

RF Test Report

For

Applicant Name: Hisense Visual Technology Co., Ltd.

Address: No.218 Qianwangang Road, Economy & Technology Development

Zone, Qingdao, China

EUT Name: Remote Controller

Brand Name: N/A

ERF3**9**, ERF3AF90H

Model Number: * is one or more any alphanumeric character or blank, representing

different parameters and functions, have no effect in safety and EMC

Series Model Number: N/A

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230601R00201 Test Standards: 47 CFR Part 15.247

Test Conclusion: Pass

FCC ID: 2AVIGBR0013

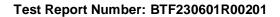
Test Date: 2023-05-05 to 2023-05-10

Date of Issue: 2023-05-10

Prepared By:

Address:

Chris Liu / Froject Enginee


Date: 2023-05-10

Approved By:

Ryan.CJ / EMC Manager

Date: 2023-05-10

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Revision History			
id.			

Table of Contents

1	INTR	ODUCTION	. 5
	1.1	Identification of Testing Laboratory	. 5
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	. 5
2	PROD	DUCT INFORMATION	. 6
	2.1	Application Information	. 6
	2.2	Manufacturer Information	
	2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	. 6
3	SUMI	MARY OF TEST RESULTS	. 7
	3.1	Test Standards	. 7
	3.2	Uncertainty of Test	. 7
	3.3	Summary of Test Result	. 7
4	TEST	CONFIGURATION	. 8
	4.1	Test Equipment List	. 8
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	12
5	EVAL	UATION RESULTS (EVALUATION) 1	13
	5.1	Antenna requirement	13
		5.1.1 Conclusion:	
6	RADI	O SPECTRUM MATTER TEST RESULTS (RF)1	14
	6.1	Conducted Emission at AC power line	
	0.1	6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2	Occupied Bandwidth	
	V	6.2.1 E.U.T. Operation:	
		6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	
	6.3	Maximum Conducted Output Power	18
		6.3.1 E.U.T. Operation:	18
		6.3.2 Test Setup Diagram:	
		6.3.3 Test Data:	19
	6.4	Power Spectral Density	22
		6.4.1 E.U.T. Operation:	22
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Emissions in non-restricted frequency bands2	25
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Setup Diagram:	
		6.5.3 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
	6.7	6.6.2 Test Data:	
	6.7	Emissions in restricted frequency bands (below 1GHz)	
		6.7.1 E.U.T. Operation:	53

		6.7.2	Test Data:	
	6.8	Emis	sions in restricted frequency bands (above 1GHz)	36
		6.8.1	E.U.T. Operation:	36
		6.8.2	Test Data:	37
7	TES	T SETU	JP PHOTOS	38
8	EUT	CONST	TRUCTIONAL DETAILS (EUT PHOTOS)	39

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130		
Fax Number:	+86-0755-23146130		

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	Hisense Visual Technology Co., Ltd.
Address:	No.218 Qianwangang Road, Economy & Technology Development Zone, Qingdao, China

2.2 Manufacturer Information

Company Name:	Hisense Visual Technology Co., Ltd.
Address:	No.218 Qianwangang Road, Economy & Technology Development Zone, Qingdao, China

2.3 Factory Information

Company Name:	Wuxi Funide Digital Co.,Ltd
Address:	55 Youshen Road, Xishan District, Wuxi City, China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Remote Controller
Test Model Number:	ERF3AF90H
Series Model Number:	N/A

2.5 Technical Information

Power Supply:	DC 3.0V from battery(AAA 1.5V*2)
Power Adaptor:	N/A
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Internal antenna
Antenna Gain [#] :	1.9904dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

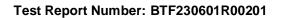
3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	N/A
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Note: 1. P is an abbreviation for Pass.

- 2. F is an abbreviation for Fail.
- 3. N/A is an abbreviation for Not Applicable.
- 4. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

Test Configuration

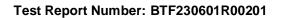

Test Equipment List

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23	
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23	
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23	
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22	
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23	

Occupied Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum Conducted Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Power Spectral Densi	ity				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/



RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-restricted frequency bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Band edge emissions (Radiated)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	

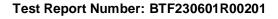
Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 9 of 4 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricted frequency bands (below 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27	

Emissions in restricted frequency bands (above 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

