

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 1 of 27

TEST REPORT

Application No.:	KSCR2404000691AT
FCC ID:	2AVK2AT60MF1T1RP32A
Applicant:	Airtouch (Shanghai) Intelligent Technology Co., Ltd
Address of Applicant:	11th Floor, Building 4, Lane 388, Shengrong Road, Pudong New Area, Shanghai, China
Manufacturer:	Airtouch (Shanghai) Intelligent Technology Co., Ltd
Address of Manufacturer:	11th Floor, Building 4, Lane 388, Shengrong Road, Pudong New Area, Shanghai, China
Factory:	Airtouch (Shanghai) Intelligent Technology Co., Ltd
Address of Factory:	11th Floor, Building 4, Lane 388, Shengrong Road, Pudong New Area, Shanghai, China
Equipment Under Test (EU	Т):
EUT Name:	60Ghz millimeter wave radar sensor
Model No.:	AT60MF1T1RP32A, AT60MF1T2RS32A, AT60MF1T2RP32A
*	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
Trade Mark:	Airtouch
Standard(s) :	47 CFR Part 15, Subpart C 15.255
Date of Receipt:	2024-04-23
Date of Test:	2024-04-24 to 2024-07-11
Date of Issue:	2024-07-12
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

-CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 2 of 27

Revision Record					
Version	Description	Date	Remark		
00	Original	2024-07-12	/		

Authorized for issue by:		
Tested By	Tommie Tang Tommie_Tang/Project Engineer	
Approved By	Verry Hou Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 3 of 27

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.255	N/A	47 CFR Part 15, Subpart C 15.203	Pass

N/A: Not applicable

Radio Spectrum Matter Part				
ltem	Standard	Method	Requirement	Result
Transmitter power and Transmitter off- times	47 CFR Part 15, Subpart C 15.255	ANSI C63.10, Sections 9.4, 9.5	47 CFR Part 15, Subpart C 15.255(c)(2)(iii)(A)	PASS
Occupied bandwidth	47 CFR Part 15, Subpart C 15.255	ANSI C63.10 (2013) Section 9.3	47 CFR Part 15, Subpart C 15.215(c),15.255(c2)	PASS
Radiated spurious emissions below 40 GHz	47 CFR Part 15, Subpart C 15.255	ANSI C63.10 (2013) Section 9.13	47 CFR Part 15, Subpart C 15.255(d)(2)	PASS
Radiated emissions outside assigned band and above 40 GHz up to 200 GHz	47 CFR Part 15, Subpart C 15.255	ANSI C63.10 (2013) Section 9.9, 9.12	47 CFR Part 15, Subpart C 15. 255(d)(3)	PASS
Frequency stability	47 CFR Part 15, Subpart C 15.255	ANSI C63.10 (2013) Section 9.4	47 CFR Part 15, Subpart C 15. 255(f)	PASS

Declaration of EUT Family Grouping:

Note: There are series models mentioned in this report, and they are identical in electrical and electronic characters. Only the model AT60MF1T1RP32A was tested since their differences were the model number and software which adapts to different application scenarios without affecting RF parameters.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 4 of 27

3 Contents

		Page
1 C	OVER PAGE	1
2 T	EST SUMMARY	3
3 C	ONTENTS	4
4 G	ENERAL INFORMATION	5
4.1	DETAILS OF E.U.T.	5
4.2	DESCRIPTION OF SUPPORT UNITS	-
4.3	Measurement Uncertainty	
4.4	TEST LOCATION	
4.5	TEST FACILITY	6
4.6	DEVIATION FROM STANDARDS	6
4.7	ABNORMALITIES FROM STANDARD CONDITIONS	6
5 E	QUIPMENT LIST	7
6 R	ADIO SPECTRUM TECHNICAL REQUIREMENT	9
6.1	ANTENNA REQUIREMENT	
7 R	ADIO SPECTRUM MATTER TEST RESULTS	10
7.1	OCCUPIED BANDWIDTH	10
7.2	TRANSMITTER POWER AND TRANSMITTER OFF-TIMES	-
7.3	OUT OF BAND RADIATED EMISSIONS BELOW 40 GHZ	
7.4	OUT OF BAND RADIATED EMISSIONS ABOVE 40 GHZ	
7.5	FREQUENCY STABILITY	17
8 T	EST SETUP PHOTO	19
9 E	UT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	
10 A	PPENDIX	20
10.1	OCCUPIED BANDWIDTH	
10.2		
10.3		
10.4		
10.5	FREQUENCY STABILITY	27

