board components of the rc_visard.

Note: The components are optional and require separate ItemPick or BoxPick licenses (Section 9.6) to be
purchased.

The components provide out-of-the-box perception solutions for robotic pick-and-place applications. ItemPick
targets the detection of flat surfaces of unknown objects for picking with a suction gripper. BoxPick detects rect-
angular surfaces and determines their position, orientation and size for grasping. The interface of both components
is very similar. Therefore both components are described together in this chapter.

In addition, both components offer:

• a dedicated page on the rc_visard Web GUI (Section 4.5) for easy setup, configuration, testing, and applica-
tion tuning

• the definition of regions of interest to select relevant volumes in the scene

• a load carrier detection functionality for bin-picking applications, to provide grasps for items inside a bin
only

• the definition of compartments inside a load carrier to provide grasps for specific volumes of the bin only

7.4. ItemPick and BoxPick 83

• support for static and robot-mounted rc_visard devices and optional integration with the on-board Hand-eye
calibration (Section 6.7) component, to provide grasps in the user-configured external reference frame

• a quality value associated to each suggested grasp and related to the flatness of the grasping surface

• sorting of grasps according to gravity and size so that items on top of a pile are grasped first.

Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or pixels) with
defined geometrical properties.

Note: In this chapter, load carrier and bin are used as synonyms and identify a container with four walls, a
floor and a rectangular rim.

7.4.2 Data types

Region of Interest

A region of interest defines a volume in space which is of interest for a specific user-application. The ItemPick
and BoxPick components currently support regions of interest of the following types:

• BOX, with dimensions box.x, box.y, box.z.

• SPHERE, with radius sphere.radius.

The user can specify the region of interest pose in the camera or the external coordinate system (see Hand-eye
calibration).

Both components can persistently store up to 10 different regions of interest, each one identified by a different id.
The configuration of regions of interest is normally performed offline (e.g. on the ItemPick or BoxPick page of
the rc_visard Web GUI), during the set up of the desired application.

Note: As opposed to the component parameters, the configured regions of interest are persistent even over
firmware updates and rollbacks.

The region of interest can narrow the volume that is searched for a load carrier model, or select a volume which
only contains items to be grasped.

Note: If the region of interest filter is not applied, the components process the whole scene visible to the
camera.

Load Carrier

A load carrier (bin) is a container with four walls, a floor and a rectangular rim. It is defined by its
outer_dimensions and inner_dimensions.

The load carrier detection algorithm is based on the detection of the load carrier rectangular rim. By default, the
rectangular rim_thickness is computed from the outer and inner dimensions. As an alternative, its value can
also be explicitly specified by the user.

Note: Typically, outer and inner dimensions of a load carrier are available in the specifications of the load
carrier manufacturer.

The load carrier reference frame is defined such that its origin is at the center of the load carrier outer box and its
z axis is perpendicular to the load carrier floor.

7.4. ItemPick and BoxPick 84

x
z

outer_dimensions.x
inner_dimensions.x

inn
er_

dim
en

sio
ns.

y

ou
ter

_di
men

sio
ns.

y

inner_dimensions.z

outer_dimensions.z

y
z

rim
_th

ick
ne

ss.
y

rim_thickness.x

x
y

Fig. 7.4.1: Load carrier models and reference frame.

The user can optionally specify a prior for the load carrier pose. The detected load carrier pose is guaranteed
to have the minimum rotation with respect to the load carrier prior pose. If no prior is specified, the algorithm
searches for a load carrier whose floor is perpendicular to the estimated gravity vector.

The components can persistently store up to 10 different load carrier models, each one identified by a different id.
The configuration of a load carrier model is normally performed offline (e.g. on the ItemPick or BoxPick page of
the rc_visard Web GUI), during the set up the desired application.

Note: As opposed to the component parameters, the configured load carrier models are persistent even over
firmware updates and rollbacks.

The modules enable the computation of grasps for a specific volume of the load carrier
(load_carrier_compartment). The compartment is a box whose pose is defined with respect to the
load carrier reference frame.

x
yz

com
pa

rtm
en

t.b
ox.

y

compartment.box.x

compartment.box.z

Fig. 7.4.2: Compartment inside a load carrier.

7.4. ItemPick and BoxPick 85

Suction Grasp

A grasp provided by the ItemPick and BoxPick components represents the recommended pose of the TCP (Tool
Center Point) of the suction gripper. The grasp orientation is a right-handed coordinate system and is defined such
that its z axis is normal to the surface pointing inside the object at the grasp position and its x axis is directed along
the maximum elongation of the surface.

The computed grasp pose is the center of the biggest ellipse that can be inscribed in each surface.

Fig. 7.4.3: Illustration of suction grasp with coordinate system and ellipse representing the maximum suction
surface.

Each grasp includes the dimensions of the maximum suction surface available, modelled as an ellipse of axes
max_suction_surface_length and max_suction_surface_width. The user is enabled to filter grasps by
specifying the minimum suction surface required by the suction device in use.

In the BoxPick component, the grasp position corresponds to the center of the detected rectangle and the dimen-
sions of the maximum suction surface available matches the estimated rectangle dimensions. Detected rectangles
with missing data or occlusions by other objects for more than 15% of their surface do not get an associated grasp.

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of the oldest
image that was used to compute the grasp.

Item model

The ItemPick and BoxPick components allow to specify a model for the items to be picked. Each item model
includes minimum and maximum dimenstions of the expected items.

• The ItemPick component supports specifying the minimum and maximum sizes of unknown flexible and/or
deformable items.

• The BoxPick component supports specifying the minimum and maximum length and width of several rect-
angles.

7.4.3 Interaction with other components

Internally, the ItemPick and BoxPick components depend on, and interact with other on-board components as
listed below.

Note: All changes and configuration updates to these components will affect the performance of the ItemPick
and BoxPick components.

Stereo camera and Stereo matching

The ItemPick and BoxPick components make internally use of the following data:

• Rectified images from the Stereo camera component (rc_stereocamera, Section 6.1);

7.4. ItemPick and BoxPick 86

• Disparity, error, and confidence images from the Stereo matching component (rc_stereomatching, Sec-
tion 6.2).

Sensor dynamics

For each load carrier detection and grasp computation, the components estimate the gravity vector by subscribing
to the IMU data stream from the Sensor dynamics component (rc_dynamics, Section 6.3).

Note: The gravity vector is estimated from linear acceleration readings from the on-board IMU. For this reason,
the ItemPick and BoxPick components require the rc_visard to remain still while the gravity vector is being
estimated.

IO and Projector Control

In case the rc_visard is used in conjunction with an external random dot projector and the IO and Projector
Control component (rc_iocontrol, Section 7.2), the output mode for the GPIO output in use should be se to
ExposureAlternateActive, as explained in the Description of run-time parameters (Section 7.2.1) of the IO
and Projector Control component.

No additional changes are required to use the ItemPick and BoxPick components in combination with a random
dot projector.

Hand-eye calibration

In case the rc_visard has been calibrated to a robot, two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided to and from the component are in the camera frame, and
no prior knowledge about the pose of the rc_visard in the environment is required. This means that the
configured regions of interest and load carriers move with the camera. It is the user’s responsibility to
update the configured poses if the camera frame moves (e.g. with a robot-mounted sensor).

2. External frame (external). All poses provided to and from the component are in the external frame,
configured by the user during the hand-eye calibration process. The component relies on the on-board
Hand-eye calibration component to retrieve the sensor mounting (static or robot mounted) and the hand-
eye transformation. If the sensor mounting is static, no further information is needed. If the sensor is
robot-mounted, the robot_pose is required to transform poses to and from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

7.4.4 Parameters and Status Values

The ItemPick and BoxPick components are called rc_itempick and rc_boxpick in the REST-API. The user can
explore and configure the rc_itempick and rc_boxpick component’s run-time parameters, e.g. for development
and testing, using the rc_visard Web GUI (Section 4.5) or Swagger UI (Section 8.2.4).

This component offers the following run-time parameters.

Table 7.4.1: The rc_itempick and rc_boxpick components applica-
tion parameters

Name Type Min Max Default Description
max_grasps int32 1 20 5 Maximum number of provided grasps

7.4. ItemPick and BoxPick 87

Table 7.4.2: The rc_itempick and rc_boxpick components load car-
rier detection parameters

Name Type Min Max Default Description
load_carrier_crop_distance float64 0.0 0.02 0.005 Safety margin in

meters by which the
load carrier inner
dimensions are
reduced to define the
region of interest for
grasp computation

load_carrier_model_tolerance float64 0.003 0.025 0.008 Indicates how much
the estimated load
carrier dimensions
are allowed to differ
from the load carrier
model dimensions in
meters

7.4. ItemPick and BoxPick 88

Table 7.4.3: The rc_itempick and rc_boxpick components surface
clustering parameters

Name Type Min Max Default Description
cluster_max_dimension float64 0.05 0.8 0.3 Only for rc_itempick.

Diameter of the largest
sphere enclosing each
cluster in meters. Clus-
ters larger than this value
are filtered out before
grasp computation.

cluster_max_curvature float64 0.005 0.5 0.11 Maximum curvature al-
lowed within one cluster.
The smaller this value,
the more clusters will be
split apart.

clustering_patch_size int32 3 10 4 Only for rc_itempick.
Size in pixels of the
square patches the depth
map is subdivided into
during the first clustering
step

clustering_max_surface_rmse float64 0.0005 0.01 0.004 Maximum root-mean-
square error (RMSE)
in meters of points
belonging to a surface

clustering_discontinuity_factor float64 0.5 5.0 1.0 Factor used to discrim-
inate depth discontinu-
ities within a patch. The
smaller this value, the
more clusters will be
split apart.

item_model_tolerance float64 0.0 0.05 0.0 Only for rc_itempick.
This parameter is dep-
recated. Indicates how
much the estimated item
dimensions are allowed
to differ from the item
model dimensions in me-
ters

This component reports the following status values.

Table 7.4.4: The rc_itempick and rc_boxpick components status val-
ues

Name Description
state The current state of the rc_itempick and rc_boxpick node
last_timestamp_processed The timestamp of the last processed dataset
data_acquisition_time Time in seconds required by the last active service to acquire images.

Standard values are between 0.5 s and 0.6 s with High depth image
quality.

load_carrier_detection_time Processing time of the last load carrier detection in seconds
grasp_computation_time Processing time of the last grasp computation in seconds

The reported state can take one of the following values.

7.4. ItemPick and BoxPick 89

Table 7.4.5: Possible states of the ItemPick and BoxPick components
State name Description
IDLE The component is idle.
RUNNING The component is running and ready for load carrier detection and grasp computation.
FATAL A fatal error has occurred.

7.4.5 Services

The user can explore and call the rc_itempick and rc_boxpick component’s services, e.g. for development and
testing, using Swagger UI (Section 8.2.4) or the rc_visard Web GUI (Section 4.5).

Each service component provides a return_code, which consists of a value plus an optional message.

A successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional information. The
smaller value is selected in case a service has multiple return_code values, but all messages are appended in the
return_code message.

The following table contains a list of common codes:

Table 7.4.6: Return codes of the ItemPick and BoxPick services
Code Description

0 Success
-1 An invalid argument was provided
-4 Data acquisition took longer than the maximum allowed time of 3.0 seconds

-301 More than one item model of type UNKNOWN provided to the compute_grasps service
-302 More than one load carrier provided to the detect_load_carriers service, but only one is

supported
100 The requested load carriers were not detected in the scene
101 No valid surfaces or grasps were found in the scene
102 The detected load carrier is empty
200 The component is in IDLE state
300 A valid robot_pose was provided as argument but it is not required
400 No item_models were provided to the compute_grasps service request
500 The region of interest visualization images could not be generated during the call to

set_region_of_interest

600 An existent persistent model was overwritten by the call to set_load_carrier or
set_region_of_interest

The ItemPick and BoxPick components offer the following services.

start Starts the component. If the command is accepted, the component moves to state RUNNING. The
current_state value in the service response may differ from RUNNING if the state transition is still in
process when the service returns.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

stop Stops the component. If the command is accepted, the component moves to state IDLE. The current_state
value in the service response may differ from IDLE if the state transition is still in process when the service
returns.

This service requires no arguments.

7.4. ItemPick and BoxPick 90

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

set_region_of_interest Persistently stores a region of interest on the rc_visard. All configured regions of
interest are persistent over firmware updates and rollbacks.

See Region of Interest the definition of the region of interest type.

This service requires the following arguments:

{
"region_of_interest": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

},
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

7.4. ItemPick and BoxPick 91

get_regions_of_interest Returns the configured regions of interest with the requested
region_of_interest_ids. If no region_of_interest_ids are provided, all configured regions
of interest are returned.

This service requires the following arguments:

{
"region_of_interest_ids": [
"string"

]
}

This service returns the following response:

{
"regions_of_interest": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

delete_regions_of_interest Deletes the configured regions of interest with the requested
region_of_interest_ids. All regions of interest to be deleted must be explicitly stated in
region_of_interest_ids.

This service requires the following arguments:

{
"region_of_interest_ids": [
"string"

]
}

This service returns the following response:

7.4. ItemPick and BoxPick 92

{
"return_code": {
"message": "string",
"value": "int16"

}
}

set_load_carrier Persistently stores a load carrier on the rc_visard. All configured load carriers are persistent
over firmware updates and rollbacks.

See Load Carrier for the definition of the load carrier type.

This service requires the following arguments:

{
"load_carrier": {

"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

}

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

get_load_carriers Returns the configured load carriers with the requested load_carrier_ids. If no
load_carrier_ids are provided, all configured load carriers are returned.

This service requires the following arguments:

7.4. ItemPick and BoxPick 93

{
"load_carrier_ids": [

"string"
]

}

This service returns the following response:

{
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {

"message": "string",
"value": "int16"

}
}

delete_load_carriers Deletes the configured load carriers with the requested load_carrier_ids. All load
carriers to be deleted must be explicitly stated in load_carrier_ids.

This service requires the following arguments:

{
"load_carrier_ids": [

"string"
]

}

This service returns the following response:

7.4. ItemPick and BoxPick 94

{
"return_code": {
"message": "string",
"value": "int16"

}
}

detect_load_carriers Triggers a load carrier detection. All images used by the node are guaranteed to be
newer than the service trigger time.

This service requires the following arguments:

{
"load_carrier_ids": [

"string"
],
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

This service returns the following response:

{
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},

(continues on next page)

7.4. ItemPick and BoxPick 95

(continued from previous page)

"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {

"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Required arguments:

pose_frame: defines the output pose frame for the detected load carriers.

load_carrier_ids

robot_pose: only if working in pose_frame="external" and the rc_visard is robot-mounted.

Optional arguments:

region_of_interest_id: delimits the volume of space where to search for the load carrier.
The processing time for load carrier detection increases with the size of the selected region of
interest.

detect_items (only available for BoxPick) Triggers the detection of rectangles. Processing includes load car-
rier detection in the region of interest. The poses are given relative to the centers of the rectangles. The
z-axis points towards the camera. Multiple rectangles can be specified with different dimension ranges. All
images used by the node are guaranteed to be newer than the service trigger time.

If successful, the service returns a list of rectangles and (optionally) the detected load carriers.

This service requires the following arguments:

{
"item_models": [

{
"rectangle": {

"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"type": "string"

}
],
"load_carrier_compartment": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
(continues on next page)

7.4. ItemPick and BoxPick 96

(continued from previous page)

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

This service returns the following response:

{
"items": [

{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],

(continues on next page)

7.4. ItemPick and BoxPick 97

(continued from previous page)

"load_carriers": [
{

"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {

"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Required arguments:

pose_frame: defines the output pose frame for the detected rectangles.

item_models: defines a list of rectangles with minimum and maximum size, with the minimum
dimensions strictly smaller than the maximum dimensions. At least one item_model is always
required. The dimensions should be given as precise as possible to avoid misdetections.

robot_pose: only if working in pose_frame="external" and the rc_visard is robot-mounted.

Optional arguments:

region_of_interest_id: delimits the volume of space where to search for the load carrier
or selects a volume which contains items to be grasped if no load_carrier_id is set. The
processing time for load carrier detection and grasp computation increases with the size of the
selected region of interest.

load_carrier_id: limits grasp computation to the content of the detected load carrier.

load_carrier_compartment: selects a compartment within the detected load carrier.

7.4. ItemPick and BoxPick 98

compute_grasps (for ItemPick) Triggers the computation of grasping poses for a suction device. All images
used by the node are guaranteed to be newer than the service trigger time.

If successful, the service returns a sorted list of grasps and (optionally) the detected load carriers.

This service requires the following arguments:

{
"item_models": [

{
"type": "string",
"unknown": {

"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}

7.4. ItemPick and BoxPick 99

This service returns the following response:

{
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [
{

"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

(continues on next page)

7.4. ItemPick and BoxPick 100

(continued from previous page)

],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Required arguments:

pose_frame: defines the output pose frame for the computed grasps.

suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

robot_pose: only if working in pose_frame="external" and the rc_visard is robot-mounted.

Optional arguments:

region_of_interest_id: delimits the volume of space where to search for the load carrier
or selects a volume which contains items to be grasped if no load_carrier_id is set. The
processing time for load carrier detection and grasp computation increases with the size of the
selected region of interest.

load_carrier_id: limits grasp computation to the content of the detected load carrier.

load_carrier_compartment: selects a compartment within the detected load carrier.

item_models: defines a list of unknown items with minimum and maximum dimensions, with
the minimum dimensions strictly smaller than the maximum dimensions. Only one item_model
of type UNKNOWN is currently supported.

compute_grasps (for BoxPick) Triggers the detection of rectangles and computation of a grasp pose for the
detected rectangles. The poses are given relative to the centers of the rectangles. Multiple rectangles can be
specified with different dimension ranges. All images used by the node are guaranteed to be newer than the
service trigger time.