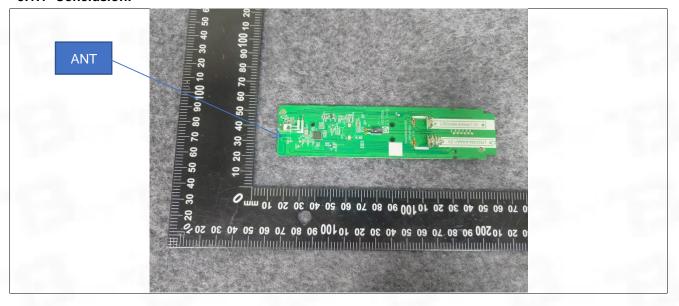


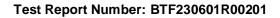
4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Tested mode, channel, and data rate		
Mode	Channel	Frequency (MHz)
	Low:CH1	2402
GFSK (1M)	Middle: CH21	2442
	High: CH40	2480


5 Evaluation Results (Evaluation)

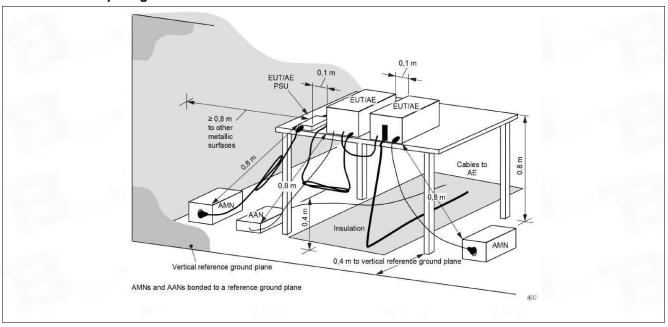

5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

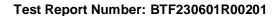
6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency				
rest Nequilement.	or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN).				
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices				
	Frequency of emission (MHz)	Conducted limit (dBµ\	/)		
		Quasi-peak	Average		
Test Limit:	0.15-0.5	66 to 56*	56 to 46*		
Test Littit.	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				

6.1.1 E.U.T. Operation:

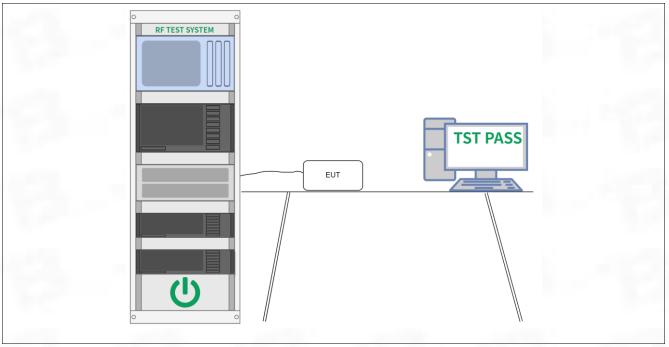
Operating Environment:		
Temperature:	25.2 °C	
Humidity:	50.5 %	
Atmospheric Pressure:	1010 mbar	


6.1.2 Test Setup Diagram:

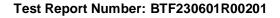
6.1.3 Test Data:

N/A

The EUT is supplied by Battery, so this item does not applicable


6.2 Occupied Bandwidth

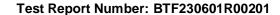
Test Requirement:	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.			
Test Method:	DTS bandwidth			
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.			
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.			


6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

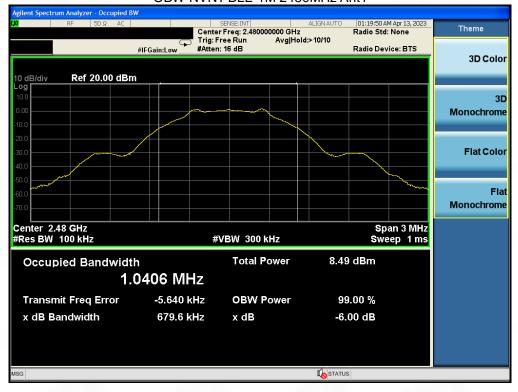
6.2.3 Test Data:



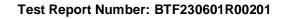
GFSK(1M)

•	·\ · · · · · ·						
	Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
			(MHz)		(MHz)	Bandwidth (MHz)	
	NVNT	BLE	2402	Ant 1	0.6783	0.5	Pass
	NVNT	BLE	2442	Ant 1	0.6826	0.5	Pass
	NVNT	BLE	2480	Ant 1	0.6796	0.5	Pass

OBW NVNT BLE 1M 2402MHz Ant1

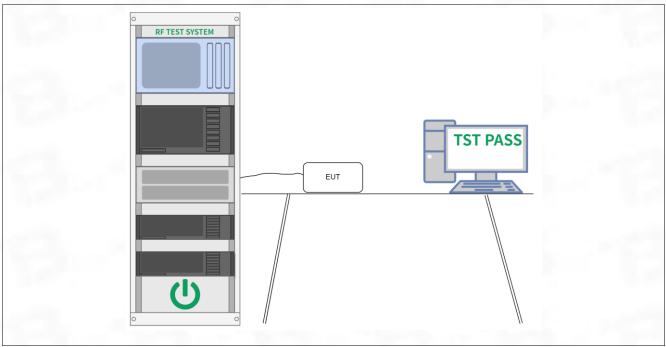


OBW NVNT BLE 1M 2480MHz Ant1

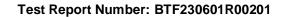


6.3 Maximum Conducted Output Power

	·
Test Requirement:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	Maximum peak conducted output power
Test Limit:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

