

Report No.: KES-RF-20T0110 Page (1) of (29)

TEST REPORT

Part 15 Subpart C 15.247

Equipment under test ETR-Eye Tracking Remote

Model name KXL-1B Remote Control

FCC ID 2AVGK-KXLTX

Applicant Avedro

Manufacturer Hyun Seung I&C Co., Ltd

Date of test(s) 2020.06.22 ~ 2020.07.01

Date of issue 2020.07.03

Issued to

Avedro

201 Jones Road 5th floor, Waltham, MA, 02451, United States Tel: 781-768-3400

Issued by KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

lee
Young-Jin, Lee Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Report No .: KES-RF-20T0110 Page (2) of (29)

Revision history

Revision	Date of issue	Test report No.	Description
-	2020.07.03	KES-RF-20T0110	Initial

Report No .: KES-RF-20T0110 Page (3) of (29)

TABLE OF CONTENTS

1.	General in	Iformation	
	1.1.	EUT description	4
	1.2.	Test configuration	4
	1.3.	Device modifications	4
	1.4.	Frequency/channel operations	4
	1.5.	Accessory information	5
	1.6.	Software and Firmware description	5
	1.7.	Measurement results explanation example	5
	1.8.	Measurement Uncertainty	5
2.	Summary	of tests	6
3.	Test result	iS	
	3.1.	6 dB bandwidth	
	3.2.	Output power	9
	3.3.	Power spectral density	
	3.4.	Radiated restricted band and emissions	13
	3.5	Conducted spurious emissions & band edge	26
App	endix A.	Measurement equipment	28
App	endix B.	Test setup photos	29

Report No.: KES-RF-20T0110 Page (4) of (29)

1. General	information
Applicant:	Avedro
Applicant address:	201 Jones Road 5th floor, Waltham,
	MA, 02451, United States
Test site:	KES Co., Ltd.
Test site address:	3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,
	Gyeonggi-do, 14057, Korea
	473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea
Test Facility	FCC Accreditation Designation No.: KR0100, Registration No.: 444148
FCC rule part(s):	15.247
FCC ID:	2AVGK-KXLTX
Test device serial N	o.: \begin{tabular} Production \begin{tabular}

1.1. EUT description

Equipment under test	ETR-Eye Tracking Remote
Frequency range	BLE: 2 402 MHz ~ 2 480 MHz
Model:	KXL-1B Remote Control
Modulation technique	GFSK
Number of channels	2 402 MHz ~ 2 480 MHz : 40 ch
Antenna specification	Antenna type : Chip antenna, Peak gain : 0.8 dBi
Power source	DC 3.0 V (battery)

1.2. Test configuration

The <u>Avedro KXL-1B Remote Control FCC ID: 2AVGK-KXLTX</u> was tested per the guidance of KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing

1.3. Device modifications

N/A

1.4. Frequency/channel operations

Ch.	Frequency (Mz)	Rate(Mbps)
00	2 402	1
·		
20	2 442	1
39	2 480	1

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

1.5. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

1.6. Software and Firmware description

The software and firmware installed in the EUT is V1.00

1.7. Measurement results explanation example

For all conducted test items

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 0.85 + 10 = 10.85 (dB)

1.8. Measurement Uncertainty

Test Item		Uncertainty
Uncertainty for Conduction emission test		2.46 dB
Uncertainty for Radiation emission test	Below 1 GHz	4.40 dB
(include Fundamental emission)	Above 10Hz	5.94 dB
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

Report No .: KES-RF-20T0110 Page (6) of (29)

2. Summary of	tests	
Reference	Parameter	Test results
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Output power	Pass
15.247(e)	Power spectral density	Pass
15.205 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	Pass

Report No.: KES-RF-20T0110 Page (7) of (29)