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 5 of 27

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.3V
Frequency:	59-64GHz
Modulation Type:	FMCW
Antenna Type:	Integrated Patch Antenna
Antenna Gain:	5dBi (Provided by the manufacturer)

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
DC Power Supply	Agilent	E3632A	/

4.3 Measurement Uncertainty

No.	ltem	Measurement Uncertainty	
1	Radio Frequency	8.4 x 10 ⁻⁸	
2	Timeout	2s	
3	Duty Cycle	0.37%	
4	Occupied Bandwidth	3%	
F	DE Dedicted Dewer	5.2dB (Below 1GHz)	
5	RF Radiated Power	5.9dB (Above 1GHz)	
		4.2dB (Below 30MHz)	
<u> </u>	Dedicted Courieus Emission Test	4.5dB (30MHz-1GHz)	
6	Radiated Spurious Emission Test	5.1dB (1GHz-18GHz)	
		5.4dB (Above 18GHz)	
7	Temperature Test	1°C	
8	Humidity Test	3%	
9	Supply Voltages	1.5%	
10	Time	3%	
Note:	The measurement uncertainty represent	ts an expanded uncertainty expressed at	

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 6 of 27

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

1.SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).

2.SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory.

Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 7 of 27

5 Equipment List

Item	Equipment	Manufacturer	Model	Inventory No	Cal Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/24/2023	08/23/2024
2	PXA Spectrum Analyzer	KEYSIGHT	N9030B	KSEM021-1	01/15/2024	01/14/2025
3	Signal Generator	Agilent	E8257C	KS301066	08/24/2023	08/23/2024
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025
6	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/15/2024	01/14/2025
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	04/07/2023	04/06/2025
8	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	08/24/2023	08/23/2024
9	Amplifier(18~40GHz)	PANSHAN TECHNOLOGY	LNA180400G40	KSEM038	08/24/2023	08/23/2024
10	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	01/07/2024	01/06/2026
11	Horn-antenna(40-60GHz)	ERAVANT	SAZ-2410-19- S1	KSEM003-1	02/02/2021*	02/01/2031**
12	Horn-antenna(50-75GHz)	ERAVANT	SAZ-2410-15- S1	KSEM003-2	02/02/2021*	02/01/2031**
13	Horn-antenna(50-75GHz)	ERAVANT	SAZ-2410-15- S1	KSEM003-7	12/14/2022*	12/13/2032**
14	Horn-antenna(60-90GHz)	ERAVANT	SAZ-2410-12- S1	KSEM003-8	12/14/2022*	12/13/2032**
15	Horn-antenna(75-110GHz)	ERAVANT	SAZ-2410-10- S1	KSEM003-3	02/02/2021*	02/01/2031**
16	Horn-antenna(90-140GHz)	ERAVANT	SAZ-2410-08- S1	KSEM003-9	12/14/2022*	12/13/2032**
17	Horn-antenna(110-170GHz)	ERAVANT	SAZ-2410-06- S1	KSEM003-4	02/02/2021*	02/01/2031**
18	Horn-antenna(140-220GHz)	ERAVANT	SAZ-2410-05- S1	KSEM003-5	02/02/2021*	02/01/2031**
19	Horn-antenna(140-220GHz)	ERAVANT	SAZ-2410-05- S1	KSEM003-10	12/14/2022*	12/13/2032**
20	Horn-antenna(220-325GHz)	ERAVANT	SAR-2309-03- S2	KSEM003-6	02/02/2021*	02/01/2031**
21	Extended waveguide(40- 60GHz)	ERAVANT	SWG-19025-FB	KSEM004-1	02/02/2021*	02/01/2031**
22	Extended waveguide(50- 75GHz)	ERAVANT	SWG-15025-FB	KSEM004-2	02/02/2021*	02/01/2031**
23	Extended waveguide(50- 75GHz)	ERAVANT	SWG-15025-FB	KSEM004-7	12/14/2022*	12/13/2032**
24	Extended waveguide(60- 90GHz)	ERAVANT	SWG-12025-FB	KSEM004-8	12/14/2022*	12/13/2032**
25	Extended waveguide(75- 110GHz)	ERAVANT	SWG-10025-FB	KSEM004-3	02/02/2021*	02/01/2031**
26	Extended waveguide(90- 140GHz)	ERAVANT	SWG-08025-FB	KSEM004-9	12/14/2022*	12/13/2032**
27	Extended waveguide(110- 170GHz)	ERAVANT	SWG-06025-FB	KSEM004-4	02/02/2021*	02/01/2031**
28	Extended waveguide(140- 220GHz)	ERAVANT	SWG-05025-FB	KSEM004-5	02/02/2021*	02/01/2031**
29	Extended waveguide(140- 220GHz)	ERAVANT	SWG-05025-FB	KSEM004-10	12/14/2022*	12/13/2032**
30	Extended waveguide(220- 325GHz)	ERAVANT	SWG-03025-FB	KSEM004-6	02/02/2021*	02/01/2031**
31	Harmonic mixer(40-60GHz)	ERAVANT	STH-19SF-S1	KSEM005-2	10/01/2020*	09/30/2030**

