

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cqa-cert.com</u>

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No.: CQASZ20220200204E

Applicant: HONGKONG VIMAI TECHNOLOGY CO., LIMITED

Address of Applicant: FLAT/RM H29, 1/F PHASE 2 KWAI SHING IND BLDG NO.42-46, TAI LIN PAI

ROAD KWAI CHUNG, HONG KONG

Equipment Under Test (EUT):

EUT Name: Live streaming monitoring wireless earphone

Model No.: EP030
Test Model No.: EP030

Brand Name: N/A

FCC ID: 2AVLI-EP030B

Standards: 47 CFR Part 15, Subpart C

Date of Receipt: 2022-02-17

Date of Test: 2022-02-17 to 2022-03-28

Date of Issue: 2022-03-30
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Lewis Zhou)

Reviewed By:

(Rock Huang)

Approved By:

(Jack Ai)

Report No.:CQASZ20220200204E

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220200204E	Rev.01	Initial report	2022-03-30

Report No.:CQASZ20220200204E

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215 (c)	ANSI C63.10 (2013)	PASS

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 TEST ENVIRONMENT AND MODE	7
4.4 DESCRIPTION OF SUPPORT UNITS	7
4.5 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.6 TEST LOCATION	9
4.7 Test Facility	
4.8 DEVIATION FROM STANDARDS	
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	11
5.1 Antenna Requirement	11
5.2 CONDUCTED EMISSIONS	12
5.3 RADIATED EMISSION	
5.4 20dB Bandwidth	23
6 PHOTOGRAPHS	26
6.1 RADIATED EMISSION TEST SETUP	26
6.2 CONDUCTED EMISSION TEST SETUP	
6.3 EUT CONSTRUCTIONAL DETAILS	28

Report No.:CQASZ20220200204E

4 General Information

4.1 Client Information

Applicant:	HONGKONG VIMAI TECHNOLOGY CO., LIMITED
Address of Applicant:	FLAT/RM H29, 1/F PHASE 2 KWAI SHING IND BLDG NO.42-46, TAI LIN PAI ROAD KWAI CHUNG, HONG KONG
Manufacturer:	SHEN ZHEN VIMAI TECHNOLOGY CO., LTD
Address of Manufacturer:	Floor 3, building B, no. 5 huating road, tongsheng community, dalang street, longhua district, shenzhen
Factory:	SHEN ZHEN VIMAI TECHNOLOGY CO., LTD
Address of Factory:	Floor 3, building B, no. 5 huating road, tongsheng community, dalang street, longhua district, shenzhen

4.2 General Description of EUT

EUT Name:	Live streaming monitoring wireless earphone
Model No.:	EP030
Test Model No.:	EP030
Trade Mark:	N/A
Software Version:	20220101EP030Ver6.2
Hardware Version:	EP030_LX_L/R_V1.5
Frequency Range:	2402MHz~2480MHz
Modulation Type:	GFSK
Number of Channels:	3
Sample Type:	
Test Software of EUT:	NxH3670 TestSuite
Antenna Type:	FPC antenna
Antenna Gain:	-1.5dBi
Power Supply:	Li-ion battery: DC 3.7V 700mAh, Charge by DC 5V for Adapter

Report No.:CQASZ20220200204E

Operation Frequency each of channel						
Channel	Channel Frequency Channel Frequency Channel Frequency					
1	2402MHz	2	2426MHz	3	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	2402MHz
The Middle channel(CH2)	2426MHz
The Highest channel(CH3)	2480MHz

Report No.:CQASZ20220200204E

4.3 Test Environment and Mode

Operating Environment	:
Radiated Emissions:	
Temperature:	27 °C
Humidity:	59 % RH
Atmospheric Pressure:	1009mbar
Temperature:	26 °C
Humidity:	59 % RH
Atmospheric Pressure:	1009mbar
Radio conducted item to	est (RF Conducted test room):
Temperature:	25.3 °C
Humidity:	55 % RH
Atmospheric Pressure:	1009mbar
Test mode:	
Transmitting mode:	Use test software (RF test) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	MI	/	/	CQA
2) Cable				