3. Test results

3.1. 6 dB bandwidth

Test procedure

ANSI C63.10 - section 11.8

Test setup

EUT	Attenuator		Spectrum analyzer
-----	------------	--	-------------------

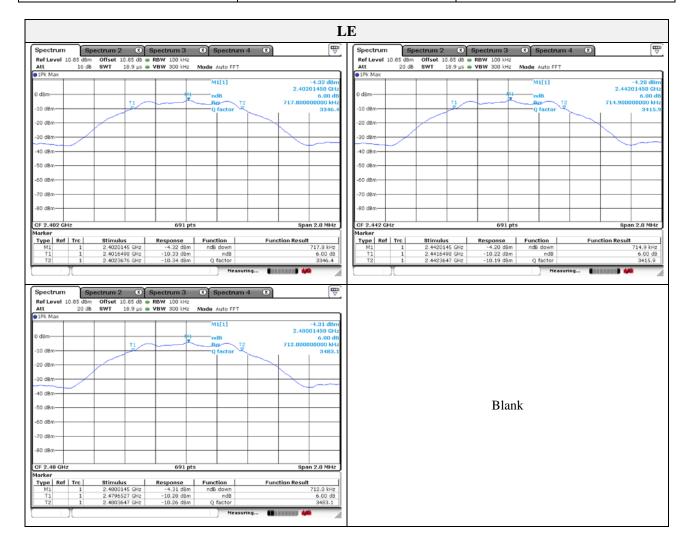
ANSI C63.10-2013 - Section 11.8.1

- 1. RBW = 100 kHz.
- 2. VBW \geq 3 \times RBW.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

ANSI C63.10-2013 - Section 11.8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limit


According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928$ Mb, $2400 \sim 2483.5$ Mb, and $5725 \sim 5850$ Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF-20T0110 Page (8) of (29)

Test results

Frequency(Mz)	6 dB bandwidth(Mz)	Minimum Limit(Mz)
2 402	0.718	
2 442	0.715	0.5
2 480	0.712	

3.2. Output power Test procedure

ANSI C63.10 – section 11.9.1.3 and 11.9.2.3.2

ANSI C63.10 - section 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS ba ndwidth and shall utilize a fast-responding diode detector.

ANSI C63.10 - section 11.9.2.3.2

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Limit

According to \$15.247(b)(3), For systems using digital modulation in the 902~928 MŁ, 2 400~2 483.5 MŁ, and 5 725~5 850 MŁ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: KES-RF-20T0110 Page (10) of (29)

Test	results
ICOU	I Coulto

Frequency(Mz)	Peak output power(dBm)	Average output power(dBm)	Limit(dBm)
2 402	-4.33	-4.93	
2 442	-4.06	-4.66	30
2 480	-4.24	-4.94	

Report No.: KES-RF-20T0110 Page (11) of (29)