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 8 of 27

32	Harmonic Mixer(50-75GHz)	VDI	SAX WR15	KSEM007-1	08/23/2023*	08/23/2033**
33	Harmonic Mixer(60-90GHz)	VDI	SAX WR12	KSEM007-2	08/23/2023*	08/23/2033**
34	Harmonic mixer(90-140GHz)	VDI	SAX WR8.0	KSEM007-3	08/23/2023*	08/23/2033**
35	Harmonic mixer(140- 220GHz)	VDI	SAX WR5.1	KSEM007-4	08/23/2023*	08/23/2033**
36	Harmonic mixer(220- 325GHz)	ERAVANT	HM 220-325	KSEM005-4	04/20/2021*	04/19/2031**
37	Upconverter	Talent	TMAM-060090- 0612-12-AC	KSEM043	01/18/2022*	01/17/2032**
38	RE Test Cable	ERAVANT MICROWAVE	/	CZ301097	11/10/2023	11/09/2024
39	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	03/19/2024	03/18/2025
40	Software	Faratronic	EZ_EMC-v 3A1	/	NCR	NCR
41	Software	ESE	E3_V 6.111221a	/	NCR	NCR

*Calibration date provided by the equipment manufacturer.

**Calibration every ten years. During this period, there will be daily check files for the equipment and the requirements for operators will be clearly defined through SOP.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 9 of 27

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

FCC 47 CFR Part 15C Section 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

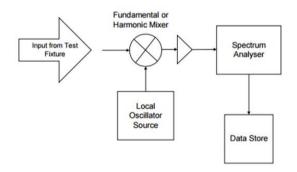
The antenna is Integrated Patch Antenna and no consideration of replacement. Antenna location: Refer to EUT Photos.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 10 of 27

7 Radio Spectrum Matter Test Results

7.1 Occupied bandwidth


Test Requirement47 CFR Part 15, Subpart C 15.215(c),15.255(c2)Test Method:ANSI C63.10, Section 9.3

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:50.1 % RHAtmospheric Pressure:1010 mbarTest Mode:a: TX mode _ Keep the EUT in continuously transmitting mode.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

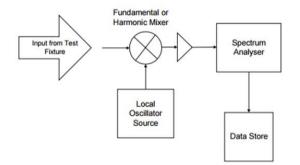
- 1) Place the EUT on the table and set it in the transmitting mode
- SA set RBW=1%~5% OBW, VBW=3*RBW and Detector=Peak, or a minimum of 1 MHz if this is not possible due to a large OBW.
- 3) Measure and record the result of 20dB and 99% bandwidth

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 11 of 27

7.2 Transmitter power and Transmitter off-times


Test Requirement	47 CFR Part 15, Subpart C 15.255(c)(2)(iii)(A)
Test Method:	ANSI C63.10, Sections 9.4, 9.5
Limit:	The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds.