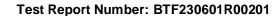

6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.8 °C
Humidity:	49.9 %
Atmospheric Pressure:	1010 mbar

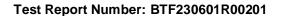


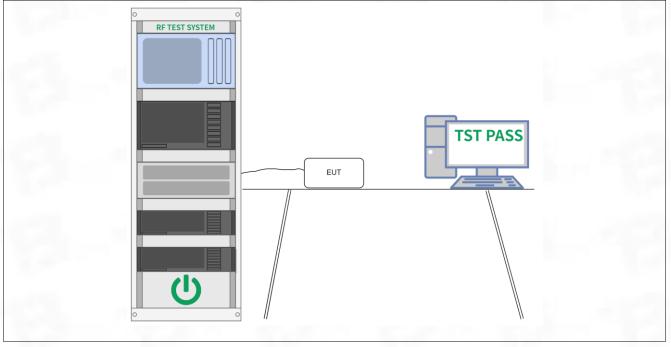
6.3.2 Test Setup Diagram:

6.3.3 Test Data:

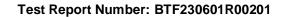


GFSK(1M)


O1 O11(1111)					
Channel	Frequency (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)	Result
CH1	2402	3.67	2.328	30	Pass
CH21	2442	3.41	2.193	30	Pass
CH40	2480	3.18	2.080	30	Pass

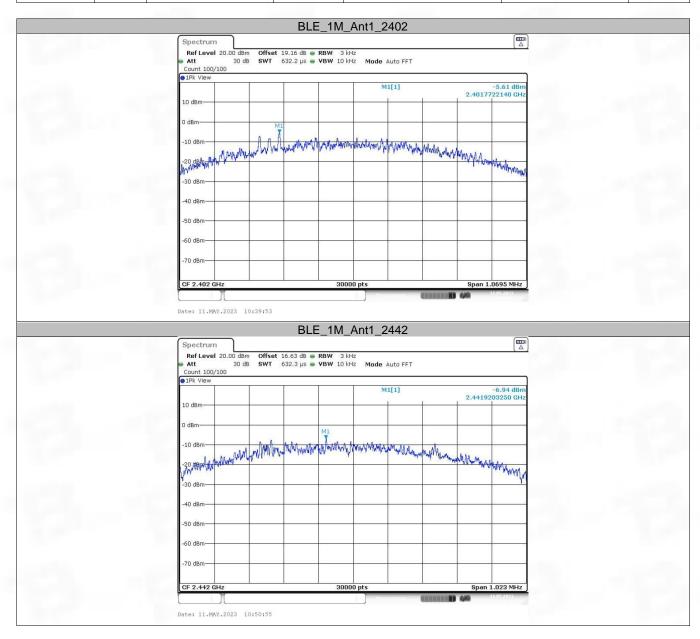

6.4 Power Spectral Density

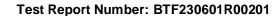
Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	Maximum power spectral density level in the fundamental emission
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

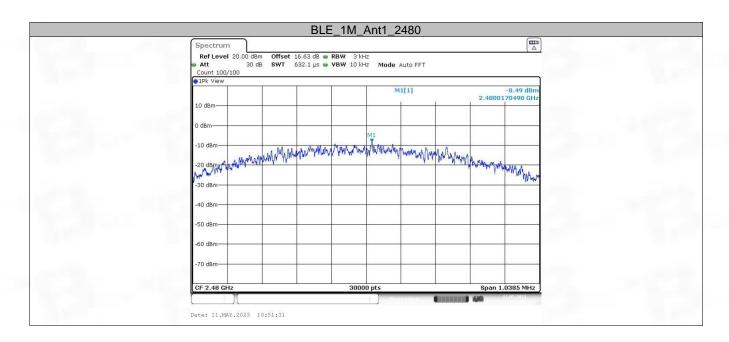

6.4.1 E.U.T. Operation:

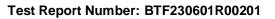
Operating Environment:		
Temperature:	25.8 °C	
Humidity:	49.9 %	
Atmospheric Pressure:	1010 mbar	

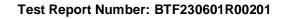
6.4.2 Test Setup Diagram:


6.4.3 Test Data:



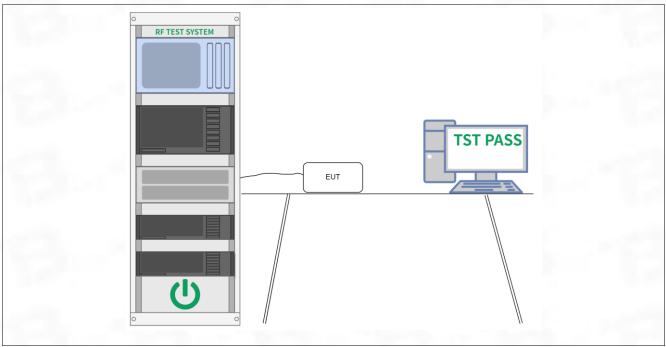

GFSK (1M)


• • • • • • • • • • • • • • • • • • • •						
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-5.61	8	Pass
NVNT	BLE	2442	Ant 1	-6.94	8	Pass
NVNT	BLE	2480	Ant 1	-8.49	8	Pass

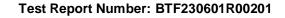


6.5 Emissions in non-restricted frequency bands

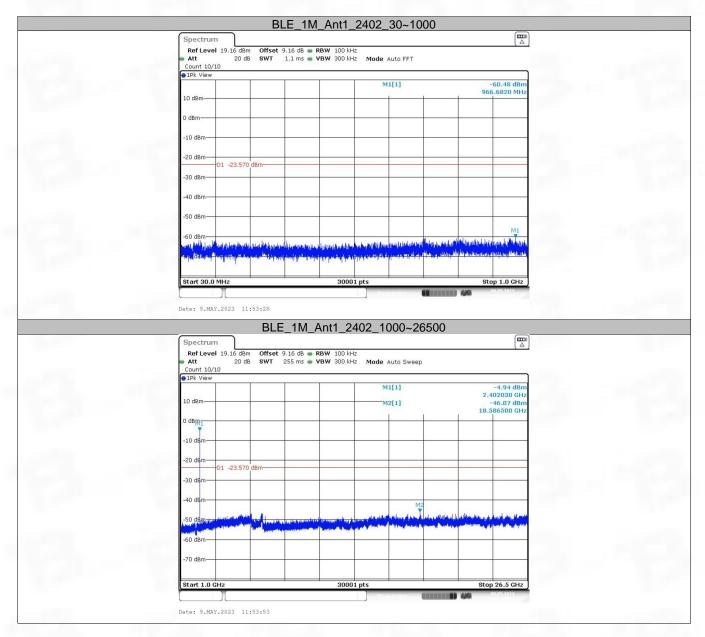
Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

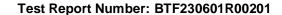

6.5.1 E.U.T. Operation:

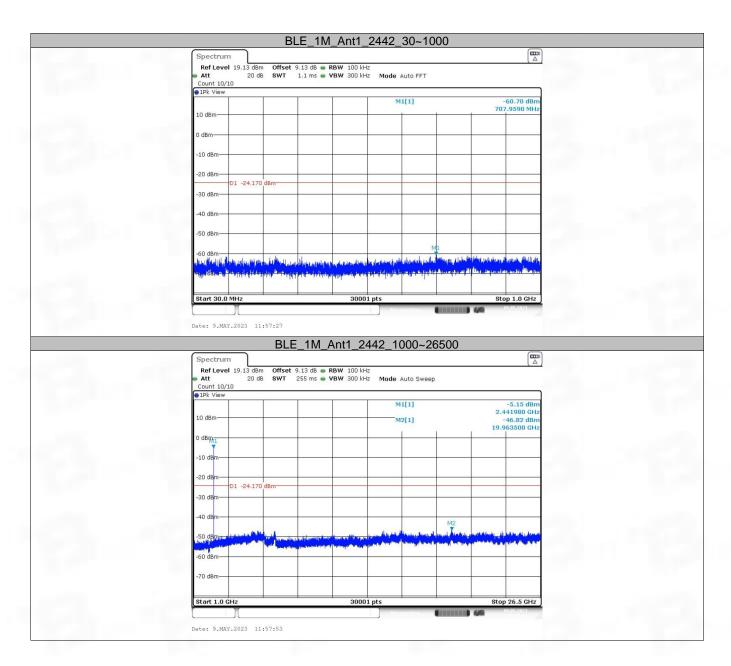
Operating Environment:		
Temperature:	25.8 °C	
Humidity:	49.9 %	
Atmospheric Pressure:	1010 mbar	

