



# FCC Part 15.247 TEST REPORT

For

## Toshiba Inspection Solutions Co., Ltd.

8, Shin Sugita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture 235-8523 JAPAN

FCC ID: 2AVHN-TMRCD210TX

| Report Type:      |            | <b>Product Type:</b>                    |  |
|-------------------|------------|-----------------------------------------|--|
| Original Report   |            | Product Type: RF 2.4G Remote Controller |  |
|                   |            |                                         |  |
| Report Producer : | Coco Lin   |                                         |  |
| Report Number :   | RXZ23070   | 5015-02RF02                             |  |
|                   |            |                                         |  |
| Report Date:      | 2024-05-13 |                                         |  |
| Daviernad Dru     | A J Cl-9-  | Bnd-1. Shih                             |  |

**Prepared By: Bay Area Compliance Laboratories Corp.** 

(New Taipei Laboratory)

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist.,

New Taipei City 22183, Taiwan, R.O.C.

Tel: +886 (2) 2647 6898 Fax: +886 (2) 2647 6895

www.bacl.com.tw

Reviewed By: Andy Shih

## **Revision History**

| Revision | No.             | Report Number       | Issue Date | Description     | Author/<br>Revised by |
|----------|-----------------|---------------------|------------|-----------------|-----------------------|
| 0.0      | RXZ230705015-02 | RXZ230705015-02RF02 | 2024-05-13 | Original Report | Coco Lin              |

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 2 of 33

## **TABLE OF CONTENTS**

| 1  | Gei        | neral Information                                      | 5      |
|----|------------|--------------------------------------------------------|--------|
|    | 1.1<br>1.2 | Product Description for Equipment under Test (EUT)     | 5<br>6 |
|    | 1.3        | Test Methodology                                       | 6      |
|    | 1.4        | Statement                                              |        |
|    | 1.5        | Measurement Uncertainty                                |        |
|    | 1.6        | Environmental Conditions                               |        |
|    | 1.7        | Test Facility                                          | 7      |
| 2  | Sys        | tem Test Configuration                                 | 8      |
|    | 2.1        | Description of Test Configuration.                     | R      |
|    | 2.2        | Equipment Modifications                                |        |
|    | 2.3        | EUT Exercise Software                                  |        |
|    | 2.4        | Support Equipment List and Details                     |        |
|    | 2.5        | External Cable List and Details                        |        |
|    | 2.6        | Test Mode                                              | 9      |
|    | 2.7        | Block Diagram of Test Setup                            |        |
|    | 2.8        | Duty Cycle                                             | 10     |
| 3  | Sur        | nmary of Test Results                                  | 11     |
| 4  | T          | 4E ' 4I'4 ID 4'I                                       | 12     |
| 4  | 1 es       | t Equipment List and Details                           | 12     |
| 5  | FC         | C §15.247(i), §1.1307(b)(3)(i) – RF Exposure           | 13     |
|    |            | Applicable Standard                                    |        |
|    | 5.1<br>5.2 | RF Exposure Evaluation Result                          |        |
| _  | _          | •                                                      |        |
| 6  | FC         | C §15.203 – Antenna Requirements                       | 15     |
|    | 6.1        | Applicable Standard                                    | 15     |
|    | 6.2        | Antenna Information                                    | 15     |
| 7  | FC         | C §15.209, §15.205, §15.247(d) – Spurious Emissions    | 16     |
|    | 7.1        | Applicable Standard                                    | 16     |
|    | 7.2        | EUT Setup                                              |        |
|    | 7.3        | EMI Test Receiver & Spectrum Analyzer Setup            |        |
|    | 7.4        | Test Procedure                                         |        |
|    | 7.5        | Corrected Factor & Margin Calculation                  |        |
|    | 7.6        | Test Results                                           | 19     |
| 8  | FC         | C §15.247(a)(2) – 6 dB Emission Bandwidth              | 25     |
|    | 8.1        | Applicable Standard                                    | 25     |
|    | 8.2        | Test Procedure                                         |        |
|    | 8.3        | Test Results                                           |        |
| 9  |            | C §15.247(b)(3) – Maximum Output Power                 |        |
|    |            | •                                                      |        |
|    | 9.1<br>9.2 | Applicable Standard Test Procedure                     |        |
|    | 9.2        | Test Results                                           |        |
| 14 |            | C§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge |        |
| 11 |            |                                                        |        |
|    | 10.1       | Applicable Standard                                    |        |
|    | 10.2       | Test Procedure                                         |        |
|    | 10.3       | Test Results                                           | 29     |

| Bay Area | Compliance Laboratories Corp. (New Taipei Laboratory) | No.: RXZ230705015-02RF02 |
|----------|-------------------------------------------------------|--------------------------|
| 11 FC    | CC §15.247(e) – Power Spectral Density                | 31                       |
| 11.1     | Applicable Standard                                   | 31                       |
| 11.2     | Test Procedure                                        | 31                       |
| 11 3     | Test Results                                          | 31                       |

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 4 of 33

## 1 General Information

1.1 Product Description for Equipment under Test (EUT)

|                                    | Toshiba Inspection Solutions Co., Ltd.                                                                                              |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Applicant                          | 8, Shin Sugita-cho, Isogo-ku, Yokohama, Kanagawa                                                                                    |  |  |  |
| Пррпост                            | Prefecture 235-8523 JAPAN                                                                                                           |  |  |  |
|                                    | King Wins Technology Co., Ltd.                                                                                                      |  |  |  |
| Manufacturer                       | 11F., No.33, Ln. 332, Sec. 2, Zhongshan Rd., Zhonghe                                                                                |  |  |  |
|                                    | Dist.,New Taipei City 235, Taiwan (R.O.C.)                                                                                          |  |  |  |
| Brand(Trade) Name                  | Toshiba                                                                                                                             |  |  |  |
| Product (Equipment)                | RF 2.4G Remote Controller                                                                                                           |  |  |  |
| Main Model Name                    | TMRCD210TX                                                                                                                          |  |  |  |
| Frequency Range                    | 2405 ~ 2476 MHz                                                                                                                     |  |  |  |
| Conducted Peak Output Power        | -1.81 dBm                                                                                                                           |  |  |  |
| Modulation Technique               | GFSK                                                                                                                                |  |  |  |
|                                    | ☐ AC 120V/60Hz ☐ Adapter ☐ By AC Power Core                                                                                         |  |  |  |
| Power Operation<br>(Voltage Range) | <ul> <li>DC</li> <li>Battery 3Vdc</li> <li>DC Power Supply</li> <li>External from USB Cable</li> <li>External DC Adapter</li> </ul> |  |  |  |
|                                    | Host System                                                                                                                         |  |  |  |
| Received Date                      | 2023/07/19                                                                                                                          |  |  |  |
| Date of Test                       | 2023/07/26 ~ 2024/05/09                                                                                                             |  |  |  |

<sup>\*</sup>All measurement and test data in this report was gathered from production sample serial number: RXZ230705015-2 (Assigned by BACL, New Taipei Laboratory).

