FCC TEST REPORT

For
SHENZHEN YNC ELECTRONIC CO., LTD
tablet

Test Model: KIDS706

Additional Model No.: KIDS09, KIDS08, KIDS06, KIDS05, KIDS02, KIDS01,

MID733

Prepared for	SHENZHEN YNC ELECTRONIC CO., LTD
Address	Room 501, Building 9, Longjun Industrial zone, Longping community, Dalang street, Longhua district, Shenzhen, China
Prepared by	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	(+86)755-82591330
Fax	(+86)755-82591332
Web	www.LCS-cert.com
Mail	webmaster@LCS-cert.com
Date of receipt of test sample	December 09, 2019
Number of tested samples	1
Serial number	Prototype
Date of Test	December 09, 2019 ~ December 23, 2019
Date of Report	December 28, 2019

	FCC TEST REPORT FCC CFR 47 PART 15 C(15.247)
Report Reference No. : LCS191125139AEC	
Date of Issue : December 28, 2019	

Compiled by:

[^0]Supervised by:

Jin Wang/ Technique principal

Approved by:

FCC -- TEST REPORT

Test Report No. :	LCS191125139AEC	$\frac{\text { December 28, } 2019}{\text { Date of issue }}$
EUT \qquad Type / Model.	: tablet : KIDS706	
Applicant. \qquad Address \qquad Telephone. \qquad Fax. \qquad	: SHENZHEN YNC ELECTRONIC CO., LTD : Room 501, Building 9, Longjun Industrial zone, Longping community, Dalang street, Longhua district, Shenzhen, China : / : /	
Manufacturer \qquad Address \qquad Telephone. \qquad Fax. \qquad	: SHENZHEN YNC ELECTRONIC CO., LTD : Room 501, Building 9, Longjun Industrial zone, Longping community, Dalang street, Longhua district, Shenzhen, China : 1 : 1	
Factory \qquad Address \qquad Telephone \qquad Fax. \qquad	: SHENZHEN YNC ELECTRONIC CO., LTD : Room 501, Building 9, Longjun Industrial zone, Longping community, Dalang street, Longhua district, Shenzhen, China : 1 :/	

Test Result	Positive

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	December 28, 2019	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION 6
1.1. Description of Device (EUT) 6
1.2. Host System Configuration List and Details 7
1.3. External I/O Cable 7
1.4. Description of Test Facility 7
1.5. Statement of the Measurement Uncertainty 7
1.6. Measurement Uncertainty 7
1.7. Description of Test Modes 8
1.8. ChANNEL LIST \& FREQUENCY. 8
2. TEST METHODOLOGY 9
2.1. EUT Configuration 9
2.2. EUT EXERCISE 9
2.3. General Test Procedures 9
3. SYSTEM TEST CONFIGURATION 10
3.1. Justification 10
3.2. EUT ExERCISE SOFTWARE 10
3.3. Special Accessories 10
3.4. BLOCK DIAGRAM/SCHEMATICS 10
3.5. EQUIPMENT MODIFICATIONS 10
3.6. Test Setup 10
4. SUMMARY OF TEST RESULTS 11
5. TEST RESULT 12
5.1. On Time and Duty Cycle 12
5.2. Maximum Conducted Output Power Measurement 13
5.3. Power Spectral Density Measurement 14
5.4. 6 dB Spectrum Bandwidth Measurement 16
5.5. Radiated Emissions Measurement 17
5.6. Conducted Spurious Emissions and Band Edges Test 29
5.7. AC POWER LINE CONDUCTED EMISSIONS 29
5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS 33
5.9. ANTENNA REQUIREMENTS 35
6. LIST OF MEASURING EQUIPMENTS 36
7. TEST SETUP PHOTOGRAPHS OF EUT 36
8. EXTERIOR PHOTOGRAPHS OF THE EUT 37
9. INTERIOR PHOTOGRAPHS OF THE EUT 37