If successful, the service returns a list of rectangles, a list of computed grasps and (optionally) the detected
load carriers. Each grasp includes the uuid of the corresponding rectangle and vice versa.

This service requires the following arguments:

{
"item_models": [

{
"rectangle": {

"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"type": "string"

}
],
"load_carrier_compartment": {
"box": {

"x": "float64",
(continues on next page)

7.4. ItemPick and BoxPick 101

(continued from previous page)

"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}

This service returns the following response:

{
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

(continues on next page)

7.4. ItemPick and BoxPick 102

(continued from previous page)

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [

{
"grasp_uuids": [

"string"
],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

7.4. ItemPick and BoxPick 103

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {

"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Required arguments:

pose_frame: defines the output pose frame for the computed grasps and detected rectangles.

item_models: defines a list of rectangles with minimum and maximum size, with the minimum
dimensions strictly smaller than the maximum dimensions. At least one item_model is always
required. The dimensions should be given as precise as possible to avoid misdetections.

suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

robot_pose: only if working in pose_frame="external" and the rc_visard is robot-mounted.

Optional arguments:

region_of_interest_id: delimits the volume of space where to search for the load carrier
or selects a volume which contains items to be grasped if no load_carrier_id is set. The
processing time for load carrier detection and grasp computation increases with the size of the
selected region of interest.

load_carrier_id: limits grasp computation to the content of the detected load carrier.

load_carrier_compartment: selects a compartment within the detected load carrier.

save_parameters This service saves the currently set parameters persistently. Thereby, the same parameters
will still apply after a reboot of the sensor. The node parameters are not persistent over firmware updates
and rollbacks.

reset_to_defaults This service resets all parameters of the component to its default values, as listed in above
table. The reset does not apply to regions of interest and load carriers.

7.5 SilhouetteMatch

7.5.1 Introduction

The SilhouetteMatch component is an optional on-board component of the rc_visard, which detects objects by
matching a predefined silhouette (“template”) to edges in an image.

Note: This component is optional and requires a separate SilhouetteMatch license (Section 9.6) to be pur-
chased.

7.5. SilhouetteMatch 104

For the SilhouetteMatch component to work, special object templates are required for each type of object to
be detected. Roboception offers a template generation service on their website (https://roboception.com/en/
template-request/), where the user can upload CAD files or recorded data of the objects and request object tem-
plates for the SilhouetteMatch component.

The object templates consist of significant edges of each object. These template edges are matched to the edges
detected in the left and right camera images, considering the actual size of the objects and their distance from the
rc_visard. The poses of the detected objects are returned and can be used for grasping, for example.

Suitable objects

The SilhouetteMatch component is intended for objects which have significant edges on a common plane that is
parallel to the base plane on which the objects are placed. This applies to flat, nontransparent objects, such as
routed, laser-cut or water-cut 2D parts and flat-machined parts. More complex parts can also be detected if there
are significant edges on a common plane, e.g. a special pattern printed on a flat surface.

The SilhouetteMatch component works best for objects on a texture-free base plane. The color of the base plane
should be chosen such that a clear contrast between the objects and the base plane appears in the intensity image.

Suitable scene

The scene must meet the following conditions to be suitable for the SilhouetteMatch component:

• The objects to be detected must be suitable for the SilhouetteMatch component as described above.

• Only objects belonging to one specific template are visible at a time (unmixed scenario). In case other
objects are visible as well, a proper region of interest (ROI) must be set.

• All visible objects are lying on a common base plane, which has to be calibrated.

• The offset between the base plane normal and the line of sight of the rc_visard does not exceed 10 degrees.

• The objects are not partially or fully occluded.

• All visible objects are right side up (no flipped objects).

• The object edges to be matched are visible in both, left and right camera images.

7.5.2 Base-plane calibration

Before objects can be detected, a base-plane calibration must be performed. Thereby, the distance and angle of
the plane on which the objects are placed is measured and stored persistently on the rc_visard.

Separating the detection of the base plane from the actual object detection renders scenarios possible in which
the base plane is temporarily occluded. Moreover, it increases performance of the object detection for scenarios
where the base plane is fixed for a certain time; thus, it is not necessary to continuously re-detect the base plane.

The base-plane calibration can be performed in three different ways, which will be explained in more detail further
down:

• AprilTag based

• Stereo based

• Manual

The base-plane calibration is successful if the normal vector of the estimated base plane is at most 10 degrees
offset to the line of sight of the rc_visard. If the base-plane calibration is successful, it will be stored persistently
on the rc_visard until it is removed or a new base-plane calibration is performed.

In scenarios where the base plane is not accessible for calibration, a plane parallel to the base-plane can be
calibrated. Then an offset parameter can be used to shift the estimated plane onto the actual base plane where
the objects are placed. The offset parameter gives the distance in meters by which the estimated plane is shifted
towards to rc_visard.

7.5. SilhouetteMatch 105

https://roboception.com/en/template-request/
https://roboception.com/en/template-request/
https://roboception.com/en/template-request/

In the REST-API, a plane is defined by a normal and a distance. normal is a normalized 3-vector, specifying
the normal of the plane. The normal points away from the camera. distance represents the distance of the plane
from the camera along the normal. Normal and distance can also be interpreted as 𝑎, 𝑏, 𝑐, and 𝑑 components of
the plane equation, respectively:

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

Note: To avoid privacy issues, the image of the persistently stored base-plane calibration will appear blurred
after rebooting the rc_visard.

AprilTag based base-plane calibration

AprilTag detection (ref. TagDetect, Section 7.3) is used to find AprilTags in the scene and fit a plane through
them. At least three AprilTags must be placed on the base plane so that they are visible in the left and right camera
images. The tags should be placed such that they are spanning a triangle that is as large as possible. The larger
the triangle, the more accurate is the resulting base-plane estimate. Use this method if the base plane is untextured
and no external random dot projector is available. This calibration mode is available via the REST-API and the
Web GUI.

Stereo based base-plane calibration

The 3D point cloud computed by SGM onboard the rc_visard is used to find the plane which is farthest away from
the rc_visard. Therefore, the region of interest (ROI) for this method must be set such that only the relevant base
plane is included. The base plane must not be completely occluded by objects. Use this method if the base plane is
well textured or you can make use of a random dot projector to project texture on the base plane. This calibration
mode is available via the REST-API and the Web GUI.

Manual base-plane calibration

The base plane can be set manually if its parameters are known, e.g. from previous calibrations. This calibration
mode is only available via the REST-API and not the Web GUI.

7.5.3 Setting a region of interest

If objects are to be detected only in part of the camera’s field of view, a region of interest (ROI) can be set
accordingly. This ROI is defined as a rectangular part of the left camera image, and can be set via the REST-API
or in the Web GUI. The Web GUI offers an easy-to-use selection tool. Up to 10 ROIs can be set and stored
persistently on the rc_visard. Each ROI must have a unique name to address a specific ROI in the base-plane
calibration or object detection process.

In the REST-API, a 2D ROI is defined by the following values:

• id: Unique name of the region of interest

• offset_x, offset_y: offset in pixels along the x-axis and y-axis from the top-left corner of the image,
respectively

• width, height: width and height in pixels

7.5.4 Detection of objects

Objects can only be detected after a successful base-plane calibration. It must be ensured that the position and
orientation of the base plane does not change before the detection of objects. Otherwise, the base-plane calibration
must be renewed.

For triggering the object detection, in general, the following information must be provided to the SilhouetteMatch
component:

7.5. SilhouetteMatch 106

• The template of the object to be detected in the scene.

• The coordinate frame in which the poses of the detected objects shall be returned (ref. Hand-eye calibra-
tion).

Optionally, further information can be given to the SilhouetteMatch component:

• An offset in case the objects are lying not on the base plane but on a plane parallel to it. The offset is
the distance between both planes given in the direction towards the camera. If omitted, an offset of 0 is
assumed.

• The region of interest in which the objects should be detected. If omitted, objects are matched in the whole
image.

• The current robot pose in case the chosen coordinate frame for the poses is external and the rc_visard is
mounted on the robot (possible only via the REST-API).

On the Web GUI the detection can be tested in the “Try Out” section of the SilhouetteMatch component’s tab. The
result is visualized as shown in figure Fig. 7.5.1.

Fig. 7.5.1: Result image of the SilhouetteMatch component as shown in the Web GUI

The right image shows the calibrated base plane in blue and the template to be matched in green. The template is
warped to the size and tilt matching objects on the calibrated base plane would have.

The left image shows the detection result. The shaded blue area on the left is the region of the left camera image
which does not overlap with the right image, and in which no objects can be detected. The chosen region of interest
is shown as bold petrol rectangle. The detected edges in the image are shown in light blue and the matches with
the template are shown in green. The red circles are the origins of the detected objects as defined in the template.
The poses of the object origins in the chosen coordinate frame are returned as results. In case the objects are
rotationally symmetric, all returned poses will have the same orientation. For rotationally non-symmetric objects,
the orientation of the detected objects is aligned with the normal of the base plane.

The detection results and runtimes are affected by several run-time parameters which are listed and explained
further down. Improper parameters can lead to time-outs of the SilhouetteMatch component’s detection process.

7.5.5 Interaction with other components

Internally, the SilhouetteMatch component depends on, and interacts with other on-board components as listed
below.

7.5. SilhouetteMatch 107

Note: All changes and configuration updates to these components will affect the performance of the Silhouet-
teMatch component.

Stereo camera and stereo matching

The SilhouetteMatch component makes internally use of the rectified images from the Stereo camera compo-
nent (rc_stereocamera, Section 6.1). Thus, the exposure time should be set properly to achieve the optimal
performance of the component.

For base-plane calibration in stereo mode the disparity images from the Stereo matching component
(rc_stereomatching, Section 6.2) are used. Apart from that, the stereo-matching component should not be
run in parallel to the SilhouetteMatch component, because the detection runtime increases.

For best results it is recommended to enable smoothing (Section 6.2.4) for Stereo matching.

IO and Projector Control

In case the rc_visard is used in conjunction with an external random dot projector and the IO and Projector Control
component (rc_iocontrol, Section 7.2), the projector should be used for the stereo-based base-plane calibration.

The projected pattern must not be visible in the left and right camera images during object detection as it interferes
with the matching process. Therefore, it must either be switched off or operated in ExposureAlternateActive
mode.

Hand-eye calibration

In case the rc_visard has been calibrated to a robot, the SilhouetteMatch component can automatically provide
poses in the robot coordinate frame. For the SilhouetteMatch node’s Services, the frame of the input and output
poses and plane coordinates can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses and plane coordinates provided to and by the component are in the
camera frame.

2. External frame (external). All poses and plane coordinates provided to and by the component are in the
external frame, configured by the user during the hand-eye calibration process. The component relies on the
on-board Hand-eye calibration component to retrieve the sensor mounting (static or robot mounted) and the
hand-eye transformation.

All pose_frame values that are not camera or external are rejected.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

Note: If the hand-eye calibration has changed after base-plane calibration, the base-plane calibration will be
marked as invalid and must be renewed.

Depending on the value of pose_frame, it is necessary to additionally provide the current robot pose
(robot_pose) to the SilhouetteMatch component:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If pose_frame is set to camera, providing the robot pose is optional.

If the current robot pose is provided during calibration, it is stored persistently on the sensor. If the updated
robot pose is later provided during get_base_plane_calibration or detect_object as well, the base-plane
calibration will be transformed automatically to this new robot pose. This enables the user to change the robot
pose (and thus sensor position) between base-plane calibration and object detection.

7.5. SilhouetteMatch 108

Note: Object detection can only be performed if the limit of 10 degrees angle offset between the base plane
normal and the line of sight of the rc_visard is not exceeded.

7.5.6 Parameters and status values

The SilhouetteMatch software component is called rc_silhouettematch in the REST-API. The user can explore
and configure the rc_silhouettematch component’s run-time parameters, e.g. for development and testing,
using the rc_visard Web GUI (Section 4.5) or Swagger UI (Section 8.2.4).

Parameter overview

This component offers the following run-time parameters.

Table 7.5.1: The rc_silhouettematch component’s run-time parame-
ters

Name Type Min Max Default Description
edge_sensitivity float64 0.1 1.0 0.6 sensitivity of the edge

detector
match_max_distance float64 0.0 10.0 2.5 maximum allowed

distance in pixels
between the template
and the detected
edges in the image

match_percentile float64 0.7 1.0 0.85 percentage of
template pixels that
must be within the
maximum distance to
successfully match
the template

max_number_of_detected_objects int32 1 20 10 maximum number of
detected objects

quality string - - High H(igh), M(edium), or
L(ow)

This component reports the following status values.

Table 7.5.2: The rc_silhouettematch component’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire images
detect_service_time Processing time of the object dection, including data acquisition time
calibrate_service_time Processing time of the base-plane calibration, including data acquisition

time
last_timestamp_processed The timestamp of the last processed dataset

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s SilhouetteMatch Module tab. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order they appear in
the Web GUI:

quality (Quality) Object detection can be performed on images with different resolutions: high (1280 x 960),
medium (640 x 480) and low (320 x 240). The lower the resolution, the lower the detection time, but the
fewer details of the objects are visible.

7.5. SilhouetteMatch 109

max_number_of_detected_objects (Maximum Object Number) This parameter gives the maximum number
of objects to detect in the scene. If more than the given number of objects can be detected in the scene, only
the objects with the highest matching results are returned.

match_max_distance (Maximum Matching Distance) This parameter gives the maximum allowed pixel dis-
tance of an image edge pixel from the object edge pixel in the template to be still considered as matching. If
the object is not perfectly represented in the template, it might not be detected when this parameter is low.
High values, however, might lead to false detections in case of a cluttered scene or the presence of similar
objects, and also increase runtime.

match_percentile (Matching Percentile) This parameter indicates how strict the matching process should be.
The matching percentile is the ratio of template pixels that must be within the Maximum Matching Distance
to successfully match the template. The higher this number, the more accurate the match must be to be
considered as valid.

edge_sensitivity (Edge Sensitivity) This parameter influences how many edges are detected in the camera
images. The higher this number, the more edges are found in the intensity image. That means, for lower
numbers, only the most significant edges are considered for template matching. A large number of edges in
the image might increase the detection time.

7.5.7 Services

The user can explore and call the rc_silhouettematch component’s services, e.g. for development and testing,
using Swagger UI (Section 8.2.4) or the rc_visard Web GUI (Section 4.5).

Each service component provides a return_code, which consists of a value plus an optional message.

A successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional information.

Table 7.5.3: Return codes of the SilhouetteMatch component services
Code Description

0 Success
-1 An invalid argument was provided
-3 An internal timeout occurred, e.g. during object detection
-4 Data acquisition took longer than the maximum allowed time of 3.0 seconds
-7 Data could not be read or written to persistent storage

-100 An internal error occurred
-101 Detection of the base plane failed
-102 The hand-eye calibration changed since the last base-plane calibration
-103 The maximum number of regions of interest has been reached
-104 Offset between the base plane normal and the line of sight of the rc_visard exceeds 10 degrees
101 An existing region of interest was overwritten
102 The provided robot pose was ignored
103 The base plane was not transformed to the current sensor pose, e.g. because no robot pose was

provided during base-plane calibration

The SilhouetteMatch component offers the following services.

calibrate_base_plane Triggers the calibration of the base plane, see Base-plane calibration. A successful
base-plane calibration is stored persistently on the rc_visard and returned by this service. The base-plane
calibration is persistent over firmware updates and rollbacks.

All images used by the service are guaranteed to be newer than the service trigger time.

This service requires the following arguments:

{
"offset": "float64",
"plane": {

(continues on next page)

7.5. SilhouetteMatch 110

(continued from previous page)

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"plane_estimation_method": "string",
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

This service returns the following response:

{
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {

"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Required arguments:

plane_estimation_method: method to use for base-plane calibration. Valid values are
STEREO, APRILTAG, MANUAL.

pose_frame: see Hand-eye calibration.

Potentially required arguments:

plane if plane_estimation_method is MANUAL: plane that will be set as base-plane calibration.

robot_pose: see Hand-eye calibration.

Optional arguments:

offset: offset in meters by which the estimated plane will be shifted towards the camera.

get_base_plane_calibration Returns the configured base-plane calibration.

7.5. SilhouetteMatch 111

This service requires the following arguments:

{
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

This service returns the following response:

{
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {

"message": "string",
"value": "int16"

}
}

Required arguments:

pose_frame: see Hand-eye calibration.

Potentially required arguments:

robot_pose: see Hand-eye calibration.

delete_base_plane_calibration Deletes the configured base-plane calibration.

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

set_region_of_interest_2d Persistently stores a 2D region of interest on the rc_visard. All configured 2D
regions of interest are persistent over firmware updates and rollbacks.

See Setting a region of interest for the definition of the 2D region of interest type.

This service requires the following arguments:

7.5. SilhouetteMatch 112

{
"region_of_interest_2d": {
"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
}

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

get_regions_of_interest_2d Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids. If no region_of_interest_2d_ids are provided, all configured
2D regions of interest are returned.

This service requires the following arguments:

{
"region_of_interest_2d_ids": [
"string"

]
}

This service returns the following response:

{
"regions_of_interest": [
{

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

delete_regions_of_interest_2d Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids. All 2D regions of interest to be deleted must be explicitly specified in
region_of_interest_2d_ids.

This service requires the following arguments:

{
"region_of_interest_2d_ids": [
"string"

]
}

This service returns the following response:

7.5. SilhouetteMatch 113

{
"return_code": {
"message": "string",
"value": "int16"

}
}

detect_object Triggers an object detection and returns the pose of all found object instances. The maximum
number of returned instances can be controlled with the max_number_of_detected_objects parameter.

All images used by the service are guaranteed to be newer than the service trigger time.

See Detection of objects for more details about the object detection.