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	/	/	/

Report No.:CQASZ20220200204E

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for **CQA** laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	5.12dB	(1)
Radiated Emission	Above 1GHz	4.60dB	(1)
Conducted Disturbance	0.15~30MHz	3.34dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.:CQASZ20220200204E

4.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.7 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.8 Deviation from Standards

None

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

Report No.:CQASZ20220200204E

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
		AMF-6D-02001800-29-			
Preamplifier	MITEQ	20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2021/9/10	2022/9/9
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9

Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

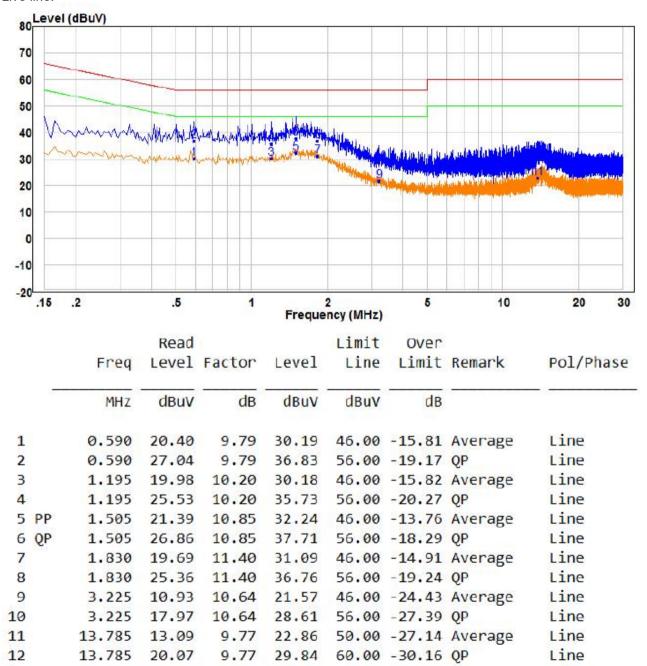
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is FPC antenna. The best case gain of the antenna is -1.5dBi.

5.2 Conducted Emissions

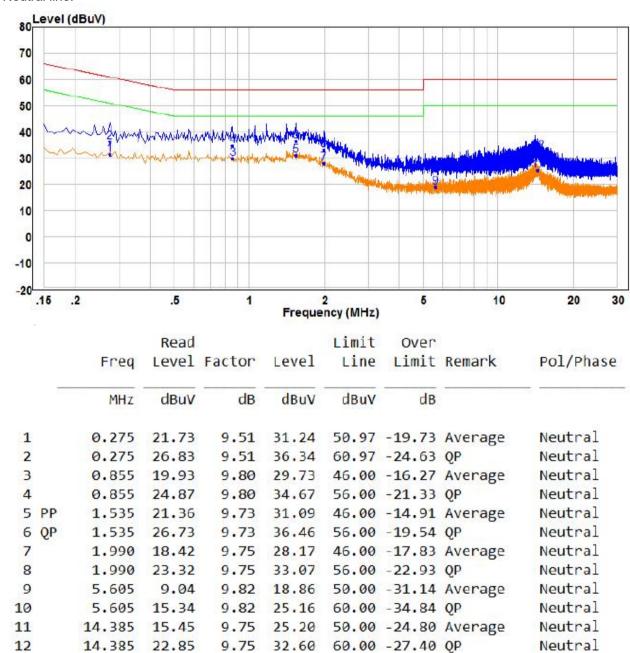
Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:	Francisco de la Companya (MILITA)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithn	n of the frequency.				
Test Procedure:	 The mains terminal disturb room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the ra The tabletop EUT was pla ground reference plane. A placed on the horizontal gr The test was performed with the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and bon mounted on top of the ground the closest points of the 	to AC power source etwork) which provides cables of all other SN 2, which was bonders the LISN 1 for the was used to connect rating of the LISN was raced upon a non-metand for floor-standing and to reference plane. The thickness of the vertical ground reference was bonded of 1 was placed 0.8 m ded to a ground refund reference plane. The transport of the vertical ground reference plane.	through a LISN 1 (Line is a $50\Omega/50\mu\text{H} + 5\Omega$ linear units of the EUT were ind to the ground reference unit being measured. A multiple power cables to a not exceeded. Ilic table 0.8m above the rrangement, the EUT was derence plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs his distance was between			
	the closest points of the LISN 1 and the EUT. All other units of and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of e and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.					
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC Mai	Test Receiver			