1. GENERAL INFORMATION

1.1. Description of Device (EUT)	
EUT	: tablet
Test Model	: KIDS706
Additional Model	: KIDS09, KIDS08, KIDS06, KIDS05, KIDS02, KIDS01, MID733
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested
Power Supply	DC 3.7V by Rechargeable Li-polymer Battery(2500mAh) Recharged by DC 5V/2.0A Adapter
Hardware version	: YK86VC-3326-LPDDR_V1.0
Software version	: Android 8.1/9.0
Bluetooth	
Frequency Range	: $2402 \mathrm{MHz-2480MHz}$
Bluetooth Version	: V2.1
Bluetooth Channel Number	: 79 Channels for Bluetooth V2.1 (DSS)
Bluetooth Channel Spacing	: 1MHz for Bluetooth V2.1 (DSS)
Bluetooth Modulation Type	: GFSK, m/4-DQPSK, 8-DPSK for Bluetooth V2.1 (DSS)
Antenna Description	: PIFA Antenna, 0dBi(Max.)
2.4G WLAN	
Frequency Range	: $2412 \mathrm{MHz}-2462 \mathrm{MHz}$
Channel Number	: 11 Channels for 20MHz bandwidth(2412~2462MHz)
	7 Channels for 40MHz bandwidth(2422~2452MHz)
Channel Spacing	: 5 MHz
Modulation Type	: IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK)
	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK,BPSK)
Antenna Description	: PIFA Antenna, 0dBi(Max.)

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN SNROX	Power	SR-D502	---	FCC
ELECTRONIC CO.,LTD	Adapter	YQ5015-P25	--	

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
Micro USB Interface	1	1.0 m, unshielded
Earphone Jack	1	---
TF Card Interface	1	---

1.4. Description of Test Facility

FCC Registration Number is 254912.
Industry Canada Registration Number is 9642A-1.
EMSD Registration Number is ARCB0108.
UL Registration Number is 100571-492.
TUV SUD Registration Number is SCN1081.
TUV RH Registration Number is UA 50296516-001.
NVLAP Accreditation Code is 600167-0.
FCC Designation Number is CN5024.
CAB identifier is CN0071.
The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1 GHz .

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty	$9 \mathrm{KHz} \sim 30 \mathrm{MHz}$	$\pm 3.10 \mathrm{~dB}$	(1)
	$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	$\pm 2.96 \mathrm{~dB}$	(1)
	$200 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	$\pm 3.10 \mathrm{~dB}$	(1)
	$1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$	$\pm 3.80 \mathrm{~dB}$	(1)
	$26.5 \mathrm{GHz} \sim 40 \mathrm{GHz}$	$\pm 3.90 \mathrm{~dB}$	(1)
Conduction Uncertainty	$:$	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	$\pm 1.63 \mathrm{~dB}$
Power Disturbance	$: 30 \mathrm{MHz} \sim 300 \mathrm{MHz}$	$\pm 1.60 \mathrm{~dB}$	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$.

1.7. Description of Test Modes

The EUT has been tested under operating condition.
This test was performed with EUT in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ position and the worst case was found when EUT in X position.

Worst-case mode and channel used for $150 \mathrm{KHz}-30 \mathrm{MHz}$ power line conducted emissions was the mode and channel with the highest output power, which was determined to be IEEE 802.11b mode (High Channel).

Worst-case mode and channel used for $9 \mathrm{KHz}-1000 \mathrm{MHz}$ radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11b mode(High Channel).

Pre-test AC conducted emission at both voltage AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$ and $\mathrm{AC} 240 \mathrm{~V} / 60 \mathrm{~Hz}$, recorded worst case.
Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11b Mode: 1 Mbps, DSSS.
IEEE 802.11g Mode: 6 Mbps, OFDM.
IEEE 802.11n Mode HT20: MCSO, OFDM.
IEEE 802.11n Mode HT40: MCS8, OFDM.

1.8. Channel List \& Frequency

IEEE 802.11b/g/n HT20

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
$2412 \sim 2462 \mathrm{MHz}$	1	2412	7	2442
	2	2417	8	2447
	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462

IEEE 802.11n HT40

Frequency Band	Channel No.	Frequency(MHz)
$2422 \sim 2452 \mathrm{MHz}$	1	2422
	2	2427
	3	2432
	4	2437
	5	2442
	6	2447

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance are required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition. The duty cycle is 100% and the average correction factor is 0 .

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (Realtek_RF_MP_Tool_Guidelines_V18) provided by applicant.

3.3. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
--	--	--	--	--

3.4. Block Diagram/Schematics

Please refer to the related document.