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:50.1 % RHAtmospheric Pressure:1010 mbarTest Mode:a: TX mode _ Keep the EUT in continuously transmitting mode.

7.2.2 Test Setup Diagram

7.2.3 Measurement Procedure and Data

- 1) Place the EUT on the table and set it in the transmitting mode
- 2) SA set RBW=1MHz , VBW=3*RBW , Detector=Peak/Average, Trace: Mask Hold, Peak Search
- 3) The EUT was turned from 0 degrees to 360 degrees to find the maximum reading.

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 12 of 27

7.3 Out of band radiated emissions below 40 GHz

Test Requirement	47 CFR Part 15, Subpart C 15.255(d)(2)
Test Method:	ANSI C63.10, Section 9.13
Limit:	

Below 30MHz

Frequency	Field Strength (µV/m)	Measurement Distance (metres)
9 - 490 kHz	2,400/F (kHz)	300
490 - 1,705 kHz	24,000/F (kHz)	30
1.705-30 MHz	30	30

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

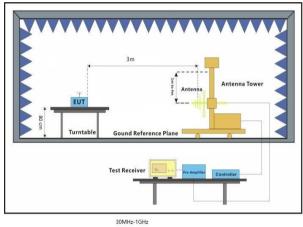
Above 30MHz

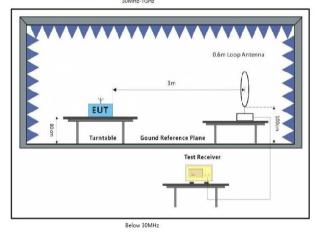
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (metres)
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

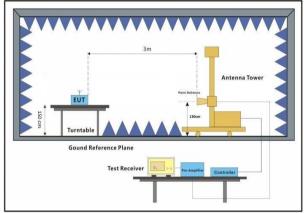
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

Frequency (MHz)	Field strength at 3 m, dB(uV/m)* Within restricted bands						
	Peak	Peak Quasi Peak Average					
0.009 - 0.090	148.5 - 128.5	NA	128.5 - 108.5**				
0.090 - 0.110	NA	108.5 - 106.8**	NA				
0.110 - 0.490	126.8 - 113.8	NA	106.8 - 93.8**				
0.490 - 1.705		73.8 - 63.0**					
1.705 - 30.0*		69.5					
30 - 88		40.0					
88 - 216	NA	43.5	NA				
216 - 960		46.0					
960-40000		54.0					

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400069101 Page: 13 of 27


7.3.1 E.U.T. Operation


Operating Environment:

Temperature:24.5 °CHumidity:50.1 % RHAtmospheric Pressure:1010 mbarTest Mode:a: TX mode _ Keep the EUT in continuously transmitting mode.

7.3.2 Test Setup Diagram

1GHz-40GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 14 of 27

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For 1-40GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was t tuned to the same hight (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

h. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Remark 3: Scan from 9kHz to 30MHz, the disturbance was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

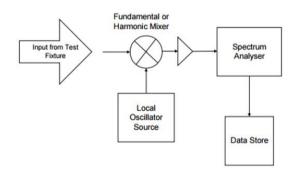
Report No.: KSCR240400069101 Page: 15 of 27

7.4 Out of band radiated emissions above 40 GHz

Test Requirement	47 CFR Part 15, Subpart C 15.255(d)(3)
Test Method:	ANSI C63.10, Section 9.9, 9.12
Limit:	

Above 40GHz

Frequency (GHz)	Power density at 3 m distance (pW/cm ²)	Distance (m)	Field strength (dBuV/m)*, peak	Field strength (dBuV/m)*, average		
40 - 200	90	3.0	105.31	85.31		
* - Field strength was calculated per equation (26) of ANSI C63 10-2013 section 9 as follows: E=sort(PDx377)						


* - Field strength was calculated per equation (26) of ANSI C63.10-2013 section 9 as follows: E=sqrt(PDx377), where PD is the power density at the distance specified by the limit in W/m², E- field strength in V/m.