Report No.:CQASZ20220200204E

Test Mode:	Charge +Transmitting mode.
Final Test Mode:	Charge +Transmitting mode
Test Results:	Pass

Measurement Data:


Live line:

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.:CQASZ20220200204E

5.3 Radiated Emission

Test Requirement:	47 CFR Part 15C Section 15.249 and 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30KHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30KHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kHz	300KHz	Quasi-peak		
	Above 10Uz	Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz	Average		
	Note: For fundamental f value, RMS detect			5MHz, Peak o	detector is for	PK	
Limit: (Spurious Emissions	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurem distance (
and band edge)	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30		
	1.705MHz-30MHz	30	-	-	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Note: 1) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device. 2) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.						
Limit:	Frequency	Limit (dBu\	//m @3m)	Ren	nark	1	
(Field strength of the		94.		Average Value		1	
fundamental signal)	2400MHz-2483.5MHz	<u>z</u>	114.0		Peak Value		
			114.0		i can value		

Report No.:CQASZ20220200204E

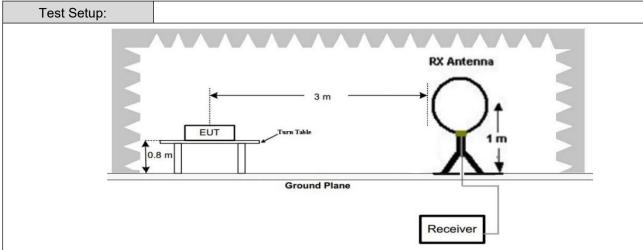
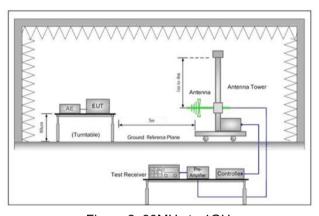



Figure 1. Below 30MHz

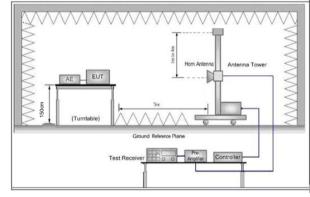


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

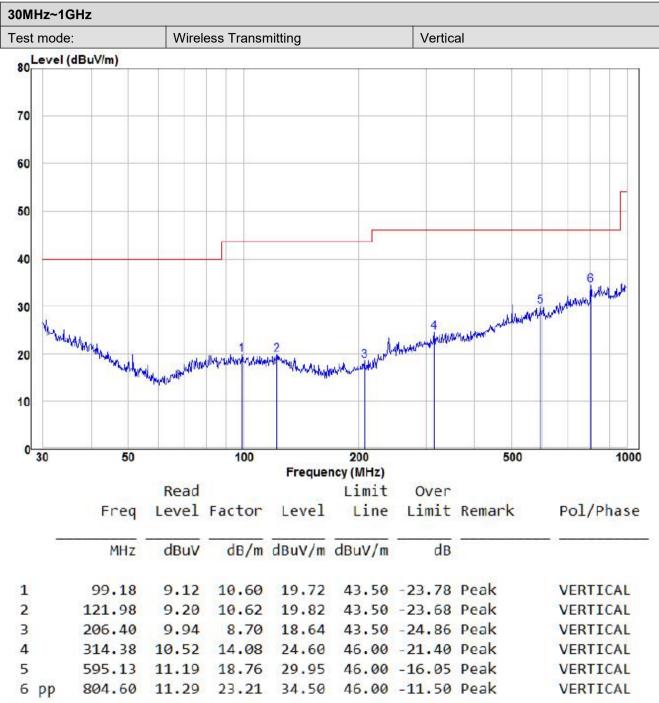
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table