This service requires the following arguments:

{
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

This service returns the following response:

{
"instances": [

{
"id": "string",
"object_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}

(continues on next page)

7.5. SilhouetteMatch 114

(continued from previous page)

}
],
"object_id": "string",
"return_code": {

"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Required arguments:

object_id in object_to_detect: ID of the template which should be detected.

pose_frame: see Hand-eye calibration.

Potentially required arguments:

robot_pose: see Hand-eye calibration.

Optional arguments:

offset: offset in meters by which the base-plane calibration will be shifted towards the camera.

save_parameters (Save) This service saves the currently set parameters persistently. Thereby, the same param-
eters will still apply after a reboot of the sensor. The node parameters are not persistent over firmware
updates and rollbacks.

reset_to_defaults (Reset) This service resets all parameters of the component to its default values, as listed
in above table. The reset does not apply to regions of interest and base-plane calibration.

7.5.8 Template Upload

For template upload, download and listing, special REST-API endpoints are provided. Up to 50 templates can be
stored persistently on the rc_visard.

GET /nodes/rc_silhouettematch/templates
Get list of all rc_silhouettematch templates.

Template request

GET /api/v1/nodes/rc_silhouettematch/templates HTTP/1.1
Host: <rcvisard>

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json

Status Codes

7.5. SilhouetteMatch 115

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 8.2.3)

GET /nodes/rc_silhouettematch/templates/{id}
Get an rc_silhouettematch template. If the requested content-type is application/octet-stream, the template
is returned as file.

Template request

GET /api/v1/nodes/rc_silhouettematch/templates/<id> HTTP/1.1
Host: <rcvisard>

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 8.2.3)

PUT /nodes/rc_silhouettematch/templates/{id}
Create or update an rc_silhouettematch template.

Template request

PUT /api/v1/nodes/rc_silhouettematch/templates/<id> HTTP/1.1
Host: <rcvisard>
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

7.5. SilhouetteMatch 116

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

• file – template file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

• 403 Forbidden – forbidden, e.g. because there is no valid license for this component.

• 413 Request Entity Too Large – Template too large

• 400 Bad Request – Template is not valid or max number of templates reached

Referenced Data Models

• Template (Section 8.2.3)

DELETE /nodes/rc_silhouettematch/templates/{id}
Remove an rc_silhouettematch template.

Template request

DELETE /api/v1/nodes/rc_silhouettematch/templates/<id> HTTP/1.1
Host: <rcvisard>
Accept: application/json

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

• 404 Not Found – node or template not found

• 403 Forbidden – forbidden, e.g. because there is no valid license for this component.

7.5. SilhouetteMatch 117

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

8 Interfaces

Four interfaces are provided for configuring and obtaining data from the rc_visard:

1. GigE Vision 2.0/GenICam (Section 8.1)

Images and camera related configuration.

2. REST API (Section 8.2)

API to configure the rc_visard, query status information, request streams, etc.

3. rc_dynamics streams (Section 8.3)

Real-time streams containing state estimates with poses, velocities, etc. are provided over the rc_dynamics
interface. It sends protobuf -encoded messages via UDP.

4. Ethernet KRL Interface (EKI) (Section 8.4)

API to configure the rc_visard and do service calls from KUKA KSS robots.

8.1 GigE Vision 2.0/GenICam image interface

Gigabit Ethernet for Machine Vision (“GigE Vision®” for short) is an industrial camera interface standard based
on UDP/IP (see http://www.gigevision.com). The rc_visard is a GigE Vision® version 2.0 device and is hence
compatible with all GigE Vision® 2.0 compliant frameworks and libraries.

GigE Vision® uses GenICam to describe the camera/device features. For more information about this Generic
Interface for Cameras see http://www.genicam.org/.

Via this interface the rc_visard provides features such as

• discovery,

• IP configuration,

• configuration of camera related parameters,

• image grabbing, and

• time synchronization via IEEE 1588-2008 PrecisionTimeProtocol (PTPv2).

Note: The rc_visard supports jumbo frames of up to 9000 bytes. Setting an MTU of 9000 on your GigE Vision
client side is recommended for best performance.

Note: Roboception provides tools and a C++ API with examples for discovery, configuration, and image
streaming via the GigE Vision/GenICam interface. See http://www.roboception.com/download.

118

http://www.gigevision.com
http://www.genicam.org/
http://www.roboception.com/download

8.1.1 Important GenICam parameters

The following list gives an overview of the relevant GenICam features of the rc_visard that can be read and/or
changed via the GenICam interface. In addition to the standard parameters, which are defined in the Standard Fea-
ture Naming Convention (SFNC, see http://www.emva.org/standards-technology/genicam/genicam-downloads/),
rc_visard devices also offer custom parameters that account for special features of the Stereo camera (Section 6.1)
and the Stereo matching (Section 6.2) component.

Important standard GenICam features

Category: ImageFormatControl

ComponentSelector

• type: Enumeration, one of Intensity, IntensityCombined, Disparity, Confidence, or Error

• default: -

• description: Allows the user to select one of the five image streams for configuration (see Chunk data,
Section 8.1.1).

ComponentIDValue (read-only)

• type: Integer

• description: The ID of the image stream selected by the ComponentSelector.

ComponentEnable

• type: Boolean

• default: -

• description: If set to true, it enables the image stream selected by ComponentSelector; otherwise,
it disables the stream. Using ComponentSelector and ComponentEnable, individual image streams
can be switched on and off.

Width (read-only)

• type: Integer

• description: Image width in pixel of image stream that is currently selected by ComponentSelector.

Height (read-only)

• type: Integer

• description: Image height in pixel of image stream that is currently selected by ComponentSelector.

WidthMax (read-only)

• type: Integer

• description: Maximum width of an image, which is always 1280 pixels.

HeightMax (read-only)

• type: Integer

• description: Maximum height of an image in the streams. This is always 1920 pixels due to the stacked
left and right images in the IntensityCombined stream (see Chunk data, Section 8.1.1).

PixelFormat

• type: Enumeration with some of Mono8, YCbCr411_8 (color sensors only), Coord3D_C16,
Confidence8 and Error8

• description: Pixel format of the selected component. The enumeration only permits to choose the for-
mat among the possibly formats for the selected component. For a color sensor, Mono8 or YCbCr411_8
can be chosen for the Intensity and IntensityCombined component.

8.1. GigE Vision 2.0/GenICam image interface 119

http://www.emva.org/standards-technology/genicam/genicam-downloads/

Category: AcquisitionControl

AcquisitionFrameRate

• type: Float, ranges from 1 Hz to 25 Hz

• default: 25 Hz

• description: Frame rate of the camera (FPS, Section 6.1.3).

ExposureAuto

• type: Enumeration, one of Continuous or Off

• default: Continuous

• description: Can be set to Off for manual exposure mode or to Continuous for auto exposure mode
(Exposure, Section 6.1.3).

ExposureTime

• type: Float, ranges from 66 µs to 18000 µs

• default: 5000 µs

• description: The cameras’ exposure time in microseconds for the manual exposure mode (Manual,
Section 6.1.3).

Category: AnalogControl

GainSelector (read-only)

• type: Enumeration, is always All

• default: All

• description: The rc_visard currently supports only one overall gain setting.

Gain

• type: Float, ranges from 0 dB to 18 dB

• default: 0 dB

• description: The cameras’ gain value in decibel that is used in manual exposure mode (Gain, Section
6.1.3).

BalanceWhiteAuto (color sensors only)

• type: Enumeration, one of Continuous or Off

• default: Continuous

• description: Can be set to Off for manual white balancing mode or to Continuous for auto white
balancing. This feature is only available on color sensors (wb_auto, Section 6.1.3).

BalanceRatioSelector (color sensors only)

• type: Enumeration, one of Red or Blue

• default: Red

• description: Selects ratio to be modified by BalanceRatio. Red means red to green ratio and Blue
means blue to green ratio. This feature is only available on color sensors.

BalanceRatio (color sensors only)

• type: Float, ranges from 0.125 to 8

• default: 1.2 if Red and 2.4 if Blue is selected in BalanceRatioSelector

8.1. GigE Vision 2.0/GenICam image interface 120

• description: Weighting of red or blue to green color channel. This feature is only available on color
sensors (wb_ratio, Section 6.1.3).

Category: DigitalIOControl

Note: If IOControl license is not available, then the outputs will be configured according to the factory defaults
and cannot be changed. The inputs will always return the logic value false, regardless of the signals on the
physical inputs.

LineSelector

• type: Enumeration, one of Out1, Out2, In1 or In2

• default: Out1

• description: Selects the input or output line for getting the current status or setting the source.

LineStatus (read-only)

• type: Boolean

• description: Current status of the line selected by LineSelector.

LineStatusAll (read-only)

• type: Integer

• description: Current status of GPIO inputs and outputs represented in the lowest four bits.

Table 8.1.1: Meaning of bits of LineStatusAll field.
Bit 4 3 2 1
GPIO In 2 In 1 Out 2 Out 1

LineSource (read-only if IOControl component is not licensed)

• type: Enumeration, one of ExposureActive, ExposureAlternateActive, Low or High

• default: ExposureActive for Out1 and Low for Out2

• description: Mode for output line selected by LineSelector as described in the IOControl module
(out1_mode and out2_mode, Section 7.2.1). See also parameter AcquisitionAlternateFilter for
filtering images in ExposureAlternateActive mode.

Category: TransportLayerControl / PtpControl

PtpEnable

• type: Boolean

• default: false

• description: Switches PTP synchronization on and off.

Category: Scan3dControl

Scan3dDistanceUnit (read-only)

• type: Enumeration, is always Pixel

• description: Unit for the disparity measurements, which is always Pixel.

Scan3dOutputMode (read-only)

8.1. GigE Vision 2.0/GenICam image interface 121

• type: Enumeration, is always DisparityC

• description: Mode for the depth measurements, which is always DisparityC.

Scan3dFocalLength (read-only)

• type: Float

• description: Focal length in pixel of image stream selected by ComponentSelector. In case of the
component Disparity, Confidence and Error, the value also depends on the resolution that is im-
plicitely selected by DepthQuality.

Scan3dBaseline (read-only)

• type: Float

• description: Baseline of the stereo camera in meter.

Scan3dPrinciplePointU (read-only)

• type: Float

• description: Horizontal location of the principle point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the value also
depends on the resolution that is implicitely selected by DepthQuality.

Scan3dPrinciplePointV (read-only)

• type: Float

• description: Vertical location of the principle point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the value also
depends on the resolution that is implicitely selected by DepthQuality.

Scan3dCoordinateScale (read-only)

• type: Float

• description: The scale factor that has to be multiplied with the disparity values in the disparity image
stream to get the actual disparity measurements. This value is always 0.0625.

Scan3dCoordinateOffset (read-only)

• type: Float

• description: The offset that has to be added to the disparity values in the disparity image stream to
get the actual disparity measurements. For the rc_visard, this value is always 0 and can therefore be
disregarded.

Scan3dInvalidDataFlag (read-only)

• type: Boolean

• description: Is always true, which means that invalid data in the disparity image is marked by a
specific value defined by the Scan3dInvalidDataValue parameter.

Scan3dInvalidDataValue (read-only)

• type: Float

• description: Is the value which stands for invalid disparity. This value is always 0, which means that
disparity values of 0 correspond to invalid measurements. To distinguish between invalid disparity
measurements and disparity measurements of 0 for objects which are infinitely far away, the rc_visard
sets the disparity value for the latter to the smallest possible disparity value of 0.0625. This still
corresponds to an object distance of several hundred meters.

Category: ChunkDataControl

ChunkModeActive

8.1. GigE Vision 2.0/GenICam image interface 122

• type: Boolean

• default: False

• description: Enables chunk data that is delivered with every image.

Custom GenICam features of the rc_visard

Category: ImageFormatControl

ExposureTimeAutoMax

• type: Float, ranges from 66 µs to 18000 µs

• default: 7000 µs

• description: Maximal exposure time in auto exposure mode (Auto, Section 6.1.3).

ExposureRegionOffsetX

• type: Integer in the range of 0 to 1280

• default: 0

• description: Horizontal offset of exposure region (Section 6.1.3) in pixel.

ExposureRegionOffsetY

• type: Integer in the range of 0 to 960

• default: 0

• description: Vertical offset of exposure region (Section 6.1.3) in pixel.

ExposureRegionWidth

• type: Integer in the range of 0 to 1280

• default: 0

• description: Width of exposure region (Section 6.1.3) in pixel.

ExposureRegionHeight

• type: Integer in the range of 0 to 960

• default: 0

• description: Height of exposure region (Section 6.1.3) in pixel.

Category: AcquisitionControl

AcquisitionAlternateFilter (read-only if IOControl component is not licensed)

• type: Enumeration, one of Off, OnlyHigh or OnlyLow

• default: Off

• description: If this parameter is set to OnlyHigh (or OnlyLow) and the LineSource is set to
ExposureAlternateActive for any output, then only camera images are delivered that are captured
while the output is high, i.e. a potentially connected projector is on (or low, i.e. a potentially connected
projector is off). This parameter is a simple means for only getting images without projected pattern.
The minimal time difference between camera and disparity images will be about 40 ms in this case
(see IOControl, Section 7.2.1).

AcquisitionMultiPartMode

• type: Enumeration, one of SingleComponent or SynchronizedComponents

• default: SingleComponent

8.1. GigE Vision 2.0/GenICam image interface 123

• description: Only effective in MultiPart mode. If this parameter is set to SingleComponent the images
are sent immediately as a single component per frame/buffer when they become available. This is the
same behavior as when MultiPart is not supported by the client. If set to SynchronizedComponents
all enabled components are time synchronized on the rc_visard and only sent (in one frame/buffer)
when they are all available for that timestamp.

Category: Scan3dControl

FocalLengthFactor (read-only)

• type: Float

• description: The focal length scaled to an image width of 1 pixel. To get the focal length in pixels for
a certain image, this value must be multiplied by the width of the received image. See also parameter
Scan3dFocalLength.

Baseline (read-only)

• type: Float

• description: This parameter is deprecated. The parameter Scan3dBaseline should be used instead.

Category: DepthControl

DepthAcquisitionMode

• type: Enumeration, one of SingleFrame, SingleFrameOut1 or Continuous

• default: Continuous

• description: In single frame mode, stereo matching is performed upon each call of
DepthAcquisitionTrigger. The SingleFrameOut1 mode can be used to control an external pro-
jector. It sets the line source of Out1 to ExposureAlternateActive upon each trigger and resets
it to Low as soon as the images for stereo matching are grabbed. However, the line source will only
be changed if the IOControl license is available. In continuous mode, stereo matching is performed
continuously.

DepthAcquisitionTrigger

• type: Command

• description: This command triggers stereo matching of the next available stereo image pair, if
DepthAcquisitionMode is set to SingleFrame or SingleFrameOut1.

DepthQuality

• type: Enumeration, one of Low, Medium, High, or Full (only with StereoPlus license)

• default: High

• description: Quality of disparity images. Lower quality results in disparity images with lower resolu-
tion (Quality, Section 6.2.4).

DepthStaticScene

• type: Boolean

• default: False

• description: True for averaging 8 consecutive camera images for improving the stereo matching result.
(Static, Section 6.2.4).

DepthDispRange

• type: Integer, ranges from 32 pixels to 512 pixels

• default: 256 pixels

8.1. GigE Vision 2.0/GenICam image interface 124

• description: Maximum disparity value in pixels (Disparity Range, Section 6.2.4).

DepthSmooth (read-only if StereoPlus license is not available)

• type: Boolean

• default: False

• description: True for advanced smoothing of disparity values. (Smoothing, Section 6.2.4).

DepthFill

• type: Integer, ranges from 0 pixel to 4 pixels

• default: 3 pixels

• description: Value in pixels for Fill-In (Section 6.2.4).

DepthSeg

• type: Integer, ranges from 0 pixel to 4000 pixels

• default: 200 pixels

• description: Value in pixels for Segmentation (Section 6.2.4).

DepthMedian

• type: Integer, ranges from 1 pixel to 5 pixels

• default: 1 pixel

• description: Value in pixels for Median filter smoothing (Section 6.2.4).

DepthMinConf

• type: Float, ranges from 0.0 to 1.0

• default: 0.0

• description: Value for Minimum Confidence filtering (Section 6.2.4).

DepthMinDepth

• type: Float, ranges from 0.1 m to 100.0 m

• default: 0.1 m

• description: Value in meters for Minimum Distance filtering (Section 6.2.4).

DepthMaxDepth

• type: Float, ranges from 0.1m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Distance filtering (Section 6.2.4).

DepthMaxDepthErr

• type: Float, ranges from 0.01 m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Depth Error filtering (Section 6.2.4).

Chunk data

The rc_visard supports chunk parameters that are transmitted with every image. Chunk parameters all have the
prefix Chunk. Their meaning equals their non-chunk counterparts, except that they belong to the corresponding
image, e.g. Scan3dFocalLength depends on ComponentSelector and DepthQuality as both can change the
image resolution. The parameter ChunkScan3dFocalLength that is delivered with an image fits to the resolution
of the corresponding image.

8.1. GigE Vision 2.0/GenICam image interface 125

Particularly useful chunk parameters are:

• ChunkComponentSelector selects for which component to extract the chunk data in MultiPart mode.

• ChunkComponentID and ChunkComponentIDValue provide the relation of the image to its component (e.g.
camera image or disparity image) without guessing from the image format or size.

• ChunkLineStatusAll provides the status of all GPIOs at the time of image acquisition. See
LineStatusAll above for a description of bits.

• ChunkScan3d... parameters are useful for 3D reconstruction as described in Section Image stream con-
versions (Section 8.1.3).

• ChunkPartIndex provides the index of the image part in this MultiPart block for the selected component
(ChunkComponentSelector).

Chunk data is enabled by setting the GenICam parameter ChunkModeActive to True.