3.3. Power spectral density

Test procedure

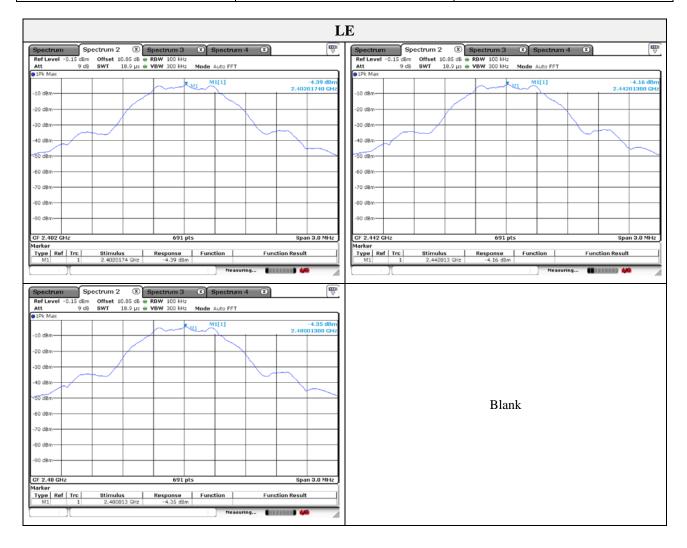
ANSI C63.10 - section 11.10.2

Test setup

FUT	Attenuator	Spectrum analyzor
EOT	Attenuator	Spectrum analyzer

Section 10.2

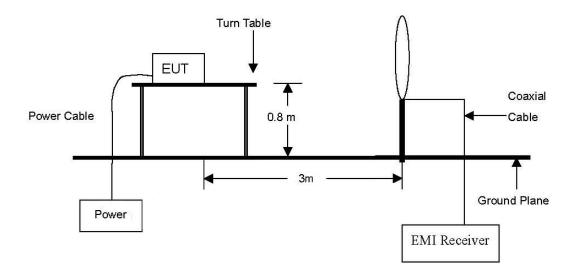
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW(but no less than 3 kHz) and repeat.

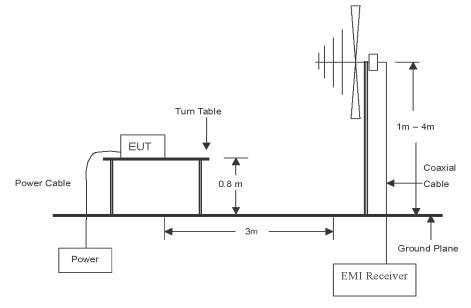

Limit

According to \$15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF-20T0110 Page (12) of (29)

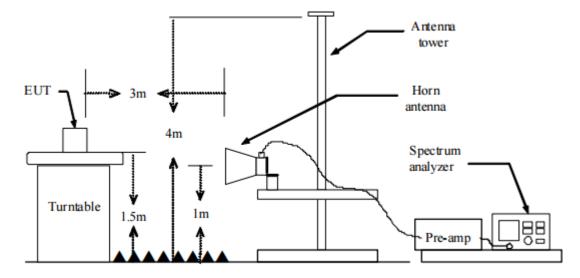
Frequency(Mz)	PSD (dBm/100址)	Limit(dBm/3kHz)
2 402	-4.39	
2 442	-4.16	8
2 480	-4.35	




3.4. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 GHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \mathbb{G} to the tenth harmonic of the highest fundamental frequency or to 40 \mathbb{G} emissions, whichever is lower.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - (1) Span = wide enough to fully capture the emission being measured
 - 2 RBW = 100 kHz
 - $3 \text{ VBW} \ge \text{RBW}$
 - ④ Detector = quasi peak
 - \bigcirc Sweep time = auto
 - 6 Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 M/z
 - ③ VBW \ge 3 MLz
 - (4) Detector = peak
 - 5 Sweep time = auto
 - \bigcirc Trace = max hold
 - \bigcirc Trace was allowed to stabilize

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Report No.: KES-RF-20T0110 Page (15) of (29)

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 $\mathbf{RBW} = 1$ Mbz
 - (3) $VBW \ge 3 \times RBW$
 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

- 1. The loop antenna was investigated with three polarizations, and horizontal and vertical polarizations were reported as the worst case.
- 2. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/D_s)$

 $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20\log(D_m/Ds)$ Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters
- 3. $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)$
- 4. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ /m) Field strength(dB μ /m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9klz to 30Mlz. Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

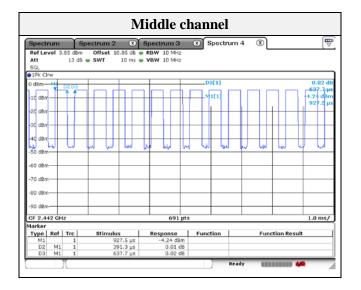
Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Duty cycle

