
rc_visard
Documentation Revision 1.8.1-2-g3c019b5

Roboception GmbH

Dec 12, 2019

Contents

1 Introduction 1
1.1 Overview . 2
1.2 Warranty . 3
1.3 Applicable standards . 4
1.4 Glossary . 6

2 Safety 8
2.1 General warnings . 8
2.2 Intended use . 9

3 Hardware specification 10
3.1 Scope of delivery . 10
3.2 Technical specification . 11
3.3 Environmental and operating conditions . 13
3.4 Power-supply specifications . 13
3.5 Wiring . 14
3.6 Mechanical interface . 16
3.7 Coordinate frames . 17

4 Installation 19
4.1 Installation and configuration . 19
4.2 Power up . 19
4.3 Network configuration . 19
4.4 Discovery of rc_visard devices . 20
4.5 Web GUI . 22

5 The rc_visard in a nutshell 24
5.1 Stereo vision . 24
5.2 Sensor dynamics . 25
5.3 Calibration relative to a robot . 26

6 Software components 27
6.1 Stereo camera . 28
6.2 Stereo matching . 33
6.3 Sensor dynamics . 40
6.4 Visual odometry . 45
6.5 Stereo INS . 47
6.6 Camera calibration . 48
6.7 Hand-eye calibration . 54

7 Optional software components 67
7.1 SLAM . 67
7.2 IO and Projector Control . 72
7.3 TagDetect . 74
7.4 ItemPick and BoxPick . 83
7.5 SilhouetteMatch . 104

i

8 Interfaces 118
8.1 GigE Vision 2.0/GenICam image interface . 118
8.2 REST-API interface . 127
8.3 The rc_dynamics interface . 161
8.4 KUKA Ethernet KRL Interface . 164
8.5 Time synchronization . 171

9 Maintenance 173
9.1 Lens cleaning . 173
9.2 Camera calibration . 173
9.3 Updating the firmware . 173
9.4 Restoring the previous firmware version . 175
9.5 Rebooting the rc_visard . 175
9.6 Updating the software license . 175
9.7 Downloading log files . 176

10 Accessories 177
10.1 Connectivity kit . 177
10.2 Wiring . 177
10.3 Spare parts . 178

11 Troubleshooting 179
11.1 LED colors . 179
11.2 Hardware issues . 179
11.3 Connectivity issues . 180
11.4 Camera-image issues . 180
11.5 Depth/Disparity, error, and confidence image issues . 181
11.6 Dynamics issues . 182
11.7 GigE Vision/GenICam issues . 183

12 Contact 184
12.1 Support . 184
12.2 Downloads . 184
12.3 Address . 184

13 Appendix 185
13.1 Pose formats . 185

HTTP Routing Table 187

Index 188

ii

1 Introduction

Revisions

This product may be modified without notice, when necessary, due to product improvements, modifications, or
changes in specifications. If such modification is made, the manual will also be revised; see revision information.

Documentation Revision 1.8.1-2-g3c019b5 Dec 12, 2019

Applicable to rc_visard firmware 1.8.x

Copyright

This manual and the product it describes are protected by copyright. Unless permitted by German intellectual
property and related rights legislation, any use and circulation of this content requires the prior consent of Robo-
ception or the individual owner of the rights. This manual and the product it describes therefore may not be
reproduced in whole or in part, whether for sale or not, without prior written consent from Roboception.

Information provided in this document is believed to be accurate and reliable. However, Roboception assumes no
responsibility for its use.

Differences may exist between the manual and the product if the product has been modified after the manual’s
edition date. The information contained in this document is subject to change without notice.

Indications in the manual

To prevent damage to the equipment and ensure the user’s safety, this manual indicates each precaution related to
safety with Warning. Supplementary information is provided as a Note.

Warning: Warnings in this manual indicate procedures and actions that must be observed to avoid danger of
injury to the operator/user, or damage to the equipment. Software-related warnings indicate procedures that
must be observed to avoid malfunctions or unexpected behavior of the software.

Note: Notes are used in this manual to indicate supplementary relevant information.

1

1.1 Overview

The 3D sensor rc_visard provides real-time camera images and disparity images, which are also used to compute
depth images and 3D point clouds. Additionally, it provides confidence and error images as quality measures
for each image acquisition. The sensor provides self-localization based on image and inertial data. A mobile
navigation solution can be established with the optional on-board SLAM module. The rc_visard is an IP54-
protected sensor that offers an intuitive web and a standardized GenICam interface, making it compatible with
all major image processing libraries. The rc_visard is offered with two different stereo baselines: The rc_visard
65 is optimally suited for mounting on robotic manipulators, whereas the rc_visard 160 can be employed as a
navigation or as externally-fixed sensor. The rc_visard’s intuitive calibration, configuration, and use enable 3D
vision for everyone.

Fig. 1.1.1: rc_visard 65 and rc_visard 160

The terms “sensor,” “rc_visard 65,” and “rc_visard 160” used throughout the manual all refer to the Roboception
rc_visard family of self-registering cameras. Installation and control for all sensors are exactly the same, and all
use the same mounting base.

Note: Unless specified, the information provided in this manual applies to both the rc_visard 65 and rc_visard
160 versions of the Roboception sensor.

Note: This manual uses the metric system and mostly uses the units meter and millimeter. Unless otherwise
specified, all dimensions in technical drawings are in millimeters.

1.1. Overview 2

1.2 Warranty

Any changes or modifications not expressly approved by Roboception could void the user’s warranty and guaran-
tee rights.

Warning: The rc_visard sensor utilizes complex hardware and software technology that may not always
function as intended. The purchaser must design its application to ensure that any failure or the rc_visard
sensor does not cause personal injury, property damage, or other losses.

Warning: Do not attempt to take apart, open, service, or modify the rc_visard. Doing so could present the
risk of electric shock or other hazard. Any evidence of any attempt to open and/or modify the device, including
any peeling, puncturing, or removal of any of the labels, will void the Limited Warranty.

Warning: CAUTION: to comply with the European CE requirement, all cables used to connect this device
must be shielded and grounded. Operation with incorrect cables may result in interference with other devices
or undesired effects of the product.

Note: This product may not be treated as household waste. By ensuring this product is disposed of correctly,
you will help to protect the environment. For more detailed information about the recycling of this product,
please contact your local authority, your household waste disposal service provider, or the product’s supplier.

1.2. Warranty 3

1.3 Applicable standards

1.3.1 Interfaces

The rc_visard supports the following interface standards:

The Generic Interface for Cameras standard is the basis for plug & play handling of cameras and devices.

GigE Vision® is an interface standard for transmitting high-speed video and related control data over Ethernet
networks.

1.3.2 Approvals

The rc_visard has received the following approvals:

EC Declaration of Conformity

certification by TÜV Süd

Changes or modifications not expressly approved by the manufacturer could void the user’s
authority to operate the equipment. This device complies with Part 15 of the FCC rules. Operation is subject
to the following two conditions:

1. This device may not cause harmful interference, and

2. this device must accept any interference received, including interference that may cause undesired
operation.

1.3.3 Standards

The rc_visard has been tested to be in compliance with the following standards:

• AS/NZS CISPR32 : 2015 Information technology equipment, Radio disturbance characteristics, Limits and
methods of measurement

• CISPR 32 : 2015 Electromagnetic compatibility of multimedia equipment - Emission requirements

• GB 9254 : 2008 This standard is out of the accreditation scope. Information technology equipment, Radio
disturbance characteristics, Limits and methods of measurement

• EN 55032 : 2015 Electromagnetic compatibility of multimedia equipment - Emission requirements

• EN 55024 : 2010 +A1:2015 Information technology equipment, Immunity characteristics, Limits and meth-
ods of measurement

1.3. Applicable standards 4

http://www.genicam.org/
http://www.gigevision.com

• CISPR 24 : 2015 +A1:2015 International special committee on radio interference, Information technology
equipment-Immunity characteristics-Limits and methods of measurement

• EN 61000-6-2 : 2005 Electromagnetic compatibility (EMC) Part 6-2:Generic standards - Immunity for
industrial environments

• EN 61000-6-3 : 2007+A1:2011 Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emis-
sion standard for residential, commercial and light-industrial environments

1.3. Applicable standards 5

1.4 Glossary

DHCP The Dynamic Host Configuration Protocol (DHCP) is used to automatically assign an IP address to a
network device. Some DHCP servers only accept known devices. In this case, an administrator needs to
configure the DHCP server with the fixed MAC address of a device.

DNS

mDNS The Domain Name Server (DNS) manages the host names and IP addresses of all network devices. It is
responsible for resolving the host name into the IP address for communication with a device. A DNS can
be configured to get this information automatically when a device appears on a network or manually by an
administrator. In contrast, multicast DNS (mDNS) works without a central server by querying all devices
on a local network each time a host name needs to be resolved. mDNS is available by default on Linux and
Mac operating systems and is used when ‘.local’ is appended to a host name.

GenICam GenICam is a generic standard interface for cameras. It serves as a unified interface around other
standards such as GigE Vision, Camera Link, USB, etc. See http://genicam.org for more information.

GigE Gigabit Ethernet (GigE) is a networking technology for transmitting data at one gigabit per second.

GigE Vision GigE Vision® is a standard for configuring cameras and transmitting images over a GigE network
link. See http://gigevision.com for more information.

IMU An Inertial Measurement Unit (IMU) consists of three accelerometers and three gyroscopes that measure
the linear accelerations and the turn rates in all three dimensions.

INS An Inertial Navigation System (INS) is a 3D measurement system which uses inertial measurements (accel-
erations and turn rates) to compute position and orientation information. We refer to our combination of
stereo vision and inertial navigation as stereo INS.

IP

IP address The Internet Protocol (IP) is a standard for sending data between devices in a computer network.
Every device requires an IP address, which must be unique in the network. The IP address can be configured
by DHCP, Link Local, or manually.

Link Local Link Local is a technology where network devices associate themselves with an IP address and check
if it is unique in the local network. Link Local can be used if DHCP is unavailable and manual IP configu-
ration is not or cannot be done. Link Local is especially useful for connecting a network device directly to a
host computer. By default, Windows 10 reverts automatically to Link Local if DHCP is unavailable. Under
Linux, Link Local must be enabled manually in the network manager.

MAC address The Media Access Control (MAC) address is a unique, persistent address for networking devices.
It is also known as the hardware address of a device. In contrast to the IP address, the MAC address is
(normally) permanently given to a device and does not change.

NTP The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. Basically
a client requests the current time from a server, and uses it to set its own clock.

PTP The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which enables more precise and
robust clock synchronization than with NTP.

SDK A Software Development Kit (SDK) is a collection of software development tools or a collection of software
modules.

SGM SGM stands for Semi-Global Matching and is a state-of-the-art stereo matching algorithm which offers
brief run times and a great accuracy, especially at object borders, fine structures, and in weakly textured
areas.