8.1.2 Provided image streams

The rc_visard provides the following five different image streams via the GenICam interface:

Component name PixelFormat Width×Height Description
Intensity

Mono8 (monochrome
sensors)
YCbCr411_8 (color sensors)

1280×960 Left rectified camera image

IntensityCombined

Mono8 (monochrome
sensors)
YCbCr411_8 (color sensors)

1280×1920 Left rectified camera im-
age stacked on right rectified
camera image

Disparity Coord3D_C16

1280×1920
640×480
320×240
214×160

Disparity image in de-
sired resolution, i.e.,
DepthQuality of Full,
High, Medium or Low

Confidence Confidence8 same as Disparity Confidence image
Error Error8 (custom:

0x81080001)
same as Disparity Disparity error image

Each image comes with a buffer timestamp and the PixelFormat given in the above table. This PixelFormat should
be used to distinguish between the different image types. Images belonging to the same acquisition timestamp can
be found by comparing the GenICam buffer timestamps.

8.1.3 Image stream conversions

The disparity image contains 16 bit unsigned integer values. These values must be multiplied by the scale
value given in the GenICam feature Scan3dCoordinateScale to get the disparity values 𝑑 in pixels. To com-
pute the 3D object coordinates from the disparity values, the focal length and the baseline as well as the principle
point are required. These parameters are transmitted as GenICam features Scan3dFocalLength, Scan3dBaseline,
Scan3dPrincipalPointU and Scan3dPrincipalPointV. The focal length and principal point depend on the image
resolution of the selected component. Knowing these values, the pixel coordinates and the disparities can be

8.1. GigE Vision 2.0/GenICam image interface 126

transformed into 3D object coordinates in the sensor coordinate frame (Section 3.7) using the equations described
in Computing depth images and point clouds (Section 6.2.2).

Assuming that 𝑑𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the 3D reconstruction
in meters can be written with the GenICam parameters as

𝑃𝑥 = (𝑖− Scan3dPrincipalPointU)
Scan3dBaseline

𝑑𝑖𝑘 · Scan3dCoordinateScale
,

𝑃𝑦 = (𝑘 − Scan3dPrincipalPointV)
Scan3dBaseline

𝑑𝑖𝑘 · Scan3dCoordinateScale
,

𝑃𝑧 = Scan3dFocalLength
Scan3dBaseline

𝑑𝑖𝑘 · Scan3dCoordinateScale
.

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255 to get the
confidence as value between 0 an 1.

The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scale value given
in the GenICam feature Scan3dCoordinateScale to get the disparity-error values 𝑑𝑒𝑝𝑠 in pixels. According to the
description in Confidence and error images (Section 6.2.3), the depth error 𝑧𝑒𝑝𝑠 in meters can be computed with
GenICam parameters as

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · Scan3dCoordinateScale · Scan3dFocalLength · Scan3dBaseline

(𝑑𝑖𝑘 · Scan3dCoordinateScale)2
.

Note: It is preferable to enable chunk data with the parameter ChunkModeActive and to use
the chunk parameters ChunkScan3dCoordinateScale, ChunkScan3dFocalLength, ChunkScan3dBaseline,
ChunkScan3dPrincipalPointU and ChunkScan3dPrincipalPointV that are delivered with every image, because
their values already fit to the image resolution of the corresponding image.

For more information about disparity, error, and confidence images, please refer to Stereo matching (Section 6.2).

8.2 REST-API interface

Besides the GenICam interface (Section 8.1), the rc_visard offers a comprehensive RESTful web interface (REST-
API) which any HTTP client or library can access. Whereas most of the provided parameters, services, and
functionalities can also be accessed via the user-friendly Web GUI (Section 4.5), the REST-API serves rather as a
machine-to-machine interface to programmatically

• set and get run-time parameters of computation nodes, e.g., of cameras, disparity calculation, and visual
odometry;

• do service calls, e.g., to start and stop individual computational nodes, or to use offered services such as the
hand-eye calibration;

• configure data streams that provide rc_visard’s dynamic state estimates (Section 6.3.2) as described in the
rc_dynamics interface (Section 8.3);

• read the current state of the system and individual computational nodes; and

• update the rc_visard’s firmware or license.

Note: In the rc_visard’s REST-API, a node is a computational component that bundles certain algorithmic
functionality and offers a holistic interface (parameters, services, current status). Examples for such nodes are
the stereo matching node or the visual odometry node.

8.2.1 General API structure

The general entry point to the rc_visard’s API is http://<rcvisard>/api/, where <rcvisard> is either the
device’s IP address or its host name as known by the respective DHCP server, as explained in network configura-

8.2. REST-API interface 127

tion (Section 4.3). Accessing this entry point with a web browser lets the user explore and test the full API during
run-time using the Swagger UI (Section 8.2.4).

For actual HTTP requests, the current API version is appended to the entry point of the API, i.e., http://
<rcvisard>/api/v1. All data sent to and received by the REST-API follows the JavaScript Object Notation
(JSON). The API is designed to let the user create, retrieve, modify, and delete so-called resources as listed in
Available resources and requests (Section 8.2.2) using the HTTP requests below.

Request type Description
GET Access one or more resources and

return the result as JSON.
PUT Modify a resource and return the

modified resource as JSON.
DELETE Delete a resource.
POST Upload file (e.g., license or

firmware image).

Depending on the type and the specific request itself, arguments to HTTP requests can be transmitted as part of the
path (URI) to the resource, as query string, as form data, or in the body of the request. The following examples
use the command line tool curl, which is available for various operating systems. See https://curl.haxx.se.

• Get a node’s current status; its name is encoded in the path (URI)

curl -X GET 'http://<rcvisard>/api/v1/nodes/rc_stereomatching'

• Get values of some of a node’s parameters using a query string

curl -X GET 'http://<rcvisard>/api/v1/nodes/rc_stereomatching/parameters?name=minconf&
→˓name=maxdepth'

• Configure a new datastream; the destination parameter is transmitted as form data

curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' -d 'destination=10.0.
→˓1.14%3A30000' 'http://<rcvisard>/api/v1/datastreams/pose'

• Set a node’s parameter as JSON-encoded text in the body of the request

curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<rcvisard>/api/v1/nodes/rc_stereomatching/parameters'

As for the responses to such requests, some common return codes for the rc_visard’s API are:

Status Code Description
200 OK The request was successful; the re-

source is returned as JSON.
400 Bad Request A required attribute or argument of

the API request is missing or in-
valid.

404 Not Found A resource could not be accessed;
e.g., an ID for a resource could not
be found.

403 Forbidden Access is (temporarily) forbidden;
e.g., some parameters are locked
while a GigE Vision application is
connected.

429 Too many requests Rate limited due to excessive re-
quest frequency.

The following listing shows a sample response to a successful request that accesses information about the
rc_stereomatching node’s minconf parameter:

8.2. REST-API interface 128

https://curl.haxx.se

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

{
"name": "minconf",
"min": 0,
"default": 0,
"max": 1,
"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Note: The actual behavior, allowed requests, and specific return codes depend heavily on the specific resource,
context, and action. Please refer to the rc_visard’s available resources (Section 8.2.2) and to each software
component’s (Section 6) parameters and services.

8.2.2 Available resources and requests

The available REST-API resources are structured into the following parts:

• /nodes: Access the rc_visard’s software components (Section 6) with their run-time status, parameters,
and offered services.

• /datastreams: Access and manage data streams of the rc_visard’s The rc_dynamics interface (Section
8.3).

• /logs: Access the log files on the rc_visard.

• /system: Access the system state and manage licenses as well as firmware updates.

Nodes, parameters, and services

Nodes represent the rc_visard’s software components (Section 6), each bundling a certain algorithmic functional-
ity. All available REST-API nodes can be listed with their service calls and parameters using

curl -X GET http://<rcvisard>/api/v1/nodes

Information about a specific node (e.g., rc_stereocamera) can be retrieved using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereocamera

Status: During run-time, each node offers information about its current status. This includes not only the current
processing status of the component (e.g., running or stale), but most nodes also offer run-time statistics
or read-only parameters, so-called status values. As an example, the rc_stereocamera values can be
retrieved using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereocamera/status

Note: The returned status values are specific to individual nodes and are documented in the respective
software component (Section 6).

Note: The status values are only reported when the respective node is in the running state.

Parameters: Most nodes expose parameters via the rc_visard’s REST-API to allow their run-time behaviors to
be changed according to application context or requirements. The REST-API permits to read and write a
parameter’s value, but also provides further information such as minimum, maximum, and default values.

8.2. REST-API interface 129

As an example, the rc_stereomatching parameters can be retrieved using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereomatching/parameters

Its median parameter could be set to 3 using

curl -X PUT --header 'Content-Type: application/json' -d '{ "value": 3 }' http://<rcvisard>/
→˓api/v1/nodes/rc_stereomatching/parameters/median

Note: Run-time parameters are specific to individual nodes and are documented in the respective soft-
ware component (Section 6).

Note: Most of the parameters that nodes offer via the REST-API can be explored and tested via the
rc_visard’s user-friendly Web GUI (Section 4.5).

Note: Some parameters exposed via the rc_visard’s REST-API are also available from the GigE Vision
2.0/GenICam image interface (Section 8.1). Please note that setting those parameters via the REST-API
is prohibited if a GenICam client is connected.

In addition, each node that offers run-time parameters also features services to save, i.e., persist, the current
parameter setting, or to restore the default values for all of its parameters.

Services: Some nodes also offer services that can be called via REST-API, e.g., to save and restore parameters as
discussed above, or to start and stop nodes. As an example, the services of pose estimation (see Stereo INS,
Section 6.5), could be listed using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereo_ins/services

A node’s service is called by issuing a PUT request for the respective resource and providing the service-
specific arguments (see the "args" field of the Service data model, Section 8.2.3). As an example, egomo-
tion estimation can be switched on by:

curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<rcvisard>
→˓/api/v1/nodes/rc_dynamics/services/start

Note: The services and corresponding argument data models are specific to individual nodes and are
documented in the respective software component (Section 6).

The following list includes all REST-API requests regarding the node’s status, parameters, and services calls:

GET /nodes
Get list of all available nodes.

Template request

GET /api/v1/nodes HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_stereocalib",
"parameters": [
"grid_width",
"grid_height",

(continues on next page)

8.2. REST-API interface 130

(continued from previous page)

"snap"
],
"services": [

"save_parameters",
"reset_defaults",
"change_state"

],
"status": "stale"

},
{

"name": "rc_stereocamera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"save_parameters",
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [
"save_parameters",
"reset_defaults",
"set_pose",
"reset",
"save",
"calibrate",
"get_calibration"

],
"status": "stale"

},
{

"name": "rc_stereo_ins",
"parameters": [],
"services": [],
"status": "stale"

},
{

"name": "rc_stereomatching",
"parameters": [
"force_on",
"quality",
"disprange",
"seg",
"median",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],

(continues on next page)

8.2. REST-API interface 131

(continued from previous page)

"services": [
"save_parameters",
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_stereovisodo",
"parameters": [
"disprange",
"nkey",
"ncorner",
"nfeature"

],
"services": [

"save_parameters",
"reset_defaults"

],
"status": "stale"

}
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

• NodeInfo (Section 8.2.3)

GET /nodes/{node}
Get info on a single node.

Template request

GET /api/v1/nodes/<node> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_stereocamera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"save_parameters",
"reset_defaults"

],
"status": "running"

}

Parameters

8.2. REST-API interface 132

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 8.2.3)

GET /nodes/{node}/parameters
Get parameters of a node.

Template request

GET /api/v1/nodes/<node>/parameters?name=<name> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": true

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",
"value": 0.007

}
]

Parameters

• node (string) – name of the node (required)

Query Parameters

• name (string) – limit result to parameters with name (optional)

8.2. REST-API interface 133

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 404 Not Found – node not found

Referenced Data Models

• Parameter (Section 8.2.3)

PUT /nodes/{node}/parameters
Update multiple parameters.

Template request

PUT /api/v1/nodes/<node>/parameters HTTP/1.1
Host: <rcvisard>
Accept: application/json

[
{

"name": "string",
"value": {}

}
]

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

}
]

8.2. REST-API interface 134

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Parameters

• node (string) – name of the node (required)

Request JSON Array of Objects

• parameters (Parameter) – array of parameters (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 404 Not Found – node not found

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by a running
GigE Vision application or there is no valid license for this component.

• 400 Bad Request – invalid parameter value

Referenced Data Models

• Parameter (Section 8.2.3)

GET /nodes/{node}/parameters/{param}
Get a specific parameter of a node.

Template request

GET /api/v1/nodes/<node>/parameters/<param> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": "H",
"description": "Quality, i.e. H, M or L",
"max": "",
"min": "",
"name": "quality",
"type": "string",
"value": "H"

}

Parameters

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Parameter)

• 404 Not Found – node or parameter not found

Referenced Data Models

8.2. REST-API interface 135

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

• Parameter (Section 8.2.3)

PUT /nodes/{node}/parameters/{param}
Update a specific parameter of a node.

Template request

PUT /api/v1/nodes/<node>/parameters/<param> HTTP/1.1
Host: <rcvisard>
Accept: application/json

{
"name": "string",
"value": {}

}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": "H",
"description": "Quality, i.e. H, M or L",
"max": "",
"min": "",
"name": "quality",
"type": "string",
"value": "M"

}

Parameters

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Request JSON Object

• parameter (Parameter) – parameter to be updated as JSON object (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Parameter)

• 404 Not Found – node or parameter not found

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by a running
GigE Vision application or there is no valid license for this component.

• 400 Bad Request – invalid parameter value

Referenced Data Models

• Parameter (Section 8.2.3)

GET /nodes/{node}/services
Get descriptions of all services a node offers.

Template request

8.2. REST-API interface 136

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

GET /api/v1/nodes/<node>/services HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the component.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Starts the component.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the component.",
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

]

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found

Referenced Data Models

• Service (Section 8.2.3)

GET /nodes/{node}/services/{service}
Get description of a node’s specific service.

Template request

GET /api/v1/nodes/<node>/services/<service> HTTP/1.1
Host: <rcvisard>

Sample response

8.2. REST-API interface 137

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 8.2.3)

PUT /nodes/{node}/services/{service}
Call a service of a node. The required args and resulting response depend on the specific node and service.

Template request

PUT /api/v1/nodes/<node>/services/<service> HTTP/1.1
Host: <rcvisard>
Accept: application/json

{
"args": {}

}

Sample response

8.2. REST-API interface 138

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Request JSON Object

• service args (Service) – example args (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license for this
component.

Referenced Data Models

• Service (Section 8.2.3)

GET /nodes/{node}/status
Get status of a node.

Template request

GET /api/v1/nodes/<node>/status HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",
"fps": "25.1352",
"gain": "12.0412",

(continues on next page)

8.2. REST-API interface 139

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

(continued from previous page)

"height": "960",
"temp_left": "39.6",
"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 8.2.3)

Datastreams

The following resources and requests allow access to and configuration of the The rc_dynamics interface data
streams (Section 8.3). These REST-API requests offer

• showing available and currently running data streams, e.g.,

curl -X GET http://<rcvisard>/api/v1/datastreams

• starting a data stream to a destination, e.g.,

curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' -d 'destination=
→˓<target-ip>:<target-port>' http://<rcvisard>/api/v1/datastreams/pose

• and stopping data streams, e.g.,

curl -X DELETE http://<rcvisard>/api/v1/datastreams/pose?destination=<target-ip>:<target-
→˓port>

The following list includes all REST-API requests associated with data streams:

GET /datastreams
Get list of available data streams.

Template request

GET /api/v1/datastreams HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"description": "Pose of left camera at VisualOdometry rate (~10Hz)",

(continues on next page)

8.2. REST-API interface 140

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

(continued from previous page)

"destinations": [
"192.168.1.13:30000"

],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

},
{

"description": "Pose of left camera (RealTime 200Hz)",
"destinations": [
"192.168.1.100:20000",
"192.168.1.42:45000"

],
"name": "pose_rt",
"protobuf": "Frame",
"protocol": "UDP"

},
{

"description": "Raw IMU (InertialMeasurementUnit) values (RealTime 200Hz)",
"destinations": [],
"name": "imu",
"protobuf": "Imu",
"protocol": "UDP"

},
{

"description": "Dynamics of sensor (pose, velocity, acceleration) (RealTime 200Hz)",
"destinations": [
"192.168.1.100:20001"

],
"name": "dynamics",
"protobuf": "Dynamics",
"protocol": "UDP"

}
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Stream)

Referenced Data Models

• Stream (Section 8.2.3)

GET /datastreams/{stream}
Get datastream configuration.

Template request

GET /api/v1/datastreams/<stream> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",

(continues on next page)

8.2. REST-API interface 141

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

(continued from previous page)

"destinations": [
"192.168.1.13:30000"

],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found

Referenced Data Models

• Stream (Section 8.2.3)

PUT /datastreams/{stream}
Update a datastream configuration.

Template request

PUT /api/v1/datastreams/<stream> HTTP/1.1
Host: <rcvisard>
Accept: application/x-www-form-urlencoded

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [

"192.168.1.13:30000",
"192.168.1.25:40000"

],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Form Parameters

• destination – destination (“IP:port”) to add (required)

Request Headers

• Accept – application/x-www-form-urlencoded

Response Headers

• Content-Type – application/json

8.2. REST-API interface 142

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found

Referenced Data Models

• Stream (Section 8.2.3)

DELETE /datastreams/{stream}
Delete a destination from the datastream configuration.

Template request

DELETE /api/v1/datastreams/<stream>?destination=<destination> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Query Parameters

• destination (string) – destination IP:port to delete, if not specified all destinations
are deleted (optional)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found

Referenced Data Models

• Stream (Section 8.2.3)

System and logs

The following resources and requests expose the rc_visard’s system-level API. They enable

• access to log files (system-wide or component-specific)

• access to information about the device and run-time statistics such as date, MAC address, clock-time syn-
chronization status, and available resources;

• management of installed software licenses; and

• the rc_visard to be updated with a new firmware image.

8.2. REST-API interface 143

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

GET /logs
Get list of available log files.