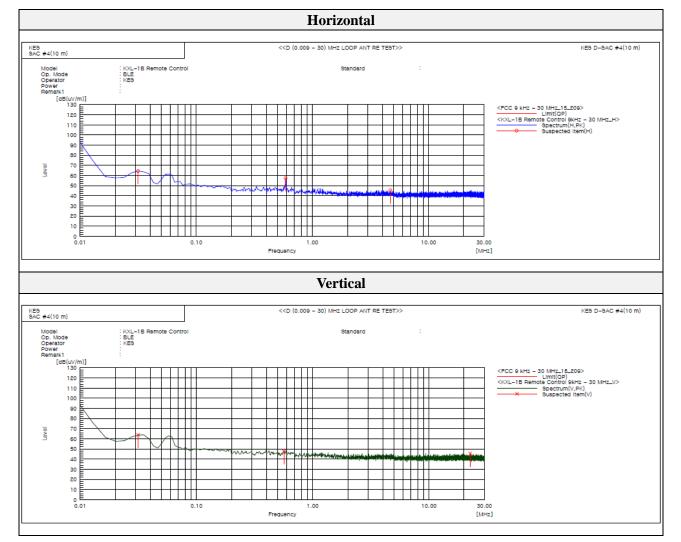

Regarding to KDB 558074 D01_v05r02, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Ton time	Period	Duty cycle	Duty cycle	Duty cycle correction factor	
(MS)	(ms)	(Linear)	(%)	(dB)	
0.391 3	0.637 7	0.613 6	61.36		

Duty cycle (Linear) = T_{on} time/Period

DCF(Duty cycle correction factor (dB)) = $10\log(1/duty cycle)$

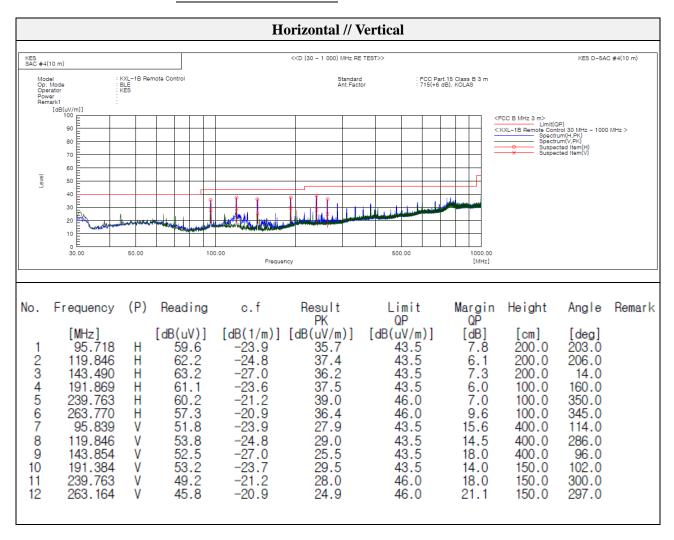


Test results (Below 30 Mz)

Frequency	Level	Ant Dol	CF	D
Channel:		20 (We	orst case)	
Distance o	f measurem	ent: 3 mete	r	
Mode:		BLE		

Frequency (Mbz)	Level (dBµN)	Ant. Pol. (H/V)	CF (dB)	Distance factor (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
0.031	44.70	Н	19.70	-80.00	-15.60	37.60	53.20
0.586	36.50	Н	20.90	-40.00	17.40	32.20	14.80
4.688	25.00	Н	20.50	-40.00	5.50	29.50	24.00
0.031	44.20	V	19.70	-80.00	-16.10	37.60	53.70
0.564	26.90	V	20.90	-40.00	7.80	32.60	24.80
22.633	24.40	V	21.20	-40.00	5.60	29.50	23.90

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No .: KES-RF-20T0110 Page (19) of (29)

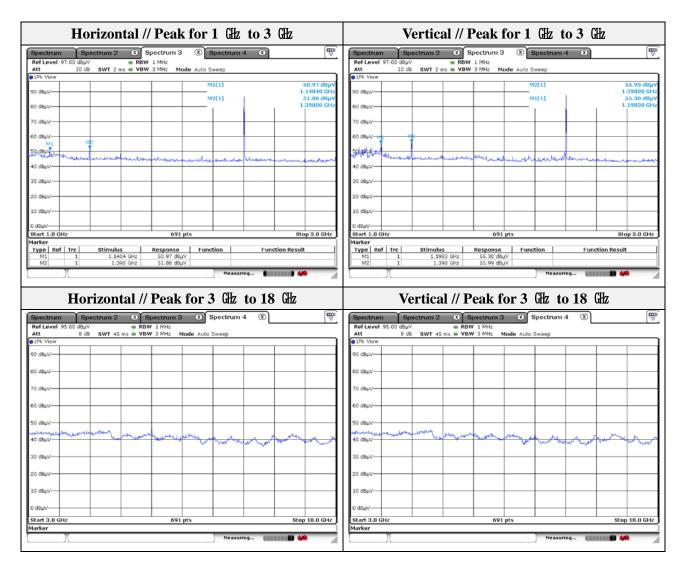
Test results (Below 1 000	Test results (Below 1 000 版) – Worst case				
Mode:	BLE				
Distance of measurement:	3 meter				
Channel:	20 (Worst case)				