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C			
FCC Rules	Description of Test	Result	Remark
$/$	On Time and Duty Cycle	$/$	Appendix B.1
$\S 15.247(\mathrm{~b})$	Maximum Conducted Output Power	Compliant	Appendix B.2
$\S 15.247(\mathrm{e})$	Power Spectral Density	Compliant	Appendix B.3
$\S 15.247(\mathrm{a})(2)$	6dB Bandwidth	Compliant	Appendix B.4
$\S 15.209, \S 15.247(\mathrm{~d})$	Conducted Spurious Emissions	Compliant	Appendix B.5 Appendix B.6
$\S 15.209, \S 15.247(\mathrm{~d})$	Radiated Spurious Emissions	Compliant	Note 1
$\S 15.205$	Emissions at Restricted Band	Compliant	Appendix B.7
$\S 15.207(\mathrm{a})$	Conducted Emissions	Compliant	Note 1
$\S 15.203$	Antenna Requirements	Compliant	Note 1
$\S 15.247(\mathrm{i}) \S 2.1091$	RF Exposure	Compliant	Note 2

Remark:

1. Note 1 - Test results inside test report;
2. Note 2 - Test results in other test report (RF Exposure Evaluation Report);

5. TEST RESULT

5.1. On Time and Duty Cycle

5.1.1. Standard Applicable

None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

5.1.3. Test Procedures

1. Set the center frequency of the spectrum analyzer to the transmitting frequency;
2. Set the span $=0 \mathrm{MHz}$, RBW $=8 \mathrm{MHz}$, VBW $=50 \mathrm{MHz}$, Sweep time $=5 \mathrm{~ms}$;
3. Detector = peak;
4. Trace mode = Single hold.

5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

For reporting purpose only.
Please refer to Appendix B.1.

5.2. Maximum Conducted Output Power Measurement

5.2.1. Standard Applicable

According to $\S 15.247$ (b): For systems using digital modulation in the $2400-2483.5 \mathrm{MHz}$ and $5725-5850$ MHz band, the limit for maximum peak conducted output power is 30 dBm . The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6 dBi . In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

Systems operating in the $5725-5850 \mathrm{MHz}$ band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.

5.2.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the power meter.

5.2.3. Test Procedures

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.
5.2.6. Test Result of Maximum Conducted Output Power

Temperature	$24.5^{\circ} \mathrm{C}$	Humidity	54.2%
Test Engineer	Alisa Huang	Configurations	IEEE $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$

PASS
Please refer to Appendix B.2.
Remark:
1). Measured output power at difference data rate for each mode and recorded worst case for each mode.
2). Test results including cable loss;
3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40

5.3. Power Spectral Density Measurement

5.3.1. Standard Applicable

According to $\S 15.247(\mathrm{e})$: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures

1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
3. Set the RBW $=30 \mathrm{kHz}$.
4. Set the VBW $\geq 3 * R B W$
5. Set the span to 1.5 times the DTS channel bandwidth.
6. Detector = peak.
7. Sweep time = auto couple
8. Trace mode = max hold
9. Allow trace to fully stabilize.
10. Use the peak marker function to determine the maximum power level.
11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
12. The resulting peak PSD level must be 8 dBm .

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Power Spectral Density

PASS

Please refer to Appendix B.3.

Remark:
1). Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode;

[^1]
2). Test results including cable loss;

3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5 Mbps at IEEE 802.11n HT4O

5.4. 6 dB Spectrum Bandwidth Measurement

5.4.1. Standard Applicable

According to $\S 15.247$ (a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
RBW	100 KHz
VBW	300 KHz
Span Frequency	30 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	100 ms

5.4.3. Test Procedures

1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
3. Measured the spectrum width with power higher than 6 dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Test Result of 6 dB Spectrum Bandwidth

PASS

Please refer to Appendix B.4.

Remark:
1). Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.
2). Test results including cable loss;
3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5 Mbps at IEEE 802.11n HT40

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
$\begin{aligned} & 12.57675-12.57725 \\ & 13.36-13.41 \end{aligned}$	322-335.4	3600-4400	(\2
)			

\1\Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
\2\ Above 38.6
According to $\S 15.247$ (d): 20 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength $($ microvolts $/ \mathrm{meter})$	Measurement Distance $($ meters $)$
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{KHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{KHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	$10^{\text {in }}$ carrier harmonic
RB / VB (Emission in restricted band)	$1 \mathrm{MHz} / 1 \mathrm{MHz}$ for Peak, $1 \mathrm{MHz} / 1 / \mathrm{B} \mathrm{kHz}$ for Average
RB / VB (Emission in non-restricted band)	$1 \mathrm{MHz} / 1 \mathrm{MHz}$ for Peak, $1 \mathrm{MHz} / 1 / \mathrm{B} \mathrm{kHz}$ for Average