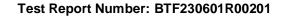


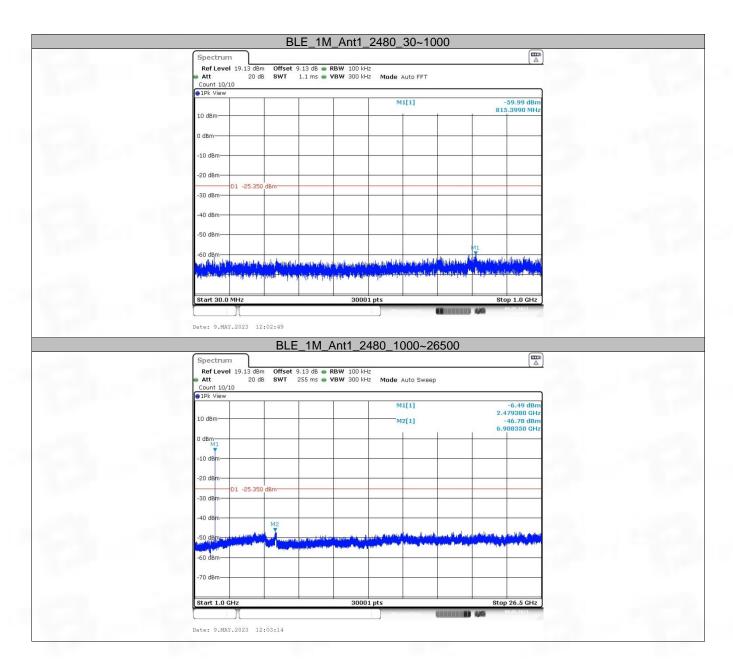
6.5.2 Test Setup Diagram:

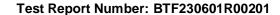


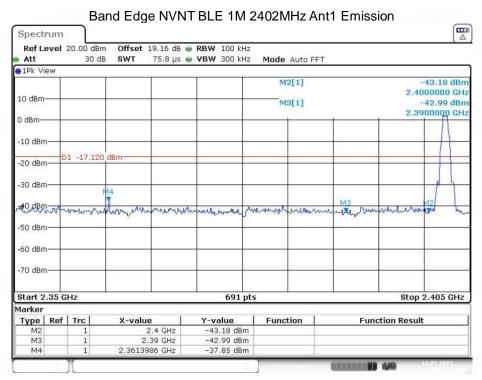

6.5.3 Test Data:

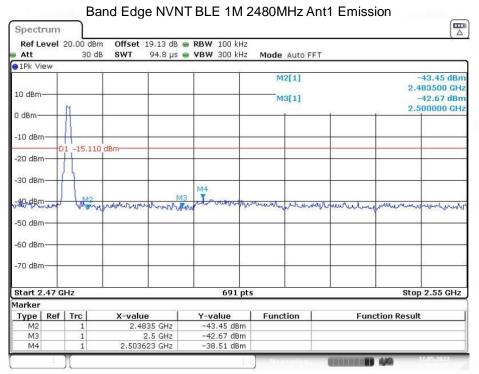


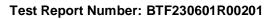

Conducted RF Spurious Emission





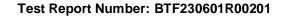






Date: 11.MAY.2023 10:41:11

Date: 11.MAY.2023 10:48:26

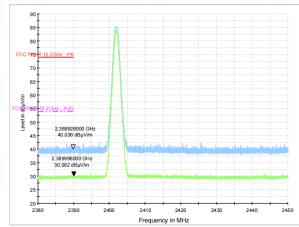


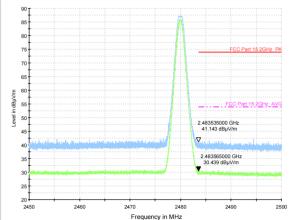
6.6 Band edge emissions (Radiated)

Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Method:	Radiated emissions test	Radiated emissions tests							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
Test Limit:	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.								
Procedure:	ANSI C63.10-2013 secti	ion 6.6.4							

6.6.1 E.U.T. Operation:

Operating Environment:			
Temperature:	22.1 °C		
Humidity:	46.3 %		
Atmospheric Pressure:	1010 mbar		

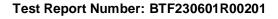



6.6.2 Test Data:

Radiated Method: GFSK(1M)