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:	24.5 °C	Humidity:	50.1% RH	Atmospheric Pressure: 1010	mbar
Test mode:	a: TX mod	le _ Keep the	e EUT in continu	ously transmitting mode.	

7.4.2 Test Setup Diagram

Above 40GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 16 of 27

7.4.3 Measurement Procedure and Data

a. For above 40GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation

b. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to the same hight (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

e. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

f. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

g. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Please Refer to Appendix for Details

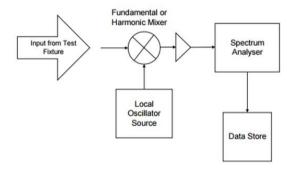
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 17 of 27

7.5 Frequency stability

Test Requirement	47 CFR Part 15, Subpart C 15. 255(f)
Test Method:	ANSI C63.10, Section 9.14

Limit:


Frequency (GHz)	Limit
57 - 64	The signal must be contained within assigned frequency band

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:50.1% RHAtmospheric Pressure:1010mbarTest mode:a: TX mode _ Keep the EUT in continuously transmitting mode.

7.5.2 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 18 of 27

7.5.3 Measurement Procedure and Data

- 1. Temperature conditions:
 - a) The RF output port of the EUT was connected to Frequency Meter;
 - b) Set the working Frequency in the middle channel;
 - c) record the 20°C and norminal voltage frequency value as reference point;
 - d) vary the temperature from -20°C to 50°C with step 10°C
 - e) when reach a temperature point, keep the temperature banlance at least 1 hour to make the product working in this status;
 - f) read the frequency at the relative temperature.
- 2. Voltage conditions:
 - a) record the 20°C and norminal voltage frequency value as reference point;
 - b) vary the voltage from -15% norminal voltage to +15% voltage; read the frequency at the relative voltage.

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 19 of 27

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2404000691AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2404000691AT

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

 Report No.:
 KSCR240400069101

 Page:
 20 of 27

10 Appendix

10.1 Occupied bandwidth

Centre Frequency (GHz)	99% OCW (MHz)	-20dB OCW (MHz)	F∟ (GHz)	F _H (GHz)	Limit (GHz)	Result
61.501	4866.3	4872.3	59.062	63.928	57-64	Pass

Remark:

FL: Frequency Low Band Edge, FH: Frequency High Band Edge

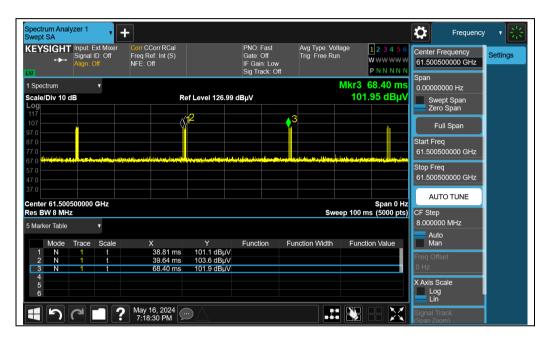
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 21 of 27

10.2 Transmitter power and Transmitter off-times

Frequency (GHz)	Distance (m)	Polarity	dBuV/m @ 3m	E.I.R.P. Power (dBm)	E.I.R.P Limit (dBm)	Remark	Result
61.501	3	Horizontal	105.96	10.73	14	peak	Pass
01.501	5	Vertical	94.73	-0.50	14	peak	Pass