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	$9 \mathrm{kHz} \sim 150 \mathrm{kHz} / \mathrm{RB} / \mathrm{VB} 200 \mathrm{~Hz} / 1 \mathrm{KHz}$ for QP/AVG
Start \sim Stop Frequency	$150 \mathrm{kHz} \sim 30 \mathrm{MHz} / \mathrm{RB} / \mathrm{VB} 9 \mathrm{kHz} / 30 \mathrm{KHz}$ for QP/AVG
Start \sim Stop Frequency	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz} /$ RB/VB 120kHz/1MHz for QP

[^2]
5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
--- If the EUT is a floor standing device, it is placed on the ground.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 3 meter.
--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.
--- The antenna height is 1.5 meter.
--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 3 meter.
--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.
--- The antenna is polarized vertical and horizontal.
--- The antenna height changes from 1 to 3 meter.
--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.
--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^{\circ}$) and antenna movement between 1 and 4 meter.
--- The final measurement will be done with QP detector with an EMI receiver.
--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 3 meter.
--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.
--- The antenna is polarized vertical and horizontal.
--- The antenna height scan range is 1 meter to 2.5 meter.
--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.
--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^{\circ}$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 1 meter.
--- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

5.5.4. Test Setup Layout

Above 1GHz
Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 $\mathrm{dB} /$ decade form 3 m to 1 m .

Distance extrapolation factor $=20 \log$ (specific distance $[3 \mathrm{~m}] /$ test distance $[1 \mathrm{~m}])(\mathrm{dB})$;
Limit line $=$ specific limits $(\mathrm{dBuV})+$ distance extrapolation factor $[6 \mathrm{~dB}]$.

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.
5.5.6. Results of Radiated Emissions ($9 \mathrm{kHz} \sim 30 \mathrm{MHz}$)

Temperature	$22.5^{\circ} \mathrm{C}$	Humidity	53.2%
Test Engineer	Alisa Huang	Configurations	IEEE $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

Note:
The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor $=40 \log$ (specific distance / test distance) (dB);
Limit line $=$ specific limits $(\mathrm{dBuV})+$ distance extrapolation factor.
5.5.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	$22.5^{\circ} \mathrm{C}$	Humidity	53.2%
Test Engineer	Alisa Huang	Configurations	IEEE 802.11b (High CH)

Test result for IEEE 802.11b (High Channel)
Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor $(\mathrm{dB} / \mathrm{m})$	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Detector
1	32.5197	34.81	-19.10	15.71	40.00	-24.29	QP
2	67.2021	37.86	-19.78	18.08	40.00	-21.92	QP
3	102.0013	37.73	-18.36	19.37	43.50	-24.13	QP
4	177.5091	52.49	-20.30	32.19	43.50	-11.31	QP
5	185.7882	50.57	-19.58	30.99	43.50	-12.51	QP
6	337.2155	34.97	-14.67	20.30	46.00	-25.70	QP

No.	Frequency (MHz)	Reading (dBuV)	Factor $(\mathrm{dB} / \mathrm{m})$	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)
1	43.3534	28.91	-16.77	12.14	40.00	-27.86
2	65.1145	33.35	-19.26	14.09	40.00	-25.91
3	151.0666	44.15	-21.59	22.56	43.50	-20.94
4	187.7530	50.31	-19.38	30.93	43.50	-12.57
5	248.5519	43.88	-16.76	27.12	46.00	-18.88
6	340.7817	36.38	-14.57	21.81	46.00	-24.19

Note:
Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11 b (High Channel)).
Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level ($u \mathrm{~V} / \mathrm{m}$).
Corrected Reading: Antenna Factor + Cable Loss + Read Level $=$ Level.