Channel:

www.kes.co.kr

Test results (Above 1 000	MHz)
Mode:	BLE
Distance of measurement:	3 meter
Channel:	00

Spurious


Frequency (MLz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 140.40	50.97	Peak	Н	-7.85	-	43.12	74.00	30.88
1 398.00	51.88	Peak	Н	-6.24	-	45.64	74.00	28.36
1 198.30	55.30	Peak	V	-7.52	-	47.78	74.00	26.22
1 398.00	55.99	Peak	V	-6.24	-	49.75	74.00	24.25

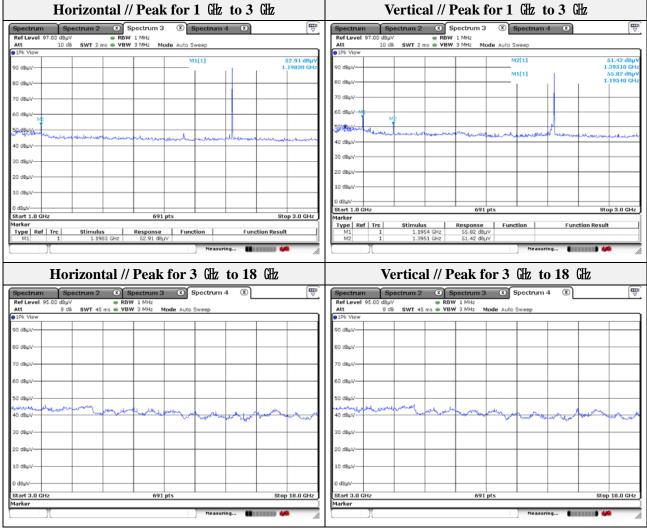
Band edge

Frequency (Mz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2 359.03	44.77	Peak	Н	-0.19	-	44.58	74.00	29.42
2 370.28	47.73	Peak	V	-0.17	-	47.56	74.00	26.44

Res	Restricted band // Horizontal // Peak								Restricted band // Vertical // Peak						
Ref Level 95.00 dBµV	ectrum 2 Spec RBW SWT 15.2 µs • VBW	MHz	Spectrum 4 🔹			Ţ	Spectrum Ref Level 1 Att	95.00 dBµV		Spectrum 3 RBW 1 MHz VBW 3 MHz Md	Spectrun de Auto FFT	n 4 🛛 🛞			
DIPK VIEW			M3[1]		44.77	dpusy				_	M3[1]		47.73 dBi		
90 dBµV			M1[1]		2.35903 43.03 2.31000	dBµ∨	90 dBµV				M1[1]	1 1	2.370280 G 43.76 dB 2.310000 G		
70 dBµV				-		H	70 dBµV				M3				
50 dBµV-MI. 40 dBµV-		m		~~~* ²	h		50 dBµV MI 40 dBµV	~~~	m		X		Ann.		
30 dBµV			+ + +	-			30 dBµV								
20 dBµV				-			20 dBµV-								
10 dBµV				- F2			10 dBµV-						E2		
0 dBµVF1				-í		_	0 dBµV—F1			+		+	- 		
CF 2.3525 GHz		691 pts		Spa	an 105.0	MHz	CF 2.3525	Hz		691 pt	· ·		Span 105.0 MH		
larker	autore la pa		and a second				Marker	1.00							
Type Ref Trc M1 1 M2 1 M3 1	2.31 GHz 4 2.39 GHz 4	sponse Fu 3.03 dBμV 2.16 dBμV 4.77 dBμV 2.16 dBμV	nction Functi	ion Re	sult		M1 M2 M3	1 1 1	8timulus 2.31 GHz 2.39 GHz 2.37028 GHz	Response 43.76 dBµV 47.04 dBµV 47.73 dBµV	Function	Functio	n Result		
			Measuring		444	lin		J			Meas	uring 🏾			

Note.