Test Mode: CH-L

Test Mode: CH-H

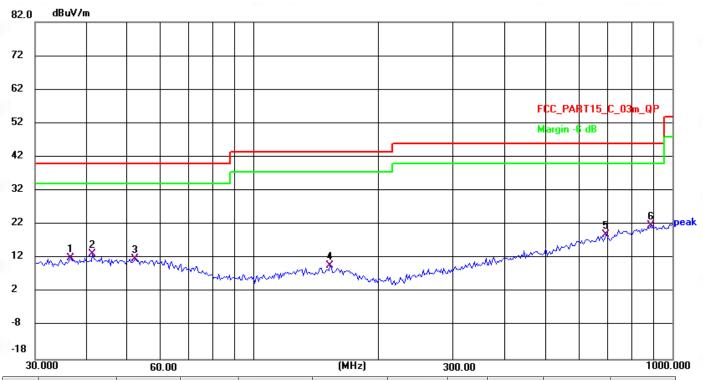


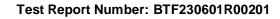
6.7 Emissions in restricted frequency bands (below 1GHz)

Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Method:	Radiated emissions test	Radiated emissions tests							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
Test Limit:	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.								
Procedure:	ANSI C63.10-2013 secti	ion 6.6.4							

6.7.1 E.U.T. Operation:

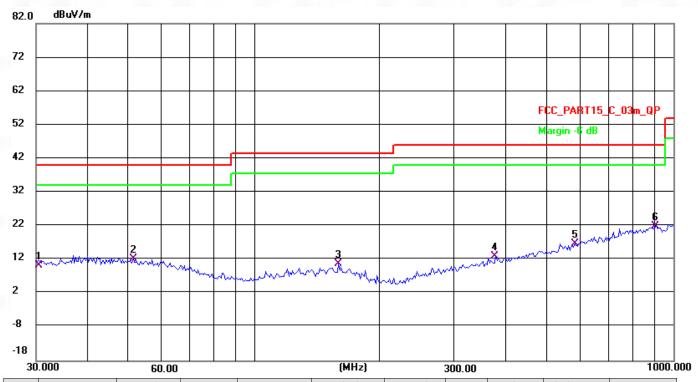
Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar




6.7.2 Test Data:

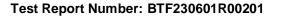
Note: Below is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz.

Antenna polarity: Horizontal



Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
36.5236	31.65	-19.68	11.97	40.00	-28.03	QP	200	100	
41.1581	32.53	-19.26	13.27	40.00	-26.73	QP	200	0	
51.8998	31.49	-19.69	11.80	40.00	-28.20	QP	200	360	
152.0902	30.59	-20.65	9.94	43.50	-33.56	QP	200	180	
693.9101	31.60	-12.66	18.94	46.00	-27.06	QP	200	360	
887.3978	30.87	-9.09	21.78	46.00	-24.22	QP	200	0	
	(MHz) 36.5236 41.1581 51.8998 152.0902 693.9101	(MHz) (dBuV) 36.5236 31.65 41.1581 32.53 51.8998 31.49 152.0902 30.59 693.9101 31.60	(MHz) (dBuV) (dB/m) 36.5236 31.65 -19.68 41.1581 32.53 -19.26 51.8998 31.49 -19.69 152.0902 30.59 -20.65 693.9101 31.60 -12.66	(MHz) (dBuV) (dB/m) (dBuV/m) 36.5236 31.65 -19.68 11.97 41.1581 32.53 -19.26 13.27 51.8998 31.49 -19.69 11.80 152.0902 30.59 -20.65 9.94 693.9101 31.60 -12.66 18.94	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 36.5236 31.65 -19.68 11.97 40.00 41.1581 32.53 -19.26 13.27 40.00 51.8998 31.49 -19.69 11.80 40.00 152.0902 30.59 -20.65 9.94 43.50 693.9101 31.60 -12.66 18.94 46.00	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 36.5236 31.65 -19.68 11.97 40.00 -28.03 41.1581 32.53 -19.26 13.27 40.00 -26.73 51.8998 31.49 -19.69 11.80 40.00 -28.20 152.0902 30.59 -20.65 9.94 43.50 -33.56 693.9101 31.60 -12.66 18.94 46.00 -27.06	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 36.5236 31.65 -19.68 11.97 40.00 -28.03 QP 41.1581 32.53 -19.26 13.27 40.00 -26.73 QP 51.8998 31.49 -19.69 11.80 40.00 -28.20 QP 152.0902 30.59 -20.65 9.94 43.50 -33.56 QP 693.9101 31.60 -12.66 18.94 46.00 -27.06 QP	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) 36.5236 31.65 -19.68 11.97 40.00 -28.03 QP 200 41.1581 32.53 -19.26 13.27 40.00 -26.73 QP 200 51.8998 31.49 -19.69 11.80 40.00 -28.20 QP 200 152.0902 30.59 -20.65 9.94 43.50 -33.56 QP 200 693.9101 31.60 -12.66 18.94 46.00 -27.06 QP 200	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg) 36.5236 31.65 -19.68 11.97 40.00 -28.03 QP 200 100 41.1581 32.53 -19.26 13.27 40.00 -26.73 QP 200 0 51.8998 31.49 -19.69 11.80 40.00 -28.20 QP 200 360 152.0902 30.59 -20.65 9.94 43.50 -33.56 QP 200 180 693.9101 31.60 -12.66 18.94 46.00 -27.06 QP 200 360