5.5.8. Results for Radiated Emissions (Above 1GHz)

IEEE 802.11b

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4824.00	50.57	33.06	35.04	3.94	52.53	74.00	-21.47	Peak	Horizontal
4824.00	39.81	33.06	35.04	3.94	41.77	54.00	-12.23	Average	Horizontal
4824.00	54.82	33.06	35.04	3.94	56.78	74.00	-17.22	Peak	Vertical
4824.00	36.65	33.06	35.04	3.94	38.61	54.00	-15.39	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4874.00	55.80	33.16	35.15	3.96	57.77	74.00	-16.23	Peak	Horizontal
4874.00	41.12	33.16	35.15	3.96	43.09	54.00	-10.91	Average	Horizontal
4874.00	51.69	33.16	35.15	3.96	53.66	74.00	-20.34	Peak	Vertical
4874.00	38.14	33.16	35.15	3.96	40.11	54.00	-13.89	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4924.00	52.17	33.26	35.14	3.98	54.27	74.00	-19.73	Peak	Horizontal
4924.00	39.54	33.26	35.14	3.98	41.64	54.00	-12.36	Average	Horizontal
4924.00	52.21	33.26	35.14	3.98	54.31	74.00	-19.69	Peak	Vertical
4924.00	43.62	33.26	35.14	3.98	45.72	54.00	-8.28	Average	Vertical

IEEE 802.11 g

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4824.00	51.12	33.06	35.04	3.94	53.08	74.00	-20.92	Peak	Horizontal
4824.00	40.93	33.06	35.04	3.94	42.89	54.00	-11.11	Average	Horizontal
4824.00	54.61	33.06	35.04	3.94	56.57	74.00	-17.43	Peak	Vertical
4824.00	36.69	33.06	35.04	3.94	38.65	54.00	-15.35	Average	Vertical

[^3]Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fa.. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} /$ m	Margin dB	Remark	Pol.
4874.00	55.28	33.16	35.15	3.96	57.25	74.00	-16.75	Peak	Horizontal
4874.00	41.72	33.16	35.15	3.96	43.69	54.00	-10.31	Average	Horizontal
4874.00	52.50	33.16	35.15	3.96	54.47	74.00	-19.53	Peak	Vertical
4874.00	36.59	33.16	35.15	3.96	38.56	54.00	-15.44	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} /$ m	Margin dB	Remark	Pol.
4924.00	52.02	33.26	35.14	3.98	54.12	74.00	-19.88	Peak	Horizontal
4924.00	40.21	33.26	35.14	3.98	42.31	54.00	-11.69	Average	Horizontal
4924.00	53.03	33.26	35.14	3.98	55.13	74.00	-18.87	Peak	Vertical
4924.00	42.73	33.26	35.14	3.98	44.83	54.00	-9.17	Average	Vertical

IEEE802.11 n HT20

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4824.00	51.46	33.06	35.04	3.94	53.42	74.00	-20.58	Peak	Horizontal
4824.00	40.93	33.06	35.04	3.94	42.89	54.00	-11.11	Average	Horizontal
4824.00	55.80	33.06	35.04	3.94	57.76	74.00	-16.24	Peak	Vertical
4824.00	34.98	33.06	35.04	3.94	36.94	54.00	-17.06	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4874.00	54.07	33.16	35.15	3.96	56.04	74.00	-17.96	Peak	Horizontal
4874.00	41.06	33.16	35.15	3.96	43.03	54.00	-10.97	Average	Horizontal
4874.00	52.02	33.16	35.15	3.96	53.99	74.00	-20.01	Peak	Vertical
4874.00	36.64	33.16	35.15	3.96	38.61	54.00	-15.39	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4924.00	51.18	33.26	35.14	3.98	53.28	74.00	-20.72	Peak	Horizontal
4924.00	40.35	33.26	35.14	3.98	42.45	54.00	-11.55	Average	Horizontal
4924.00	51.82	33.26	35.14	3.98	53.92	74.00	-20.08	Peak	Vertical
4924.00	43.29	33.26	35.14	3.98	45.39	54.00	-8.61	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

IEEE802.11 n HT40
Channel 3/ 2422 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4844.00	50.63	33.06	35.04	3.94	52.59	74.00	-21.41	Peak	Horizontal
4844.00	39.58	33.06	35.04	3.94	41.54	54.00	-12.46	Average	Horizontal
4844.00	55.81	33.06	35.04	3.94	57.77	74.00	-16.23	Peak	Vertical
4844.00	35.54	33.06	35.04	3.94	37.50	54.00	-16.50	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4874.00	55.20	33.16	35.15	3.96	57.17	74.00	-16.83	Peak	Horizontal
4874.00	40.87	33.16	35.15	3.96	42.84	54.00	-11.16	Average	Horizontal
4874.00	53.25	33.16	35.15	3.96	55.22	74.00	-18.78	Peak	Vertical
4874.00	37.19	33.16	35.15	3.96	39.16	54.00	-14.84	Average	Vertical