#### 1.2 Objective

This report is prepared on behalf of *Toshiba Inspection Solutions Co., Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules.

No.: RXZ230705015-02RF02

#### 1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. KDB 558074 D01 15.247 Meas Guidance v05r02

#### 1.4 Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

#### 1.5 Measurement Uncertainty

| Parameter                  |               | Uncertainty |
|----------------------------|---------------|-------------|
| RF output power, conducte  | ed            | ±3.74 dB    |
| Power Spectral Density, co | onducted      | ±0.62 dB    |
| Occupied Bandwidth         |               | ±0.09 %     |
| Unwanted Emissions, cond   | lucted        | ±1.15 dB    |
|                            | 9 kHz~30 MHz  | ±3.54 dB    |
| Emissions radiated         | 30 MHz~1GHz   | ±4.99 dB    |
| Emissions, radiated        | 1 GHz~18 GHz  | ±7.56 dB    |
|                            | 18 GHz~40 GHz | ±5.06 dB    |
| Temperature                |               | ±0.79 °C    |
| Humidity                   |               | ±0.44 %     |

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty

#### 1.6 Environmental Conditions

| Test Site                                   | Test Date          | Temperature (°C) | Relative<br>Humidity<br>(%) | ATM Pressure (hPa) | Test<br>Engineer |
|---------------------------------------------|--------------------|------------------|-----------------------------|--------------------|------------------|
| Radiation Spurious<br>Emissions             | 2023/7/26~2024/5/9 | 23.1-23.7        | 50-65                       | 1010               | Aaron Pan        |
| Conducted Spurious<br>Emissions             | 2023/7/26          | 24.9             | 58                          | 1010               | Jing<br>Chang    |
| 6 dB Emission Bandwidth                     | 2023/7/26          | 24.9             | 58                          | 1010               | Jing<br>Chang    |
| Maximum Output Power                        | 2023/7/26          | 24.9             | 58                          | 1010               | Jing<br>Chang    |
| 100 kHz Bandwidth of<br>Frequency Band Edge | 2023/7/26          | 24.9             | 58                          | 1010               | Jing<br>Chang    |
| Power Spectral Density                      | 2023/7/26          | 24.9             | 58                          | 1010               | Jing<br>Chang    |

#### 1.7 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 7 of 33

## 2 System Test Configuration

#### 2.1 Description of Test Configuration

For SRD mode, 12 channels are provided to testing:

| Channe1 | Freq. (MHz) |
|---------|-------------|
| 1       | 2405        |
| 2       | 2407        |
| 3       | 2408        |
| 4       | 2422        |
| 5       | 2423        |
| 6       | 2427        |
| 7       | 2447        |
| 8       | 2451        |
| 9       | 2452        |
| 10      | 2473        |
| 11      | 2474        |
| 12      | 2476        |

EUT was tested with Channel 1, 7 and 12.

#### 2.2 Equipment Modifications

No modification was made to the EUT.

#### 2.3 EUT Exercise Software

The test software was used "Pxi\_Link\_Emi\_Tool v1.0.0.0.exe"

The system was configured for testing in engineering mode, which was provided by manufacturer.

| Test Frequency      | Low | Middle | High |
|---------------------|-----|--------|------|
| Power Level Setting | 4   | 0      | 0    |

#### 2.4 Support Equipment List and Details

N/A.

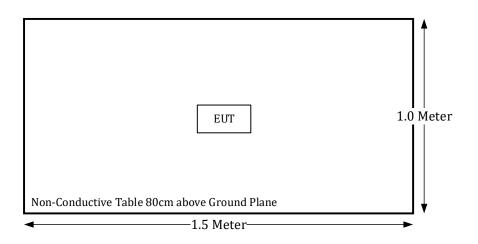
#### 2.5 External Cable List and Details

N/A.

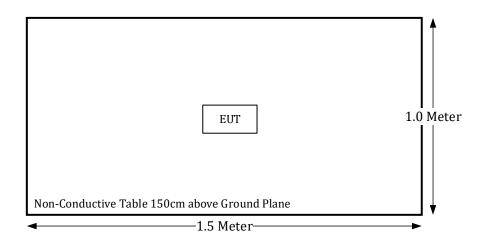
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 8 of 33

#### 2.6 Test Mode


Full System (model: TMRCD210TX) for all test item.

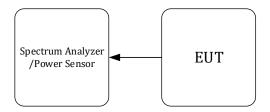
#### 2.7 Block Diagram of Test Setup


See test photographs attached in setup photos for the actual connections between EUT and support equipment.

#### **Radiation:**

Below 1GHz:




Above 1GHz:



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 9 of 33

#### Conducted



#### 2.8 Duty Cycle

The duty cycle as below:

| Radio<br>Mode | On Time<br>(ms) | Off Time (ms) | Duty Cycle<br>(%) | 1/T<br>(kHz) | VBW setting (kHz) |
|---------------|-----------------|---------------|-------------------|--------------|-------------------|
| SRD           | 0.338           | 0.274         | 55                | 2.959        | 3                 |

Please refer to the following plots.