Report No.:CQASZ20220200204E

	was turned from 0 degrees to 260 degrees to find the maximum reading
	 was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channelh. The radiation measurements are performed in X, Y, Z axis positioning for
	Transmitting mode, And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting mode
Final Test Mode:	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

541.37

6 рр

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.:CQASZ20220200204E

HORIZONTAL

HORIZONTAL

est mod	de:	Wire	Wireless Transmitting				Horizontal		
Leve	el (dBuV/m)								
80	(4247111)								
70 —									
60									
50									
40									
30							5.,	Andrew Mary Arth	
	Markey L		1	2	2.	4 A Mary de Mary de la constitución de la constituc	What white where the fill	Mithelian .	
20	Walled to the same of the same	June Kalland Brand Ballanger	randote da la sella	Apple of the state	Marine Market Market	diam.	rhquerahlermegranique		
10									
0 30	50		100	Freque	200 ncy (MHz)		500	1000	
		Read			Limit	Over			
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase	
- 10 -	MHz	d <mark>BuV</mark>	dB/m	dBuV/m	dBuV/m	dB			
1	92.14	9.91	10.15	20.06	43.50	-23.44	Peak	HORIZONTA	
2	117.36	10.31	10.56	20.87	43.50	-22.63	Peak	HORIZONTA	
3	232.53	9.44	10.73	20.17	46.00	-25.83	Peak	HORIZONTA	
4	331.35	9.08	14.49	23.57	46.00	-22.43	Peak	HORIZONTA	

9.89 18.71 28.60 46.00 -17.40 Peak

854.02 10.63 24.04 34.67 46.00 -11.33 Peak

Report No.:CQASZ20220200204E

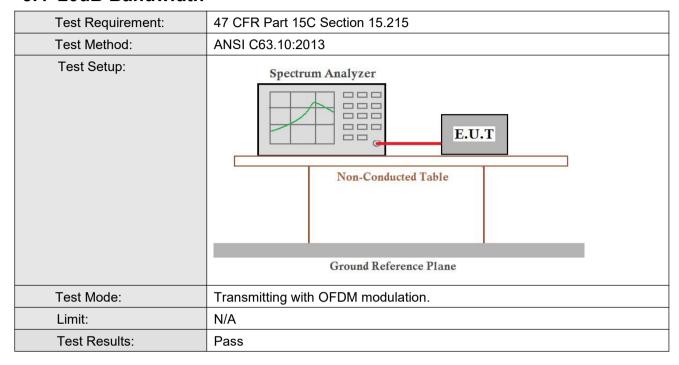
Above 1GHz							
Test mode:		Transmitti	ng	Test chann	nel:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2390	61.21	-9.2	52.01	74	-21.99	Peak	Н
2390	45.99	-9.2	36.79	54	-17.21	AVG	Н
2400	44.84	-9.39	35.45	74	-38.55	Peak	Н
2400	44.69	-9.39	35.30	54	-18.70	AVG	Н
2402	98.90	-9.33	89.57	114	-24.43	peak	Н
2402	96.39	-9.33	87.06	94	-6.94	AVG	Н
4804	55.02	-4.28	50.74	74	-23.26	peak	Н
4804	42.67	-4.28	38.39	54	-15.61	AVG	Н
7206	52.36	1.13	53.49	74	-20.51	peak	Н
7206	37.58	1.13	38.71	54	-15.29	AVG	Н
2390	62.07	-9.2	52.87	74	-21.13	peak	V
2390	46.52	-9.2	37.32	54	-16.68	AVG	V
2400	62.22	-9.39	52.83	74	-21.17	peak	V
2400	45.97	-9.39	36.58	54	-17.42	AVG	V
2402	95.11	-9.33	85.78	114	-28.22	peak	V
2402	91.63	-9.33	82.30	94	-11.70	AVG	V
4804	56.42	-4.28	52.14	74	-21.86	peak	V
4804	42.04	-4.28	37.76	54	-16.24	AVG	V
7206	53.00	1.13	54.13	74	-19.87	peak	V
7206	38.61	1.13	39.74	54	-14.26	AVG	V