SLAM SLAM stands for Simultaneous Localization and Mapping and describes the process of creating a map of
an unknown environment and simultaneously updating the sensor pose within the map.

UDP The User Datagram Protocol (UDP) is the minimal message-oriented transport layer of the Internet Protocol
(IP) family. It uses a simple connectionless transmission model with a minimum of protocol mechanism
such as integrity verification (via checksum). The rc_visard uses UDP for publishing its estimated dynami-
cal states (Section 6.3.2) via the rc_dynamics interface (Section 8.3). To receive this data, applications may

1.4. Glossary 6

http://genicam.org
http://gigevision.com

use datagram sockets to bind to the endpoint of the data transmission consisting in a combination of an
IP address and a service port number such as 192.168.0.100:49500, which is typically referred to as a
destination of an rc_dynamics data stream in this documentation.

URI

URL A Uniform Resource Identifier (URI) is a string of characters identifying resources of the rc_visard’s REST-
API. An example of such a URI is /nodes/rc_stereocamera/parameters/fps, which points to the fps
run-time parameter of the stereo camera component.

A Uniform Resource Locator (URL) additionally specifies the full network location and protocol,
i.e., an exemplary URL to locate the above resource would be https://<rcvisard>/api/v1/nodes/
rc_stereocamera/parameters/fps where <rcvisard> refers to the rc_visard’s IP address.

XYZ+quaternion Format to represent a pose. See XYZ+quaternion format (Section 13.1.2) for its definition.

XYZABC format Format to represent a pose. See XYZABC format (Section 13.1.1) for its definition.

1.4. Glossary 7

2 Safety

Warning: The operator must have read and understood all of the instructions in this manual before handling
the rc_visard sensor.

Note: The term “operator” refers to anyone responsible for any of the following tasks performed in conjunction
with rc_visard:

• Installation
• Maintenance
• Inspection
• Calibration
• Programming
• Decommissioning

This manual explains the rc_visard’s various components and general operations regarding the product’s whole
life-cycle, from installation through operation to decommissioning.

The drawings and photos in this documentation are representative examples; differences may exist between them
and the delivered product.

2.1 General warnings

Note: Any use of the rc_visard in noncompliance with these warnings is inappropriate and may cause injury
or damage as well as void the warranty.

Warning:

• The rc_visard needs to be properly mounted before use.

• All cable sets need to be secured to the rc_visard and the mount.

• Cords must be at most 30 m long.

• An appropriate DC power source must supply power to the rc_visard.

• Each rc_visard must be connected to a separate power supply.

• The rc_visard’s housing must be grounded.

• The rc_visard’s and any related equipment’s safety guidelines must always be satisfied.

• The rc_visard does not fall under the purview of the machinery, low voltage, or medical directives.

8

Risk assessment and final application:

The rc_visard may be used on a robot. Robot, rc_visard, and any other equipment used in the final application
must be evaluated with a risk assessment. The system integrator’s duty is to ensure respect for all local safety
measures and regulations. Depending on the application, there may be risks that need additional protection/safety
measures.

2.2 Intended use

The rc_visard is intended for data acquisition (e.g., images, disparity images, and egomotion) in stationary and
mobile robotic applications. The rc_visard is intended for installation on a robot, automated machinery, mobile
platform, or stationary equipment. It can also be used for data acquisition in other applications.

Warning: The rc_visard is NOT intended for safety critical applications.

The GigE Vision® industry standard used by the rc_visard does not support authentication and encryption. All
data from and to the sensor is transmitted without authentication and encryption and could be monitored or ma-
nipulated by a third party. It is the operator’s responsibility to connect the rc_visard only to a secured internal
network.

Warning: The rc_visard must be connected to secured internal networks.

The rc_visard may be used only within the scope of its technical specification. Any other use of the sensor is
deemed unintended use. Roboception will not be liable for any damages resulting from any improper or unin-
tended use.

Warning: Always comply with local and/or national laws, regulations and directives on automation safety
and general machine safety.

2.2. Intended use 9

3 Hardware specification

Note: The following hardware specifications are provided here as a general reference; differences with the
product might exist.

3.1 Scope of delivery

Standard delivery for an rc_visard includes the rc_visard sensor and a quickstart guide only. The full manual is
available in digital form and is always installed on the sensor, accessible through the Web GUI (Section 4.5), and
available at http://www.roboception.com/documentation.

Note: The following items are not included in the delivery unless otherwise specified:
• Couplings, adapters, mounts
• Power supply unit, cabling, and fuses
• Network cabling

Please refer to Accessories (Section 10) for suggested third-party cable vendors.

A connectivity kit can be purchased for the rc_visard. It contains an M12 to RJ45 network cable, 24 V power
supply, and a DC plug to M12 power adapter. Please refer to Accessories (Section 10) for details.

Note: The connectivity kit is intended only for initial setup, not for permanent installation in industrial envi-
ronment.

The following picture shows the important parts of the rc_visard which are referenced later in the documentation.

Mounting interface Power
connector

Ethernet
connector

LED

Cooling fins

Left cameraRight camera

Fig. 3.1.1: Parts description

10

http://www.roboception.com/documentation

3.2 Technical specification

The common technical specifications for both rc_visard variants are given in Table 3.2.1.

Table 3.2.1: Common technical specifications for both rc_visard models
rc_visard 65 / rc_visard 160

Image resolution 1280 x 960 pixel, color or monochrome
Field of view Horizontal: 61°, Vertical: 48°
IR Cutoff 650 nm
Depth image

640 x 480 pixel (high) @ 3 Hz
320 x 240 pixel (medium) @ 15 Hz
214 x 160 pixel (low) @ 25 Hz

Egomotion 200 Hz, low latency
Computing unit Nvidia Tegra K1
Power supply 18 V to 30 V
Cooling Passive

The rc_visard 65 and rc_visard 160 differ in their baselines, which affects depth range and resolution as well as
the sensors’ size and weight.

Table 3.2.2: Differing technical specifications for the rc_visard variants
rc_visard 65 rc_visard 160

Baseline 65 mm 160 mm
Depth range 0.2 m to infinity 0.5 m to infinity
Depth resolution

0.5 mm @ 0.2 m
15 mm @ 1.0 m

1.5 mm @ 0.5 m
6 mm @ 1.0 m
23 mm @ 2.0 m
50 mm @ 3.0 m

Size (W x H x L) 135 mm x 75 mm x 96 mm 230 mm x 75 mm x 84 mm
Mass 0.68 kg 0.84 kg

The rc_visard can be equipped with on-board software modules such as SLAM for additional features. These
software modules can be ordered and require a license update.

3.2. Technical specification 11

135

75

65

32.5

37
.5

(96)
74.5

21.5

Fig. 3.2.1: Overall dimensions of the rc_visard 65

230

75
37
.5

80

160

62.5
21.5

(84)

Fig. 3.2.2: Overall dimensions of the rc_visard 160

3.2. Technical specification 12

CAD models of the rc_visard can be downloaded from http://www.roboception.com/download. The CAD models
are provided as-is, with no guarantee of correctness. When a material property of aluminium is assigned (density
of 2.76 g

cm3), the mass properties of the CAD model are within 5% of the product with respect to weight and center
of mass, and within 10% with respect to moment of inertia.

3.3 Environmental and operating conditions

The rc_visard is designed for industrial applications. Always respect the storage, transport, and operating envi-
ronmental conditions outlined in Table 3.3.1.

Table 3.3.1: Environmental conditions
rc_visard 65 / rc_visard 160

Storage/Transport temperature -25 °C to 70 °C
Operating temperature 0 °C to 50 °C
Relative humidity (non condensing) 20 % to 80 %
Vibration 5 g
Shock 50 g
Protection class IP54
Others

• Free from corrosive liquids or gases
• Free from explosive liquids or gases
• Free from powerful electromagnetic interference

The rc_visard is designed for an operating (surrounding environment) temperature of 0 °C to 50 °C and relies on
convective (passive) cooling. Unobstructed airflow, especially around the cooling fins, needs to be ensured during
use. The rc_visard should only be mounted using the provided mechanical mounting interface, and each part of
the housing must remain uncovered. A free space of at least 10 cm extending in all directions from the housing,
and sufficient air exchange with the environment is required to ensure adequate cooling. Cooling fins must be free
of dirt and other contamination.

The housing temperature depends on the processing load, sensor orientation, and surrounding environmental tem-
peratures. When the sensor’s exposed housing surfaces exceed 60°C, the LED at the front will turn from green to
red.

Warning: For hand-guided applications, a heat-insulated handle should be attached to the sensor to reduce
the risk of burn injuries due to skin exposure to surface temperatures exceeding 60°C.

3.4 Power-supply specifications

The rc_visard needs to be supplied by a DC voltage source. The rc_visard’s standard package doesn’t include a
DC power supply. The power supply contained in the connectivity kit may be used for initial setup. For permanent
installation, it is the customer’s responsibility to provide suitable DC power. The sensor is qualified as industrial
equipment Class A under EN55011. As such, each rc_visard must be connected to a separate power supply.
Connection to domestic grid power is only allowed through a power supply certified as EN55011 Class B.

Table 3.4.1: Absolute maximum ratings for power supply
Min Nominal Max

Supply voltage 18.0 V 24 V 30.0 V
Max power consumption 25 W
Overcurrent protection Supply must be fuse-protected to a maximum of 2 A
EMC compliance Industrial equipment under EN55011 Class A

3.3. Environmental and operating conditions 13

http://www.roboception.com/download

Warning: Exceeding maximum power rating values may lead to damage of the rc_visard, power supply, and
connected equipment.

Warning: A separate power supply must power each rc_visard.

Warning: Connection to domestic grid power is allowed through a power supply certified as EN55011 Class
B only.

3.5 Wiring

Cables are not provided with the rc_visard standard package. It is the customer’s responsibility to obtain the
proper cabling. Accessories (Section 10) provides an overview of suggested components.

Warning: Proper cable management is mandatory. Cabling must always be secured to the rc_visard mount
with a strain-relief clamp so that no forces due to cable movements are exerted on the rc_visard’s M12 connec-
tors. Enough slack needs to be provided to allow for full range of movement of the rc_visard without straining
the cable. The cable’s minimum bend radius needs to be observed.

The rc_visard provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity and an 8-pin
A-coded M12 plug connector for power and GPIO connectivity. Both connectors are located at the back. Their
locations (distance from centerlines) are identical for the rc_visard 65 and rc_visard 160. The location of both
connectors on the rc_visard 65 is shown as an example in Fig. 3.5.1.

45.9

23
.4

23
.4

Ethernet
connector

Power
connector

Fig. 3.5.1: Locations of the electrical connections for the rc_visard 65, with Ethernet on top and power on the
bottom

Connectors are rotated so that standard 90° angled connectors will exit horizontally, away from the camera (away
from the cooling fins).

3.5. Wiring 14

1

2

3
45

6

7

8

Ethernet
M12 8-pin socket connector
A-coded, view onto camera

Power/GPIO
M12 8-pin plug connector
A-coded, view onto camera

1
2

3
45

6

7
8

Fig. 3.5.2: Pin positions for power and Ethernet connector

Pin assignments for the Ethernet connector are given in Fig. 3.5.3.

M12 RJ45

6
4
5
8
1
7
2
3

1 WH-OG
2 OG
3 WH-GN
6 GN
5 WH-BU
4 BU
7 WH-BN
8 BN

Fig. 3.5.3: Pin assignments for M12 to Ethernet cabling

Pin assignments for the power connector are given in Table 3.5.1.

Table 3.5.1: Pin assignments for the power connector
Pin Assignment
1 GPIO In 2
2 Power
3 GPIO In 1
4 GPIO Gnd
5 GPIO Vcc
6 GPIO Out 1 (image expo-

sure)
7 Gnd
8 GPIO Out 2

GPIOs are decoupled by photocoupler. GPIO Out 1 by default provides an exposure sync signal with a logic high
level for the duration of the image exposure. All GPIOs can be controlled via the optional IOControl component
(IO and Projector Control, Section 7.2). Pins of unsused GPIOs should be left floating.

Warning: It is especially important that during the boot phase GPIO In 1 is left floating or remains low. The
rc_visard will not boot if the pin is high during boot time.

3.5. Wiring 15

GPIO circuitry and specifications are shown in Fig. 3.5.4. The maximum rated voltage for GPIO In and GPIO
Vcc is 30 V.

2k

GPIO In:
 Uin_low = 0 VDC
 Uin_high = 11VDC to 30 VDC
 Iin = 5mA to 13 mA

GPIO Out:
 Uext = 5VDC to 30 VDC
 Iout = max 50 mA

2k

180

180

GPIO_GND

GPIO_In2

GPIO_In1

GPIO_Power_Vcc

GPIO_Out1

GPIO_Out2

Fig. 3.5.4: GPIO circuitry and specifications – do not connect signals higher than 30 V

Warning: Do not connect signals with voltages higher than 30 V to the rc_visard.

3.6 Mechanical interface

The rc_visard 65 and rc_visard 160 offer identical mounting-point setups at the bottom.

3.6. Mechanical interface 16

50

5
5

5
28

4+0.05

4+0.05

28

UNC 1/4"-20,
thread depth = 5

Optical axis

Z

X

3x M4 mounting threads
for dynamic applications

3xM4, thread

 depth = 6

Fig. 3.6.1: Mounting-point for connecting the rc_visard to robots or other mountings

For troubleshooting and static applications, the sensor may be mounted using the standardized tripod thread (UNC
1/4”-20) indicated at the coordinate-frame origin. For dynamic applications such as mounting on a robotic arm,
the sensor must be mounted with three M4 (metric standard) 8.8 machine screws tightened to 2.5 Nm and secured
with a medium-strength threadlocking adhesive such as Loctite 243. Maximum thread depth is 6 mm. The two
4 mm diameter holes may be used for positioning pins (ISO 2338 4 m6) to ensure precise repositioning of the
sensor.

Warning: For dynamic applications, the rc_visard must be mounted with three M4 8.8 machine screws
tightened to 2.5 Nm torque and secured with threadlocking adhesive. Do not use high-strength bolts. The
engaged thread depth must be at least 5 mm.

3.7 Coordinate frames

The rc_visard’s coordinate-frame origin is defined as the exit pupil of the left camera lens. This frame is called
sensor coordinate frame or camera coordinate frame. An approximate location for the rc_visard 65 is shown in
the next image.

The mounting-point frame for both rc_visard devices is defined to be at the bottom, centered in the tripod thread,
with orientation identical to that of the sensor’s coordinate frame. Fig. 3.7.1 shows approximate offsets.

3.7. Coordinate frames 17

135

75

65

21.5

(96)
74.5

28

37
.5

32.5
x

y

x

y

z

y

z

y

~31.5

Fig. 3.7.1: Approximate location of sensor/camera coordinate frame (inside left lens) and mounting-point frame
(at tripod thread) for the rc_visard 65

Approximate locations of sensor/camera coordinate frame and mounting-point frame for the rc_visard 160 are
shown in Fig. 3.7.2.

230

160

80

75
37
.5

21.5 28

62.5
(84)

~31.5

x

y

x

y

z

y

z

y

Fig. 3.7.2: Approximate locations of sensor/camera coordinate frame (inside left lens) and mounting-point frame
(at tripod thread) for the rc_visard 160

Note: The correct offset between the sensor/camera frame and a robot coordinate frame can be calibrated
through the hand-eye-calibration procedure (Section 6.7).

3.7. Coordinate frames 18

4 Installation

Warning: The instructions on Safety (Section 2) related to the rc_visard must be read and understood prior
to installation.

4.1 Installation and configuration

The rc_visard offers a Gigabit Ethernet interface for connecting the device to a computer network. All communi-
cations to and from the device are performed via this interface. The rc_visard has an on-board computing resource
that requires booting time after powering up the device.

4.2 Power up

Note: Always fully connect and tighten the M12 power connector on the rc_visard before turning on the power
supply.

After connecting the rc_visard to the power, the LED on the front of the device should immediately illuminate.
During the device’s boot process, the LED will change color and will eventually turn green. This signals that all
processes are up and running.

If the network is not plugged in or the network is not properly configured, then the LED will flash red every 5
seconds. In this case, the device’s network configuration should be verified. See LED colors (Section 11.1) for
more information on the LED color codes.

4.3 Network configuration

The rc_visard requires an Internet Protocol (IP) address for communication with other network devices. The IP
address must be unique in the local network, and can be set automatically or manually.

Host name

MAC address

Fig. 4.3.1: Label on the rc_visard

19

4.3.1 Automatic configuration (factory default)

The Dynamic Host Configuration Protocol (DHCP) is preferred for setting an IP address. If DHCP is active on
the rc_visard, which is the factory default, then the device tries to contact a DHCP server at startup and every time
the network cable is plugged in. If a DHCP server is available on the network, then the IP address is automatically
configured.

In some networks, the DHCP server is configured so that it only accepts known devices. In this case, the Media
Access Control address (MAC address), which is printed on the sensor label, needs to be configured in the DHCP
server. At the same time, the sensor’s host name can also be set in the Domain Name Server (DNS). The host
name is defined as rc-visard-<serial number>, which is also printed on the sensor. Both MAC address and
host name should be sent to the network administrator for configuration.

If the rc_visard cannot contact a DHCP server for about 15 seconds after startup or after plugging in the network
cable, it will try to assign itself a unique IP address. This process is called Link Local. This option is especially
useful for connecting the rc_visard directly to a computer. The computer must be configured for Link Local as
well. Link Local might already be configured as a standard fallback option, as it is under Windows 10. Other
operating systems such as Linux require Link Local to be explicitly configured in their network managers.

4.3.2 Manual configuration

Specifying a persistent IP address manually might be useful in come cases. This is done via the sensor’s standard
GigE Vision® 2.0 interface, and requires a configuration tool to be installed on the host computer. We recommend
using the IpConfigTool that is part of the Baumer GAPI SDK. The SDK can be downloaded free of charge for
Windows and Linux from http://www.baumer.com.

After the configuration tool starts, it scans for all available GigE Vision® sensors on the network. All rc_visard
devices can be uniquely identified by their serial number and MAC address, which are both printed on the device.
If the device cannot be found, it can also be connected directly to the computer for configuration (see Automatic
configuration (factory default), Section 4.3.1).

Warning: The IP address must be unique and within the local network’s range of valid addresses. Further-
more, the subnet mask must match the local network; otherwise, the rc_visard may become inaccessible. This
can be avoided by using automatic configuration as explained in Automatic configuration (factory default)
(Section 4.3.1).

4.4 Discovery of rc_visard devices

Devices that are powered up and connected to the local network or directly to a computer (see Network configu-
ration, Section 4.3) can be found using the standard GigE Vision® discovery mechanism. Roboception offers the
open-source tool rcdiscover-gui, which can be downloaded free of charge from http://www.roboception.com/
download for Windows and Linux. The tool’s Windows version consists of a single executable for Windows 7 and
Windows 10, which can be executed without installation. For Linux an installation package is available for Ubuntu
14.04 and 16.04. At startup, all available rc_visard devices are listed with their names, serial numbers, current
IP addresses, and unique MAC addresses. The discovery tool finds all devices reachable by global broadcasts.
Misconfigured devices that are located in different subnets than the computer may also be listed. An icon in the
discovery tool indicates whether devices are actually reachable via a web browser.

4.4. Discovery of rc_visard devices 20

http://www.baumer.com/de-en/products/identification-image-processing/software/baumer-gapi-sdk/
http://www.baumer.com
http://www.roboception.com/download
http://www.roboception.com/download

Fig. 4.4.1: rcdiscover-gui tool for finding connected rc_visard devices

After successful discovery, a double click on the device row opens the Web GUI (Section 4.5) of the device in the
operating system’s default web browser. Mozilla Firefox is recommended as web browser.

4.4.1 Resetting configuration

A misconfigured device can be reset by using the Reset rc_visard button in the discovery tool. The reset mech-
anism is only available for two minutes after device startup. Thus, the rc_visard may require rebooting before
being able to reset the device.

Fig. 4.4.2: Reset dialog of the rcdiscover-gui tool

If the discovery tool still successfully detects the the misconfigured rc_visard, then the latter can be selected from
the rc-visard drop-down menu. Otherwise, the rc_visard’s MAC address, which is printed on the device label, can
be entered manually into the designated fields.

One of four options can be chosen after entering the MAC address:

• Reset Parameters: Reset all rc_visard parameters, such as frame rate, that are configurable via Web GUI
(Section 4.5).

• Reset Network: Reset network settings and user-defined name.

• Reset All: Reset the rc_visard parameters as well as network settings and user-defined name.

• Switch Partitions: Allows a rollback to be performed as described in Restoring the previous firmware ver-
sion (Section 9.4).

A white status LED followed by a device reboot indicates a successful reset. If no reaction is noticeable, the two
minutes time slot may have elapsed, requiring another reboot.

Note: The reset mechanism is only available for the first two minutes after startup.

4.4. Discovery of rc_visard devices 21

4.5 Web GUI

The rc_visard’s Web GUI can be used to test, calibrate, and configure on-board processing. It can be accessed
from any web browser, such as Firefox, Google Chrome, or Microsoft Edge, via the sensor’s IP address. The
easiest way to access the Web GUI is to simply double click on the desired device using the rcdiscover-gui
tool as explained in Discovery of rc_visard devices (Section 4.4).

Alternatively, some network environments automatically configure the unique host name of the rc_visard in their
Domain Name Server (DNS). In this case, the Web GUI can also be accessed directly using the URL http:/
/rc-visard-<serial-number> by replacing <serial-number> with the serial number printed on the device
label.

For Linux and Mac operating systems, this even works without DNS via the multicast Domain Name System
(mDNS), which is automatically used if .local is appended to the host name. Thus, the URL simply becomes
http://rc-visard-<serial-number>.local.

The Web GUI’s overview page gives the most important information about on-board processing.

Fig. 4.5.1: Overview page of the rc_visard’s Web GUI

The page’s top row permits access to the individual rc_visard modules.

• The Camera module shows a live stream of the device’s left and right rectified images. The frame rate can
be reduced to save bandwidth when streaming to a GigE Vision® client. Furthermore, exposure can be set
manually or automatically. See Parameters (Section 6.1.3) for more information.

• The Depth Image module shows a live stream of the left rectified, depth, and confidence images. The page
contains various settings for depth-image computation and filtering. See Parameters (Section 6.2.4) for
more information.

4.5. Web GUI 22

• The Dynamics module shows the location and movement of image features that are used to compute the
rc_visard’s egomotion. Settings include the number of corners and features that should be used. See Pa-
rameters (Section 6.4.1) for more information.

• The Camera Calibration module permits the camera to be checked for proper calibration. In rare cases
when the camera is no longer sufficiently calibrated, calibration also can be performed using this module.
See Camera calibration (Section 6.6) for more information.

• The Hand-Eye-Calibration module allows the computation of the static transformation between the
rc_visard and a coordinate system known in the robot system. This can be the flange coordinate system
of a robotic arm if the rc_visard is attached to the flange. Alternatively, the rc_visard may be mounted
statically in the robot environment and calibrated to any other static frame known in the robot system. See
Hand-eye calibration (Section 6.7) for more information.

• The Logs module permits access to the log files on the rc_visard. The log files are typically checked if errors
are suspected.

• The System module permits the firmware or the license file to be updated and provides some general infor-
mation about the device.

Changed parameters are not persistent and will be lost when restarting the rc_visard unless they are saved by
pressing the Save button before leaving the corresponding page.

Further information on all parameters in the Web GUI can be obtained by pressing the Info button next to each
parameter.

4.5. Web GUI 23

5 The rc_visard in a nutshell

The rc_visard is a self-registering 3D camera. It provides rectified camera, disparity, confidence, and error images,
which enable the viewed scene’s depth values along with their uncertainties to be computed. Furthermore, the
motion of visual features in the images is combined with acceleration and turn-rate measurements at a high rate,
which enables the sensor to provide real-time estimates of its current pose, velocity, and acceleration.

5.1 Stereo vision

The rc_visard is based on stereo vision using the SGM (Semi-Global Matching) method. In stereo vision, 3D
information about a scene can be extracted by comparing two images taken from different viewpoints. The main
idea behind using a camera pair for measuring depth is the fact that object points appear at different positions in
the two camera images depending on their distance from the camera pair. Very distant object points appear at
approximately the same position in both images, whereas very close object points occupy different positions in
the left and right camera image. The object points’ displacement in the two images is called disparity. The larger
the disparity, the closer the object is to the camera. The principle is illustrated in Fig. 5.1.1.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Fig. 5.1.1: Sketch of the stereo-vision principle: The more distant object (black) exhibits a smaller disparity 𝑑2
than that of the close object (gray), 𝑑1.

Stereo vision is a form of passive sensing, meaning that it emits neither light nor other signals to measure distances,
but uses only light that the environment emits or reflects. The rc_visard can thus work indoors and outdoors and
multiple rc_visard devices can work together without interferences.

To compute the 3D information, the stereo matching algorithm must be able to find corresponding object points
in the left and right camera images. For this, the algorithm requires texture, meaning changes in image inten-
sity values due to patterns or the objects’ surface structure, in the images. Stereo matching is not possible for
completely untextured regions, such as a flat white wall without any visible surface structure. The SGM stereo
matching method used provides the best trade-off between runtime and accuracy, even for fine structures.

24

For stereo matching, the position and orientation of the left and right cameras relative to each other has to be
known with very high accuracy. This is achieved by calibration. The rc_visard’s cameras are pre-calibrated
during production. However, if the rc_visard has been decalibrated, during transport for example, then the user
has to recalibrate the stereo camera.

The following rc_visard software components are required to compute 3D information:

• Stereo camera: This component is responsible for capturing synchronized stereo image pairs and transform-
ing them into images approaching those taken by an ideal stereo camera (rectification) (Section 6.1).

• Stereo matching: This component computes disparities for the rectified stereo camera pair using
SGM (Section 6.2).

• Camera calibration: This component enables the user to recalibrate the rc_visard’s stereo camera (Section
6.6).

5.2 Sensor dynamics

In addition to providing 3D information about the scene, the rc_visard can also estimate its egomotion or dy-
namic state in real time. This comprises its current pose, i.e., its position and orientation relative to a reference
coordinate system or reference frame, as well as its velocity and acceleration. Measurements from stereo visual
odometry (SVO) and the integrated Inertial Measurement Unit (IMU) are fused to compute this information. This
combination is called a Visual Inertial Navigation System (VINS).

Visual odometry observes the motion of characteristic points in the camera images to estimate the camera motion.
Object points are projected on different pixels in the camera image depending on the camera’s viewing position.
Each point’s 3D coordinates can also be computed using stereo matching between the point positions in the left
and right camera images. Thus, for two different viewing positions A and B, two sets of corresponding 3D points
are computed. Assuming a static environment, the motion that transforms one set of points into the other is the
camera’s motion. The principle is illustrated for a simplified 2D case in Fig. 5.2.1.

View A

View B

Pose A
Pose B

Observed motion

3D positions
view A

3D positions
view B

Computed camera
motion

Fig. 5.2.1: Simplified sketch of the stereo visual odometry principle for 2D motions: Camera motion is computed
from the observed motion of characteristic image points.

Since visual odometry relies on image-data quality, motion estimates deteriorate when the images are blurred or
are poorly illuminated. Furthermore, visual odometry’s frame rate is too low for control applications. That’s
why the rc_visard has an integrated Inertial Measurement Unit (IMU), which measures the accelerations and
angular velocities that occur when the rc_visard moves. It also measures acceleration due to gravity, which

5.2. Sensor dynamics 25

gives global orientation in the vertical direction. Further, IMU measurements have a high rate of 200 Hz. The
rc_visard’s linear velocity, position, and orientation can be computed by integrating the IMU measurements.
However, the integration results suffer from increasing drift over time. The rc_visard thus fuses accurate, but
low-frequency and sometimes volatile visual odometry measurements with reliable high-rate IMU measurements
to provide an accurate, robust, high-frequency estimate of the rc_visard’s current position, orientation, velocity,
and acceleration, which can be used in a control loop.

In addition to the stereo camera component and the calibration component, pose-estimate computations require
the following rc_visard software components:

• Sensor dynamics: This component handles starting, stopping, and streaming of the estimates for the indi-
vidual components (Section 6.3).

– Visual odometry: This component computes a motion estimate from the camera images (Section 6.4).

– Stereo INS: This component fuses the motion estimates from visual odometry with the measurements
from the integrated IMU to provide real-time pose estimates at a high frequency (Section 6.5).

– SLAM: This component is optionally available for the rc_visard and creates an internal map of the
environment, which is used to correct pose errors (Section 7.1).

5.3 Calibration relative to a robot

The rc_visard is designed for industrial environments including those featuring robotic applications in which the
rc_visard is either mounted on a robot or statically in a robot work cell. To use the rc_visard’s output, the robot
must know where the sensor is located in the robot coordinate frame. To compute the rc_visard’s location in the
robot coordinate frame, the sensor offers the so-called Hand-eye calibration software component (Section 6.7).
The calibration routine can be executed either programmatically via the REST-API interface or manually via the
Web GUI (Section 4.5).

5.3. Calibration relative to a robot 26

6 Software components

The rc_visard comes with several on-board software components, which provide camera images, 3D information,
and dynamics state estimates, and allow calibration to be performed. Each software component corresponds to a
node in the REST-API interface (Section 8.2). Fig. 6.1 gives an overview of the relationships between the different
software components and the data they provide via rc_visard’s various interfaces (Section 8).

Stereo Camera
rc_stereocamera

Stereo Camera
rc_stereocamera

Stereo Matching
rc_stereomatching

Stereo Matching
rc_stereomatching

Camera Calibration
rc_cameracalib

Camera Calibration
rc_cameracalib

Hand-Eye Calibration
rc_hand_eye_calibration

Hand-Eye Calibration
rc_hand_eye_calibration

Disparity image,
Confidence image,
Error image

Covered trajectory

Dynamic states
(INS only)

Left image,
Right image

Calibration transformation
between rc_visard and
robot

Left image,
Right image

 Sensor Dynamics
 rc_dynamics

 Sensor Dynamics
 rc_dynamics

 Visual Odometry
rc_stereovisodo

 Visual Odometry
rc_stereovisodo

Stereo INS
rc_stereo_ins

Stereo INS
rc_stereo_ins

SLAM (optional)
rc_slam

SLAM (optional)
rc_slam

Dynamic states
(best-effort, i.e.,
inc. SLAM if avail.)

G
ig

E
 /

G
e

n
IC

a
m

R
E

S
T-

A
P

I
rc

_
d

y
n

a
m

ic
s

in
te

rf
a

c
e

R
E

S
T-

A
P

I

Fig. 6.1: Flowchart of the software components with their node names and the most important outputs

Note: Components marked as optional extend the rc_visard’s features. Customers can extend the license to
purchase additional components.

The rc_visard’s on-board software consists of the following components:

• Stereo camera (rc_stereocamera, Section 6.1) acquires stereo image pairs and performs planar rectifi-
cation for using the stereo camera as a measurement device. Images are provided both for further
internal processing by other components and for external use as GenICam image streams.

• Stereo matching (rc_stereomatching, Section 6.2) uses the rectified stereo image pair to compute 3D
depth information such as disparity, error, and confidence images. These are provided as GenICam
streams, too.

• Sensor dynamics (rc_dynamics, Section 6.3.) provides estimates of rc_visard’s dynamic state such as its
pose, velocity, and acceleration. These states are transmitted as continuous data streams via the
rc_dynamics interface. For this purpose, the dynamics component manages and fuses data from the
following individual subcomponents:

27

– Visual odometry (rc_stereovisodo, Section 6.4) estimates the motion of the rc_visard device
based on the motion of characteristic visual features in the left camera images.

– Stereo INS (rc_stereo_ins, Section 6.5) combines visual odometry measurements with read-
ings from the on-board Inertial Measurement Unit (IMU) to provide accurate and high-
frequency state estimates in real time.

• Camera calibration (rc_cameracalib, Section 6.6) automatically checks and performs the self-
calibration of the rc_visard’s stereo camera in case it has been decalibrated. It furthermore enables
the user to check and perform recalibration manually via the WEB GUI (Section 4.5).

• Hand-eye calibration (rc_hand_eye_calibration, Section 6.7) enables the user to calibrate the
rc_visard with respect to a robot, either via the Web GUI or the REST-API.

6.1 Stereo camera

The stereo camera component contains functionality for acquiring stereo image pairs and performing planar recti-
fication needed to use the stereo camera as a measurement device.

6.1.1 Image acquisition

Acquiring stereo image pairs is the first step toward stereo vision. Since both cameras are equipped with global
shutters and their chips are hardware-synchronized, all pixels of both camera images are always exposed at the
exactly same time. GPIO out 1 (Section 3.5) signals the respective exposure time. Additionally, the time in the
middle of the image exposure is attached to the images as a timestamp. This timestamp becomes important for
dynamic applications in which the rc_visard or the scene moves.

Exposure time can be set manually to a fixed value. This is useful in an environment where lighting is controlled
so that it is always at the same intensity. The camera is set to auto exposure by default. In this mode, the rc_visard
chooses the exposure time automatically, up to a user defined maximum. The permitted maximum is meant to
limit the motion blur that occurs when taking images while the rc_visard or the scene is moving. The maximum
exposure time thus depends on the application. If the maximum exposure time is reached, the auto-exposure
algorithm uses the gain to increase image brightness. However, larger gain factors also amplify image noise.
Thus, the maximum exposure time trades motion blur off against image noise under weak-light conditions.

6.1.2 Planar rectification

Camera parameters such as focal length, lens distortion, and the relationship of the cameras to each other must be
exactly known to use the stereo camera as a measuring instrument. The parameters are determined by calibration
(see Camera calibration, Section 6.6). The rc_visard is already calibrated at production time and normally requires
no recalibration. The camera parameters describe with great precision all of the stereo-camera system’s geometric
properties, but the resulting model is complex and difficult to use.

Rectification is the process of remapping the images according to an ideal stereo-camera model. Lens distortion
is removed and the images are aligned so that an object point is always projected onto the same image row in
both images. The cameras’ optical axes become exactly parallel. This means that points at infinite distance are
projected onto the same image column in both images. The closer an object point is, the larger is the difference
between its image columns in the right and left images. This difference is called disparity.

Mathematically, the object point 𝑃 = (𝑃𝑥, 𝑃𝑦, 𝑃𝑧) is projected onto image point 𝑝𝑙 = (𝑝𝑙𝑥, 𝑝𝑙𝑦, 1) in the left
rectified image and onto 𝑝𝑟 = (𝑝𝑟𝑥, 𝑝𝑟𝑦, 1) in the right rectified image by

𝐴 =

⎛⎝ 𝑓 0 𝑤
2

0 𝑓 ℎ
2

0 0 1

⎞⎠ , 𝑇𝑠 =

⎛⎝ 𝑡
0
0

⎞⎠ ,

𝑠1𝑝𝑙 = 𝐴𝑃,

𝑠2𝑝𝑟 = 𝐴(𝑃 − 𝑇𝑠).

6.1. Stereo camera 28

The focal length 𝑓 is the distance between the common image plane and the optical centers of the left and right
cameras. It is measured in pixels. The baseline 𝑡 is the distance between the optical centers of the two cameras.
The image width 𝑤 and height ℎ are measured in pixels, too. 𝑠1 and 𝑠2 are scale factors ensuring that the third
coordinates of the image points 𝑝𝑙 and 𝑝𝑟 are equal to 1.

The rc_visard provides the time-stamped, rectified left and right images over the GenICam interface (see Chunk
data, Section 8.1.1). Live streams of the images are provided with reduced quality in the Web GUI (Section 4.5).

Note: The rc_visard reports a focal length factor via its various interfaces. It relates to the image width for
supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the
focal length factor by the image width in pixels.

6.1.3 Parameters

The stereo-camera software component is called rc_stereocamera and is represented by the Camera tab in the
Web GUI (Section 4.5). The user can change the camera parameters there, or directly via the REST-API (REST-
API interface, Section 8.2) or GigE Vision (GigE Vision 2.0/GenICam image interface, Section 8.1).

Note: Camera parameters cannot be changed via the Web GUI or REST-API if rc_visard is used via GigE
Vision.

Parameter overview

This component offers the following run-time parameters.

Table 6.1.1: The rc_stereocamera component’s run-time parameters
Name Type Min Max Default Description
exp_auto bool False True True Switching between auto and manual exposure
exp_height int32 0 959 0 Height of auto exposure region. 0 for whole

image.
exp_max float64 6.6e-05 0.018 0.007 Maximum exposure time in seconds if exp_auto

is true
exp_offset_x int32 0 1279 0 First column of auto exposure region
exp_offset_y int32 0 959 0 First row of auto exposure region
exp_value float64 6.6e-05 0.018 0.005 Manual exposure time in seconds if exp_auto is

false
exp_width int32 0 1279 0 Width of auto exposure region. 0 for whole

image.
fps float64 1.0 25.0 25.0 Frames per second in Hertz
gain_value float64 0.0 18.0 0.0 Manual gain value in decibel if exp_auto is false
wb_auto bool False True True Switching white balance on and off (only for

color camera)
wb_ratio_blue float64 0.125 8.0 2.4 Blue to green balance ratio if wb_auto is false

(only for color camera)
wb_ratio_red float64 0.125 8.0 1.2 Red to green balance ratio if wb_auto is false

(only for color camera)

This component reports the following status values.

6.1. Stereo camera 29

Table 6.1.2: The rc_stereocamera component’s status values
Name Description
baseline Stereo baseline 𝑡 in meters
color 0 for monochrome cameras, 1 for color cameras
exp Actual exposure time in seconds. This value is shown below the image preview in the Web

GUI as Exposure (ms).
focal Focal length factor normalized to an image width of 1
fps Actual frame rate of the camera images in Hertz. This value is shown in the Web GUI below

the image preview as FPS (Hz).
gain Actual gain factor in decibel. This value is shown in the Web GUI below the image preview as

Gain (dB).
height Height of the camera image in pixels
temp_left Temperature of the left camera sensor in degrees Celsius
temp_right Temperature of the right camera sensor in degrees Celsius
time Processing time for image grabbing in seconds
width Width of the camera image in pixels

6.1. Stereo camera 30

Description of run-time parameters

Fig. 6.1.1: The Web GUI’s Camera tab

fps (FPS) This value is the cameras’ frame rate (fps, frames per second), which determines the upper frequency
at which depth images can be computed. This is also the frequency at which the rc_visard delivers images
via GigE Vision. Reducing this frequency also reduces the network bandwidth required to transmit the
images.

The camera always runs with 25 Hz to ensure proper working of internal modules such as visual odometry
that need a constant frame rate. The user frame rate setting is implemented by excluding frames for stereo
matching and transmission via GigE Vision to reduce bandwidth as shown in figure Fig. 6.1.2.

6.1. Stereo camera 31

Internal acquisition
Camera image

Fig. 6.1.2: Images are internally always captured with 25 Hz. The fps parameter determines how many of them
are sent as camera images via GigE Vision.

exp_auto (Exposure Auto or Manual) This value can be set to 1 for auto-exposure mode, or to 0 for manual
exposure mode. In manual exposure mode, the chosen exposure time is kept, even if the images are overex-
posed or underexposed. In auto-exposure mode, the exposure time and gain factor is chosen automatically
to correctly expose the image. The last automatically determined exposure and gain values are set into
exp_value and gain_value when switching auto-exposure off.

exp_max (Max Exposure) This value is the maximal exposure time in auto-exposure mode in seconds. In the Web
GUI, this exposure time can be conveniently entered in milliseconds. The actual exposure time is adjusted
automatically so that the images are exposed correctly. If the maximum exposure time is reached, but the
images are still underexposed, the rc_visard stepwise increases the gain to increase the images’ brightness.
Limiting the exposure time is useful for avoiding or reducing motion blur during fast movements. However,
higher gain introduces noise into the image. The best trade-off depends on the application.

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region) These values define a rectangular
region in the left rectified image for limiting the area used for computing the auto exposure. The exposure
time and gain factor of both images are chosen to optimally expose the defined region. This can lead to
over- or underexposure of image parts outside the defined region. If either the width or height is 0, then the
whole left and right images are considered by the auto exposure function. This is the default.

The region is visualized in the Web GUI by a rectangle in the left rectified image. It can be defined using
the sliders or by selecting it in the image after pressing the button Select Region in Image.

exp_value (Exposure) This value is the exposure time in manual exposure mode in seconds. This exposure time
is kept constant even if the images are underexposed. In the Web GUI, this exposure time can be entered in
milliseconds for convenience.

gain_value (Gain) This value is the gain factor in decibel that can be set in manual exposure mode. Higher gain
factors reduce the required exposure time but introduce noise.

wb_auto (White Balance Auto or Manual) This value can be set to 1 for automatic white balancing or 0 for
manually setting the ratio between the colors using wb_ratio_red and wb_ratio_blue. The last automat-
ically determined ratios are set into wb_ratio_red and wb_ratio_blue when switching automatic white
balancing off. White balancing is without function for monochrome cameras.

wb_ratio_red and wb_ratio_blue (Red | Green and Blue | Green) These values are used to set red to green
and blue to green ratios for manual white balance. White balancing is without function for monochrome
cameras.

These parameters are also available over the GenICam interface with slightly different names and partly with
different units or data types (see GigE Vision 2.0/GenICam image interface, Section 8.1).

6.1.4 Services

The stereo camera component offers the following services for persisting and restoring parameter settings.

save_parameters (Save) With this service call, the stereo camera component’s current parameter settings will
be made persistent to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults (Reset) Restores and applies the default values for this component’s parameters (“factory re-
set”).

6.1. Stereo camera 32

Warning: The user must be aware that by calling this service, the current parameter settings for the
camera component are irrecoverably lost.

This service requires no arguments.

This service returns no response.

6.2 Stereo matching

The stereo matching component uses the rectified stereo-image pair and computes disparity, error, and confidence
images.

6.2.1 Computing disparity images

After rectification, the left and right images have the nice property that an object point is projected onto the same
pixel row in both images. That point’s pixel column in the right image is always lower than or equal to the same
point’s pixel column in the left image. The term disparity signifies the difference between the pixel columns in
the right and left images and expresses the depth or distance of the object point from the rc_visard. The disparity
image stores the disparity values of all pixels in the left camera image.

The larger the disparity, the closer the object point. A disparity of 0 means that the projections of the object point
are in the same image column and the object point is at infinite distance. Often, there are pixels for which disparity
cannot be determined. This is the case for occlusions that appear on the left sides of objects, because these areas
are not seen from the right camera. Furthermore, disparity cannot be determined for textureless areas. Pixels for
which the disparity cannot be determined are marked as invalid with the special disparity value of 0. To distinguish
between invalid disparity measurements and disparity measurements of 0 for objects that are infinitely far away,
the disparity value for the latter is set to the smallest possible disparity value above 0.

To compute disparity values, the stereo matching algorithm has to find corresponding object points in the left and
right camera images. These are points that represent the same object point in the scene. For stereo matching,
the rc_visard uses SGM (Semi-Global Matching), which offers brief run times and a great accuracy, especially at
object borders, fine structures, and in weakly textured areas.

A key requirement for any stereo matching method is the presence of texture in the image, i.e., image-intensity
changes due to patterns or surface structure within the scene. In completely untextured regions such as a flat white
wall without any structure, disparity values can either not be computed or the results are erroneous or have low
confidence (see Confidence and error images, Section 6.2.3). The texture in the scene should not be an artificial,
repetitive pattern, since those structures may lead to ambiguities and hence to wrong disparity measurements.

If the rc_visard has to work in untextured environments, then a static artificial texture can be projected onto the
scene using an external pattern projector. This pattern should be random-like and not contain repetitive structures.

6.2.2 Computing depth images and point clouds

The following equations show how to compute an object point’s actual 3D coordinates 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 in the sensor
coordinate frame (Section 3.7) from the disparity image’s pixel coordinates 𝑝𝑥, 𝑝𝑦 and the disparity value 𝑑 in
pixels:

𝑃𝑥 =
𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(6.2.1)

6.2. Stereo matching 33

where 𝑓 is the focal length after rectification in pixels and 𝑡 is the stereo baseline in meters, which was determined
during calibration. These values are also transferred over the GenICam interface (see Custom GenICam features
of the rc_visard, Section 8.1.1).

Note: The rc_visard reports a focal length factor via its various interfaces. It relates to the image width for
supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the
focal length factor by the image width in pixels.

Please note that equations (6.2.1) assume that the coordinate frame is centered in the middle of the image. The
following figure shows the definition of the image coordinate frame.

Fig. 6.2.1: The image coordinate frame’s origin is defined to be at the image’s center – 𝑤 is the image width and
ℎ is the image height.

The same equations, but with the corresponding GenICam parameters are given in Image stream conversions
:(Section 8.1.3).

The set of all object points computed from the disparity image gives the point cloud, which can be used for 3D
modeling applications. The disparity image is converted into a depth image by replacing the disparity value in
each pixel with the value of 𝑃𝑧 .

Note: Roboception provides software and examples for receiving disparity images from the rc_visard via GigE
Vision and computing depth images and point clouds. See http://www.roboception.com/download.

6.2.3 Confidence and error images

For each disparity image, the rc_visard provides an error image and a confidence image, which give uncertainty
measures for each disparity value. These images have the same resolution and the same frame rate as the disparity
image. The error image contains the disparity error 𝑑𝑒𝑝𝑠 in pixels corresponding to the disparity value at the same
image coordinates in the disparity image. The confidence image contains the corresponding confidence value 𝑐
between 0 and 1. The confidence is defined as the probability of the true disparity value being within the interval
of three times the error around the measured disparity 𝑑, i.e., [𝑑 − 3𝑑𝑒𝑝𝑠, 𝑑 + 3𝑑𝑒𝑝𝑠]. Thus, the disparity image
with error and confidence values can be used in applications requiring probabilistic inference. The confidence and
error values corresponding to an invalid disparity measurement will be 0.

The disparity error 𝑑𝑒𝑝𝑠 (in pixels) can be converted to a depth error 𝑧𝑒𝑝𝑠 (in meters) using the focal length 𝑓 (in
pixels), the baseline 𝑡 (in meters), and the disparity value 𝑑 (in pixels) of the same pixel in the disparity image:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡

𝑑2
. (6.2.2)

Combining equations (6.2.1) and (6.2.2) allows the depth error to be related to the depth:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

With the focal length and baselines of both rc_visard models and the typical disparity error 𝑑𝑒𝑝𝑠 of 0.5 pixels, the
depth error can be visualized as shown below.

6.2. Stereo matching 34

http://www.roboception.com/download

The rc_visard provides time-stamped disparity, error, and confidence images over the GenICam interface (see
Chunk data, Section 8.1.1). Live streams of the images are provided with reduced quality in the Web GUI (Section
4.5).

6.2.4 Parameters

The stereo matching component is called rc_stereomatching in the REST-API and it is represented by the Depth
Image tab in the Web GUI (Section 4.5). The user can change the stereo matching parameters there, or use the
REST-API (REST-API interface, Section 8.2) or GigE Vision (GigE Vision 2.0/GenICam image interface, Section
8.1).

Parameter overview

This component offers the following run-time parameters.

Table 6.2.1: The rc_stereomatching component’s run-time parameters
Name Type Min Max Default Description
acquisition_mode string - - Continuous S(ingleFrame), (SingleFrame)O(ut1) or

C(ontinuous)
disprange int32 32 512 256 Disparity range in pixels
fill int32 0 4 3 Disparity tolerance for hole filling in pixels
maxdepth float64 0.1 100.0 100.0 Maximum depth in meters
maxdeptherr float64 0.01 100.0 100.0 Maximum depth error in meters
median int32 1 5 1 Window size for median filtering in pixels
minconf float64 0.5 1.0 0.5 Minimum confidence
mindepth float64 0.1 100.0 0.1 Minimum depth in meters
quality string - - High F(ull), H(igh), M(edium), or L(ow). Full

requires ‘stereo_plus’ license.
seg int32 0 4000 200 Minimum size of valid disparity segments

in pixels
smooth bool False True True Smoothing of disparity image (requires

‘stereo_plus’ license)
static_scene bool False True False Accumulation of images in static scenes to

reduce noise

This component reports the following status values.

6.2. Stereo matching 35

Table 6.2.2: The rc_stereomatching component’s status values
Name Description
fps Actual frame rate of the disparity, error, and confidence images. This value is

shown in the Web GUI below the image preview as FPS (Hz).
time_matching Time in seconds for performing stereo matching using SGM on the GPU
time_postprocessing Time in seconds for postprocessing the matching result on the CPU

Since SGM stereo matching and post processing run in parallel, the overall processing time for this component
is the maximum of time_matching and time_postprocessing. This time is shown in the Web GUI below the
image preview as Processing Time (s).

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image tab. The name in the Web GUI
is given in brackets behind the parameter name and the parameters are listed in the order they appear in the Web
GUI:

6.2. Stereo matching 36

Fig. 6.2.2: The Web GUI’s Depth Image tab

acquisition_mode (Acquisition Mode) The acquisition mode can be set to Continuous, Single or Single + Out1.
The first one is the default, which performs stereo matching continuously according to the user defined
frame rate and the available computation resources. The two other modes perform stereo matching upon
each click of the Acquire button. The Single + Out1 mode additionally controls an external projector that is
connected to GPIO Out1 (IO and Projector Control, Section 7.2). In this mode, out1_mode is automatically

6.2. Stereo matching 37

set to ExposureAlternateActive upon each trigger call and reset to Low after receiving images for stereo
matching.

Note: The Single + Out1 mode can only change the out1_mode if the IOControl license is available
on the rc_visard.

quality (Quality) Disparity images can be computed in different resolutions: high (640 x 480), medium (320 x
240) and low (214 x 160). The lower the resolution, the higher the frame rate of the disparity image. A 25
Hz frame rate can be achieved only at the lowest resolution. Please note that the frame rate of the disparity,
confidence, and error images will always be less than or equal to the camera frame rate.

Additionally, full resolution matching with 1280 x 960 pixel is possible with a valid StereoPlus license. If
full resolution is selected, the disparity range is internally limited to 128, due to limited on-board memory
resources. Due to this limitation, it is not recommended to use the full resolution matching in parallel to the
SLAM component.

static_scene (Static) This option averages 8 consecutive camera images before matching. This reduces noise,
which improves the stereo matching result. The timestamp of the first image is taken as timestamp of the
disparity image. This option only affects matching in full or high quality. It must only be enabled if the
scene does not change during the acquisition of the 8 images.

disprange (Disparity Range) The disparity range always start at 0 and goes up to the maximum disparity value
a pixel in the disparity image can have. Increasing the disparity range results in a smaller minimum distance
that can be measured, because larger disparity values mean smaller distances. The disparity range is given
in pixels and can be set to a value between 32 pixels and 512 pixels. Since a larger disparity range also
means a larger search area for the matching pixel in the right rectified image, the processing time increases
with a larger disparity range and the frame rate decreases. The disparity range’s value is related to the high
quality disparity image with 640 x 480 pixels and does not have to be scaled when a different quality is
chosen. Thus, the chosen disparity range gives the same minimum distance for every image-quality option.

If full resolution quality is selected, the disparity range is internally limited to 128, due to limited on-board
memory resources.

smooth (Smoothing) This option activates advanced smoothing of disparity values. It is only available with a
valid StereoPlus license.

fill (Fill-in) This option is used to fill holes in the disparity image by interpolating a plane. Only holes smaller
than the segmentation size (see below) are selected for interpolation. The fill-in value is the maximum
allowed disparity deviation of any of the hole’s border pixels from the interpolation plane. Only if all of
its border pixels deviate less than the fill-in value from the plane, a hole will be filled. Larger fill-in values
decrease the number of holes, but the interpolated values can have larger errors. The confidence for the
interpolated pixels is set to a low value of 0.5. Their error is set to the mean deviation of the hole border
pixels from the interpolation plane. A value of 0 effectively switches hole filling off.

seg (Segmentation) The segmentation parameter is used to set the minimum number of pixels that a connected
disparity region in the disparity image must fill. Isolated regions that are smaller are set to invalid in the
disparity image. The value is related to the high quality disparity image with 640 x 480 pixels resolution
and does not have to be scaled when a different quality is chosen. Segmentation is useful for removing
erroneous disparities. However, larger values may also remove real objects.

median (Median) This value gives the window side length in pixels for the median filter, which smoothes the
disparity image. Larger values lead to oversmoothing and cost more processing time. A window size of 1
effectively turns this filter off.

minconf (Minimum Confidence) The minimum confidence can be set to filter potentially false disparity mea-
surements. All pixels with less confidence than the chosen value are set to invalid in the disparity image.

maxdeptherr (Maximum Depth Error) The maximum depth error is used to filter measurements that are too
inaccurate. All pixels with a larger depth error than the chosen value are set to invalid in the disparity
image. The maximum depth error is given in meters. The depth error generally grows quadratically with an
object’s distance from the sensor (see Confidence and error images, Section 6.2.3).

6.2. Stereo matching 38

mindepth (Minimum Distance) The minimum distance is the smallest distance from the sensor at which mea-
surements should be possible. Larger values implicitly reduce the disparity range, which also reduces the
computation time. The minimum distance is given in meters.

maxdepth (Maximum Distance) The maximum distance is the largest distance from the sensor at which mea-
surements should be possible. Pixels with larger distance values are set to invalid in the disparity image.
Setting this value to its maximum permits values up to infinity. The maximum distance is given in meters.

The same parameters are also available over the GenICam interface with slightly different names and partly with
different data types (see GigE Vision 2.0/GenICam image interface, Section 8.1).

6.2.5 Services

The stereo matching component offers the following services for persisting and restoring parameter settings.

acquisition_trigger This call signals the module to perform stereo matching of the next available images, if
the parameter acquisition_mode is set to SingleFrame. An error is returned if the acquisition_mode is
set to Continuous.

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

Possible return codes are shown below.

Table 6.2.3: Possible return codes of the acquisition_trigger service
call.
Code Description

0 Success
-8 Triggering is only possible in SingleFrame acquisition mode

101 Trigger is ignored, because there is a trigger call pending
102 Trigger is ignored, because there are no subscribers

save_parameters (Save) With this service call, the stereo matching component’s current parameter settings are
persisted to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults (Reset) Restores and applies the default values for this component’s parameters (“factory re-
set”).

Warning: The user must be aware that calling this service causes the current parameter settings for the
stereo matching component to be irrecoverably lost.

This service requires no arguments.

This service returns no response.

6.2. Stereo matching 39

6.3 Sensor dynamics

The dynamics component provides estimates of the sensor state. These include pose, linear velocity, linear ac-
celeration, and rotational rates. The component handles starting and stopping, and streaming of the estimates for
individual subcomponents:

• Visual odometry (rc_stereovisodo) estimates the camera’s motion from the motion of characteristic im-
age points in the left camera images (Section 6.4).

• Stereo INS (rc_stereo_ins) combines visual odometry measurements with readings from an inertial
measurement unit (IMU) to provide accurate, high-frequency state estimates in real time (Section 6.5).

• SLAM (rc_slam) performs simultaneous localization and mapping (SLAM) for correcting accumulated
poses (Section 7.1).

Note: Using Stereo matching in parallel to the dynamics component may lead to decreased localization accu-
racy. See Visual odometry for how to avoid this.

6.3.1 Coordinate frames for state estimation

The world coordinate frame for state estimation is defined as follows: The coordinate frame’s z-axis points upward
and is aligned with the gravity vector. The x-axis is orthogonal to the z-axis and points in the rc_visard’s viewing
direction at the time when the pose estimation starts. The world frame’s origin is located at the origin of the
rc_visard’s IMU coordinate frame at the instant when state estimation is switched on.

If pose estimation is switched on when the rc_visard’s viewing direction parallels the gravity vector (with a
tolerance range of 10 degrees), then the world coordinate frame’s y-axis is aligned either with the IMU’s positive
or negative x-axis. In this orientation, the initial alignment of the world coordinate frame is no longer continuous.
Thus, special care has to be taken when pose estimation has to be started at such an orientation.

xIMU

yIMU
zIMU

zCam

xCam

y
Cam

xIMU

yIMU

zIMU

zCam

xCam

y
Cam

Pose at t=0

Current pose

zW

xW

yW

Fig. 6.3.1: Coordinate frames for state estimation. The IMU coordinate frame is inside the rc_visard’s housing.
The camera coordinate frame (Section 3.7) is in the focal point of the left camera.

The transformation between the IMU coordinate frame and the camera/sensor frame is also estimated and provided
in the real-time dynamics stream over the rc_dynamics interface (see Interfaces, Section 8).

6.3. Sensor dynamics 40

Warning: The stereo INS component self-calibrates the IMU during its initialization. It is therefore required
that the rc_visard is not moving and sufficient texture is visible during startup of the stereo INS component.

6.3.2 Available state estimates

The rc_visard provides seven different kinds of timestamped state-estimate data streams via the rc_dynamics
interface (see The rc_dynamics interface, Section 8.3):

Name Frequency Source Description
pose 25 Hz best effort Pose of camera frame, slightly delayed but most accurate
pose_ins 25 Hz Stereo INS Pose of camera frame, slightly delayed but most accurate
pose_rt 200 Hz best effort Pose of camera frame
pose_rt_ins 200 Hz Stereo INS Pose of camera frame
dynamics 200 Hz best effort Pose, velocity and acceleration in IMU frame
dynamics_ins 200 Hz Stereo INS Pose, velocity and acceleration in IMU frame
imu 200 Hz Stereo INS Raw IMU data

Best effort here means that if SLAM is running, then it contains the loop-closure corrected estimates and is equiv-
alent to the stream from Stereo INS when SLAM is not running.

Camera-pose streams (pose and pose_ins)

The camera-pose streams called pose and pose_ins are provided at 25 Hz with timestamps that correspond to
image timestamps. The former stream is the best-effort estimate, combining rc_slam and rc_stereo_ins if the
SLAM component is running. If SLAM is not running, then both data streams are equivalent. Pose values are
given in world coordinates, and also refer to the rc_visard’s camera frame origin (see Coordinate frames for state
estimation, Section 6.3.1). They are the most accurate estimates, taking all available rc_visard information into
consideration. They can be used in modeling applications, where camera images, depth images, or point clouds
have to be aligned highly accurately with each other. To ensure the greatest possible accuracy, these pose values
are delayed until a corresponding visual odometry measurement is available.

Real-time camera-pose streams (pose_rt and pose_rt_ins)

Two real-time pose streams called pose_rt and pose_rt_ins are provided at the IMU rate of 200 Hz. The
former stream is the best-effort estimate, combining rc_slam and rc_stereo_ins when the SLAM component
is running. If SLAM is not running, then both data streams are equivalent. They consist of the pose estimates of the
rc_visard’s camera frame origin (see Coordinate frames for state estimation, Section 6.3.1) in world coordinates.
The values given in these streams correspond to the values in the real-time dynamics streams, but give the pose of
the sensor/camera coordinate frame instead of that of the IMU coordinate frame.

Real-time dynamics streams (dynamics and dynamics_ins)

Two real-time dynamics streams called dynamics and dynamics_ins are provided at the IMU rate of 200 Hz. The
former stream is the best-effort estimate, combining rc_slam and rc_stereo_ins when the SLAM component
is running. If SLAM is not running, then both data streams are equivalent. The estimates can be used for real-
time control of a robot. Since the values are provided in real time and visual odometry computation requires some
processing time, the latest visual odometry estimate may not be included. Therefore, these estimates are in general
slightly less accurate than those in the non-real-time camera-pose streams (see above), but are the best estimates
available at this instant. The provided dynamics streams contain the rc_visard’s

• translation p = (𝑥, 𝑦, 𝑧)𝑇 in 𝑚,

• rotation q = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤)
𝑇 as unit quaternion,

6.3. Sensor dynamics 41

• linear velocities v = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)
𝑇 in 𝑚

𝑠 ,

• angular velocities 𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)
𝑇 in 𝑟𝑎𝑑

𝑠 ,

• gravity-compensated linear accelerations a = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)
𝑇 in 𝑚

𝑠2 , and

• transformation from camera to IMU coordinate frame as pose with frame name and parent frame name.

For each component, the stream also provides the name of the coordinate frame in which the values are given.
Translation, rotation, and linear velocities are given in the world frame; angular velocities and accelerations are
given in the IMU frame (see Coordinate frames for state estimation, Section 6.3.1). All values refer to the IMU
frame’s origin. That means, for example, that linear velocity is the velocity of the IMU frame’s origin in the world
frame.

Lastly, the stream contains a possible_jump flag, which is set to true whenever the optional SLAM component
(see SLAM, Section 7.1) corrects the state estimation after finding a loop closure. The state estimate can jump in
this case, which should be considered when the values are used in a control loop. If SLAM is not running, the
jump flag can be ignored and will stay false.

IMU data stream (imu)

The IMU data stream called imu is provided at the IMU rate of 200 Hz. It consists of the acceleration in x, y, z
directions plus the angular velocities around these three axis. The values are calibrated but not bias- and gravity-
compensated, and are given in the IMU frame. The transformation between IMU and sensor frame is provided in
the real-time dynamics stream.

6.3.3 Services

The sensor dynamics component offers the following services for starting dynamics/motion estimation. All ser-
vices return a numerical code of the entered state. The meaning of the returned state codes and names are given
in Table 6.3.1.

Table 6.3.1: Possible states of the sensor dynamics component
State name Description
IDLE The component is ready, but idle
WAITING_FOR_INS Waiting for stereo INS to start up
WAITING_FOR_INS_AND_SLAM Waiting for stereo INS and SLAM to start up
RUNNING The stereo INS component is running (SLAM is not running)
WAITING_FOR_SLAM Waiting for SLAM to start up (stereo INS is running)
RUNNING_WITH_SLAM Both stereo INS and SLAM are running
STOPPING Transitional state when going to (or through IDLE)
FATAL A fatal error has occured (either in stereo INS or SLAM)

start Starts the stereo INS component. Transitions from state IDLE through WAITING_FOR_INS to RUNNING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

start_slam Starts the SLAM and – if not yet started – the stereo INS component. From state IDLE: Transi-
tions through WAITING_FOR_INS_AND_SLAM and WAITING_FOR_SLAM to RUNNING_WITH_SLAM. From state
RUNNING: Transitions through WAITING_FOR_SLAM to RUNNING_WITH_SLAM.

6.3. Sensor dynamics 42

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

stop Stops the stereo INS and – if running – the SLAM components. The trajectory estimate of the SLAM com-
ponent will still be available. Transitions from state RUNNING or RUNNING_WITH_SLAM through STOPPING
to IDLE.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

stop_slam Stops the SLAM component. Stereo INS will continue to run. The trajectory estimate of the SLAM
component will still be available. Transitions from state RUNNING_WITH_SLAM to RUNNING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

restart Restarts to stereo INS. Equivalent to successive stop and start.

From state RUNNING or RUNNING_WITH_SLAM: Transitions through states STOPPING, IDLE and
WAITING_FOR_INS to RUNNING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

restart_slam Restarts to SLAM mode. Equivalent to successive stop and start_slam.

From state RUNNING or RUNNING_WITH_SLAM: Transitions through states STOPPING, IDLE,
WAITING_FOR_INS_AND_SLAM, WAITING_FOR_SLAM to RUNNING_WITH_SLAM.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

The following diagram shows the main states and transitions. Intermediate states and the fatal error state are
omitted for conceptual clarity.

6.3. Sensor dynamics 43

Fig. 6.3.2: Simplified state and transition diagram

These services shall respond quickly. Therefore, for services that cause a state transition the value of the returned
current_state in general is the first new (intermediate) state that was transitioned to, not the final state. E.g.,
for the start command the returned current_state will be WAITING_FOR_INS, not state RUNNING. If the
transition does not take place within 0.1 seconds, the current state is returned. See Table 6.3.1 for the meaning of
the returned state codes.

Note: The state FATAL can only be left by calling stop, which performs a transition to the state IDLE. The ser-
vices restart and restart_slam internally use stop and will also work as expected. start and start_slam
only work if the state is IDLE, and do nothing if the state is FATAL.

Note: The dynamics components can also be started and stopped on the Dynamics page of the Web GUI.

get_cam2imu_transform returns the transformation from camera to IMU coordinate frame. This is equivalent
to the cam2imu_transform in the Dynamics message (Section 8.3.3).

This service requires no arguments.

This service returns the following response:

{
"name": "string",
"parent": "string",
"pose": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

6.3. Sensor dynamics 44

6.4 Visual odometry

Visual odometry is part of the sensor dynamics component. It is used to estimate the camera’s motion from
the motion of characteristic image points (so-called image features) in left camera images. Image features are
computed from image corners, which are image regions with high intensity gradients. Image features are used
to look for matches between subsequent images to find correspondences. Their 3D coordinates are computed
by stereo matching (independent from the disparity image). The camera’s motion is computed from a set of
corresponding 3D points between two images. To increase the robustness of visual odometry, correspondences
are not only computed to the previous camera image but to a certain number of previous images, which are called
keyframes. The best result is then chosen.

The visual-odometry frame rate is independent of the user setting in the stereo camera component. It is internally
limited to 12 Hz but can be lower, depending on the number of features and keyframes. To ensure good pose-
estimation quality, the frame rate should not drop significantly under 10 Hz.

Note: Using Stereo matching in parallel to the dynamics component may lead to a decreased frame rate of
the visual odometry. In this case, we recommend to decrease the frame rate of the Stereo camera (effectively
decreasing the frame rate of the depth image computation), to lower the computational load of stereo matching.

The visual odometry component’s measurements are not directly accessible on the rc_visard. Instead, they are
internally fused with measurements from the integrated inertial measurement unit to increase robustness and frame
rate and reduce latency. The result of the sensor data fusion is provided in the form of different streams (see Stereo
INS, Section 6.5).

6.4.1 Parameters

The visual odometry software component is called rc_stereovisodo and it is represented by the Dynamics tab
in the Web GUI (Section 4.5). The user can change the visual odometry parameters there, or use the REST-API
(REST-API interface, Section 8.2).

Parameter overview

This component offers the following run-time parameters.

Table 6.4.1: The rc_stereovisodo component’s run-time parameters
Name Type Min Max Default Description
disprange int32 32 512 256 Disparity range in pixels
ncorner int32 50 4000 500 Number of corners
nfeature int32 50 4000 300 Number of features
nkey int32 1 4 4 Number of keyframes

This component reports the following status values.

Table 6.4.2: The rc_stereovisodo component’s status values
Name Description
corner Number of detected corners. This value is shown as Corners below the image preview

in the Web GUI.
correspondences Number of correspondences. This value is shown as Correspondences below the image

preview in the Web GUI.
feature Number of features. This value is shown as Features below the image preview in the

Web GUI.
fps Frame rate of the visual odometry in Hertz. This value is shown below the image

preview as Visual Odometry FPS (Hz) in the Web GUI.
time_frame Processing time in seconds to compute corners and features for each frame
time_vo Processing time in seconds to compute the motion

6.4. Visual odometry 45

Description of run-time parameters

Run-time parameters influence the number of features used to compute visual odometry. More features increase
the visual odometry’s robustness at the expense of more run time, which can reduce the frame rate. Although the
resulting state estimate will always have a high frequency due to fusion with IMU measurements, high visual-
odometry frame rates are nevertheless desirable, since these measurements are much more accurate than IMU
measurements alone. A visual-odometry rate of at least 10 Hz should thus be aimed for. The visual-odometry
frame rate is provided as a status parameter and is shown below the camera image on the Web GUI’s Dynamics
page.

Fig. 6.4.1: The Web GUI’s Dynamics tab

The camera image shown on this page depicts image features as small green dots. The bold green dots are the
features in the current image for which correspondences could be found in a previous keyframe. Green lines
depict the motion of these features relative to the previous keyframe. This visualization should help to find a good
set of parameters for visual odometry. The number of correspondences is reported as a status parameter and is
shown below the camera image on the Web GUI’s Dynamics page. For robust visual-odometry measurements, the
parameters should be adjusted so that the resulting number of correspondences in the target environment is around
at least 50 when the sensor is moving. The correspondence count will be larger when the rc_visard is static, and
the number will change when the rc_visard moves through the environment. Short failures of the visual odometry
are tolerated due to the fusion with IMU measurements. Longer failures should be avoided because they lead to
large pose uncertainties and can lead to errors in the state estimation.

Each run-time parameter is represented by a row on the Web GUI’s Dynamics tab. The name of the row is given
in brackets behind the parameter name, and the parameters are listed in the order they appear in the Web GUI:

6.4. Visual odometry 46

start (Dynamics) This starts the sensor dynamics estimation components (see Services, Section 6.3.3).

disprange (Disparity Range) The disparity range gives the maximum disparity value for each image feature re-
lated to the resolution of the high-quality disparity image (640 x 480 pixels). The disparity range determines
the minimum working distance of the visual odometry. When the disparity range is narrow, only more dis-
tant features are considered in the visual-odometry estimation. When choosing a broader disparity range,
close features can also be used. Broader disparity ranges increase processing time, which can reduce the
visual odometry’s frame rate.

nkey (Number of Keyframes) More keyframes can increase the robustness and accuracy of the visual odometry,
but they also increase processing time and can decrease the visual-odometry frame rate.

ncorner (Number of Corners) This value gives the approximate number of corners that will be detected in the
left image. Larger numbers make visual odometry more robust and accurate but can lead to lower frame
rates of the visual odometry.

nfeature (Number of Features) This value is the maximum number of features that will be derived from the
corners. It is useful to detect more corners and select the best subset as features. Larger numbers make
visual odometry more robust and accurate but can lead to lower visual-odometry frame rates. Fewer features
might be computed, depending on the scene and movement. The actual number of features is reported below
the camera image on the Web GUI’s Dynamics page.

Note: Increasing the number of keyframes, corners, or features will also increase robustness but will require
more computation time and may reduce the frame rate, depending on other components active on the rc_visard.
The visual-odometry frame rate should be at least 10 Hz.

6.4.2 Services

The visual odometry component offers the following services for persisting and restoring parameter settings. The
names of the corresponding Web GUI buttons are added in brackets:

save_parameters (Save) With this service call, the current parameter settings of the visual odometry component
are persisted to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults (Reset) Restores and applies the default values for this component’s parameters (“factory re-
set”).

Warning: The user must be aware that calling this service causes irrecoverable loss of the visual
odometry component’s current parameter settings.

This service requires no arguments.

This service returns no response.

This component offers no start or stop services itself, because the dynamics component (Section 6.3) starts and
stops it.

6.5 Stereo INS

The stereo-vision-aided Inertial Navigation System (INS) component is part of the sensor dynamics component.
It combines visual-odometry measurements with inertial measurement unit (IMU) data and provides robust, low
latency, real-time state estimates at a high rate. The IMU consists of three accelerometers and three gyroscopes,

6.5. Stereo INS 47

which measure accelerations and turn rates in all three dimensions. By fusing IMU and visual-odometry measure-
ments, the state estimate has the same frequency as the IMU (200 Hz) and is very robust even under challenging
lighting conditions and for fast motions.

Note: To achieve high-quality pose estimates, it must be ensured that sufficient texture is visible during runtime
of the stereo INS component. In case no texture is visible for a longer period of time, the stereo INS component
will stop instead of providing highly erroneous data.

6.5.1 Self-Calibration

During startup of the stereo INS component, it will self-calibrate the IMU using the visual-odometry measure-
ments. For the self-calibration to succeed, it is required that

• the rc_visard is not moving and

• sufficient texture is visible

during startup of the stereo INS component. Failure to meet these requirements will most likely result in a constant
drift of the pose estimates.

6.5.2 Parameters

The stereo INS component’s node name is rc_stereo_ins.

This component has no run-time parameters.

This component reports the following status values.

Table 6.5.1: The rc_stereo_ins component’s status values
Name Description
freq Frequency of the stereo INS process in Hertz. This value is shown as Update Rate in the Web GUI

Overview tab in the Dynamics area
state String representing the internal state

6.6 Camera calibration

To use the stereo camera as measuring instrument, camera parameters such as focal length, lens distortion, and the
relationship of the cameras to each other must be exactly known. The parameters are determined by calibration
and used for image rectification (see Planar rectification, Section 6.1.2), which is the basis for all other image
processing modules. The rc_visard is calibrated at production time. Nevertheless, checking calibration and re-
calibration might be necessary if the rc_visard was exposed to strong mechanical impact. The camera calibration
component is responsible for checking calibration and recalibrating.

6.6.1 Self-calibration

The camera calibration component automatically runs in self-calibration mode at a low frequency in the back-
ground. In this mode, the rc_visard observes the alignment of image rows of both rectified images. A mechanical
impact, such as one caused by dropping the rc_visard, might result in a misalignment. If a significant mis-
alignment is detected, then it is automatically corrected. After each reboot and after each correction, the current
self-calibration offset is reported in the camera component’s log file (see Downloading log files, Section 9.7) as:

“rc_stereocalib: Current self-calibration offset is 0.00, update counter is 0”

The update counter is incremented after each automatic correction. It is reset to 0 after manual recalibration of the
rc_visard.

6.6. Camera calibration 48

Under normal conditions, such as the absence of mechanical impact on the rc_visard, self-calibration should
never occur. Self-calibration allows the rc_visard to work normally even after misalignment is detected, since
it is automatically corrected. Nevertheless, checking camera calibration manually is recommended if the update
counter is not 0.

6.6.2 Calibration process

Manual calibration can be done through the Web GUI’s Camera Calibration tab. This tab provides a wizard to
guide the user through the calibration process.

Note: Camera calibration is normally unnecessary since the rc_visard is calibrated at production time. There-
fore, calibration is only required after strong mechanical impacts, such as occur when dropping the rc_visard.

Step 1: Calibration settings

The quality of camera calibration heavily depends on the quality of the calibration grid. Calibration grids for the
rc_visard can be obtained from Roboception.

Fig. 6.6.1: Calibration settings

The Camera calibration component has to be selected in the Web GUI (Section 4.5) to verify or perform camera
calibration. In the first step, the width and height of the grid must be specified as shown in the screenshot above.
The Next button proceeds to the next step.

6.6. Camera calibration 49

Step 2: Verify calibration

In the second step, the current calibration can be verified. To perform the verification, the grid must be held such
that it is simultaneously visible in both cameras. Make sure that all black squares of the grid are completely
visible and not occluded. A green check mark overlays each correctly detected square. The correct detection of
the grid is only possible if all of the black squares are detected. After the grid is detected, the calibration error is
automatically computed, and the result is displayed on the screen.

Fig. 6.6.2: Verification of calibration

Some of the squares not being detected, or being detected only briefly might indicate a low-quality or damaged
calibration grid, or bad lighting conditions.

Note: To compute a meaningful calibration error, the grid should be held as closely as possible to the cameras.
If the grid only covers a small section of the camera images, the calibration error will always be less than when
the grid covers the full image.

The typical calibration error is around 0.3 pixels. If the error is less than 0.4 to 0.5 pixels, then the calibration
procedure can be skipped. If the calibration error is greater, the calibration procedure should be performed to
guarantee full sensor performance. The button Next starts the procedure.

6.6. Camera calibration 50