1. Average test would be performed if the peak result were greater than the average limit.


2. No spurious emission were detected above 3 GHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF-20T0110 Page (22) of (29)

Mode:	BLE
Distance of measurement:	3 meter
Channel [.]	20

- Spurio	us							
Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 198.30	52.91	Peak	Н	-7.52	-	45.39	74.00	28.61
1 195.40	55.82	Peak	V	-7.54	-	48.28	74.00	25.72
1 395.10	51.42	Peak	V	-6.26	-	45.16	74.00	28.84

Note.

1. Average test would be performed if the peak result were greater than the average limit.

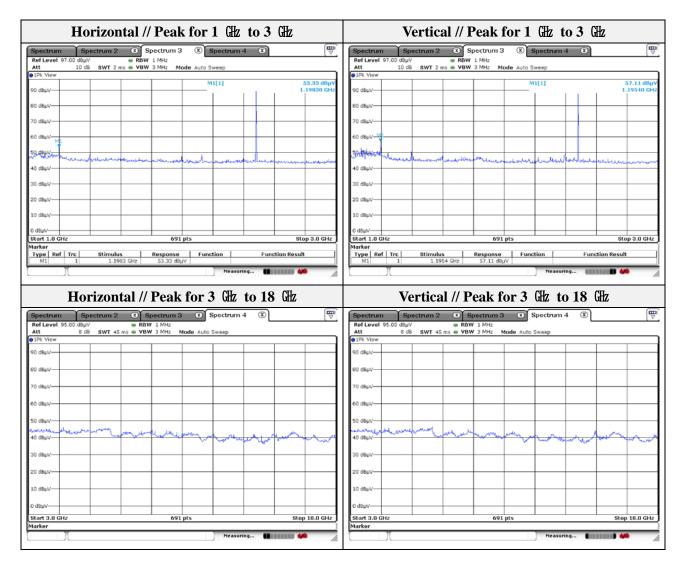
2. No spurious emission were detected above 3 GHz.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

www.kes.co.kr

Mode:	BLE
Distance of measurement:	3 meter
Channel:	39

- Spurious


Frequency (MLz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 198.30	53.33	Peak	Н	-7.52	-	45.81	74.00	28.19
1 195.40	57.11	Peak	V	-7.54	-	49.57	74.00	24.43

- Band edge

Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2 483.73	53.72	Peak	Н	0.07	-	53.79	74.00	20.21
2 483.92	52.38	Peak	V	0.07	-	52.45	74.00	21.55