#### **SRD Mode** Spectrum Ref Level 20.00 dBm Offset 10.50 dB RBW 3 MHz Att 20 dB . SWT 2 ms 🌞 VBW 3 MHz ●1Pk Clrw 0.21 de -274.00 μs D2[1] 10 dBpg M1[1] 5.58 dBr 400.00 µ 0 dBm--10 dBr -20 dBr -30 dB -50 dBr -60 dBm -70 dBm CF 2.405 GHz 1001 pts 200.0 µs/ Marker Y-value 5.58 dBm 0.20 dB 0.21 dB Type | Ref | Trc | **X-value** 400.0 μs **Function Result** 338.0 µs -274.0 µs D1 D2 M1 M1

Date: 26.JUL.2023 11:08:58

## 3 Summary of Test Results

| FCC Rules                        | Description of Test                      | Results        |
|----------------------------------|------------------------------------------|----------------|
| FCC §15.247(i), §1.1307(b)(3)(i) | RF Exposure                              | Compliance     |
| §15.203                          | Antenna Requirement                      | Compliance     |
| §15.207(a)                       | AC Line Conducted Emissions              | Not applicable |
| §15.205, §15.209, §15.247(d)     | Spurious Emissions                       | Compliance     |
| §15.247(a)(2)                    | 6 dB Emission Bandwidth                  | Compliance     |
| §15.247(b)(3)                    | Maximum Peak Output Power                | Compliance     |
| §15.247(d)                       | 100 kHz Bandwidth of Frequency Band Edge | Compliance     |
| §15.247(e)                       | Power Spectral Density                   | Compliance     |

Not applicable: Device only supports battery.

## 4 Test Equipment List and Details

| Description                              | Manufacturer                         | Model                        | Serial               | Calibration | Calibration     |  |  |
|------------------------------------------|--------------------------------------|------------------------------|----------------------|-------------|-----------------|--|--|
| Description                              | Manufacturer                         | Model                        | Number               | Date        | <b>Due Date</b> |  |  |
| Radiation 3M Room (966-A)                |                                      |                              |                      |             |                 |  |  |
| Active Loop Antenna                      | ETS-Lindgren                         | 6502                         | 35796                | 2024/3/27   | 2025/3/26       |  |  |
| Bilog Antenna<br>with 6 dB<br>Attenuator | SUNOL<br>SCIENCES &<br>MINI-CIRCUITS | JB6/UNAT-6+                  | A050115/1554<br>2_01 | 2023/2/2    | 2024/2/1        |  |  |
| Horn Antenna                             | EMCO                                 | SAS-571                      | 1020                 | 2023/5/18   | 2024/5/16       |  |  |
| Horn Antenna                             | ETS-Lindgren                         | 3116                         | 62638                | 2022/8/18   | 2023/8/17       |  |  |
| Preamplifier                             | Sonoma                               | 310N                         | 130602               | 2023/6/16   | 2024/6/14       |  |  |
| Preamplifier                             | Channel                              | ERA-100M-18G-<br>01D1748     | EC2300051            | 2023/4/01   | 2024/3/30       |  |  |
| Microware<br>Preamplifier                | EM Electronics<br>Corporation        | EM18G40G                     | 60656                | 2023/1/6    | 2024/1/5        |  |  |
| Spectrum                                 | Rohde & Schwarz                      | FSV40                        | 101939               | 2023/3/23   | 2024/3/22       |  |  |
| Analyzer                                 | Ronde & Schwarz                      | F3V40                        | 101939               | 2024/3/27   | 2025/3/26       |  |  |
| EMI Test<br>Receiver                     | Rohde & Schwarz                      | ESR3                         | 102099               | 2023/6/16   | 2024/6/14       |  |  |
| Micro flex Cable                         | UTIFLEX                              | UFB197C-1-                   | 225757 001           | 2023/1/24   | 2024/1/23       |  |  |
| Micro flex Cable                         | UTIFLEA                              | 2362-70U-70U                 | 225757-001           | 2024/1/23   | 2025/1/21       |  |  |
| Coaxial Cable                            | COMMATE                              | PEWC                         | 8Dr                  | 2022/12/24  | 2023/12/23      |  |  |
| Coaxiai Caoie                            | COMMATE                              | TEWC                         | 6DI                  | 2023/12/23  | 2024/12/21      |  |  |
| Coaxial Cable                            | UTIFLEX                              | UFB311A-Q-                   | 220490-006           | 2023/1/24   | 2024/1/23       |  |  |
| Coaxiai Caoic                            | OTIFLEX                              | 1440-300300                  | 220490-000           | 2024/1/23   | 2025/1/21       |  |  |
| Coaxial Cable                            | JUNFLON                              | J12J102248-00-               | AUG-07-15-           | 2022/12/24  | 2023/12/23      |  |  |
| Coaxiai Caoic                            | JOINI LOIN                           | B-5                          | 044                  | 2023/12/23  | 2024/12/21      |  |  |
| Cable                                    | EMC                                  | EMC105-SM-                   | 201003               | 2023/1/24   | 2024/1/23       |  |  |
| Cuote                                    | Livie                                | SM-10000                     | 201003               | 2024/1/23   | 2025/1/21       |  |  |
| Coaxial Cable                            | ROSNOL                               | K1K50-UP0264-<br>K1K50-450CM | 160309-1             | 2023/1/24   | 2024/1/23       |  |  |
| Coaxial Cable                            | ROSNOL                               | K1K50-UP0264-<br>K1K50-50CM  | 15120-1              | 2023/2/2    | 2024/2/1        |  |  |
| Software                                 | AUDIX                                | E3                           | 18621a               | N.C.R       | N.C.R           |  |  |
|                                          |                                      | Conducted Roo                | m                    |             |                 |  |  |
| Spectrum<br>Analyzer                     | Rohde & Schwarz                      | FSV40                        | 101140               | 2023/2/10   | 2024/2/9        |  |  |
| Cable                                    | UTIFLEX                              | UFA210A                      | 9435                 | 2022/10/3   | 2023/10/2       |  |  |
| Power Sensor                             | Boonton                              | RTP5006                      | 11037                | 2023/5/23   | 2024/5/21       |  |  |
| Attenuator                               | MINI-CIRCUITS                        | BW-S10W5+                    | 1419                 | 2023/2/2    | 2024/2/1        |  |  |

No.: RXZ230705015-02RF02

<sup>\*</sup>Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

## 5 FCC §15.247(i), §1.1307(b)(3)(i) – RF Exposure

#### 5.1 Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

- (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
- (B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} \ (\text{mW}) = \begin{cases} ERP_{20 \ cm} (d/20 \ \text{cm})^x & d \leq 20 \ \text{cm} \\ ERP_{20 \ cm} & 20 \ \text{cm} < d \leq 40 \ \text{cm} \end{cases}$$
 Where 
$$x = -\log_{10} \left(\frac{60}{ERP_{20 \ cm} \sqrt{f}}\right) \ \text{and} \ f \ \text{is in GHz};$$
 and 
$$ERP_{20 \ cm} \ (\text{mW}) = \begin{cases} 2040 f & 0.3 \ \text{GHz} \leq f < 1.5 \ \text{GHz} \\ 3060 & 1.5 \ \text{GHz} \leq f \leq 6 \ \text{GHz} \end{cases}$$