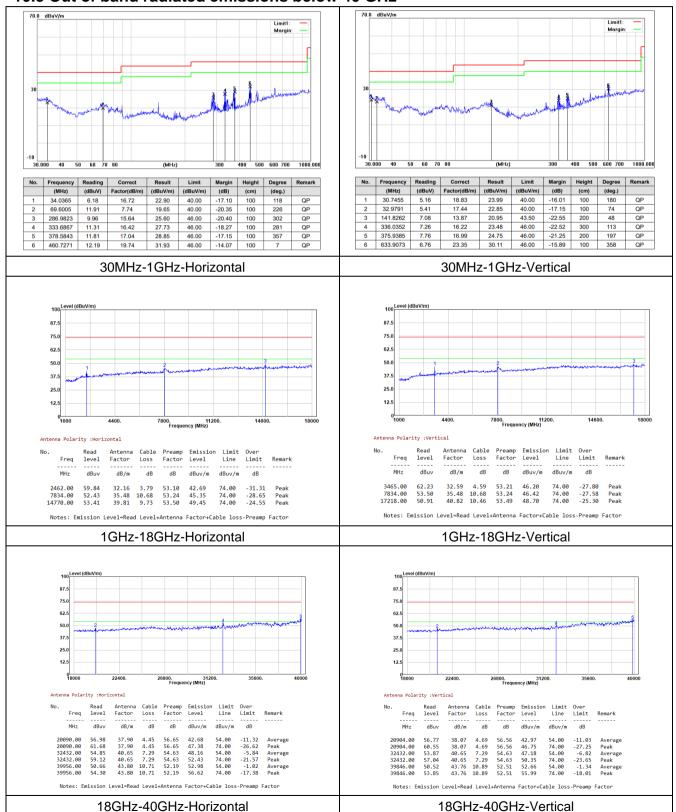
Remark: EIRP[dBm] = E[dB μ V/m] + 20 log(d[meters]) - 104.77, where E = field strength and d = distance at which field strength limit is specified in the rules



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 22 of 27

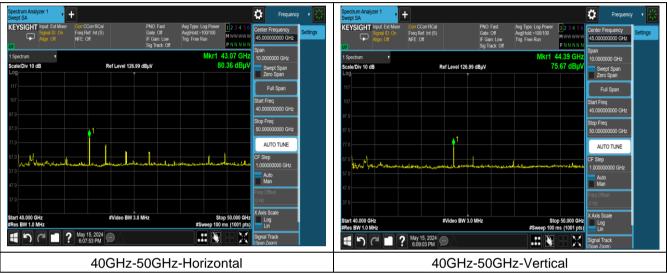
Frequency (GHz)	Transmitter off- times (ms)	Limit (ms)	Result
61.501	28.76	≥25.5	Pass



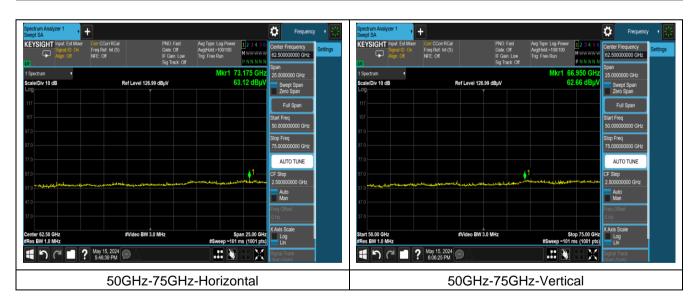
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

 Report No.:
 KSCR240400069101

 Page:
 23 of 27



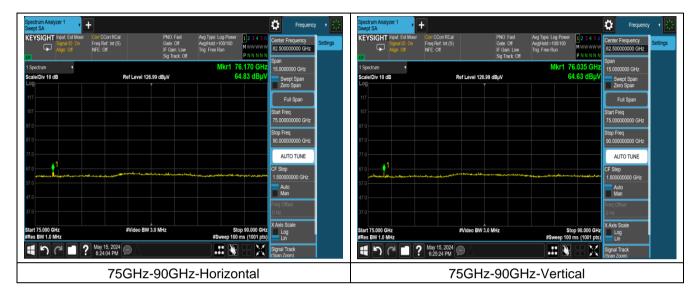
10.3 Out of band radiated emissions below 40 GHz