Template request

GET /api/v1/logs HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

},
{

"date": 1503060035.2115774,
"name": "dynamics.log"

}
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of LogInfo)

Referenced Data Models

• LogInfo (Section 8.2.3)

GET /logs/{log}
Get a log file. Content type of response depends on parameter ‘format’.

Template request

GET /api/v1/logs/<log>?format=<format>&limit=<limit> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1503060035.2115774,
"log": [

{

(continues on next page)

8.2. REST-API interface 144

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

(continued from previous page)

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Running rc_stereo_ins version 2.4.0",
"timestamp": 1503060034.083

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Starting up communication interfaces",
"timestamp": 1503060034.085

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Autostart disabled",
"timestamp": 1503060034.098

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Initializing realtime communication",
"timestamp": 1503060034.209

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Startet state machine in state IDLE",
"timestamp": 1503060034.383

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "Init stereovisodo ...",
"timestamp": 1503060034.814

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Using standard VO",
"timestamp": 1503060034.913

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Playback mode: false",
"timestamp": 1503060035.132

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Ready",
"timestamp": 1503060035.212

}
],
"name": "dynamics.log",
"size": 695

}

Parameters

• log (string) – name of the log file (required)

8.2. REST-API interface 145

Query Parameters

• format (string) – return log as JSON or raw (one of json, raw; default: json) (op-
tional)

• limit (integer) – limit to last x lines in JSON format (default: 100) (optional)

Response Headers

• Content-Type – text/plain application/json

Status Codes

• 200 OK – successful operation (returns Log)

• 404 Not Found – log not found

Referenced Data Models

• Log (Section 8.2.3)

GET /system
Get system information on sensor.

Template request

GET /api/v1/system HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"firmware": {

"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": true,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

},
"hostname": "rc-visard-02873515",
"link_speed": 1000,
"mac": "00:14:2D:2B:D8:AB",
"ntp_status": {

"accuracy": "48 ms",
"synchronized": true

},
"ptp_status": {

"master_ip": "",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "off"

},
"ready": true,
"serial": "02873515",
"time": 1504080462.641875,
"uptime": 65457.42

}

Response Headers

8.2. REST-API interface 146

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns SysInfo)

Referenced Data Models

• SysInfo (Section 8.2.3)

GET /system/license
Get information about licenses installed on sensor.

Template request

GET /api/v1/system/license HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"calibration": true,
"fusion": true,
"hand_eye_calibration": true,
"rectification": true,
"self_calibration": true,
"slam": false,
"stereo": true,
"svo": true

},
"valid": true

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns LicenseInfo)

Referenced Data Models

• LicenseInfo (Section 8.2.3)

POST /system/license
Update license on sensor with a license file.

Template request

POST /api/v1/system/license HTTP/1.1
Host: <rcvisard>
Accept: multipart/form-data

Form Parameters

• file – license file (required)

Request Headers

• Accept – multipart/form-data

Status Codes

8.2. REST-API interface 147

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2

• 200 OK – successful operation

• 400 Bad Request – not a valid license

PUT /system/reboot
Reboot the sensor.

Template request

PUT /api/v1/system/reboot HTTP/1.1
Host: <rcvisard>

Status Codes

• 200 OK – successful operation

GET /system/rollback
Get information about currently active and inactive firmware/system images on sensor.

Template request

GET /api/v1/system/rollback HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models

• FirmwareInfo (Section 8.2.3)

PUT /system/rollback
Rollback to previous firmware version (inactive system image).

Template request

PUT /api/v1/system/rollback HTTP/1.1
Host: <rcvisard>

Status Codes

• 200 OK – successful operation

• 500 Internal Server Error – internal error

8.2. REST-API interface 148

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

• 400 Bad Request – already set to use inactive partition on next boot

GET /system/update
Get information about currently active and inactive firmware/system images on sensor.

Template request

GET /api/v1/system/update HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models

• FirmwareInfo (Section 8.2.3)

POST /system/update
Update firmware/system image with a mender artifact. Reboot is required afterwards in order to activate
updated firmware version.

Template request

POST /api/v1/system/update HTTP/1.1
Host: <rcvisard>
Accept: multipart/form-data

Form Parameters

• file – mender artifact file (required)

Request Headers

• Accept – multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – client error, e.g. no valid mender artifact

8.2. REST-API interface 149

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

8.2.3 Data type definitions

The REST-API defines the following data models, which are used to access or modify the available resources
(Section 8.2.2) either as required attributes/parameters of the requests or as return types.

FirmwareInfo: Information about currently active and inactive firmware images, and what image is/will be
booted.

An object of type FirmwareInfo has the following properties:

• active_image (ImageInfo) - see description of ImageInfo

• fallback_booted (boolean) - true if desired image could not be booted and fallback boot to the previous
image occured

• inactive_image (ImageInfo) - see description of ImageInfo

• next_boot_image (string) - firmware image that will be booted next time (one of active_image,
inactive_image)

Template object

{
"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

}

FirmwareInfo objects are nested in SysInfo, and are used in the following requests:

• GET /system/rollback

• GET /system/update

ImageInfo: Information about specific firmware image.

An object of type ImageInfo has the following properties:

• image_version (string) - image version

Template object

{
"image_version": "string"

}

ImageInfo objects are nested in FirmwareInfo.

LicenseComponents: List of the licensing status of the individual software components. The respective flag is
true if the component is unlocked with the currently applied software license.

An object of type LicenseComponents has the following properties:

• calibration (boolean) - camera calibration component

• fusion (boolean) - stereo ins/fusion components

• hand_eye_calibration (boolean) - hand-eye calibration component

• rectification (boolean) - image rectification component

• self_calibration (boolean) - camera self-calibration component

• slam (boolean) - SLAM component

• stereo (boolean) - stereo matching component

8.2. REST-API interface 150

• svo (boolean) - visual odometry component

Template object

{
"calibration": false,
"fusion": false,
"hand_eye_calibration": false,
"rectification": false,
"self_calibration": false,
"slam": false,
"stereo": false,
"svo": false

}

LicenseComponents objects are nested in LicenseInfo.

LicenseInfo: Information about the currently applied software license on the sensor.

An object of type LicenseInfo has the following properties:

• components (LicenseComponents) - see description of LicenseComponents

• valid (boolean) - indicates whether the license is valid or not

Template object

{
"components": {

"calibration": false,
"fusion": false,
"hand_eye_calibration": false,
"rectification": false,
"self_calibration": false,
"slam": false,
"stereo": false,
"svo": false

},
"valid": false

}

LicenseInfo objects are used in the following requests:

• GET /system/license

Log: Content of a specific log file represented in JSON format.

An object of type Log has the following properties:

• date (float) - UNIX time when log was last modified

• log (array of LogEntry) - the actual log entries

• name (string) - mame of log file

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

(continues on next page)

8.2. REST-API interface 151

(continued from previous page)

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log objects are used in the following requests:

• GET /logs/{log}

LogEntry: Representation of a single log entry in a log file.

An object of type LogEntry has the following properties:

• component (string) - component name that created this entry

• level (string) - log level (one of DEBUG, INFO, WARN, ERROR, FATAL)

• message (string) - actual log message

• timestamp (float) - Unix time of log entry

Template object

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}

LogEntry objects are nested in Log.

LogInfo: Information about a specific log file.

An object of type LogInfo has the following properties:

• date (float) - UNIX time when log was last modified

• name (string) - name of log file

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"name": "string",
"size": 0

}

LogInfo objects are used in the following requests:

• GET /logs

NodeInfo: Description of a computational node running on sensor.

An object of type NodeInfo has the following properties:

• name (string) - name of the node

• parameters (array of string) - list of the node’s run-time parameters

8.2. REST-API interface 152

• services (array of string) - list of the services this node offers

• status (string) - status of the node (one of unknown, down, stale, running)

Template object

{
"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo objects are used in the following requests:

• GET /nodes

• GET /nodes/{node}

NodeStatus: Detailed current status of the node including run-time statistics.

An object of type NodeStatus has the following properties:

• status (string) - status of the node (one of unknown, down, stale, running)

• timestamp (float) - Unix time when values were last updated

• values (object) - dictionary with current status/statistics of the node

Template object

{
"status": "string",
"timestamp": 0,
"values": {}

}

NodeStatus objects are used in the following requests:

• GET /nodes/{node}/status

NtpStatus: Status of the NTP time sync.

An object of type NtpStatus has the following properties:

• accuracy (string) - time sync accuracy reported by NTP

• synchronized (boolean) - synchronized with NTP server

Template object

{
"accuracy": "string",
"synchronized": false

}

NtpStatus objects are nested in SysInfo.

Parameter: Representation of a node’s run-time parameter. The parameter’s ‘value’ type (and hence the types of
the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the built-in
primitive data types.

An object of type Parameter has the following properties:

8.2. REST-API interface 153

• default (type not defined) - the parameter’s default value

• description (string) - description of the parameter

• max (type not defined) - maximum value this parameter can be assigned to

• min (type not defined) - minimum value this parameter can be assigned to

• name (string) - name of the parameter

• type (string) - the parameter’s primitive type represented as string (one of bool, int8, uint8, int16,
uint16, int32, uint32, int64, uint64, float32, float64, string)

• value (type not defined) - the parameter’s current value

Template object

{
"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter objects are used in the following requests:

• GET /nodes/{node}/parameters

• PUT /nodes/{node}/parameters

• GET /nodes/{node}/parameters/{param}

• PUT /nodes/{node}/parameters/{param}

PtpStatus: Status of the IEEE1588 (PTP) time sync.

An object of type PtpStatus has the following properties:

• master_ip (string) - IP of the master clock

• offset (float) - time offset in seconds to the master

• offset_dev (float) - standard deviation of time offset in seconds to the master

• offset_mean (float) - mean time offset in seconds to the master

• state (string) - state of PTP (one of off, unknown, INITIALIZING, FAULTY, DISABLED, LISTENING,
PASSIVE, UNCALIBRATED, SLAVE)

Template object

{
"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

}

PtpStatus objects are nested in SysInfo.

Service: Representation of a service that a node offers.

An object of type Service has the following properties:

• args (ServiceArgs) - see description of ServiceArgs

• description (string) - short description of this service

8.2. REST-API interface 154

• name (string) - name of the service

• response (ServiceResponse) - see description of ServiceResponse

Template object

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service objects are used in the following requests:

• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

ServiceArgs: Arguments required to call a service with. The general representation of these arguments is a
(nested) dictionary. The specific content of this dictionary depends on the respective node and service call.

ServiceArgs objects are nested in Service.

ServiceResponse: The response returned by the service call. The general representation of this response is a
(nested) dictionary. The specific content of this dictionary depends on the respective node and service call.

ServiceResponse objects are nested in Service.

Stream: Represention of a data stream offered by the rc_dynamics interface.

An object of type Stream has the following properties:

• destinations (array of StreamDestination) - list of destinations this data is currently streamed to

• name (string) - the data stream’s name specifying which rc_dynamics data is streamed

• type (StreamType) - see description of StreamType

Template object

{
"destinations": [

"string",
"string"

],
"name": "string",
"type": {

"protobuf": "string",
"protocol": "string"

}
}

Stream objects are used in the following requests:

• GET /datastreams

• GET /datastreams/{stream}

• PUT /datastreams/{stream}

• DELETE /datastreams/{stream}

StreamDestination: A destination of an rc_dynamics data stream represented as string such as ‘IP:port’

An object of type StreamDestination is of primitive type string.

StreamDestination objects are nested in Stream.

8.2. REST-API interface 155

StreamType: Description of a data stream’s protocol.

An object of type StreamType has the following properties:

• protobuf (string) - type of data-serialization, i.e. name of protobuf message definition

• protocol (string) - network protocol of the stream [UDP]

Template object

{
"protobuf": "string",
"protocol": "string"

}

StreamType objects are nested in Stream.

SysInfo: System information about the sensor.

An object of type SysInfo has the following properties:

• firmware (FirmwareInfo) - see description of FirmwareInfo

• hostname (string) - Hostname

• link_speed (integer) - Ethernet link speed in Mbps

• mac (string) - MAC address

• ntp_status (NtpStatus) - see description of NtpStatus

• ptp_status (PtpStatus) - see description of PtpStatus

• ready (boolean) - system is fully booted and ready

• serial (string) - sensor serial number

• time (float) - system time as Unix timestamp

• uptime (float) - system uptime in seconds

Template object

{
"firmware": {

"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

},
"hostname": "string",
"link_speed": 0,
"mac": "string",
"ntp_status": {

"accuracy": "string",
"synchronized": false

},
"ptp_status": {

"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

},
"ready": false,

(continues on next page)

8.2. REST-API interface 156

(continued from previous page)

"serial": "string",
"time": 0,
"uptime": 0

}

SysInfo objects are used in the following requests:

• GET /system

Template: rc_silhouettematch template

An object of type Template has the following properties:

• id (string) - Unique identifier of the template

Template object

{
"id": "string"

}

Template objects are used in the following requests:

• GET /nodes/rc_silhouettematch/templates

• GET /nodes/rc_silhouettematch/templates/{id}

• PUT /nodes/rc_silhouettematch/templates/{id}

8.2.4 Swagger UI

The rc_visard’s Swagger UI allows developers to easily visualize and interact with the REST-API, e.g., for devel-
opment and testing. Accessing http://<rcvisard>/api/ or http://<rcvisard>/api/swagger (the former
will automatically be redirected to the latter) opens a visualization of the rc_visard’s general API structure includ-
ing all available resources and requests (Section 8.2.2) and offers a simple user interface for exploring all of its
features.

Note: Users must be aware that, although the rc_visard’s Swagger UI is designed to explore and test the REST-
API, it is a fully functional interface. That is, any issued requests are actually processed and particularly PUT,
POST, and DELETE requests might change the overall status and/or behavior of the device.

8.2. REST-API interface 157

https://swagger.io/

Fig. 8.2.1: Initial view of the rc_visard’s Swagger UI with its resources and requests grouped into nodes,
datastreams, logs, and system

Using this interface, available resources and requests can be explored by clicking on them to uncollapse or recol-
lapse them. The following figure shows an example of how to get a node’s current status by filling in the necessary
parameter (node name) and clicking the Try it out! button. This action results in the Swagger UI showing, amongst
others, the actual curl command that was executed when issuing the request as well as the response body showing
the current status of the requested node in a JSON-formatted string.

8.2. REST-API interface 158

Fig. 8.2.2: Result of requesting the rc_stereomatching node’s status

Some actions, such as setting parameters or calling services, require more complex parameters to an HTTP request.
The Swagger UI allows developers to explore the attributes required for these actions during run-time, as shown
in the next example. In the figure below, the attributes required for the the rc_hand_eye_calibration node’s
set_pose service are explored by performing a GET request on this resource. The response features a full de-
scription of the service offered, including all required arguments with their names and types as a JSON-formatted
string.

8.2. REST-API interface 159

Fig. 8.2.3: The result of the GET request on the set_pose service shows the required arguments for this service
call.

Users can easily use this preformatted JSON string as a template for the service arguments to actually call the
service:

8.2. REST-API interface 160

Fig. 8.2.4: Filling in the arguments of the set_pose service request

8.3 The rc_dynamics interface

The rc_dynamics interface offers continuous, real-time data-stream access to rc_visard’s several dynamic state
estimates (Section 6.3.2) as continuous, real-time data streams. It allows state estimates of all offered types to be
configured to be streamed to any host in the network. The Data-stream protocol (Section 8.3.3) used is agnostic
vis-à-vis operating system and programming language.

8.3.1 Starting/stopping dynamic-state estimation

The rc_visard’s dynamic-state estimates are only available if the respective component, i.e., the sensor dynamics
component (Section 6.3), is turned on. This can be done either in the Web GUI - a respective switch is offered in
the Dynamics tab - or via the REST-API by using the component’s service calls. A sample curl request to start
dynamic-state estimation would look like:

curl -X PUT --header 'Content-Type: application/json' -d '{}' 'http://<rcvisard>/api/v1/nodes/rc_

→˓dynamics/services/start'

Note: To save computational resources, it is recommended to stop dynamic-state estimation when not needed
any longer.

8.3.2 Configuring data streams

Availabe data streams, i.e., dynamic-state estimates, can be listed and configured by the rc_visard’s REST-
API (Section 8.2.2), e.g., a list of all available data streams can be requested with GET /datastreams. For a
detailed description of the following data streams, please refer to Available state estimates (Section 6.3.2).

8.3. The rc_dynamics interface 161

Table 8.3.1: Available data streams via the rc_dynamics interface
Name Protocol Protobuf Description
dynamics UDP Dynamics Dynamics of sensor (pose, velocity, acceleration) from INS or

SLAM (best effort depending on availability) at realtime
frequency (IMU rate)

dynamics_ins UDP Dynamics Dynamics of sensor (pose, velocity, acceleration) from stereo INS
at realtime frequency (IMU rate)

pose UDP Frame Pose of left camera from INS or SLAM (best effort depending on
availability) at maximum camera frequency (fps)

pose_rt UDP Frame Pose of left camera from INS or SLAM (best effort depending on
availability) at realtime frequency (IMU rate)

pose_ins UDP Frame Pose of left camera from stereo INS at maximum camera
frequency (fps)

pose_rt_ins UDP Frame Pose of left camera from stereo INS at realtime frequency (IMU
rate)

imu UDP Imu Raw IMU (Inertial Measurement Unit) values at realtime
frequency (IMU rate)

The general procedure for working with the rc_dynamics interface is the following:

1. Request a data stream via REST-API. The following sample curl command issues a PUT /
datastreams/{stream} request to initiate a stream of type pose_rt from the rc_visard to
client host 10.0.1.14 at port 30000:

curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' --header
→˓'Accept: application/json' -d 'destination=10.0.1.14:30000' 'http://<rcvisard>/api/v1/
→˓datastreams/pose_rt'

2. Receive and deserialize data. With a successful request, the stream is initiated and data of the specified
stream type is continuously sent to the client host. According to the Data-stream protocol (Section
8.3.3), the client needs to receive, deserialize and process the data.