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least  $\lambda/2\pi$ , where  $\lambda$  is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of  $\lambda/4$  or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

| Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation |                                        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|--|
| RF Source<br>frequency<br>(MHz)                                                                 | Threshold ERP (watts)                  |  |  |  |  |  |  |
| 0.3-1.34                                                                                        | 1,920 R <sup>2</sup> .                 |  |  |  |  |  |  |
| 1.34-30                                                                                         | 3,450 R <sup>2</sup> /f <sup>2</sup> . |  |  |  |  |  |  |
| 30-300                                                                                          | 3.83 R <sup>2</sup> .                  |  |  |  |  |  |  |
| 300-1,500                                                                                       | 0.0128 R <sup>2</sup> f.               |  |  |  |  |  |  |
| 1,500-100,000                                                                                   | 19.2R <sup>2</sup> .                   |  |  |  |  |  |  |

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 13 of 33

#### **5.2** RF Exposure Evaluation Result

Project info

| Band     | Freq<br>(MHz) | Tune-up Power<br>(dBm) | Ant Gain<br>(dBi) | Distances<br>(mm) | Tune-up Power<br>(mW) | ERP<br>(dBm) | ERP<br>(mW) |
|----------|---------------|------------------------|-------------------|-------------------|-----------------------|--------------|-------------|
| SRD Mode | 2476          | -1.5                   | 0.5               | 5                 | 0.71                  | -3.15        | 0.48        |

#### § 1.1307(b)(3)(i)(A)

Determination of 1 mW blanket exemption under § 1.1307(b)(3)(i)(A)

| Dand     | Freq  | Result   |
|----------|-------|----------|
| Band     | (MHz) | Option A |
| SRD Mode | 2476  | exempt   |

The available maximum time-averaged power is no more than 1  $\ensuremath{\text{mW}}$ 

**Result:** The EUT meets exemption requirement.

## 6 FCC §15.203 – Antenna Requirements

#### 6.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

No.: RXZ230705015-02RF02

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi.

#### 6.2 Antenna Information

| Manufacturer                  | Model      | Туре        | Antenna Gain |
|-------------------------------|------------|-------------|--------------|
| King Wins Technology Co., Ltd | TMRCD210TX | PCB Antenna | 0.5 dBi      |

**Result: Compliance** 

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 15 of 33

## 7 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

#### 7.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

No.: RXZ230705015-02RF02

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

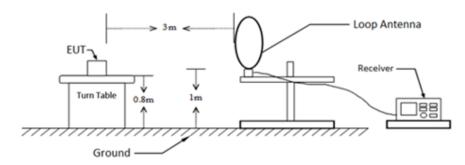
| MHz                 | MHz                   | MHz             | GHz           |
|---------------------|-----------------------|-----------------|---------------|
| 0.090 - 0.110       | 16.42 - 16.423        | 608 - 614       | 4. 5 – 5. 15  |
| 0.495 - 0.505       | 16.69475 – 16.69525   | 960 - 1240      | 5.35 - 5.46   |
| 2.1735 - 2.1905     | 16.80425 - 16.80475   | 1300 - 1427     | 7.25 - 7.75   |
| 4.125 - 4.128       | 25.5 - 25.67          | 1435 – 1626.5   | 8.025 - 8.5   |
| 4.17725 - 4.17775   | 37.5 - 38.25          | 1645.5 - 1646.5 | 9.0 - 9.2     |
| 4.20725 - 4.20775   | 73 - 74.6             | 1660 - 1710     | 9.3 - 9.5     |
| 6.215 - 6.218       | 74.8 - 75.2           | 1718.8 - 1722.2 | 10.6 - 12.7   |
| 6.26775 - 6.26825   | 108 - 121.94          | 2200 - 2300     | 13.25 - 13.4  |
| 6.31175 - 6.31225   | 123 - 138             | 2310 - 2390     | 14.47 - 14.5  |
| 8.291 - 8.294       | 149.9 - 150.05        | 2483.5 - 2500   | 15.35 - 16.2  |
| 8.362 - 8.366       | 156.52475 – 156.52525 | 2690 - 2900     | 17.7 - 21.4   |
| 8.37625 - 8.38675   | 156.7 – 156.9         | 3260 - 3267     | 22.01 - 23.12 |
| 8.41425 - 8.41475   | 162.0125 -167.17      | 3.332 - 3.339   | 23.6 - 24.0   |
| 12.29 - 12.293      | 167.72 - 173.2        | 3 3458 – 3 358  | 31.2 - 31.8   |
| 12.51975 – 12.52025 | 240 - 285             | 3.600 - 4.400   | 36.43 - 36.5  |
| 12.57675 – 12.57725 | 322 - 335.4           |                 | Above 38.6    |
| 13.36 - 13.41       | 399.9 – 410           |                 |               |

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

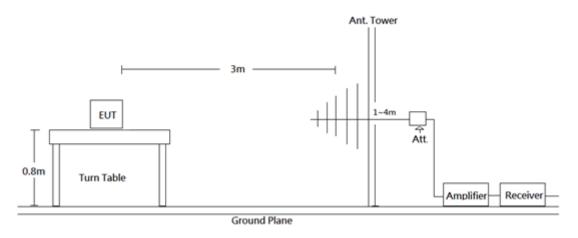
| Frequency<br>(MHz) | Field Strength<br>(micro volts/meter) | Measurement Distance (meters) |
|--------------------|---------------------------------------|-------------------------------|
| 0.009 - 0.490      | 2400/F(kHz)                           | 300                           |
| 0.490 - 1.705      | 24000/F(kHz)                          | 30                            |
| 1.705 - 30.0       | 30                                    | 30                            |
| 30 - 88            | 100**                                 | 3                             |
| 88 - 216           | 150**                                 | 3                             |
| 216 - 960          | 200**                                 | 3                             |
| Above 960          | 500                                   | 3                             |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

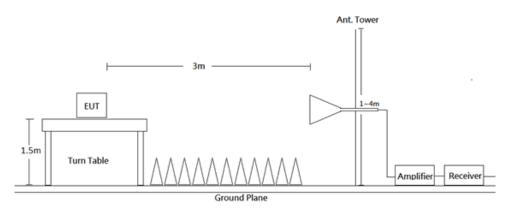
As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 16 of 33


intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

#### 7.2 EUT Setup


9kHz-30MHz:



30MHz-1GHz:



Above 1 GHz:



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 17 of 33

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

#### 7.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

| Frequency Range  | RBW           | VBW     | Duty cycle | Measurement method |
|------------------|---------------|---------|------------|--------------------|
| 9 kHz - 150 kHz  | 200 Hz/300 Hz | 1 kHz   | /          | QP/AV              |
| 150 kHz - 30 MHz | 9 kHz/10 kHz  | 30 kHz  | /          | QP/AV              |
| 30-1000 MHz      | 120 kHz       | 300 kHz | /          | QP                 |
|                  | 1 MHz         | 3 MHz   | /          | PK                 |
| Above 1 GHz      | 1 MHz         | 10 Hz   | >98%       | Ave                |
|                  | 1 MHz         | 1/T     | <98%       | Ave                |

Note: T is minimum transmission duration

#### 7.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

#### 7.5 Corrected Factor & Margin Calculation

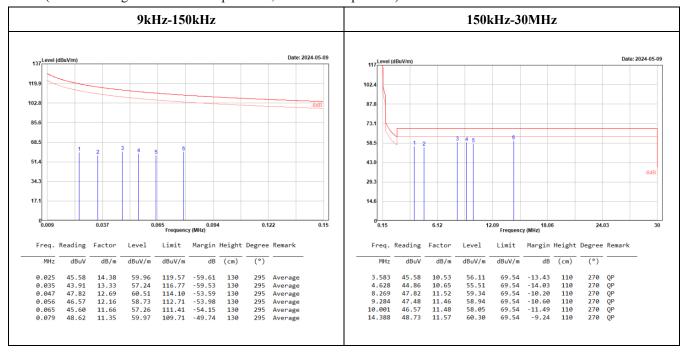
The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Level - Limit

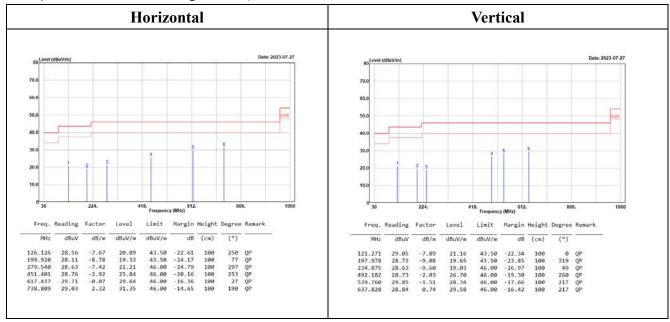
#### 7.6 Test Results


Test Mode: Transmitting

(Pre-scan with three orthogonal axis, and worse case as Z axis.)

#### 9kHz-30MHz:

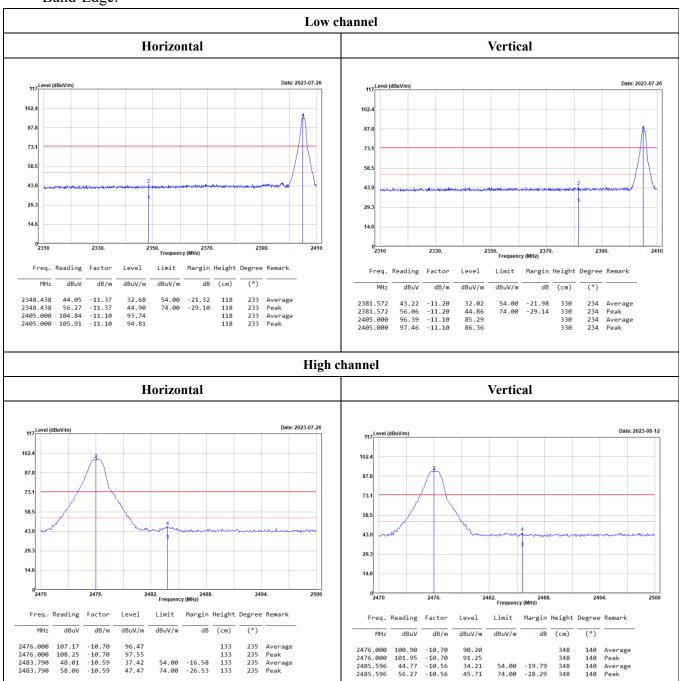
(Worst case is SRD mode high channel)


(Pre-scan using three directional polarities, worst case as parallel.)



No.: RXZ230705015-02RF02

#### 30MHz-1GHz:


(Worst case is SRD mode high channel)



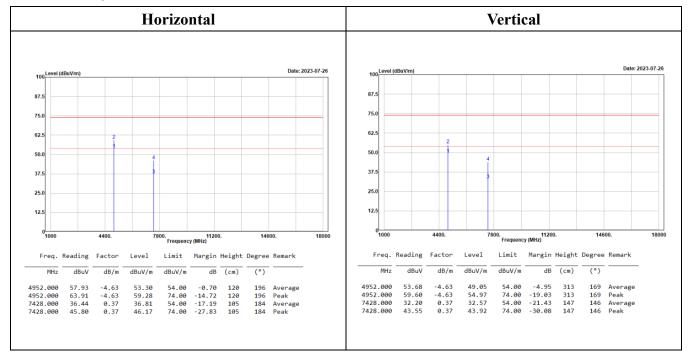
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 19 of 33

#### Band-Edge:



Level = Reading + Factor.

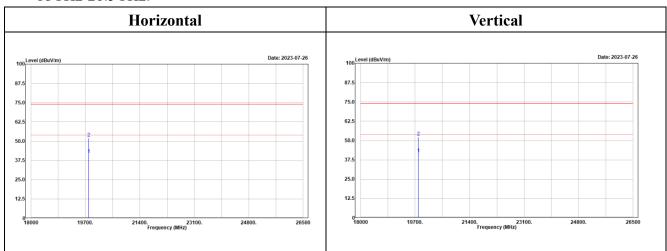

Margin = Level-Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$ 

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 20 of 33

(Worst case is SRD mode high channel)

#### 1GHz-18GHz:




Level = Reading + Factor.

Margin = Level - Limit.