Channel 9/2452 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Margin dB	Remark	Pol.
4904.00	51.37	33.26	35.14	3.98	53.47	74.00	-20.53	Peak	Horizontal
4904.00	39.45	33.26	35.14	3.98	41.55	54.00	-12.45	Average	Horizontal
4904.00	51.84	33.26	35.14	3.98	53.94	74.00	-20.06	Peak	Vertical
4904.00	44.10	33.26	35.14	3.98	46.20	54.00	-7.80	Average	Vertical

Notes:

1. Measuring frequencies from $9 \mathrm{KHz} \sim 10^{\text {th }}$ harmonic or 26.5 GHz (which is less), No emission found between lowest internal used/generated frequency to 30 MHz .
2. Radiated emissions measured in frequency range from $9 \mathrm{KHz} \mathrm{\sim 10th}$ harmonic or 26.5 GHz (which is less) were made with an instrument using Peak detector mode.
3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
[^4]Page 28 of 37

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to $\S 15.247$ (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	$100 \mathrm{KHz} / 300 \mathrm{KHz}$
RB / VB (Emission in non-restricted band)	$100 \mathrm{KHz} / 300 \mathrm{KHz}$

5.6.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz . The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.6.6. Test Results of Conducted Spurious Emissions

PASS

Please refer to Appendix B. 5 for conducted spurious.
Please refer to Appendix B. 6 for conducted band edge emission.

Remark:

1). Measured at difference data rate for each mode and recorded worst case for each mode.
2). Test results including cable loss;
3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40
4). Not recorded test plots from 9 KHz to 30 MHz as emission levels 20dB lower than emission limit.

5.7. AC Power line conducted emissions

5.7.1 Standard Applicable

According to $\S 15.207$ (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range (MHz)	Limits $(\mathrm{dB} \mu \mathrm{V})$	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency

5.7.2 Block Diagram of Test Setup

5.7.3 Test Results

PASS.

The test data please refer to following page.

AC Conducted Emission of charge from PC mode @ AC 120V/60Hz @ IEEE 802.11b (worst case) Line

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
$1{ }^{*}$	0.1815	34.64	19.17	53.81	64.42	-10.61	QP	
2	0.1949	12.11	19.17	31.28	53.83	-22.55	AVG	
3	0.5190	23.33	19.19	42.52	56.00	-13.48	QP	
4	0.5819	7.79	19.16	26.95	46.00	-19.05	AVG	
5	1.0544	22.54	19.27	41.81	56.00	-14.19	QP	
6	1.0994	9.19	19.27	28.46	46.00	-17.54	AVG	
7	4.8885	16.99	19.49	36.48	56.00	-19.52	QP	
8	5.1765	3.89	19.50	23.39	50.00	-26.61	AVG	
9	17.9160	19.24	20.27	39.51	60.00	-20.49	QP	
10	18.3300	-2.31	20.28	17.97	50.00	-32.03	AVG	
11	24.5805	22.71	20.24	42.95	60.00	-17.05	QP	
12	25.0080	1.18	20.23	21.41	50.00	-28.59	AVG	

Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1722	30.89	19.16	50.05	64.85	-14.80	QP	
2	0.1768	10.75	19.17	29.92	54.63	-24.71	AVG	
3	0.2353	28.22	19.22	47.44	62.26	-14.82	QP	
4	0.2442	7.44	19.22	26.66	51.95	-25.29	AVG	
5	0.4374	24.49	19.32	43.81	57.11	-13.30	QP	
$6{ }^{*}$	0.5074	17.40	19.21	36.61	46.00	-9.39	AVG	
7	0.6043	22.56	19.18	41.74	56.00	-14.26	QP	
8	0.6173	9.82	19.20	29.02	46.00	-16.98	AVG	
9	2.9463	17.94	19.47	37.41	56.00	-18.59	QP	
10	3.1066	3.36	19.47	22.83	46.00	-23.17	AVG	
11	25.0545	18.03	20.23	38.26	60.00	-21.74	QP	
12	25.4560	-0.15	20.20	20.05	50.00	-29.95	AVG	

${ }^{* * * N o t e: ~ P r e-s c a n ~ a l l ~ m o d e s ~ a n d ~ r e c o r d e d ~ t h e ~ w o r s t ~ c a s e ~ r e s u l t s ~ i n ~ t h i s ~ r e p o r t ~(I E E E ~ 802.11 b) ~}$

5.8. Band-edge measurements for radiated emissions

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph $(\mathrm{b})(3)$ of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in $\S 15.209(\mathrm{a})$ is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).
5.8.2. Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.
1). Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2). Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
3). Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge, for Radiated emissions restricted band RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for peak detector and $\mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 / \mathrm{B}$ for AV detector.
4). Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5). Repeat above procedures until all measured frequencies were complete.

6). Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
7). Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
8). Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies $\leq 30 \mathrm{MHz}$,
4.7 dB for frequencies between 30 MHz and 1000 MHz , inclusive and 0 dB for frequencies $>1000 \mathrm{MHz}$).
9). For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
10). Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:
$\mathrm{E}=\mathrm{EIRP}-20 \log \mathrm{D}+104.77=E$ IRP +95.23
Where:
$E=$ electric field strength in $d B \mu V / m$,
EIRP = equivalent isotropic radiated power in dBm
$\mathrm{D}=$ specified measurement distance in meters.
11). Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi , whichever is greater.
However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used. 12). Compare the resultant electric field strength level to the applicable regulatory limit.
13). Perform radiated spurious emission test duress until all measured frequencies were complete.

5.8.5 Test Results

PASS

Please refer to Appendix B.7.

Remark:

1). Measured Band-edge measurements for radiated emissions at difference data rate for each mode and recorded worst case for each mode.
2). Test results including cable loss;
3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5 Mbps at IEEE 802.11 n HT40
5). No need measure Average values if Peak values meets Average limits;
4). Detector $A V$ is setting spectrum/receiver. $R B W=1 \mathrm{MHz} / V B W=10 \mathrm{~Hz} /$ Sweep time=Auto/Detector=Peak.
5). Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi , whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

5.9. Antenna Requirements

5.9.1. Standard Applicable

According to antenna requirement of $\S 15.203$.
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections $15.211,15.213,15.217,15.219$, or 15.221 . Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to $\S 15.247(4)(1)$, system operating in the $2400-2483.5 \mathrm{MHz}$ bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0 dBi , and the antenna is a PIFA Antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R\&S	NRVS	100444	2019-06-11	2020-06-10
2	Power Sensor	R\&S	NRV-Z81	100458	2019-06-11	2020-06-10
3	Power Sensor	R\&S	NRV-Z32	10057	2019-06-11	2020-06-10
4	Test Software	Tonscend	JS1120-2	1	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-2	N/A	2019-06-11	2020-06-10
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019-11-22	2020-11-21
7	DC Power Supply	Agilent	E3642A	N/A	2019-11-14	2020-11-13
8	EMI Test Software	AUDIX	E3	1	N/A	N/A
9	3m Full Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2019-06-12	2020-06-11
10	Positioning Controller	MF	MF-7082	N/A	2019-06-12	2020-06-11
11	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-07-26	2021-07-25
12	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
13	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
14	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2020-09-20
15	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2019-06-17	2020-06-16
16	EMI Test Receiver	R\&S	ESR 7	101181	2019-06-12	2020-06-11
17	RS SPECTRUM ANALYZER	R\&S	FSP40	100503	2019-11-14	2020-11-13
18	Broadband Preamplifier	1	BP-01M18G	P190501	2019-07-01	2020-06-30
19	RF Cable-R03m	Jye Bao	RG142	CB021	2019-06-12	2020-06-11
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2019-06-12	2020-06-11
21	6 dB Attenuator	1	100W/6dB	1172040	2019-06-11	2020-06-10
22	3dB Attenuator	1	2N-3dB	1	2019-06-11	2020-06-10
23	EMI Test Receiver	R\&S	ESPI	101840	2019-06-11	2020-06-10
24	Artificial Mains	R\&S	ENV216	101288	2019-06-12	2020-06-11
25	10 dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2019-06-11	2020-06-10

Note: All equipment is calibrated through CHINA CEPREI LABORATORY and GUANGZHOU LISAI CALIBRATION AND TEST CO., LTD.

7. TEST SETUP PHOTOGRAPHS OF EUT

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 36 of 37

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

[^0]: Vera Deng/ File administrators

[^1]: This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

[^2]: This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

[^3]: This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

[^4]: This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