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
1	30.4246	30.51	-20.17	10.34	40.00	-29.66	QP	100	0	
2	51.1756	31.86	-19.61	12.25	40.00	-27.75	QP	100	180	
3	158.6399	31.46	-20.74	10.72	43.50	-32.78	QP	100	360	
4	376.5227	33.22	-20.21	13.01	46.00	-32.99	QP	100	0	
5	582.1122	31.37	-14.70	16.67	46.00	-29.33	QP	100	180	
6 *	906.3041	30.83	-8.79	22.04	46.00	-23.96	QP	100	0	



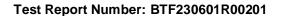
6.8 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`								
Test Method:	Radiated emissions test	Radiated emissions tests							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
Test Limit:	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.								
Procedure:	ANSI C63.10-2013 secti	ion 6.6.4							

6.8.1 E.U.T. Operation:

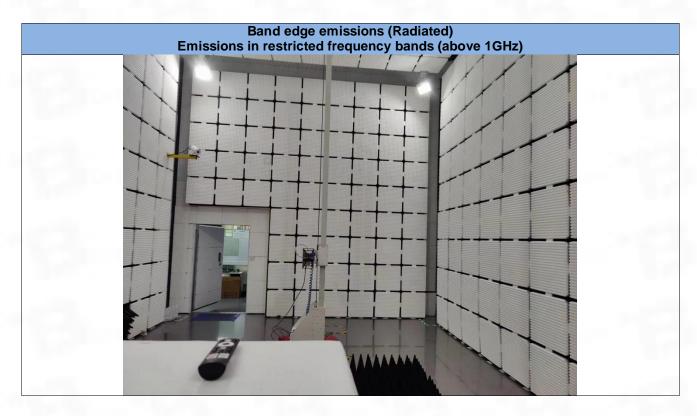
Operating Environment:	
Temperature:	22.1 °C
Humidity:	46.3 %
Atmospheric Pressure:	1010 mbar

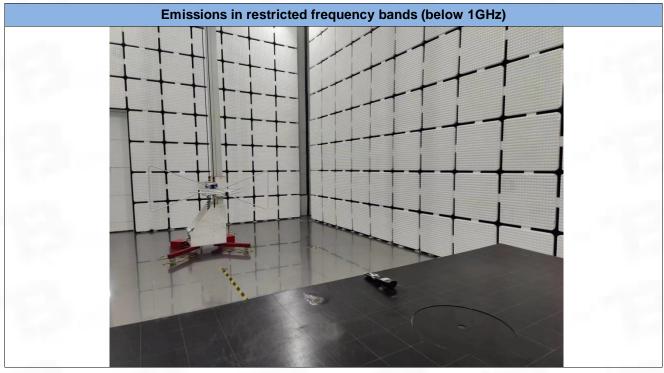
6.8.2 Test Data:

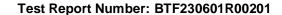

From 1G-25GHz

				Test M	lode: TX I	_OW			
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	46.51	V	33.95	10.18	34.26	56.38	74	-17.62	PK
4804	36.28	V	33.95	10.18	34.26	46.15	54	-7.85	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
4804	47.35	Н	33.95	10.18	34.26	57.22	74	-16.78	PK
4804	34.59	Н	33.95	10.18	34.26	44.46	54	-9.54	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
				Test M	lode: TX	Mid			
4884	49.53	V	33.95	10.18	34.26	59.4	74	-14.6	PK
4884	34.72	V	33.95	10.18	34.26	44.59	54	-9.41	AV
7326	/	/	/	/	/	/	/	/	/
9768	/	/	/	/	/	/	/	/	/
4884	48.96	Н	33.95	10.18	34.26	58.83	74	-15.17	PK
4884	32.21	Н	33.95	10.18	34.26	42.08	54	-11.92	AV
7326	/	/	/	/	/	/	/	/	/
9768	/	/	/	/	/	/	/	/	/
				Test M	ode: TX I	High			
4960	46.92	V	33.98	10.22	34.25	56.87	74	-17.13	PK
4960	33.47	V	33.98	10.22	34.25	43.42	54	-10.58	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/
4960	47.59	Н	33.98	10.22	34.25	57.54	74	-16.46	PK
4960	32.43	Н	33.98	10.22	34.25	42.38	54	-11.62	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/