 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$ 

#### 18GHz-26.5GHz:

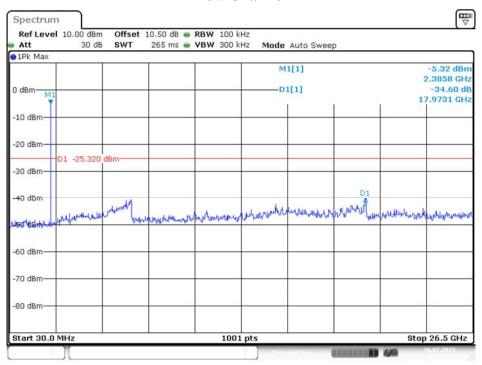


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 21 of 33

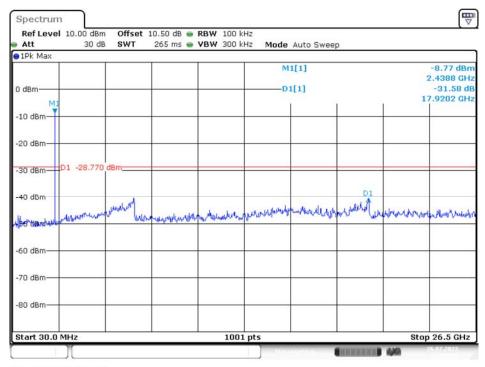
#### **Above 1GHz**

|                      |         |                  |                |                |                  |            |            | Low c           | hannel               |                |                |                |                |                  |            |            |                 |
|----------------------|---------|------------------|----------------|----------------|------------------|------------|------------|-----------------|----------------------|----------------|----------------|----------------|----------------|------------------|------------|------------|-----------------|
|                      |         |                  | Hor            | izonta         | l                |            |            |                 |                      |                |                | Ve             | rtical         |                  |            |            |                 |
| Freq.                | Reading | Factor           | Level          | Limit          | Margin           | Height     | Degree     | Remark          | Freq.                | Reading        | Factor         | Level          | Limit          | Margin           | Height     | Degree     | Remark          |
| MHz                  | dBuV    | dB/m             | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 | MHz                  | dBuV           | dB/m           | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 |
| 2348.438             | 44.05   | -11.37           | 32.68          | 54.00          | -21.32           | 118        | 233        | Average         | 2381.572             | 43 22          | -11.20         | 32.02          | 54 00          | -21.98           | 330        | 234        | Average         |
| 348.438              | 56.27   | -11.37           | 44.90          |                | -29.10           | 118        | 233        | Peak            | 2381.572             | 56.06          | -11.20         | 44.86          | 74.00          | -29.14           | 330        | 234        | Peak            |
| 405.000              |         | -11.10           | 93.74          |                |                  | 118        | 233        | Average         | 2405.000             | 96.39          | -11.10         | 85.29          |                |                  | 330        | 234        | Average         |
| 2405.000             | 105.91  | -11.10           | 94.81          |                |                  | 118        | 233        | Peak            | 2405.000             | 97.46          | -11.10         | 86.36          |                |                  | 330        | 234        | Peak            |
| Freq.                | Reading | Factor           | Level          | Limit          | Margin           | Height     | Degree     | Remark          | Freq.                | Reading        | Factor         | Level          | Limit          | Margin           | Height     | Degree     | Remark          |
| MHz                  | dBuV    | dB/m             | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 | MHz                  | dBuV           | dB/m           | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 |
|                      |         |                  |                |                |                  |            |            |                 |                      |                |                |                |                |                  |            |            |                 |
| 4810.000<br>4810.000 |         | -4.97<br>-4.97   | 52.34<br>57.75 | 54.00<br>74.00 | -1.66<br>-16.25  | 135<br>135 | 202<br>202 | Average<br>Peak | 4810.000<br>4810.000 | 54.22<br>59.51 | -4.97<br>-4.97 | 49.25<br>54.54 | 54.00<br>74.00 | -4.75<br>-19.46  | 298<br>298 | 173<br>173 | Average<br>Peak |
| 7215.000             |         | 0.02             | 42.28          | 54.00          | -11.72           | 110        | 192        | Average         | 7215.000             | 35.46          | 0.02           | 35.48          | 54.00          | -19.46           | 271        | 166        | Average         |
| 7215.000             | 48.46   | 0.02             | 48.48          | 74.00          | -25.52           | 110        | 192        | Peak            | 7215.000             | 45.43          | 0.02           | 45.45          | 74.00          | -28.55           | 271        | 166        | Peak            |
|                      |         |                  |                |                |                  |            |            | Middle          | channel              |                |                |                |                |                  |            |            |                 |
|                      |         |                  | Hor            | izonta         | l                |            |            |                 |                      |                |                | Ve             | rtical         |                  |            |            |                 |
| Freq.                | Reading | Factor           | Level          | Limit          | Margin           | Height     | Degree     | Remark          | Freq.                | Reading        | Factor         | Level          | Limit          | Margin           | Height     | Degree     | Remark          |
| MHz                  | dBuV    | dB/m             | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 | MHz                  | dBuV           | dB/m           | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 |
|                      | 101.73  |                  | 90.68          |                |                  | 112        |            | Average         | 2447.000             |                | -11.05         | 80.09          |                |                  | 317        | 53         | Average         |
| 447.000              | 102.83  | -11.05           | 91.78          |                |                  | 112        | 238        | Peak            | 2447.000             | 92.27          | -11.05         | 81.22          |                |                  | 317        | 53         | Peak            |
| Freq.                | Reading | Factor           | Level          | Limit          | Margin           | Height     | Degree     | Remark          | Freq.                | Reading        | Factor         | Level          | Limit          | Margin           | Height     | Degree     | Remark          |
| MHz                  | dBuV    | dB/m             | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 | MHz                  | dBuV           | dB/m           | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 |
| 4894.000             |         | -4.87            | 51.45          | 54.00          | -2.55            | 101        | 195        | Average         | 4894.000             | 53.37          | -4.87          | 48.50          | 54.00          | -5.50            | 281        | 162        | Average         |
| 4894.000             |         | -4.87            | 57.81          | 74.00          | -16.19           | 101        | 195        | Peak            | 4894.000             | 59.73          | -4.87          | 54.86          | 74.00          | -19.14           | 281        | 162        | Peak            |
| 7341.000<br>7341.000 |         | 0.12<br>0.12     | 37.91<br>46.88 | 54.00<br>74.00 | -16.09<br>-27.12 | 112<br>112 | 183<br>183 | Average<br>Peak | 7341.000             | 32.77          | 0.12           | 32.89          | 54.00          | -21.11           | 148        | 296        | Average         |
| 7541.000             | 40.70   | 0.12             | 40.00          | 74.00          | 27.12            | 112        | 103        | Teak            | 7341.000             | 44.13          | 0.12           | 44.25          | 74.00          | -29.75           | 148        | 296        | Peak            |
|                      |         |                  |                | • ,            |                  |            |            | High (          | channel              |                |                | * 7            | 4. 1           |                  |            |            |                 |
|                      |         |                  | Hor            | izonta         | 1                |            |            |                 |                      |                |                | ve             | rtical         |                  |            |            |                 |
| Freq.                | Reading | Factor           | Level          | Limit          |                  |            | Degree     | Remark          |                      | Reading        |                | Level          | Limit          |                  |            |            | Remark          |
| MHz                  | dBuV    | dB/m             | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 | MHz                  | dBuV           | dB/m           | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 |
| 2476.000             |         |                  | 96.47          |                |                  | 133        | 235        | Average         | 2476.000             |                |                | 90.20          |                |                  | 348        | 140        |                 |
| 2476.000             |         | -10.70           | 97.55          |                |                  | 133        | 235        | Peak            | 2476.000             |                |                | 91.25          | F4 00          | 40.70            | 348        | 140        | Peak            |
| 2483.790<br>2483.790 |         | -10.59<br>-10.59 | 37.42<br>47.47 | 54.00<br>74.00 | -16.58<br>-26.53 | 133<br>133 | 235<br>235 | Average<br>Peak | 2485.596<br>2485.596 |                |                | 34.21<br>45.71 | 54.00<br>74.00 |                  |            | 140<br>140 | Averag<br>Peak  |
| 24031730             | 30100   | 10.55            | 4,14,          | 74.00          | 20133            | 133        | 233        | reak            |                      |                |                |                |                |                  |            |            |                 |
| Freq.                | Reading | Factor           | Level          | Limit          | Margin           | Height     | Degree     | Remark          | Freq.                | Reading        | Factor         | Level          | Limit          | Margin           | Height     | Degree     | Remark          |
| MHz                  | dBuV    | dB/m             | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 | MHz                  | dBuV           | dB/m           | dBuV/m         | dBuV/m         | dB               | (cm)       | (°)        |                 |
| 4952.000             | 57.93   | -4.63            | 53.30          | 54.00          | -0.70            | 120        | 196        | Average         | 4952.000             |                |                | 49.05          |                | -4.95            |            |            | Average         |
| 4952.000             | 63.91   | -4.63            | 59.28          | 74.00          | -14.72           | 120        | 196        | Peak            | 4952.000             |                |                | 54.97          |                | -19.03           |            |            | Peak            |
| 7428.000<br>7428.000 |         | 0.37<br>0.37     | 36.81<br>46.17 |                | -17.19<br>-27.83 | 105<br>105 |            | Average<br>Peak | 7428.000<br>7428.000 |                |                | 32.57<br>43.92 |                | -21.43<br>-30.08 |            |            | Average<br>Peak |
|                      |         |                  |                |                |                  |            |            |                 |                      |                |                |                |                |                  |            |            |                 |