Report No.:CQASZ20220200204E

Test mode:		Transmitti	ng	Test chann	nel:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2426	99.63	-9.37	90.26	114	-23.74	peak	Н
2426	97.85	-9.37	88.48	94	-5.52	AVG	Н
4852	56.90	-4.14	52.76	74	-21.24	peak	Н
4852	41.58	-4.14	37.44	54	-16.56	AVG	Н
7278	51.94	0.56	52.50	74	-21.50	peak	Н
7278	36.49	0.56	37.05	54	-16.95	AVG	Н
2426	95.93	-9.36	86.57	114	-27.43	peak	V
2426	95.12	-9.36	85.76	94	-8.24	AVG	V
4852	54.74	-4.14	50.60	74	-23.40	peak	V
4852	42.10	-4.14	37.96	54	-16.04	AVG	V
7278	52.76	0.56	53.32	74	-20.68	peak	V
7278	37.37	0.56	37.93	54	-16.07	AVG	V

Report No.:CQASZ20220200204E

Test mode:		Transmitti	ng	Test chann	nel:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2480	99.02	-9.23	89.79	114	-24.21	peak	Н
2480	98.51	-9.23	89.28	94	-4.72	AVG	Н
2483.5	60.57	-9.29	51.28	74	-22.72	Peak	Н
2483.5	45.51	-9.29	36.22	54	-17.78	AVG	Н
4960	55.90	-4.03	51.87	74	-22.13	peak	Н
4960	40.97	-4.03	36.94	54	-17.06	AVG	Н
7440	53.36	1.68	55.04	74	-18.96	peak	Н
7440	38.09	1.68	39.77	54	-14.23	AVG	Н
2480	97.91	-9.23	88.68	114	-25.32	peak	V
2480	93.59	-9.23	84.36	94	-9.64	AVG	V
2483.5	60.08	-9.29	50.79	74	-23.21	peak	V
2483.5	44.53	-9.29	35.24	54	-18.76	AVG	V
4960	56.66	-4.03	52.63	74	-21.37	peak	V
4960	41.54	-4.03	37.51	54	-16.49	AVG	V
7440	52.62	1.68	54.30	74	-19.70	peak	V
7440	35.95	1.68	37.63	54	-16.37	AVG	V

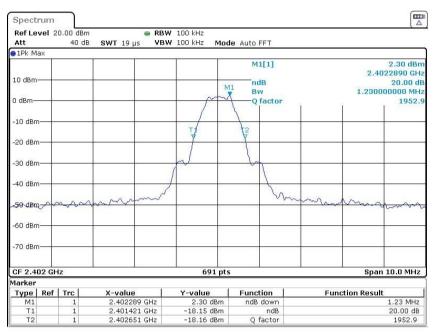

Remark:

- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

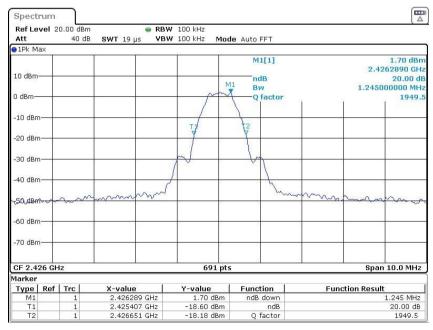
Report No.:CQASZ20220200204E

5.4 20dB Bandwidth

Measurement Data


Test channel	20dB bandwidth (MHz)	Results
Lowest	1.23	Pass
Middle	1.245	Pass
Highest	1.245	Pass

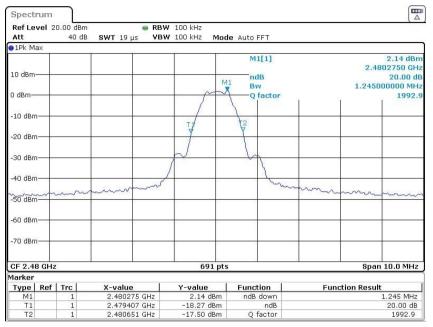
Report No.:CQASZ20220200204E


Test plot as follows:

Test channel: Lowest

Date: 3.MAR.2022 06:24:21

Test channel: Middle



Date: 3.MAR.2022 06:21:51

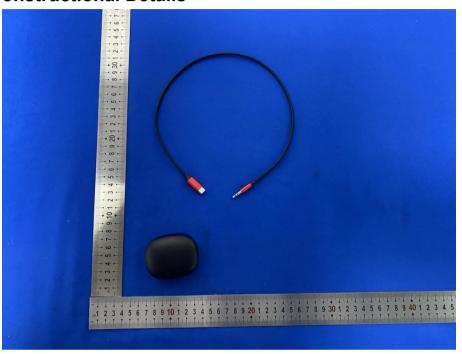
Report No.:CQASZ20220200204E

Test channel: Highest

Date: 3.MAR.2022 06:23:37

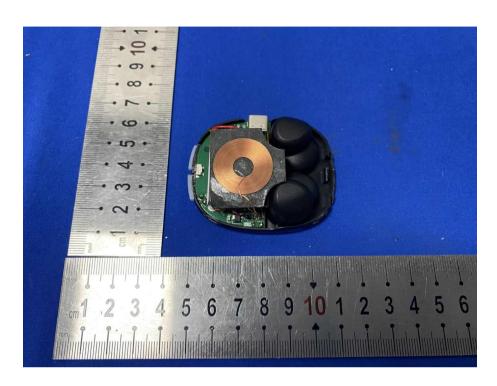
6 Photographs

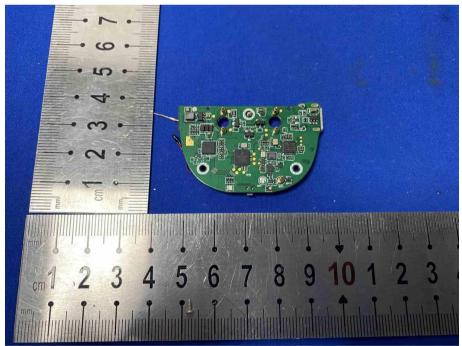
6.1 Radiated Emission Test Setup

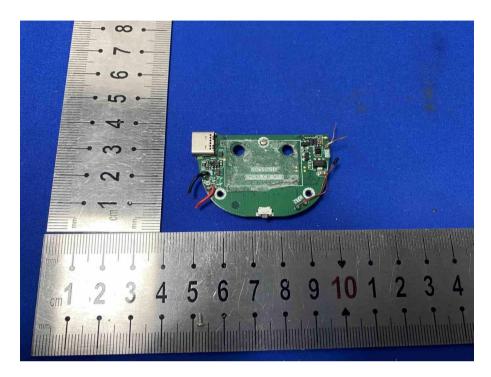


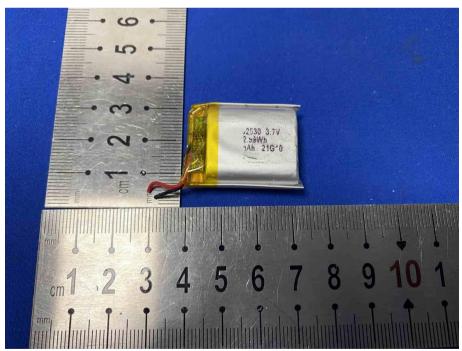
6.2 Conducted Emission Test Setup

6.3 EUT Constructional Details









*** END OF REPORT ***