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

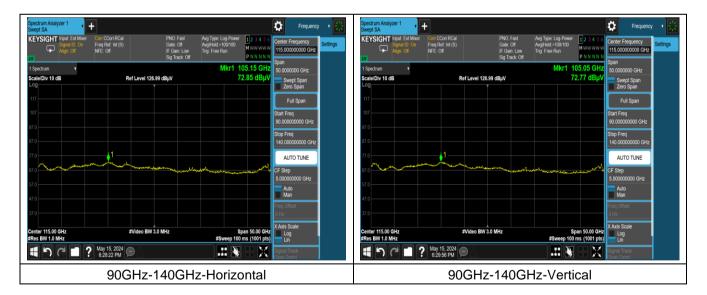
Report No.: KSCR240400069101 Page: 24 of 27

10.4 Out of band radiated emissions above 40 GHz

Frequency (GHz)	Distance (M)	PK Value (dBuV/m)	PK Limit AV Limit (dBuV/m) (dBuV/m)		Polarization	Result
44.08	3	69.97	105.31	85.31	Horizontal	PASS
43.96	3	69.64	105.31	85.31	Vertical	PASS



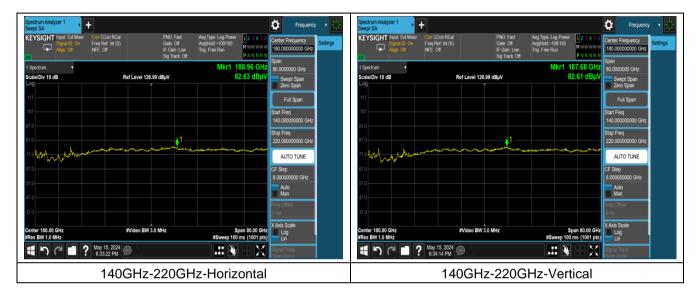
Frequency (GHz)	Distance (M)	PK Value (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Polarization	Result
73.175	3	63.12	105.31	85.31	Horizontal	PASS
66.950	3	62.66	105.31	85.31	Vertical	PASS



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 25 of 27

Frequency (GHz)	Distance (M)	PK Value (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Polarization	Result
76.170	3	64.83	105.31	85.31	Horizontal	PASS
76.035	3	64.63	105.31	85.31	Vertical	PASS



Frequency (GHz)	Distance (M)	PK Value (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Polarization	Result
105.15	3	72.85	105.31	85.31	Horizontal	Pass
105.05	3	72.77	105.31	85.31	Vertical	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 26 of 27

Frequency (GHz)	Distance (M)	PK Value (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Polarization	Result
188.96	3	82.63	105.31	85.31	Horizontal	Pass
187.68	3	82.61	105.31	85.31	Vertical	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400069101 Page: 27 of 27

10.5 Frequency stability

Frequency Stability vs temperature: Test for 57GHz to 64GHz (Channel=61.501GHz)

Frequency (GHz)	Temperature (°C)	Voltage (V DC)	F∟ (GHz)	Limit (GHz)	F _H (GHz)	Limit (GHz)	Result
	50	3.300	59.0626	57	63.9284	64	Pass
	40	3.300	59.0625	57	63.9285	64	Pass
	30	3.300	59.0626	57	63.9285	64	Pass
	20	3.300	59.0624	57	63.9283	64	Pass
57-64	10	3.300	59.0627	57	63.9286	64	Pass
57-64	0	3.300	59.0624	57	63.9285	64	Pass
	-10	3.300	59.0626	57	63.9286	64	Pass
	-20	3.300	59.0623	57	63.9287	64	Pass
	20	3.795	59.0625	57	63.9283	64	Pass
	20	3.000	59.0626	57	63.9287	64	Pass

Remark 1: F_L : Frequency Low Band Edge, F_H : Frequency High Band Edge

Remark 2: We use DC 3.0V as lowest voltage in extreme environment test since the absolute working voltage of EUT is DC 3.0V~5.5V.