3. Stop a requested data stream via REST-API. The following sample curl command issues a DELETE /
datastreams/{stream} request to delete, i.e., stop, the previously requested stream of type pose_rt
with destination 10.0.1.14:30000:

curl -X DELETE --header 'Accept: application/json' 'http://<rcvisard>/api/v1/
→˓datastreams/pose_rt?destination=10.0.1.14:30000'

To remove all destinations for a stream, simply omit the destination parameter.

Warning: Data streams can not be deleted automatically, i.e., the rc_visard keeps streaming data even if the
client-side is disconnected or has stopped consuming the sent datagrams. A maximum of 10 destinations per
stream are allowed. It is therefore strongly recommended to stop data streams via the REST-API when they
are or no longer used.

8.3.3 Data-stream protocol

Once a data stream is established, data is continuously sent to the specified client host and port (destination)
via the following protocol:

Network protocol: The only currently supported network protocol is UDP, i.e., data is sent as UDP datagrams.

Data serialization: The data being sent is serialized via Google protocol buffers. The following message type
definitions are used.

• The camera-pose streams and real-time camera-pose streams (Section 6.3.2) are serialized using the
Frame message type:

8.3. The rc_dynamics interface 162

https://developers.google.com/protocol-buffers/

message Frame
{
optional PoseStamped pose = 1;
optional string parent = 2; // Name of the parent frame
optional string name = 3; // Name of the frame
optional string producer = 4; // Name of the producer of this data

}

The producer field can take the values ins, slam, rt_ins, and rt_slam, indicating whether the data
was computed by SLAM or Stereo INS, and is real-time (rt) or not.

• The real-time dynamics stream (Section 6.3.2) is serialized using the Dynamics message type:

message Dynamics
{
optional Time timestamp = 1; // Time when the data was

→˓captured
optional Pose pose = 2;
optional string pose_frame = 3; // Name of the frame that

→˓the pose is given in
optional Vector3d linear_velocity = 4; // Linear velocity in m/s
optional string linear_velocity_frame = 5; // Name of the frame that

→˓the linear_velocity is given in
optional Vector3d angular_velocity = 6; // Angular velocity in rad/s
optional string angular_velocity_frame = 7; // Name of the frame that

→˓the angular_velocity is given in
optional Vector3d linear_acceleration = 8; // Gravity compensated

→˓linear acceleration in m/s2

optional string linear_acceleration_frame = 9; // Name of the frame that
→˓the acceleration is given in
repeated double covariance = 10 [packed=true]; // Row-major

→˓representation of the 15x15 covariance matrix
optional Frame cam2imu_transform = 11; // pose of the left camera

→˓wrt. the IMU frame
optional bool possible_jump = 12; // True if there possibly

→˓was a jump in the pose estimation
optional string producer = 13; // Name of the producer of

→˓this data
}

The producer field can take the values rt_ins and rt_slam, indicating whether the data was com-
puted by SLAM or Stereo INS.

• The IMU stream (Section 6.3.2) is serialized using the Imu message type:

message Imu
{
optional Time timestamp = 1; // Time when the data was

→˓captured
optional Vector3d linear_acceleration = 2; // Linear acceleration in m/

→˓s2 measured by the IMU
optional Vector3d angular_velocity = 3; // Angular velocity in rad/

→˓s measured by the IMU
}

• The nested types PoseStamped, Pose, Time, Quaternion, and Vector3D are defined as follows:

message PoseStamped
{
optional Time timestamp = 1; // Time when the data was captured
optional Pose pose = 2;

}

8.3. The rc_dynamics interface 163

message Pose
{
optional Vector3d position = 1; // Position in meters
optional Quaternion orientation = 2; // Orientation as unit quaternion
repeated double covariance = 3 [packed=true]; // Row-major

→˓representation of the 6x6 covariance matrix (x, y, z, rotation about X axis,
→˓rotation about Y axis, rotation about Z axis)
}

message Time
{
/// \brief Seconds
optional int64 sec = 1;

/// \brief Nanoseconds
optional int32 nsec = 2;

}

message Quaternion
{
optional double x = 2;
optional double y = 3;
optional double z = 4;
optional double w = 5;

}

message Vector3d
{
optional double x = 1;
optional double y = 2;
optional double z = 3;

}

8.4 KUKA Ethernet KRL Interface

The rc_visard provides an Ethernet KRL Interface (EKI Bridge), which allows communicating with the rc_visard
from KUKA KRL via KUKA.EthernetKRL XML.

Note: The component is optional and requires a separate Roboception’s EKIBridge license (Section 9.6) to be
purchased.

Note: The KUKA.EthernetKRL add-on software package version 2.2 or newer must be activated on the robot
controller to use this component.

The EKI Bridge can be used to programmatically

• do service calls, e.g. to start and stop individual computational nodes, or to use offered services such as the
hand-eye calibration or the computation of grasp poses;

• set and get run-time parameters of computation nodes, e.g. of the camera, or disparity calculation.

8.4.1 Ethernet connection configuration

The EKI Bridge listens on port 7000 for EKI XML messages and transparently bridges the rc_visard’s REST-
API (Section 8.2). The received EKI messages are transformed to JSON and forwarded to the rc_visard’s REST-
API. The response from the REST-API is transformed back to EKI XML.

8.4. KUKA Ethernet KRL Interface 164

The EKI Bridge gives access to run-time parameters and offered services of all computational nodes described in
Software components (Section 6) and Optional software components (Section 7).

The Ethernet connection to the rc_visard on the robot controller is configured using XML configuration files. The
EKI XML configuration files of all nodes running on the rc_visard are available for download at:

https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

Each node offering run-time parameters has an XML configuration file for setting and getting its parameters.
These are named following the scheme <node_name>-parameters.xml. Each node’s service has its own XML
configuration file. These are named following the scheme <node_name>-<service_name>.xml.

All elements in the XML files are preset, except for the IP of the rc_visard in the network.

These files must be stored in the directory C:\KRC\ROBOTER\Config\User\Common\EthernetKRL of the robot
controller and they are read in when a connection is initialized.

As an example, an Ethernet connection to configure the rc_stereomatching parameters is established with the
following KRL code.

DECL EKI_Status RET
RET = EKI_INIT("rc_stereomatching-parameters")
RET = EKI_Open("rc_stereomatching-parameters")

; ----------- Desired operation -----------

RET = EKI_Close("rc_stereomatching-parameters")

Note: The EKI Bridge automatically terminates the connection to the client if the received XML telegram is
invalid.

8.4.2 Generic XML structure

For data transmission, the EKI Bridge uses <req> as root XML element (short for request).

The root tag always includes the following elements.

• <node>. This includes a child XML element used by the EKI Bridge to identify the target node. The node
name is already included in the XML configuration file.

• <end_of_request>. End of request flag that triggers the request.

The following listing shows the generic XML structure for data transmission.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

For data reception, the EKI Bridge uses <res> as root XML element (short for response). The root tag always
includes a <return_code> child element.

<RECEIVE>
<XML>

<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

8.4. KUKA Ethernet KRL Interface 165

https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

Note: By default the XML configuration files uses 998 as flag to notify KRL that the response data record has
being received. If this value is already in use, it should be changed in the corresponding XML configuration
file.

Return code

The <return_code> element consists of a value and a message attribute.

As for all other components, a successful request returns with a res/return_code/@value of 0. Negative values
indicate that the request failed. The error message is contained in res/return_code/@message. Positive values
indicate that the request succeeded with additional information, contained in res/return_code/@message as
well.

The following codes can be issued by the EKI Bridge component.

Table 8.4.1: Return codes of the EKI Bridge component
Code Description

0 Success
-1 Parsing error in the conversion from XML to JSON
-2 Internal error
-9 Missing or invalid license for EKI Bridge component
-11 Connection error from the REST-API

Note: The EKI Bridge can also return return code values specific to individual nodes. They are documented in
the respective software component (Section 6).

Note: Due to limitations in KRL, the maximum length of a string returned by the EKI Bridge is 512 characters.
All messages larger than this value are truncated.

8.4.3 Services

For the nodes’ services, the XML schema is generated from the service’s arguments and response in JavaScript Ob-
ject Notation (JSON) described in Software components (Section 6) and Optional software components (Section
7). The conversion is done transparently, except for the conversion rules described below.

Conversions of poses:

A pose is a JSON object that includes position and orientation keys.

{
"pose": {
"position": {
"x": "float64",
"y": "float64",
"z": "float64",

},
"orientation": {
"x": "float64",
"y": "float64",
"z": "float64",
"w": "float64",

}
}

}

This JSON object is converted to a KRL FRAME in the XML message.

8.4. KUKA Ethernet KRL Interface 166

<pose X="..." Y="..." Z="..." A="..." B="..." C="..."></pose>

Positions are converted from meters to millimeters and orientations are converted from quaternions
to KUKA ABC (in degrees).

Note: No other unit conversions are included in the EKI Bridge. All dimensions and 3D coordi-
nates that don’t belong to a pose are expected and returned in meters.

Arrays:

Arrays are identified by adding the child element <le> (short for list element) to the list name. As an
example, the JSON object

{
"rectangles": [
{
"x": "float64",
"y": "float64"

}
]

}

is converted to the XML fragment

<rectangles>
<le>
<x>...</x>
<y>...</y>

</le>
</rectangles>

Use of XML attributes:

All JSON keys whose values is a primitive data type and don’t belong to an array are stored in
attributes. As an example, the JSON object

{
"item": {
"uuid": "string",
"confidence": "float64",
"rectangle": {
"x": "float64",
"y": "float64"

}
}

}

is converted to the XML fragment

<item uuid="..." confidence="...">
<rectangle x="..." y="...">
</rectangle>

</item>

Request XML structure

The <SEND> element in the XML configuration file for a generic service follows the specification below.

<SEND>
<XML>

(continues on next page)

8.4. KUKA Ethernet KRL Interface 167

(continued from previous page)

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/service/<service_name>" Type="STRING"/>
<ELEMENT Tag="req/args/<argX>" Type="<argX_type>"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <service> element includes a child XML element that is used by the EKI Bridge to identify the target service
from the XML telegram. The service name is already included in the configuration file.

The <args> element includes the service arguments and should be configured with EKI_Set<Type> KRL instruc-
tions.

As an example, the <SEND> element of the rc_itempick’s get_load_carriers service (see ItemPick and Box-
Pick, Section 7.4) is:

<SEND>
<XML>

<ELEMENT Tag="req/node/rc_itempick" Type="STRING"/>
<ELEMENT Tag="req/service/get_load_carriers" Type="STRING"/>
<ELEMENT Tag="req/args/load_carrier_ids/le" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <end_of_request> element allows to have arrays in the request. For configuring an array, the request
is split into as many packages as the size of the array. The last telegram contains all tags, including the
<end_of_request> flag, while all other telegrams contain one array element each.

As an example, for requesting two load carrier models to the rc_itempick’s get_load_carriers service, the
user needs to send two XML messages. The first XML telegram is:

<req>
<args>

<load_carrier_ids>
<le>load_carrier1</le>

</load_carrier_ids>
</args>

</req>

This telegram can be sent from KRL with the EKI_Send command, by specifying the list element as path:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_itempick-get_load_carriers", "req/args/load_carrier_ids/le",
→˓"load_carrier1")
RET = EKI_Send("rc_itempick-get_load_carriers", "req/args/load_carrier_ids/le")

The second telegram includes all tags and triggers the request to the rc_itempick node:

<req>
<node>

<rc_itempick></rc_itempick>
</node>
<service>

<get_load_carriers></get_load_carriers>
</service>
<args>

<load_carrier_ids>
<le>load_carrier2</le>

</load_carrier_ids>
</args>

(continues on next page)

8.4. KUKA Ethernet KRL Interface 168

(continued from previous page)

<end_of_request></end_of_request>
</req>

This telegram can be sent from KRL by specifying req as path for EKI_Send:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_itempick-get_load_carriers", "req/args/load_carrier_ids/le",
→˓"load_carrier2")
RET = EKI_Send("rc_itempick-get_load_carriers", "req")

Response XML structure

The <RECEIVE> element in the XML configuration file for a generic service follows the specification below:

<RECEIVE>
<XML>

<ELEMENT Tag="res/<resX>" Type="<resX_type>"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

As an example, the <RECEIVE> element of the rc_april_tag_detect’s detect service (see TagDetect, Section
7.3) is:

<RECEIVE>
<XML>

<ELEMENT Tag="res/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose_frame" Type="STRING"/>
<ELEMENT Tag="res/tags/le/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/tags/le/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose/@X" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Y" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Z" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@A" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@B" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@C" Type="REAL"/>
<ELEMENT Tag="res/tags/le/instance_id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/size" Type="REAL"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

For arrays, the response includes multiple instances of the same XML element. Each element is written into a
separate buffer within EKI and can be read from the buffer with KRL instructions. The number of instances can
be requested with EKI_CheckBuffer and each instance can then be read by calling EKI_Get<Type>.

As an example, the tag poses received after a call to the rc_april_tag_detect’s detect service can be read in
KRL using the following code:

DECL EKI_STATUS RET
DECL INT i
DECL INT num_instances
DECL FRAME poses[32]

(continues on next page)

8.4. KUKA Ethernet KRL Interface 169

(continued from previous page)

DECL FRAME pose = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

RET = EKI_CheckBuffer("rc_april_tag_detect-detect", "res/tags/le/pose")
num_instances = RET.Buff
for i=1 to num_instances

RET = EKI_GetFrame("rc_april_tag_detect-detect", "res/tags/le/pose", pose)
poses[i] = pose

endfor
RET = EKI_ClearBuffer("rc_april_tag_detect-detect", "res")

Note: Before each request from EKI to the rc_visard, all buffers should be cleared in order to store only the
current response in the EKI buffers.

8.4.4 Parameters

All nodes’ parameters can be set and queried from the EKI Bridge. The XML configuration file for a generic node
follows the specification below:

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="req/parameters/<parameter_y>/@value" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>
<RECEIVE>

<XML>
<ELEMENT Tag="res/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@default" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@min" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@max" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@value" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@default" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@min" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@max" Type="REAL"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

The request is interpreted as a get request if all parameter’s value attributes are empty. If any value attribute is
non-empty, it is interpreted as set request of the non-empty parameters.

As an example, the current value of all parameters of rc_stereomatching can be queried using with the XML
telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters></parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

8.4. KUKA Ethernet KRL Interface 170

DECL EKI_STATUS RET
RET = EKI_Send("rc_stereomatching-parameters", "req")

The response from the EKI Bridge contains all parameters:

<res>
<parameters>

<acquisition_mode default="Continuous" max="" min="" value="Continuous"/>
<quality default="High" max="" min="" value="High"/>
<static_scene default="0" max="1" min="0" value="0"/>
<disprange default="256" max="512" min="32" value="256"/>
<seg default="200" max="4000" min="0" value="200"/>
<smooth default="1" max="1" min="0" value="1"/>
<median default="1" max="5" min="1" value="1"/>
<fill default="3" max="4" min="0" value="3"/>
<minconf default="0.5" max="1.0" min="0.5" value="0.5"/>
<mindepth default="0.1" max="100.0" min="0.1" value="0.1"/>
<maxdepth default="100.0" max="100.0" min="0.1" value="100.0"/>
<maxdeptherr default="100.0" max="100.0" min="0.01" value="100.0"/>

</parameters>
<return_code message="" value="0"/>

</res>

The quality parameter of rc_stereomatching can be set to Low by the XML telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters>

<quality value="L"></quality>
</parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_stereomatching-parameters", "req/parameters/quality/@value", "L
→˓")
RET = EKI_Send("rc_stereomatching-parameters", "req")

In this case, only the applied value of quality is returned by the EKI Bridge:

<res>
<parameters>

<quality default="High" max="" min="" value="Low"/>
</parameters>
<return_code message="" value="0"/>

</res>

8.5 Time synchronization

The rc_visard provides timestamps with all images and messages. To compare these with the time on the appli-
cation host, the time needs to be properly synchronized. This can be done either via the Networt Time Protocol
(NTP), which is the default, or the Precision Time Protocol (PTP).

8.5. Time synchronization 171

Note: The rc_visard does not have a backup battery for its real time clock and hence does not retain time
across power cycles. The system time starts in the year 2000 at power up and is then automatically set via NTP
if a server can be found.

The current system time as well as NTP and PTP status can be queried via REST API (Section 8.2) and seen on
the Web GUI’s (Section 4.5) System tab.

Note: Depending on the reachability of NTP servers or PTP masters it might take up to several minutes until
the time is synchronized.

8.5.1 NTP

The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. A client periodi-
cally requests the current time from a server, and uses it to set and correct its own clock.

By default the rc_visard tries to reach NTP servers from the NTP Pool Project, which will work if the rc_visard
has access to the internet.

If the rc_visard is configured for DHCP (Section 4.3.1) (which is the default setting), it will also request NTP
servers from the DHCP server and try to use those.

8.5.2 PTP

The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which offers more precise and robust
clock synchronization than with NTP.

The rc_visard can be configured to act as a PTP slave via the standard GigE Vision 2.0/GenICam interface (Section
8.1) using the GevIEEE1588 parameter.

At least one PTP master providing time has to be running in the network. On Linux the respective command for
starting a PTP master on ethernet port eth0 is, e.g., sudo ptpd --masteronly --foreground -i eth0.

While the rc_visard is synchronized with a PTP master (rc_visard in PTP status SLAVE), the NTP synchronization
is paused.

8.5. Time synchronization 172

9 Maintenance

Warning: The customer does not need to open the rc_visard’s housing to perform maintenance. Unauthorized
opening will void the warranty.