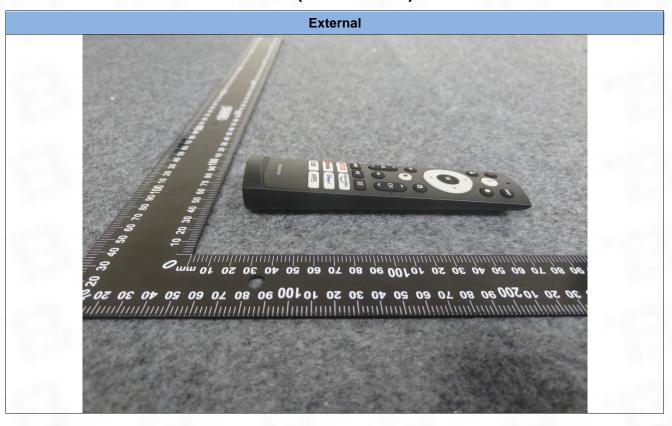
Note:

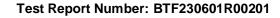

^{1,} Result = Read level + Antenna factor + cable loss-Amp factor


^{2,} All the other emissions not reported were too low to read and deemed to comply with FCC limit.

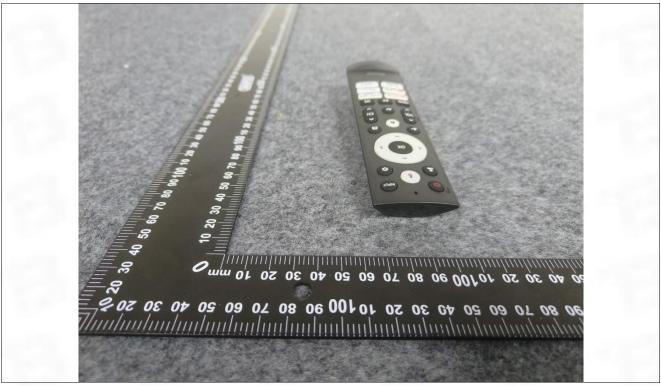


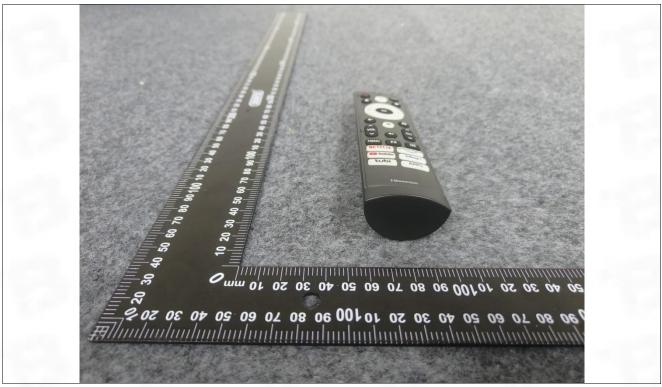
7 Test Setup Photos

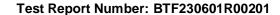


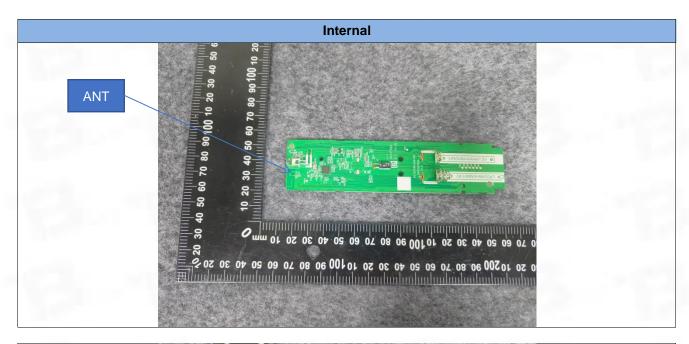


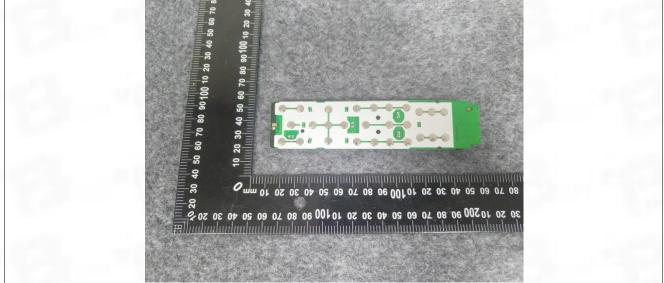
8 EUT Constructional Details (EUT Photos)

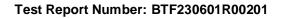












BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --