RF Exposure Evaluation For FCC ID: 2AVLG-GV300TP4GWW

Refer user manual this device is a Vehicle Tracker, and this device was designed used in Mobile devices that the minimum distance between human's body is 20 cm. Based on the 47CFR 2.1091, this device belongs to Mobile device. The definition of the category as following:

Mobile Derives:

CFR Title 47 §2.1091(b)

(b) For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons.

FCC KDB 447498 D01 General RF Exposure Guidance v06 Limit

Devices operating in standalone mobile exposure conditions may contain a single transmitter or multiple transmitters that do not transmit simultaneously. A minimum test separation distance ≥ 20 cm is required between the antenna and radiating structures of the device and nearby persons to apply mobile device exposure limits. The distance must be fully supported by the operating and installation configurations of the transmitter and its antenna(s), according to the source-based time-averaged maximum power requirements of § 2.1091(d)(2). In cases where cable losses or other attenuations are applied to determine compliance, the most conservative operating configurations and exposure conditions must be evaluated. The minimum test separation distance required for a device to comply with mobile exposure conditions must be clearly identified in the installation and operating instructions, for all installation and exposure conditions, to enable users and installers to comply with RF exposure requirements. For mobile devices that have the potential to operate in portable device exposure conditions, similar to the configurations described in § 2.1091(d)(4), a KDB inquiry is required to determine the SAR test requirements for demonstrating compliance.

When the categorical exclusion provision of § 2.1091(c) applies, the minimum test separation distance may be estimated, when applicable, by simple calculations according to plane-wave equivalent conditions, to ensure the transmitter and its antenna(s) can operate in manners that meet or exceed the estimated distance. The source-based time-averaged maximum radiated power, according to the maximum antenna gain, must be applied to calculate the field strength and power density required to establish the minimum test separation distance. When the estimated test separation distance becomes overly conservative and does not support compliance, MPE measurement or computational modeling may be used to determine the required minimum separation distance.

According to FCC Part 1.1307, systems operating under the provisions of this section shall be operated in a manner the ensures that the public is not exposed to radio frequency energy level in excess of the commission's guidelines.

Limits for General Population/ Uncontrolled Exposure								
Frequency Range	Electric Field	Magnetic Field	Power Density					
(MHz)	Strength(E)(V/m)	Strength (H)(A/m)	(S)(mW/cm ²)					
0.3-1.34	614	1.63	(100)*					
1.34-30	824/f	2.19/f	(180/f2)*					
30-300	27.5	0.073	0.2					
300-1500			f/1500					
1500-100,000			1.0					

MPE calculation formula

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density

P = output power (mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Separation distance between radiator and human body (cm)

Output Power Test Data

EIRP BLE							
Mada	GFSK						
Mode	Low Channel Middle Channel Hig						
Peak Power (dBm)	1.82 1.76 1.52						
Antenna Gain (dBi)	-2.6						
EIRP (dBm)	-0.78 -0.84 -1.08						

Note: This report listed the worst case peak power value, please refer to RF test report No. BL-EC21C0995-601 for more details.

GPRS							
Mode	GPRS 850 Note2						
Wiode	Low Channel	Middle Channel	High Channel				
ERP (dBm)	32.78 32.21 32.55						
Mode	GPRS 1900 ^{Note1}						
Wode	Low Channel	Middle Channel	High Channel				
EIRP (dBm)	31.22	31.22	31.40				

Note 1: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R2V1 which was issued by TA Technology (Shanghai) Co., Ltd. on July 23, 2020 for more details.

Note 2: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R1V1 which was issued by TA Technology (Shanghai) Co., Ltd. on July 23, 2020 for more details.

EGPRS								
Mode		EGPRS 850 Note 2						
iviode	Low Channel	Middle Channel	Low Channel					
ERP (dBm)	26.79 25.98 26.40							
Mada	EGPRS 1900 Note1							
Mode	Low Channel	Middle Channel	Low Channel					
EIRP (dBm)	27.23	27.23 27.09 27.10						

Note 1: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R2V1 which was issued by TA Technology (Shanghai) Co., Ltd. on July 23, 2020 for more details.

Note 2: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R1V1 which was issued by TA Technology (Shanghai) Co., Ltd. on July 23, 2020 for more details.

LTE-M1									
Mada	Band	Band	Band	Band	Band	Band	Band	Band	Band
Mode	2 Note1	4 Note4	5 Note2	12 Note4	13 Note4	25 Note1	26 Note3	66 Note4	85 Note4
EIRP/ERP (dBm)	25.23	25.7	24.12	25.1	25.63	25.03	24.94	25.5	24.29

Note 1: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R2V1 which was issued by TA Technology (Shanghai) Co., Ltd. on July 23, 2020 for more details.

Note 2: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R1V1 which was issued by TA Technology (Shanghai) Co., Ltd. on July 23, 2020 for more details.

Note 3: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R3V1 which was issued by TA Technology (Shanghai) Co., Ltd. on July 23, 2020 for more details.

Note 4: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R4V1 which was issued by TA Technology (Shanghai) Co., Ltd. on August 5,2020 for more details.

NB-IOT									
Mode	Band	Band	Band	Band	Band	Band	Band	Band	Band 85
Mode	2 Note1	4 Note3	5 Note2	12 Note3	13 Note3	25 ^{Note1}	66 Note3	71 Note3	Note3
EIRP/ERP (dBm)	25.54	25.68	23.75	25.12	26.01	23.18	25.54	23.2	25.27

Note 1: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R6 which was issued by TA Technology (Shanghai) Co., Ltd. on July 1, 2020 for more details.

Note 2: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R5 which was issued by TA Technology (Shanghai) Co., Ltd. on July 1, 2020 for more details.

Note 3: This report listed the worst case EIRP value, please refer to RF test report No. R2005A0283-R7 which was issued by TA Technology (Shanghai) Co., Ltd. on June 30, 2020 for more details.

Turn-up power

Mode		Range (dBm)
GSM 850	GPRS 850	28.5-30.5
GOINI 000	EGPRS 850	23.5-25.5
CSM 4000	GPRS 1900	28.5-30.5
GSM 1900	EGPRS 1900	25.0-27.0
	Band 2	23.0-25.0
	Band 4	23.0-25.0
LTE-M1	Band 5	23.0-25.0
	Band 12	23.0-25.0
LI E-IVI I	Band 13	23.0-25.0
	Band 26	23.0-25.0
	Band 66	23.0-25.0
	Band 85	23.0-25.0
	Band 2	23.0-25.0
	Band 4	23.0-25.0
	Band 5	23.0-25.0
	Band 12	23.0-25.0
NB-IOT	Band 13	23.0-25.0
	Band 26	23.0-25.0
	Band 66	23.0-25.0
	Band 71	23.0-25.0
	Band 85	23.0-25.0
BLE		1.0-2.5

Assessment result

Evolutio	on mode	Maximum ERP/EIRP (dBm)	Antenna Gain(dBi)	Total Power(mw)	Distance (cm)	Limit of Power Density (mW/cm²)	Power Density (mW/cm²)	Power Density / Limit	Verdict
	GPRS 850	30.5	2.53	2009.093	20	0.549	0.3997	0.7281	Pass
COM	GPRS 1900	30.5	1.59	1618.08	20	1	0.3219	0.3219	Pass
GSM	EGPRS 850	25.5	2.53	635.331	20	0.549	0.1264	0.2302	Pass
	EGPRS 1900	27.0	1.59	722.77	20	1	0.1438	0.1438	Pass
	Band 2	25.0	1.59	456.037	20	1	0.0907	0.0907	Pass
	Band 4	25.0	1.94	494.311	20	1	0.0983	0.0983	Pass
	Band 5	25.0	2.53	566.239	20	0.563	0.1127	0.2002	Pass
	Band 12	25.0	3.26	669.885	20	0.474	0.1333	0.2812	Pass
LTE-M1	Band 13	25.0	4.45	881.049	20	0.52	0.1753	0.3371	Pass
	Band 25	25.0	1.38	434.51	20	1	0.0864	0.0864	Pass
	Band 26	25.0	2.29	535.797	20	0.546	0.1066	0.1952	Pass
	Band 66	25.0	2.0	501.187	20	1	0.0997	0.0997	Pass
	Band 85	25.0	3.26	669.885	20	0.474	0.1333	0.2812	Pass
	Band 2	25.0	1.59	456.037	20	1	0.0907	0.0907	Pass
	Band 4	25.0	1.94	494.311	20	1	0.0983	0.0983	Pass
	Band 5	25.0	2.53	566.239	20	0.566	0.1127	0.1991	Pass
	Band 12	25.0	3.26	669.885	20	0.477	0.1333	0.2795	Pass
NB-IOT	Band 13	25.0	4.45	881.049	20	0.521	0.1753	0.3365	Pass
	Band 25	25.0	1.38	434.51	20	1	0.0864	0.0864	Pass
	Band 66	25.0	2.0	501.187	20	1	0.0997	0.0997	Pass
	Band 71	25.0	1.66	463.447	20	0.442	0.0922	0.2086	Pass
	Band 85	25.0	3.26	669.885	20	0.477	0.1333	0.2795	Pass
ВІ	LE	2.50	-2.60	0.977	20	1.0	0.0002	0.0002	Pass

Collocated Power Density Calculation

Evolution mode	Frequency(MHz)	Power Density/Limit	Σ(Power Density / Limit) of WWAN + BLE	Verdict
GSM 850	824MHz ~ 849MHz	0.7281	0.7283	Pass
BLE	2400MHz ~ 2483.5MHz	0.0002	0.7263	Pass
Evolution mode	Frequency(MHz)	Power Density/Limit	Σ(Power Density / Limit) of WWAN + BLE	Verdict
LTE-M1 Band 13	777MHz ~787MHz	0.3371	0.3373	Pass
BLE	2400MHz ~ 2483.5MHz	0.0002	0.3373	Pass
Evolution mode	Frequency(MHz)	Power Density/Limit	Σ(Power Density / Limit) of WWAN + BLE	Verdict
NB-IOT Band 13	777MHz ~787MHz	0.3365	0.3367	Pass
BLE	2400MHz ~ 2483.5MHz	0.0002	0.5507	Pass

Note:

- 1. Σ (Power Density / Limit): This is a summation of [(power density for each transmitter/ antenna included in the simultaneous transmission)/ (corresponding MPE limit)], for WWAN + BLE.
- 2. Both of the BLE/WWAN can transmit simultaneously, the formula of calculated the MPE is CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

- 3. The worst-case situation is **0.7283**, which is less than "1". This confirmed that the device comply with FCC MPE limit.
- 4. The Vehicle Tracker frequency range used is 824MHz ~ 849MHz, 2400MHz ~ 2483.5MHz and 777MHz ~787MHz, the result close to the limit by the above formula so, we select worst case power to calculate the exclusion power threshold.
- 5. More power list please refer to RF test report.

Conclusion:

RF exposure Evaluation Results: Compliance