9.1 Lens cleaning

Glass lenses with antireflective coating are used to reduce glare. Please take special care when cleaning the lenses.
To clean them, use a soft lens-cleaning brush to remove dust or dirt particles. Then use a clean microfiber cloth
that is designed to clean lenses, and gently wipe the lens using a circular motion to avoid scratches that may
compromise the sensor’s performance. For stubborn dirt, high purity isopropanol or a lens cleaning solution
formulated for coated lenses (such as the Uvex Clear family of products) may be used.

9.2 Camera calibration

The cameras are calibrated during production. Under normal operation conditions, the calibration will be valid for
the life time of the sensor. High impact, such as occurring when dropping the rc_visard, can change the camera’s
parameters slightly. In this case, calibration can be verified and recalibration undertaken via the Web GUI (see
Camera calibration, Section 6.6).

9.3 Updating the firmware

Information about the current firmware image version can be found on the Web GUI’s (Section 4.5) System tab in
the System information row. It can also be accessed via the rc_visard’s REST-API interface (Section 8.2) using the
GET /system request. Users can use either the Web GUI or the REST-API to update the firmware.

Warning: After a firmware update, all of the software components’ configured parameters will be reset to
their defaults. Please make sure these settings are persisted on the application-side or client PC (e.g., using the
REST-API interface, Section 8.2) to request all parameters and store them prior to executing the update.

The following settings are excluded from this and will be persisted across a firmware update:

• the rc_visard’s network configuration including an optional static IP address and the user-specifed device
name,

• the latest result of the Hand-eye calibration (Section 6.7), i.e., recalibrating the rc_visard w.r.t. a robot
is not required, unless mounting has changed, and

• the latest result of the Camera calibration (Section 6.6), i.e., recalibration of the rc_visard’s stereo cam-
eras is not required.

Step 1: Download the newest firmware version. Firmware updates will be supplied from of a Mender artifact
file identified by its .mender suffix.

173

If a new firmware update is available for your rc_visard device, the respective file can be downloaded to a
local computer from http://www.roboception.com/download.

Step 2: Upload the update file. To update with the rc_visard’s REST-API, users may refer to the POST /
system/update request.

To update the firmware via the Web GUI, locate the Software Update row on the System tab and press the
Upload Update button (see Fig. 9.3.1). Select the desired update image file (file extension .mender) from
the local file system and open it to start the update.

Fig. 9.3.1: Web GUI System tab

Note: Depending on the network architecture and configuration the upload may take several minutes.
During the update via the Web GUI, a progress bar indicates the progress of the upload as shown in Fig.
9.3.2.

Fig. 9.3.2: Software update progress bar

Note: Depending on the web browser, the update progress status shown in Fig. 9.3.2 may indicate the
completion of the update too early. Please wait until the context window shown in Fig. 9.3.3 opens.
Expect an overall update time of at least five minutes.

Fig. 9.3.3: Software update rebooting screen

9.3. Updating the firmware 174

http://www.roboception.com/download

Warning: Do not close the web browser tab which contains the Web GUI or press the renew button on
this tab, because it will abort the update procedure. In that case, repeat the update procedure from the
beginning.

Step 3: Reboot the rc_visard. To apply a firmware update to the rc_visard device, a reboot is required after
having uploaded the new image version.

Note: The new image version is uploaded to the inactive partition of the rc_visard. Only after rebooting
will the inactive partition be activated, and the active partition will become inactive. If the updated
firmware image cannot be loaded, this partition of the rc_visard remains inactive and the previously
installed firmware version from the active partition will be used automatically.

As for the REST-API, the reboot can be performed by the PUT /system/reboot request.

After having uploaded the new firmware via the Web GUI, a context window is opened as shown in Fig.
9.3.3 offering to reboot the device immediately or to postpone it. To reboot the rc_visard at a later time, use
the Reboot button on the Web GUI’s System tab.

Step 4: Confirm the firmware update. After rebooting the rc_visard, please check the firmware image version
number of the currently active image to make sure that the updated image was successfully loaded. You can
do so either via the Web GUI’s System tab or via the REST-API’s GET /system/update request.

Please contact Roboception in case the firmware update could not be applied successfully.

9.4 Restoring the previous firmware version

After a successful firmware update, the previous firmware image is stored on the inactive partition of the rc_visard
and can be restored in case needed. This procedure is called a rollback.

Note: Using the latest firmware as provided by Roboception is strongly recommended. Hence, rollback func-
tionality should only be used in case of serious issues with the updated firmware version.

Rollback functionality is only accessible via the rc_visard’s REST-API interface (Section 8.2) using the PUT /
system/rollback request. It can be issued using any HTTP-compatible client or using a web browser as de-
scribed in Swagger UI (Section 8.2.4). Like the update process, the rollback requires a subsequent device reboot
to activate the restored firmware version.

Warning: Like during a firmware update, all software components’ parameters will be reset to their defaults.
Please make sure these settings are persisted on the application-side or client PC (e.g., using the REST-API
interface, Section 8.2) prior to executing the rollback.

9.5 Rebooting the rc_visard

An rc_visard reboot is necessary after updating the firmware or performing a software rollback. It can be issued
either programmatically, via the rc_visard’s REST-API interface (Section 8.2) using the PUT /system/reboot
request, or manually on the Web GUI’s (Section 4.5) System tab. The reboot is finished when the LED turns green
again.

9.6 Updating the software license

Licenses that are purchased from Roboception for enabling additional features can be installed via the Web GUI’s
(Section 4.5) System panel. The rc_visard has to be rebooted to apply the licenses.

9.4. Restoring the previous firmware version 175

9.7 Downloading log files

During operation, the rc_visard logs important information, warnings, and errors into files. If the rc_visard ex-
hibits unexpected or erroneous behavior, the log files can be used to trace its origin. Log messages can be viewed
and filtered using the Web GUI’s (Section 4.5) Logs tab. If contacting the support (Contact, Section 12), the log
files are very useful for tracking possible problems. To download them as a .tar.gz file, click on Download all logs
on the Web GUI’s Logs tab.

Besides the Web GUI, the logs are also accessible via the rc_visard’s REST-API interface (Section 8.2) using the
GET /logs and GET /logs/{log} requests.

9.7. Downloading log files 176

10 Accessories

10.1 Connectivity kit

Roboception offers an optional connectivity kit to aid customers with setting up the rc_visard. It consists of a:

• network cable with straight M12 plug to straight RJ45 connector in either 2 m or 5 m length;

• power adapter cable with straight M12 socket to DC barrel connector in 30 cm length;

• 24 V, 30 W desktop power supply.

Connecting the rc_visard to residential or office grid power requires a power supply that meets EN 55011
Class B emission standards. The E2CFS 30W 24V by EGSTON System Electronics Eggenburg GmbH (http:
//www.egston.com) contained in the connectivity kit is certified accordingly. However, it does not meet immunity
standards for industrial environments under EN 61000-6-2.

Power supply
24V 1.25A

M12 to RJ45 cable

DC barrel to
M12 adapter

Fig. 10.1.1: The optional connectivity kit’s components

10.2 Wiring

Cables are by default not provided with the rc_visard. It is the customer’s responsibility to obtain appropriate
parts. The following sections provide an overview of suggested components.

10.2.1 Ethernet connections

The rc_visard provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity. Various
cabling solutions can be obtained directly from third party vendors.

CAT5 (1 Gbps) M12 plug to RJ45

• Straight M12 plug to straight RJ45 connector, 10 m length: Phoenix Contact NBC-MS/ 10,0-94B/R4AC
SCO, Art.-Nr.: 1407417

177

http://www.egston.com
http://www.egston.com

• Straight M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-48521-
S4W1000

• Angled M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-48551-
S4W1000

10.2.2 Power connections

An 8-pin A-coded M12 plug connector is provided for power and GPIO connectivity. Various cabling solutions
can be obtained from third party vendors. A selection of M12 to open ended cables is provided below. Cus-
tomers are required to provide power and GPIO connections to the cables according to the pinouts described in
Wiring (Section 3.5). The rc_visard’s housing must be connected to ground.

Sensor/Actor cable M12 socket to open end

• Straight M12 socket connector to open end, shielded, 10m length: Phoenix Contact SAC-8P-10,0-
PUR/M12FS SH, Art.Nr.: 1522891

• Angled M12 socket connector to open end, shielded 10m length: Phoenix Contact SAC-8P-10,0-
PUR/M12FR SH, Art.Nr.: 1522943

Sensor/Actor M12 socket for field termination

• Phoenix Contact SACC-M12FS-8CON-PG9-M, Art.Nr.:1513347

• TE Connectivity T4110011081-000 (metal housing)

• TE Connectivity T4110001081-000 (plastic housing)

10.2.3 Power supplies

The rc_visard is classified as an EN-55011 Class A industrial device. For connecting the sensor to residential grid
power, a power supply under EN 55011/55022 Class B has to be used.

It is the customer’s responsibility to obtain and install a suitable power supply satisfying EN 61000-6-2 for
permanent installation in industrial environments. One example that satisfies both EN 61000-6-2 and EN
55011/55022 Class B is the DIN-Rail mounted PULS MiniLine ML60.241 24V/DC 2.5 A by PULS GmbH
(http://www.pulspower.com). A certified electrician must perform installation.

Only one rc_visard shall be connected to a power supply at any time, and the total length of cables must be less
than 30 m.

10.3 Spare parts

No user-serviceable spare parts are currently available for rc_visard devices.

10.3. Spare parts 178

http://www.pulspower.com

11 Troubleshooting

11.1 LED colors

During the boot process, the LED will change color several times to indicate stages in the boot process:

Table 11.1.1: LED color codes
LED color Boot stage
white power supply OK
yellow normal boot process in progress
purple
blue
green boot complete, rc_visard ready

The LED will signal some warning or error states to support the user during troubleshooting.

Table 11.1.2: LED color trouble codes
LED color Warning or error state
off no power to the sensor
brief red flash every 5 seconds no network connectivity
red while sensor appears to function normally high-temperature warning (case has exceeded 60 °C)
red while case is below 60 °C Some process has terminated and failed to restart.

11.2 Hardware issues

LED does not illuminate

The rc_visard does not start up.

• Ensure that cables are connected and secured properly.

• Ensure that adequate DC voltage (18 V to 30 V) with correct polarity is applied to the power connector at
the pins labeled as Power and Ground as described in the device’s pin assignment specification (Section
3.5.1). Connecting the sensor to voltage outside of the specified range, to alternating current, with reversed
polarity, or to a supply with voltage spikes will lead to permanent hardware damage.

LED turns red while the sensor appears to function normally

This may indicate a high housing temperature. The sensor might be mounted in a position that obstructs free
airflow around the cooling fins.

• Clean cooling fins and housing.

• Ensure a minimum of 10 cm free space in all directions around cooling fins to provide adequate convective
cooling.

• Ensure that ambient temperature is within specified range.

179

The sensor may slow down processing when cooling is insufficient or the ambient temperature exceeds the speci-
fied range.

Reliability issues and/or mechanical damage

This may be an indication of ambient conditions (vibration, shock, resonance, and temperature) being outside of
specified range. Please refer to the specification of environmental conditions (Section 3.3.1).

• Operating the rc_visard outside of specified ambient conditions might lead to damage and will void the
warranty.

Electrical shock when touching the sensor

This indicates an electrical fault in sensor, cabling, or power supply or adjacent system.

• Immediately turn off power to the system, disconnect cables, and have a qualified electrician check the
setup.

• Ensure that the sensor housing is properly grounded; check for large ground loops.

11.3 Connectivity issues

LED briefly flashes red every 5 seconds

If the LED briefly flashes red every 5 seconds, then the rc_visard is not able to detect a network link.

• Check that the network cable is properly connected to the rc_visard and the network.

• If no problem is visible, then replace the Ethernet cable.

A GigE Vision client or rcdiscover-gui cannot detect the camera

• Check whether the rc_visard’s LED flashes briefly every 5 seconds (check the cable if it does).

• Ensure that the rc_visard is connected to the same subnet (the discovery mechanism uses broadcasts that
will not work across different subnets).

The Web GUI is inaccessible

• Ensure that the rc_visard is turned on and connected to the same subnet as the host computer.

• Check whether the rc_visard’s LED flashes briefly every 5 seconds (check the cable if it does).

• Check whether rcdiscover-gui detects the sensor. If it reports the rc_visard as unreachable, then the
rc_visard’s network configuration (Section 4.3) is wrong.

• If the rc_visard is reported as reachable, try double clicking the entry to open the Web GUI in a browser.

• If this does not work, try entering the rc_visard’s reported IP address directly in the browser as target
address.

Too many Web GUIs are open at the same time

The Web GUI consumes the rc_visard’s processing resources to compress images to be transmitted and for sta-
tistical output that is regularly polled by the browser. Leaving several instances of the Web GUI open on the
same or different computers can significantly diminish the rc_visard’s performance. The Web GUI is meant for
configuration and validation, not to permanently monitor the rc_visard.

11.4 Camera-image issues

The camera image is too bright

• If the rc_visard is in manual exposure mode, decrease the exposure time (see Parameters, Section 6.1.3), or

• switch to auto-exposure mode (see Parameters, Section 6.1.3).

The camera image is too dark

11.3. Connectivity issues 180

• If the rc_visard is in manual exposure mode, increase the exposure time (see Parameters, Section 6.1.3), or

• switch to auto-exposure mode (see Parameters, Section 6.1.3).

The camera image is too noisy

Large gain factors cause high-amplitude image noise. To decrease the image noise,

• use an additional light source to increase the scene’s light intensity, or

• choose a greater maximal auto-exposure time (see Parameters, Section 6.1.3).

The camera image is out of focus

• Check whether the object is too close to the lens and increase the distance between the object and the lens
if it is.

• Check whether the lenses are dirty and clean them if they are (see Lens cleaning, Section 9.1).

• If none of the above applies, a severe hardware problem might exist. Please contact support (Section 12).

The camera image is blurred

Fast motions in combination with long exposure times can cause blur. To reduce motion blur,

• decrease the motion speed of the rc_visard,

• decrease the motion speed of objects in the field of view of the rc_visard, or

• decrease the exposure time of the cameras (see Parameters, Section 6.1.3).

The camera image is fuzzy

• Check whether the lenses are dirty and clean them if so (see Lens cleaning, Section 9.1).

• If none of the above applies, a severe hardware problem might exist. Please contact support (Section 12).

The camera image frame rate is too low

• Increase the image frame rate as described in Parameters (Section 6.1.3).

• The maximal frame rate of the cameras is 25 Hz.

11.5 Depth/Disparity, error, and confidence image issues

All these guidelines also apply to error and confidence images, because they correspond directly to the disparity
image.

The disparity image is too sparse or empty

• Check whether the camera images are well exposed and sharp. Follow the instructions in Camera-image
issues (Section 11.4) if applicable.

• Check whether the scene has enough texture (see Stereo matching, Section 6.2) and install an external
pattern projector if required.

• Increase the Disparity Range and decrease the Minimum Distance (Section 6.2.4).

• Increase the Maximum Distance (Section 6.2.4).

• Check whether the object is too close to the cameras. Consider the different depth ranges of the rc_visard
variants as specified in the device’s technical specification (Section 3.2.2).

• Decrease the Minimum Confidence (Section 6.2.4).

• Increase the Maximum Depth Error (Section 6.2.4).

• Choose a lesser Disparity Image Quality (Section 6.2.4). Coarser resolution disparity images are generally
less sparse.

• Check the cameras’ calibration and recalibrate if required (see Camera calibration, Section 6.6).

11.5. Depth/Disparity, error, and confidence image issues 181

The disparity images’ frame rate is too low

• Check and increase the frame rate of the camera images (see Parameters, Section 6.1.3). The frame rate of
the disparity image cannot be greater than the frame rate of the camera images.

• Choose a lesser Disparity Image Quality (Section 6.2.4). High-resolution disparity images are only available
at about 3 Hz. Full 25 Hz can only be achieved for low-resolution disparity images as described in the
technical specifications (Section 3.2.1).

• Decrease the Disparity Range and increase the Minimum Distance (Section 6.2.4) as much as possible for
the application.

• Decrease the Median filtering value (Section 6.2.4).

The disparity image does not show close objects

• Check whether the object is too close to the cameras. Consider the depth ranges of the rc_visard variants as
described in the technical specifications (Section 3.2.2).

• Increase the Disparity Range (Section 6.2.4).

• Decrease the Minimum Distance (Section 6.2.4).

The disparity image does not show distant objects

• Increase the Maximum Distance (Section 6.2.4).

• Increase the Maximum Depth Error (Section 6.2.4).

• Decrease the Minimum Confidence (Section 6.2.4).

The disparity image is too noisy

• Increase the Segmentation value (Section 6.2.4).

• Increase the Fill-In value (Section 6.2.4).

• Increase the Median filtering value (Section 6.2.4).

The disparity values or the resulting depth values are too inaccurate

• Decrease the distance between the rc_visard and the scene. Depth-measurement error grows quadratically
with the distance from the cameras.

• Check whether the scene contains repetitive patterns and remove them if it does. They could cause wrong
disparity measurements.

• Check whether the chosen rc_visard variant is correct for the application. Particularly consider the different
depth ranges as described in the technical specifications (Section 3.2.2).

The disparity image is too smooth

• Decrease the Median filtering value (Section 6.2.4).

• Decrease the Fill-In value (Section 6.2.4).

The disparity image does not show small structures

• Decrease the Segmentation value (Section 6.2.4).

• Decrease the Fill-In value (Section 6.2.4).

11.6 Dynamics issues

State estimates are unavailable

• Check in the Web GUI that pose estimation has been switched on (see Parameters, Section 6.4.1).

• Check in the Web GUI that the update rate is about 200 Hz.

• Check the Logs in the Web GUI for errors.

11.6. Dynamics issues 182

The state estimates are too noisy

• Adapt the parameters for visual odometry as described in Parameters (Section 6.4.1).

• Check whether the camera pose stream has enough accuracy.