Level = Reading + Factor.

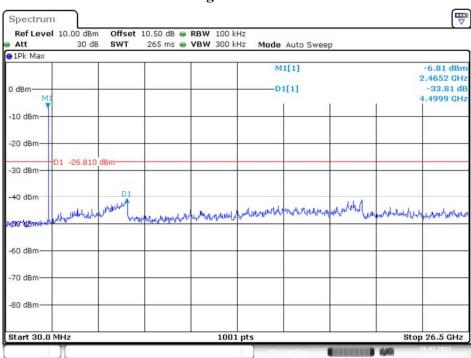
Margin = Level-Limit.

 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$ 


| Channel | Frequency (MHz)  Delta Peak to Band Emission (dBc) |       | Limit<br>(dBc) | Result |  |
|---------|----------------------------------------------------|-------|----------------|--------|--|
| Low     | 2405                                               | 34.60 | ≥ 20           | PASS   |  |
| Mid     | 2447                                               | 31.58 | ≥ 20           | PASS   |  |
| High    | 2476                                               | 33.81 | ≥ 20           | PASS   |  |

SRD Mode Low Channel




Date: 26.JUL.2023 14:48:26

#### **Middle Channel**



Date: 26.JUL.2023 14:51:01

#### **High Channel**



Date: 26.JUL.2023 14:57:17

## 8 FCC §15.247(a)(2) – 6 dB Emission Bandwidth

#### 8.1 Applicable Standard

According to FCC §15.247(a)(2).

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

No.: RXZ230705015-02RF02

#### 8.2 Test Procedure

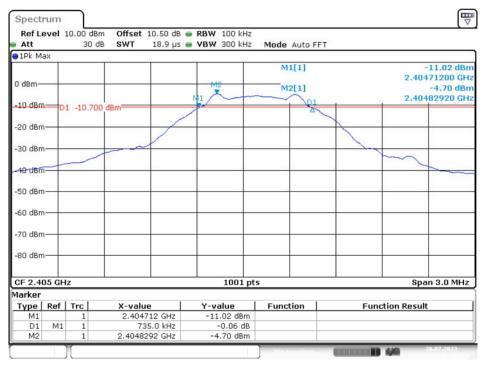
According to ANSI C63.10-2013, section 11.8

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW  $\geq$  [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

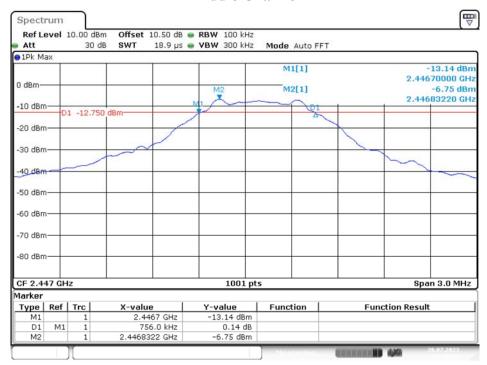
#### 8.3 Test Results

| Channel | Frequency<br>(MHz) | 6 dB Emission Bandwidth (MHz) | Limit<br>(kHz) | Result     |
|---------|--------------------|-------------------------------|----------------|------------|
| Low     | 2405               | 0.735                         | > 500          | Compliance |
| Middle  | 2447               | 0.756                         | > 500          | Compliance |
| High    | 2476               | 0.753                         | > 500          | Compliance |


Please refer to the following plots

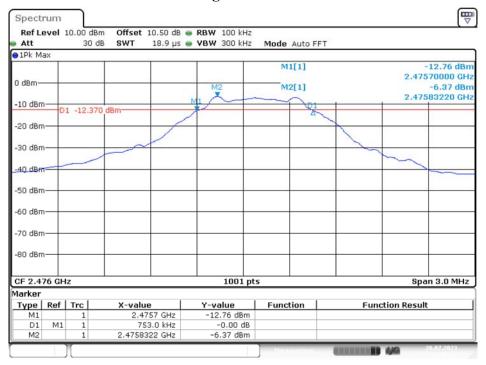
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 25 of 33


## SRD Mode Low Channel

No.: RXZ230705015-02RF02




Date: 26.JUL.2023 14:46:17

#### **Middle Channel**



Date: 26.JUL.2023 14:50:21

#### **High Channel**



Date: 26.JUL.2023 14:56:22

## 9 FCC §15.247(b)(3) – Maximum Output Power

#### 9.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

No.: RXZ230705015-02RF02

#### 9.2 Test Procedure

According to ANSI C63.10-2013, section 11.9.1.3

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

#### 9.3 Test Results

#### **Conducted Peak Output Power**

| Channel | Frequency<br>(MHz) | Conducted Peak Output Power (dBm) | Power<br>(W) | Limit<br>(W) | Result |
|---------|--------------------|-----------------------------------|--------------|--------------|--------|
|         |                    | SRD Mod                           | e            |              |        |
| Low     | 2405               | -1.81                             | 0.0007       | 1            | PASS   |
| Middle  | 2447               | -4.12                             | 0.0004       | 1            | PASS   |
| High    | 2476               | -4.20                             | 0.0004       | 1            | PASS   |

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 28 of 33

## 10 FCC§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge

No.: RXZ230705015-02RF02

#### 10.1 Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

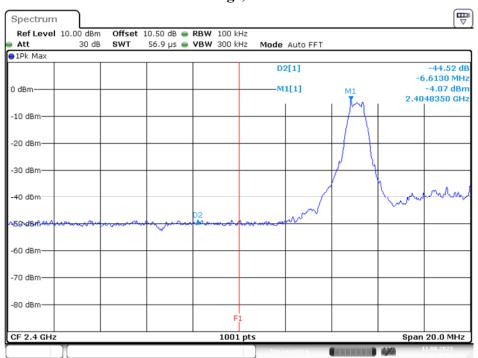
#### 10.2 Test Procedure

According to ANSI C63.10-2013 Section 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

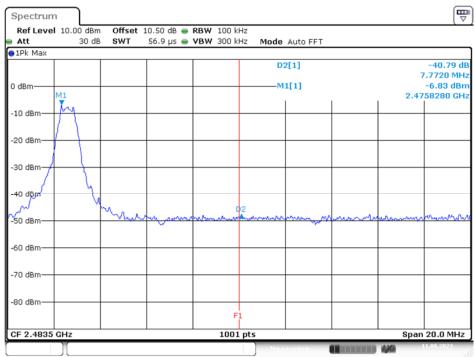
#### 10.3 Test Results

| Channel | Frequency<br>(MHz) | Delta Peak to  Band Emission  (dBc) | Limit<br>(dBc) | Result |
|---------|--------------------|-------------------------------------|----------------|--------|
| Low     | 2405               | 44.52                               | ≥ 20           | PASS   |
| High    | 2476               | 40.79                               | ≥ 20           | PASS   |


Please refer to the following plots

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 29 of 33


## SRD Mode Band Edge, Left Side

No.: RXZ230705015-02RF02



Date: 26.JUL.2023 14:48:11

#### Band Edge, Right Side



Date: 26.JUL.2023 14:57:02

## 11 FCC §15.247(e) – Power Spectral Density

#### 11.1 Applicable Standard

According to FCC §15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

No.: RXZ230705015-02RF02

#### 11.2 Test Procedure

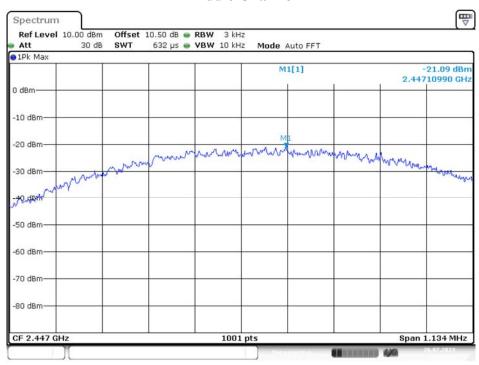
According to ANSI C63.10-2013, section 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz  $\leq$  RBW  $\leq$  100 kHz.
- d) Set the VBW  $\geq$  [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat

#### 11.3 Test Results

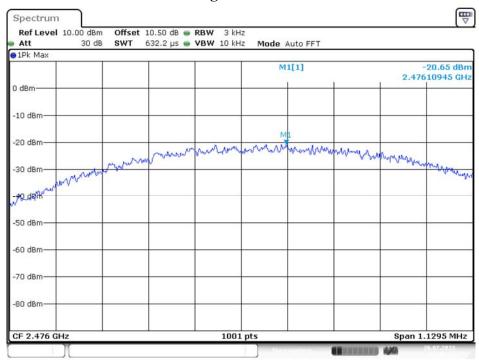
| Channel | Frequency<br>(MHz) | Power Spectral Density<br>(dBm/3 kHz) | Limit<br>(dBm/3 kHz) | Result     |
|---------|--------------------|---------------------------------------|----------------------|------------|
| Low     | 2405               | -19.07                                | 8                    | Compliance |
| Middle  | 2447               | -21.09                                | 8                    | Compliance |
| High    | 2476               | -20.65                                | 8                    | Compliance |

Please refer to the following plots


## SRD Mode Low Channel

No.: RXZ230705015-02RF02




Date: 26.JUL.2023 14:46:26

#### **Middle Channel**



Date: 26.JUL.2023 14:50:30

#### **High Channel**



Date: 26.JUL.2023 14:56:31

\*\*\*\*\* END OF REPORT \*\*\*\*\*