

SmartAC.com, Inc.

TEST REPORT

Model:

SMCOM1A2

REPORT NUMBER

220800294THC-001

ISSUE DATE


Sep. 21, 2022

PAGES

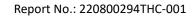
22

DOCUMENT CONTROL NUMBER

GFT-OP-10h (28-Nov-2018) © 2020 Intertek

Radio Spectrum TEST REPORT

Applicant:	SmartAC.com, Inc.	
	5302 Egbert Street, Houston, TX 77007, United States	
Product:	Sensor	
Model No.:	SMCOM1A2	
Brand Name:	smartAC.com	
FCC ID:	2AVMLSMCOM2	
Test Method/ Standard:	47 CFR FCC Part 15.249 & ANSI C63.10 2013	
Test By:	Intertek Testing Services Taiwan Ltd.,	
	Hsinchu Laboratory	
	No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,	
	Shiang-Shan District, Hsinchu City, Taiwan	


Zero Chen Engineer Rico Deng Reviewer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Revision History

Report No.	Issue Date	Revision Summary
220800294THC-001	Sep. 21, 2022	Same as RF modular, the differences is add
		accessory connector, after engineer judgment
		radiated (30MHz~1GHz) emission test were
		considered necessary and then the other test data
		based on Report No.: 200700309TWN-001.

Table of Contents

1.	General Information	
	1.1 Identification of the EUT	. 5
	1.2 Antenna description	. 5
	1.3 Peripherals equipment	. 5
2.	Test specifications	. 6
	2.1 Test standard	. 6
	2.2 Operation mode	. 6
3.	20dB Bandwidth & Occupied Bandwidth test	. 7
	3.1 Operating environment	. 7
	3.2 Test setup & procedure	. 7
	3.3 Measured data of modulated bandwidth test results	. 7
4.	Radiated emission test FCC 15.249 (C)	. 9
	4.1 Operating environment	
	4.2 Test setup & procedure	. 9
	4.3 Emission limit	11
	4.3.1 Fundamental and harmonics emission limits	11
	4.3.2 General radiated emission limits	12
	4.4 Radiated spurious emission test data	12
	4.4.1 Measurement results: frequency range from 9 kHz to 30 MHz	
	4.4.2 Measurement results: frequencies equal to or less than 1 GHz	13
	4.4.3 Measurement results: frequency above 1GHz	15
	4.4.4 Measurement results: Fundamental	16
5.	Radiated emission on the band edge FCC 15.249(d)	17
•	5.1 Operating environment	
	5.2 Radiated emission on the band edge test data	
6.	AC Power Line Conducted Emission	19
Αŗ	ppendix A: Test equipment list	20
Αŗ	ppendix B: Measurement Uncertainty	22

Summary of Tests

Test	Reference	Results
20dB Bandwidth/Occupied Bandwidth test	15.215(c)	Pass
Radiated Emission test	15.249(c), 15.209	Pass
Emission on the Band Edge	15.249(d)	Pass
Conducted Emission of AC Power	15.207	N/A
Antenna Requirement	15.203	Pass

Note: Please note that the test results with statement of conformity, the decision rules which are based on: Safety Testing: the specification, standard or IEC Guide 115.

Other Testing: the specification, standard and not taking into account the measurement uncertainty.

1. General Information

1.1 Identification of the EUT

Product:	Sensor	
Model No.:	SMCOM1A2	
Operating Frequency:	2407 MHz ~ 2477 MHz	
Channel Number:	8 channels	
Frequency of Each Channel:	inel: 2407MHz, 2408MHz, 2414MHz, 2425MHz, 2435MHz, 2460MHz 2469MHz, 2477MHz	
Access scheme:	GFSK	
Rated Power:	DC 3V from battery	
Power Cord:	N/A	
Sample receiving date:	1. 2020/07/23 2. 2022/08/29	
Sample condition:	Workable	
Test Date(s):	1. 2020/07/31 ~ 2020/08/10 2. 2022/09/13	

1.2 Antenna description

Antenna Gain : 1.3 dBi

Antenna Type : PIFA antenna

Connector Type : Fixed

1.3 Peripherals equipment

Peripherals	Model No.	Serial No.	Data cable
DC Power Supply	TP-1603C	N/A	N/A
Battery	LFB-AA-GRP-FR6	N/A	N/A

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Paragraph 15.249 for non-spread spectrum devices.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

Power on and press button to select different frequency and modulation.

The signal is maximized through rotation and placement in the three orthogonal axes.

After verifying three axes, we found the maximum electromagnetic field was occurred at X axis. The final test data was executed under this configuration.

3. 20dB Bandwidth & Occupied Bandwidth test

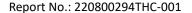
3.1 Operating environment

Temperature:	27	$^{\circ}\!\mathbb{C}$
Relative Humidity:	54	%

3.2 Test setup & procedure

The 20dB Bandwidth & Occupied Bandwidth was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100 kHz, the video bandwidth \geq RBW, and the SPAN may equal to approximately 2 to 3 times the 20dB bandwidth. The test was performed at 3 channels (lowest, middle and highest channel). The maximum 20dB modulation bandwidth is in the following Table.

3.3 Measured data of modulated bandwidth test results


Single TX

Mode	Channel	Frequency (MHz)	20dB Bandwidth (MHz)
	Low	2407	0.793
GFSK	Mid	2435	0.844
	High	2477	1.008

Please see the plot below.

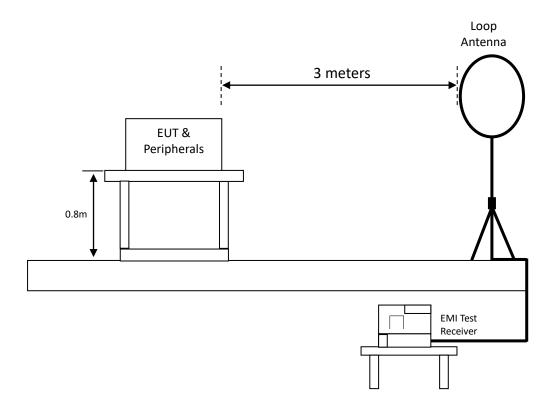
Single TX

Mode	Channel	Frequency (MHz)	Occupied Channel Bandwidth (MHz)	
	Low	2407	0.987	
GFSK	Mid	2435	0.981	
	High	2477	1.019	

Occupied Channel Bandwidth & 20dB Bandwidth @ Ch Low mode

Occupied Channel Bandwidth & 20dB Bandwidth @ Ch Mid mode

Occupied Channel Bandwidth & 20dB Bandwidth @ Ch High mode

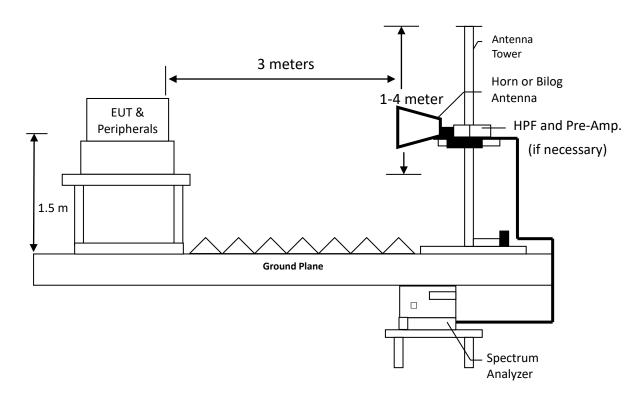

4. Radiated emission test FCC 15.249 (C)

4.1 Operating environment

Temperature:	26	$^{\circ}\!\mathbb{C}$
Relative Humidity:	59	%

4.2 Test setup & procedure

Radiated emission from 9kHz to 30MHz uses Loop Antenna:



Radiated emission below 1GHz using Bilog Antenna

Radiated emission above 1GHz using Horn Antenna

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1 MHz RBW/ 3 MHz VBW) recorded also on the report.

The EUT for testing is arranged on a turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

4.3 Emission limit

4.3.1 Fundamental and harmonics emission limits

Frequency	Field Strength of Fundamental		Field Strength of Harmonics	
(MHz)	(mV/m@3m)	(dBuV/m@3m)	(uV/m@3m)	(dBuV/m@3m)
2400-2483.5	50	94	500	54

4.3.2 General radiated emission limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

Frequency MHz	15.209 Limits (dBμV/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

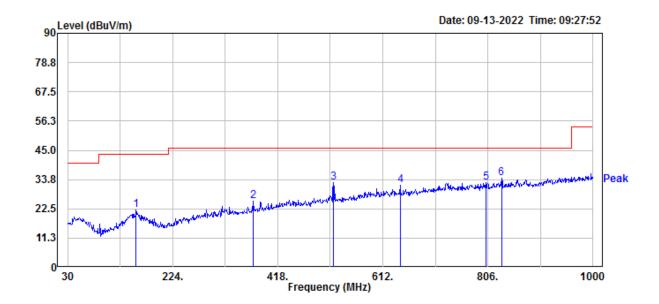
- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

4.4 Radiated spurious emission test data

4.4.1 Measurement results: frequency range from 9 kHz to 30 MHz

The emissions are more than 20 dB below the limit, the value has no need to be reported.

4.4.2 Measurement results: frequencies equal to or less than 1 GHz

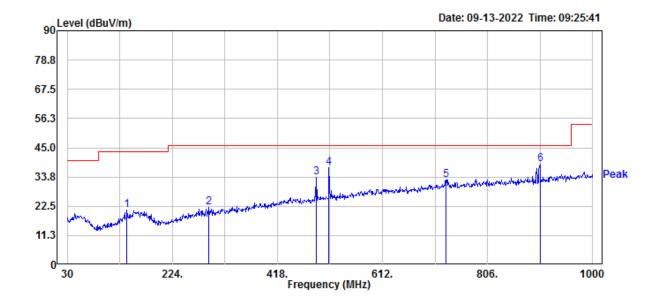

The test was performed continuously transmitting mode. The worst case occurred at TX middle channel.

EUT: SMCOM1A2

Worst case: TX middle channel

Ant.	Frequency	Spectrum	Correction	Reading	Corrected	Limit	Margin
Pol.		Analyzer	Factor		Reading	@ 3 m	
(H/V)	(MHz)	Detector	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Vertical	156.10	QP	20.58	1.48	22.06	43.50	-21.44
Vertical	372.41	QP	23.61	1.79	25.40	46.00	-20.60
Vertical	520.82	QP	27.02	5.49	32.51	46.00	-13.49
Vertical	644.01	QP	29.68	1.86	31.54	46.00	-14.46
Vertical	802.12	QP	32.08	0.66	32.74	46.00	-13.26
Vertical	831.22	QP	32.53	1.65	34.18	46.00	-11.82

Remark: Corr. Factor = Antenna Factor + Cable Loss



EUT: SMCOM1A2

Worst case: TX middle channel

Ant.	Frequency	Spectrum	Correction	Reading	Corrected	Limit	Margin
Pol.		Analyzer	Factor		Reading	@ 3 m	
(H/V)	(MHz)	Detector	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Horizontal	139.61	QP	19.79	1.36	21.15	43.50	-22.35
Horizontal	290.93	QP	21.41	0.66	22.07	46.00	-23.93
Horizontal	489.78	QP	26.32	7.24	33.56	46.00	-12.44
Horizontal	513.06	QP	26.90	10.58	37.48	46.00	-8.52
Horizontal	729.37	QP	31.06	1.64	32.70	46.00	-13.30
Horizontal	903.00	QP	33.20	5.67	38.87	46.00	-7.13

Remark: Corr. Factor = Antenna Factor + Cable Loss

4.4.3 Measurement results: frequency above 1GHz

EUT: SMCOM1A2

	Frequency	Spectrum	Ant.	Correction	Reading	Corrected	Limit	Margin
Mode		Analyzer	Pol.	Factor		Reading	@ 3 m	
	(MHz)	Detector	(H/V)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
	4814	PK	٧	6.95	44.63	51.58	74	-22.42
	7221	PK	٧	13.69	43.39	57.08	74	-16.92
Ch Low	7221	AV	V			36.00	54	-18.00
Ch_Low	4814	PK	Η	6.95	44.61	51.56	74	-22.44
	7221	PK	Н	13.69	43.04	56.73	74	-17.27
	7221	AV	Н			35.65	54	-18.35
	4870	PK	V	7.09	45.31	52.40	74	-21.60
	7305	PK	V	14.00	45.30	59.30	74	-14.70
	7305	AV	V			38.22	54	-15.78
Ch_Mid	4870	PK	Н	7.09	47.21	54.30	74	-19.70
	4870	AV	Н			33.22	54	-20.78
	7305	PK	Н	14.00	42.85	56.85	74	-17.15
	7305	AV	Η			35.77	54	-18.23
	4954	PK	٧	7.32	47.86	55.18	74	-18.82
	4954	AV	V			34.10	54	-19.90
	7431	PK	V	14.47	41.08	55.56	74	-18.44
Ch Hiah	7431	AV	V			34.48	54	-19.52
Ch_High	4954	PK	Н	7.32	48.22	55.54	74	-18.46
	4954	AV	Н			34.46	54	-19.54
	7431	PK	Н	14.47	41.99	56.46	74	-17.54
	7431	AV	Η			35.38	54	-18.62

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Pre_Amplifier Gain Note: AV Corrected Reading = PK Corrected Reading + Duty cycle correction factor(-21.08)

4.4.4 Measurement results: Fundamental

EUT: SMCOM1A2

	Frequency	Spectrum	Ant.	Correction	Reading	Corrected	Limit	Margin
Mode		Analyzer	Pol.	Factor		Reading	@ 3 m	
	(MHz)	Detector	(H/V)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
	2407	PK	٧	34.59	56.19	85.11	114.00	-28.89
Ch low	2407	AV	٧			64.03	94.00	-29.97
Cirlow	2407	PK	Н	34.59	64.04	88.06	114.00	-25.94
	2407	AV	Н			66.98	94.00	-27.02
	2435	PK	٧	34.74	57.26	84.08	114.00	-29.92
Ch mid	2435	AV	V			63.00	94.00	-31.00
Cirillia	2435	PK	Η	34.74	64.40	88.45	114.00	-25.55
	2435	AV	Н			67.37	94.00	-26.63
	2477	PK	٧	34.89	56.37	83.21	114.00	-30.79
Ch high	2477	AV	٧			62.13	94.00	-31.87
	2477	PK	Н	34.89	62.83	88.39	114.00	-25.61
	2477	AV	Н			67.31	94.00	-26.69

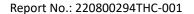
Remark: Correction Factor = Antenna Factor + Cable Loss

Note: AV Corrected Reading = PK Corrected Reading + Duty cycle correction factor(-21.08)

5. Radiated emission on the band edge FCC 15.249(d)

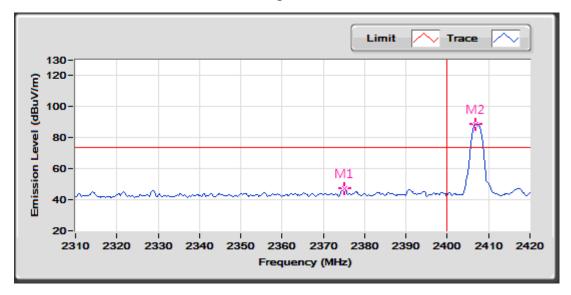
5.1 Operating environment

Temperature:	29	$^{\circ}$ C
Relative Humidity:	57	%

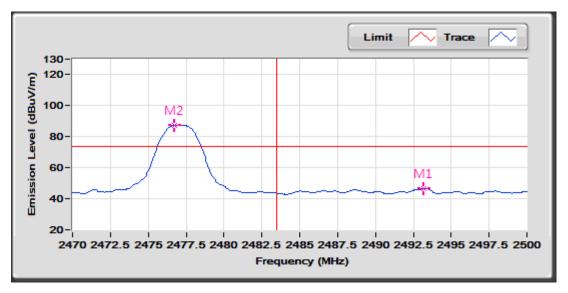

5.2 Radiated emission on the band edge test data

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

	Frequency	Spectrum	Ant.	Correction	Reading	Corrected	Limit	Margin	Restricted
Mode		Analyzer	Pol.	Factor		Reading	@ 3 m		band
	(MHz)	Detector	(H/V)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	(MHz)
	2375.12	PK	Н	34.45	12.49	46.94	74	-27.06	<2400
CECK	2375.12	AV	I			25.86	54	-28.14	≤2400
GFSK	2493.22	PK	Н	34.96	11.80	46.76	74	-27.24	>2402 F
	2493.22	AV	Η			25.68	54	-28.32	≥2483.5


Remark: Correction Factor = Antenna Factor + Cable Loss

Note: AV Corrected Reading = PK Corrected Reading + Duty cycle correction factor(-21.08)



Restricted Band Bandedge @ 2.4G Mode Ch low PK

Restricted Band Bandedge @ 2.4G Mode Ch high PK

6. AC Power Line Conducted Emission

Since the EUT is not connected to AC source, therefore, the test can be waived.

Appendix A: Test equipment list

Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	R&S	ESR-7	101232	2020/01/18	2021/01/16
EMI Test Receiver	R&S	ESR7	101822	2022/08/09	2023/08/08
EMI Test Receiver	R&S	ESU40	100381	2020/05/29	2021/05/28
Spectrum Analyzer	R&S	FSP30	100137	2019/08/29	2020/08/27
Signal Analyzer	Agilent	N9030A	MY51380492	2019/08/21	2020/08/19
WiMAX PSA Spectrum Analyzer	Agilent	E4440A	MY46186191	2020/05/08	2021/05/07
Active Loop	SCHWARZBECK MESS-ELEKTRONIC	FMZB1519	1519-067	2020/04/13	2021/04/12
Broadband Antenna	SHWARZBECK	VULB 9168	9168-172	2020/06/02	2021/06/01
Broadband Antenna	SHWARZBECK	VULB 9168	9168-172	2022/01/20	2023/01/19
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170159	2017/09/04	2020/09/02
Horn Antenna	SHWARZBECK	BBHA 9120 D	9120D-456	2020/01/20	2021/01/18
Power Meter	Anritsu	ML2495A	0844001	2019/10/23	2020/10/21
Power Sensor	Anritsu	MA2411B	0738452	2019/10/23	2020/10/21
Pre-Amplifier	SCHWARZBECK	BBV9718	9718-004	2019/10/16	2020/10/14
Pre-Amplifier	EMCI	EMC184045SE	980512	2020/06/01	2021/05/31
966-2(A) Cable	SUHNER	SMA / EX 100	N/A	2019/08/19	2020/08/17
966-2(A) Cable	SUHNER	SMA / EX 100	N/A	2022/03/04	2023/03/03
966-2(B) Cable	SUHNER	SUCOFLEX 104P	CB0005	2019/08/19	2020/08/17
966-2(B) Cable	SUHNER	SUCOFLEX 104P	CB0005	2022/03/04	2023/03/03

Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
RF Cable	EMCI	EMC102-KM-KM-2000	170225	2020/07/13	2021/07/12
RF Cable	SUHNER	SUCOFLEX 102	N/A	2020/04/15	2021/04/14
RF Cable	SUHNER	SUCOFLEX 102	CB0006	2020/04/30	2021/04/29
Hight Pass Filter	Reactel	7HS-3G/18G-S11	N/A	2020/05/27	2021/05/26
966-2_3m Semi-Anechoic Chamber	966_2	CEM-966_2	N/A	2020/02/22	2021/02/20
966-2_3m Semi-Anechoic Chamber	966_2	CEM-966_2	N/A	2022/01/14	2023/01/13

Appendix B: Measurement Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Item	Uncertainty
Vertically polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.16 dB
Horizontally polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.02 dB
Vertically polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	4.29 dB
Horizontally polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	4.29 dB
Vertically polarized Radiated disturbances from 18GHz~26.5GHz in a semi-anechoic chamber at a distance of 1m	2.45 dB
Horizontally polarized Radiated disturbances from 18GHz~26.5GHz in a semi-anechoic chamber at a distance of 1m	2.45 dB
Radiated disturbances from 9kHz~30MHz in a semi-anechoic chamber at a distance of 3m	3.32 dB
Emission on the Band Edge Test	4.29 dB
20dB Bandwidth	7.69 %
Minimum 6 dB Bandwidth	7.69 %