Pose estimation has jumps

• Has the SLAM component been turned on? SLAM can cause jumps when reducing errors due to a loop
closure.

• Adapt the parameters for visual odometry as described in Parameters (Section 6.4.1).

Pose frequency is too low

• Use the real-time pose stream with a 200 Hz update rate. See Stereo INS (Section 6.5).

Delay/Latency of pose is too great

• Use the real-time pose stream. See Stereo INS (Section 6.5).

11.7 GigE Vision/GenICam issues

No images

• Check that the components are enabled. See ComponentSelector and ComponentEnable in Important
GenICam parameters (Section 8.1.1).

11.7. GigE Vision/GenICam issues 183

12 Contact

12.1 Support

For support issues, please see http://www.roboception.com/support or contact support@roboception.de.

12.2 Downloads

Software SDKs, etc. can be downloaded from http://www.roboception.com/download.

12.3 Address

Roboception GmbH
Kaflerstrasse 2
81241 Munich
Germany

Web: http://www.roboception.com
Email: info@roboception.de
Phone: +49 89 889 50 79-0

184

http://www.roboception.com/support
mailto:support@roboception.de
http://www.roboception.com/download
http://www.roboception.com
mailto:info@roboception.de

13 Appendix

13.1 Pose formats

13.1.1 XYZABC format

The XYZABC format is used to express a pose by 6 values. 𝑋𝑌 𝑍 is the position in millimeters. 𝐴𝐵𝐶 are Euler
angles in degrees. The convention used for Euler angles is ZYX, i.e., 𝐴 rotates around the 𝑍 axis, 𝐵 rotates around
the 𝑌 axis, and 𝐶 rotates around the 𝑋 axis. The elements of the rotation matrix can be computed by using

𝑟11 = cos𝐵 cos𝐴,

𝑟12 = sin𝐶 sin𝐵 cos𝐴− cos𝐶 sin𝐴,

𝑟13 = cos𝐶 sin𝐵 cos𝐴+ sin𝐶 sin𝐴,

𝑟21 = cos𝐵 sin𝐴,

𝑟22 = sin𝐶 sin𝐵 sin𝐴+ cos𝐶 cos𝐴,

𝑟23 = cos𝐶 sin𝐵 sin𝐴− sin𝐶 cos𝐴,

𝑟31 = − sin𝐵,

𝑟32 = sin𝐶 cos𝐵, and
𝑟33 = cos𝐶 cos𝐵.

Note: The trigonometric functions sin and cos are assumed to accept values in degrees. The argument needs
to be multiplied by the factor 𝜋

180 if they expect their values in radians.

Using these values, the rotation matrix 𝑅 and translation vector 𝑇 are defined as

𝑅 =

⎛⎝ 𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

13.1.2 XYZ+quaternion format

The XYZ+quaternion format is used to express a pose by a position and a unit quaternion. 𝑋𝑌 𝑍 is the position in
meters. The quaternion is a vector of length 1 that defines a rotation by four values, i.e., 𝑞 = (𝑎 𝑏 𝑐 𝑤)𝑇

with ||𝑞|| = 1. The corresponding rotation matrix and translation vector are defined by

𝑅 = 2

⎛⎝ 1
2 − 𝑏2 − 𝑐2 𝑎𝑏− 𝑐𝑤 𝑎𝑐+ 𝑏𝑤
𝑎𝑏+ 𝑐𝑤 1

2 − 𝑎2 − 𝑐2 𝑏𝑐− 𝑎𝑤
𝑎𝑐− 𝑏𝑤 𝑏𝑐+ 𝑎𝑤 1

2 − 𝑎2 − 𝑏2

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

185

Note: In XYZ+quaternion format, the pose is defined in meters, whereas in the XYZABC format, the pose is
defined in millimeters.

13.1. Pose formats 186

HTTP Routing Table

/datastreams
GET /datastreams, 140
GET /datastreams/{stream}, 141
PUT /datastreams/{stream}, 142
DELETE /datastreams/{stream}, 143

/logs
GET /logs, 143
GET /logs/{log}, 144

/nodes
GET /nodes, 130
GET /nodes/rc_silhouettematch/templates, 115
GET /nodes/rc_silhouettematch/templates/{id},

116
GET /nodes/{node}, 132
GET /nodes/{node}/parameters, 133
GET /nodes/{node}/parameters/{param}, 135
GET /nodes/{node}/services, 136
GET /nodes/{node}/services/{service}, 137
GET /nodes/{node}/status, 139
PUT /nodes/rc_silhouettematch/templates/{id},

116
PUT /nodes/{node}/parameters, 134
PUT /nodes/{node}/parameters/{param}, 136
PUT /nodes/{node}/services/{service}, 138
DELETE /nodes/rc_silhouettematch/templates/{id},

117

/system
GET /system, 146
GET /system/license, 147
GET /system/rollback, 148
GET /system/update, 149
POST /system/license, 147
POST /system/update, 149
PUT /system/reboot, 148
PUT /system/rollback, 148

HTTP Routing Table 187

Index

Symbols
3D coordinates, 34

disparity image, 33
3D modeling, 34, 41

A
acceleration, 42

dynamics, 25
AcquisitionAlternateFilter

GenICam, 123
AcquisitionFrameRate

GenICam, 120
AcquisitionMultiPartMode

GenICam, 123
active partition, 175
angular

velocity, 42
AprilTag, 76

interfaces, 80
pose estimation, 78
re-identification, 79

auto exposure, 32

B
BalanceRatio

GenICam, 120
BalanceRatioSelector

GenICam, 120
BalanceWhiteAuto

GenICam, 120
base-plane

SilhouetteMatch, 105
base-plane calibration

SilhouetteMatch, 105
Baseline

GenICam, 124
baseline, 28
Baumer

IpConfigTool, 20
bin picking, 83
BoxPick, 83

data types, 84
grasp, 86
item model, 86
load carrier, 84
parameters, 87
region of interest, 84
services, 90

status, 87

C
cables, 14, 177
CAD model, 12
calibration

camera, 48
camera to IMU, 42
hand-eye calibration, 26, 57
rectification, 28

calibration grid, 49
camera

calibration, 48
frame rate, 31
parameters, 29, 31
pose stream, 41
Web GUI, 29

camera calibration
monocalibration, 52
parameters, 53
services, 54
stereo calibration, 52

camera model, 28
camera to IMU

calibration, 42
transformation, 42

Chunk data
GenICam, 122

ComponentEnable
GenICam, 119

ComponentIDValue
GenICam, 119

components
rc_visard, 10

ComponentSelector
GenICam, 119

Confidence
GenICam image stream, 126

confidence, 34
minimum, 38

connectivity kit, 177
conversions

GenICam image stream, 126
cooling, 13
coordinate frames

dynamics, 42
mounting, 17
state estimation, 40

Index 188

corners
visual odometry, 45, 47

correspondences
visual odometry, 45

D
data

IMU, 42
inertial measurement unit, 42

data model
REST-API, 150

data stream
dynamics, 41
imu, 42
pose, 41
pose_rt, 41, 42
REST-API, 140

data types
BoxPick, 84
ItemPick, 84

data-type
REST-API, 150

depth error
maximum, 38

depth image, 33, 33
Web GUI, 35

DepthAcquisitionMode
GenICam, 124

DepthAcquisitionTrigger
GenICam, 124

DepthDispRange
GenICam, 124

DepthFill
GenICam, 125

DepthMaxDepth
GenICam, 125

DepthMaxDepthErr
GenICam, 125

DepthMedian
GenICam, 125

DepthMinConf
GenICam, 125

DepthMinDepth
GenICam, 125

DepthQuality
GenICam, 124

DepthSeg
GenICam, 125

DepthSmooth
GenICam, 125

DepthStaticScene
GenICam, 124

detection
tag, 74

DHCP, 6
DHCP, 20
dimensions

rc_visard, 11

discovery GUI, 20
Disparity

GenICam image stream, 126
disparity, 24, 28, 33
disparity error, 34
disparity image, 24, 33

3D coordinates, 33
frame rate, 37
parameters, 35
quality, 38
smooth, 38
static_scene, 38
Web GUI, 35

disparity range, 38
GenICam, 124
visual odometry, 47

DNS, 6
download

log files, 176
dynamic state, 25
dynamics

acceleration, 25
coordinate frames, 42
data stream, 41
jump flag, 42
pose, 25
REST-API, 140
services, 42
velocity, 25
Web GUI, 45

dynamics stream, 41

E
egomotion, 25, 45
eki, 164
Error

GenICam image stream, 126
error, 34

hand-eye calibration, 61
pose, 67

Ethernet
pin assignments, 14

exposure, 28
auto, 32
manual, 32

exposure region, 32
exposure time, 29, 32

maximum, 32
ExposureAuto

GenICam, 120
ExposureRegionHeight

GenICam, 123
ExposureRegionOffsetX

GenICam, 123
ExposureRegionOffsetY

GenICam, 123
ExposureRegionWidth

GenICam, 123

Index 189

ExposureTime
GenICam, 120

ExposureTimeAutoMax
GenICam, 123

external reference frame
hand-eye calibration, 54

F
features

visual odometry, 47
fill-in, 38

GenICam, 125
firmware

mender, 173
rollback, 175
update, 173
version, 173

focal length, 28
focal length factor

GenICam, 124
FocalLengthFactor

GenICam, 124
fps, see frame rate
frame rate, 11

camera, 31
disparity image, 37
GenICam, 120
pose, 41, 42
visual odometry, 45

G
Gain

GenICam, 120
gain, 28
gain factor, 29, 32
GenICam, 6
GenICam

AcquisitionAlternateFilter, 123
AcquisitionFrameRate, 120
AcquisitionMultiPartMode, 123
BalanceRatio, 120
BalanceRatioSelector, 120
BalanceWhiteAuto, 120
Baseline, 124
Chunk data, 122
ComponentEnable, 119
ComponentIDValue, 119
ComponentSelector, 119
DepthAcquisitionMode, 124
DepthAcquisitionTrigger, 124
DepthDispRange, 124
DepthFill, 125
DepthMaxDepth, 125
DepthMaxDepthErr, 125
DepthMedian, 125
DepthMinConf, 125
DepthMinDepth, 125
DepthQuality, 124

DepthSeg, 125
DepthSmooth, 125
DepthStaticScene, 124
disparity range, 124
ExposureAuto, 120
ExposureRegionHeight, 123
ExposureRegionOffsetX, 123
ExposureRegionOffsetY, 123
ExposureRegionWidth, 123
ExposureTime, 120
ExposureTimeAutoMax, 123
fill-in, 125
focal length factor, 124
FocalLengthFactor, 124
frame rate, 120
Gain, 120
Height, 119
HeightMax, 119
LineSelector, 121
LineSource, 121
LineStatus, 121
LineStatusAll, 121
maximum depth error, 125
maximum distance, 125
median, 125
minimum confidence, 125
minimum distance, 125
PixelFormat, 119, 126
PtpEnable, 121
quality, 124
Scan3dBaseline, 122
Scan3dCoordinateOffset, 122
Scan3dCoordinateScale, 122
Scan3dDistanceUnit, 121
Scan3dFocalLength, 122
Scan3dInvalidDataFlag, 122
Scan3dInvalidDataValue, 122
Scan3dOutputMode, 121
Scan3dPrinciplePointU, 122
Scan3dPrinciplePointV, 122
segmentation, 125
smooth, 125
static_scene, 124
timestamp, 126
Width, 119
WidthMax, 119

GenICam image stream
Confidence, 126
conversions, 126
Disparity, 126
Error, 126
Intensity, 126
IntensityCombined, 126

GigE, 6
GigE Vision, 6
GigE Vision, see GenICam

IP address, 20
GPIO

Index 190

pin assignments, 15
grasp computation, 83

H
hand-eye calibration

calibration, 26, 57
error, 61
external reference frame, 54
mounting, 54
parameters, 62
robot frame, 54
slot, 59

Height
GenICam, 119

HeightMax
GenICam, 119

host name, 20
housing temperature

LED, 13
humidity, 13

I
image

timestamp, 35, 126
image features

visual odometry, 45
image noise, 32
IMU, 6
IMU, 25

data, 42
inertial measurement unit, 45

imu
data stream, 42

inactive partition, 175
inertial measurement unit

data, 42
IMU, 45

INS, 6
INS, 25
installation

rc_visard, 19
Intensity

GenICam image stream, 126
IntensityCombined

GenICam image stream, 126
interfaces

AprilTag, 80
QR code, 80
tag detection, 80

IP, 6
IP address, 6
IP address, 19

GigE Vision, 20
IP54, 13
IpConfigTool

Baumer, 20
ItemPick, 83

data types, 84

grasp, 86
item model, 86
load carrier, 84
parameters, 87
region of interest, 84
services, 90
status, 87

J
jump flag

dynamics, 42
SLAM, 42

K
keyframes, 45

visual odometry, 45, 47

L
LED, 19

colors, 179
housing temperature, 13

linear
velocity, 41

LineSelector
GenICam, 121

LineSource
GenICam, 121

LineStatus
GenICam, 121

LineStatusAll
GenICam, 121

Link Local, 6
Link Local, 20
load carrier

BoxPick, 84
ItemPick, 84

log files
download, 176

logs
REST-API, 143

loop closure, 67

M
MAC address, 6
MAC address, 20
manual exposure, 32
maximum

depth error, 38
exposure time, 32

maximum depth error, 38
GenICam, 125

maximum distance, 39
GenICam, 125

mDNS, 6
median, 38

GenICam, 125
mender

firmware, 173

Index 191

minimum
confidence, 38

minimum confidence, 38
GenICam, 125

minimum distance, 38
GenICam, 125

monocalibration
camera calibration, 52

motion blur, 32
mounting, 16

hand-eye calibration, 54

N
network cable, 177
network configuration, 19
node

REST-API, 129
NTP, 6
NTP

synchronization, 172

O
object detection, 104
operating conditions, 13

P
parameter

REST-API, 129
parameters

camera, 29, 31
camera calibration, 53
disparity image, 35
hand-eye calibration, 62
services, 32
visual odometry, 45

pin assignments
Ethernet, 14
GPIO, 15
power, 15

PixelFormat
GenICam, 119, 126

point cloud, 34
pose

data stream, 41
dynamics, 25
error, 67
frame rate, 41, 42
timestamp, 41

pose estimation, see state estimation
AprilTag, 78
QR code, 78

pose stream, 41, 42
camera, 41

pose_rt
data stream, 41, 42

power
pin assignments, 15

power cable, 177, 178

power supply, 13, 178
protection class, 13
PTP, 6
PTP

synchronization, 121, 172
PtpEnable

GenICam, 121

Q
QR code, 75

interfaces, 80
pose estimation, 78
re-identification, 79

quality
disparity image, 38
GenICam, 124

quaternion
rotation, 41

R
rc_dynamics, 161
rc_visard

components, 10
installation, 19

re-identification
AprilTag, 79
QR code, 79

real-time pose, 41
reboot, 175
rectification, 28
reset, 20
resolution, 11
REST-API, 127

data model, 150
data stream, 140
data-type, 150
dynamics, 140
entry point, 127
logs, 143
node, 129
parameter, 129
services, 130
status value, 129
system, 143
version, 127

robot frame
hand-eye calibration, 54

rollback
firmware, 175

rotation
quaternion, 41

S
Scan3dBaseline

GenICam, 122
Scan3dCoordinateOffset

GenICam, 122
Scan3dCoordinateScale

Index 192

GenICam, 122
Scan3dDistanceUnit

GenICam, 121
Scan3dFocalLength

GenICam, 122
Scan3dInvalidDataFlag

GenICam, 122
Scan3dInvalidDataValue

GenICam, 122
Scan3dOutputMode

GenICam, 121
Scan3dPrinciplePointU

GenICam, 122
Scan3dPrinciplePointV

GenICam, 122
SDK, 6
segmentation, 38

GenICam, 125
self-calibration, 48
Semi-Global Matching, see SGM
sensor fusion, 45
services

camera calibration, 54
dynamics, 42
parameters, 32
REST-API, 130
visual odometry, 47

SGM, 6
SGM, 24, 33
silhouette, 104
SilhouetteMatch, 104

base-plane, 105
base-plane calibration, 105
detection of objects, 106
parameters, 109
services, 110
status, 109
template api, 115

Simultaneous Localization and Mapping, see
SLAM

SLAM, 6
SLAM, 67

jump flag, 42
Web GUI, 67

slot
hand-eye calibration, 59

smooth
disparity image, 38
GenICam, 125

spare parts, 178
specifications

rc_visard, 11
state estimate, 41
state estimation

coordinate frames, 40
static_scene

disparity image, 38
GenICam, 124

status value
REST-API, 129

stereo calibration
camera calibration, 52

stereo camera, 28
stereo matching, 24
Swagger UI, 157
synchronization

NTP, 172
PTP, 121, 172
time, 121, 171

system
REST-API, 143

T
tag detection, 74

families, 76
interfaces, 80
pose estimation, 78
re-identification, 79

temperature range, 13
texture, 33
time

synchronization, 121, 171
timestamp, 28

GenICam, 126
image, 35, 126
pose, 41

transformation
camera to IMU, 42

translation, 41
tripod, 16

U
UDP, 6
update

firmware, 173
URI, 7
URL, 7

V
velocity

angular, 42
dynamics, 25
linear, 41

version
firmware, 173
REST-API, 127

visual odometry, 25, 45
corners, 45, 47
correspondences, 45
disparity range, 47
features, 47
frame rate, 45
image features, 45
keyframes, 45, 47
parameters, 45
services, 47

Index 193

Web GUI, 45
VO, see visual odometry

W
Web GUI, 22

camera, 29
depth image, 35
disparity image, 35
dynamics, 45
logs, 176
SLAM, 67
update, 173
visual odometry, 45

white balance, 32
Width

GenICam, 119
WidthMax

GenICam, 119

X
XYZ+quaternion, 7
XYZABC format, 7

Index 194