Spectrum	Spectrum 2 (Spectrum 3	(X) Spectrum 4		Restricted band // Vertical // Peak						
			Spectrum 4						Spectrur	m4 🗵	[
Ref Level 97.0 Att		RBW 1 MHz VBW 3 MHz Mode	Eween		Ref Level 9 Att		SWT 1 ms = VB	W 1 MHz W 3 MHz Mode	Eween		
1Pk View	10 00 0001 1 115	TOW STATE MODE	Sweep		1Pk View	10.00	owi 1 lis 🖷 40	W 3 Minz Mout	s Sweep		
			M3[1]	53.72 dBuV					M3[1]		52.38 dB
0 dBuV				2.4837320 GHz	90 dBµV			+			2.4839170 G
			M1[1]	52.78 dBµV					M1[1]		50.86 dB
0 dBµV				2.4835000 GHz	80 dBµV-						2.4835000 G
N 1											
) dBµV					70 dBµV						
dBuV	5.482				60 dBµV			+ +			
						NU 2					
) dBµV											
	Stranger .		M2		50 dBµV	V Na A	h	A	1	m2	
	annonen	mannenglissister	when an when we are the same	mannews		Mar.	marshaladher	handliken	-kutheluen	-	hummen
D dBµV	manu	man and an and a second	utoron warment or mo	man and and and	50 dBµV	- March	hatshelendhern	Norwellham	okutlikusu	Me	hummen
) dBµV	manyan	mar and a second	where we want of the	man and and an all and a	40 dBµV	- Why	hardender	Norwellham	-kniklikuen	Emenin	hermonikers
	manyage	and the strategy and	uter ou we are a set	and a second and a second		- Mire	handrahaland	Normedilhamo	-kuitlikuen	ntonen inin	haven her
) dBµV		wayan an a	M2	and a second and a second s	40 dBµV	- MAR	Marsheludleur	Non velikana	-kuitelikusuu	ne and a second s	hummen
) dBµV	- Verbergeren	5444447 Augusta Jacob	M2 antorran and an and an and an and an and an	angen den erden sin arten seder	40 dBµV		hand a strate and the second	Vanselikans	-kutiburn		herroomerteen
D dBµV		andaren ar en	1/2 2000		40 dBµV		hader been	Nonaklikano	-knihlipmen		hermon
D dBµV					40 dBµV		hand and the second	handlikans			haven hars
D dBµV			112 112 112 112 112 112 112 112 112 112		40 dBµV 30 dBµV 20 dBµV 10 dBµV		holanda ang	Normallheim		F2	harmonintee
0 dBµV	F1	144444444 (1999) 			40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV	F1	holden har				
0 dBµV 0 dBµV 0 dBµV 0 dBµV dBµV dBµV	F1	691 pts		Stop 2.51 GHz	40 dBµV 30 dBµV 20 dBµV 10 dBµV	F1		691 pt:			8top 2.51 Gł
0 dBµV 0 dBµV 0 dBµV dBµV tart 2.478 GH arker	F1				40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV Start 2.478 c Marker	F1 GHz	h-44544				
0 dBµV	F1	691 pts			40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV 8tart 2.478 d	F1 GHz	Stimulus	691 pt: Response		F2	
) dBµV) dBµV) dBµV dBµV art 2.478 GH prker M1	F1 iz rc Stimulus 1 2.4035 Gi	691 pts	2	Stop 2.51 GHz	40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV 5tart 2.478 d Marker Type Ref M1	F1 GHz	Stimulus 2.4035 GHz	691 pt: Response 50.66 daµV	s	F2	Stop 2.51 G
0 dBµV	F1	691 pts 691 pts 691 vt	2	Stop 2.51 GHz	40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV 0 dBµV Start 2.478 Marker Type Ref	F1 GHz Trc	Stimulus	691 pt: Response	s	F2	Stop 2.51 G

Note.

1. Average test would be performed if the peak result were greater than the average limit.

2. No spurious emission were detected above 3 GHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF-20T0110 Page (25) of (29)

T	es	t results (18	GHz	to 30	(Hz) – Worst case

Mode: BLE Distance of measurement: 3 meter

Distance of measurement: 3 meter Channel: 20 (Worst case)

Horizontal								Vertical										
Spectrum									Spectrum	')								∇
Ref Level 93.00 Att	dBµ∨ 6 dB SWT 3	e RBW 6 ms e VBW		lode Auto S	weep				Ref Level Att		V B SWT 36	RBW ms VBW		Mode Auto	Sweep			
1Pk Max				_		_			1Pk Max									
90 dBµV									90 dBµV									
80 dBµV	_								80 dBµV									
70 dBµV									70 dBµV									
60 dBµV									60 dBµV									
50 dBµV									50 dBµV									
40 dBW	Yould read and an	0 - 244 (25) - 10	or other the st	hand the same state	بالملحق والمستحلي	mention	ويعقر بالمرس	and a stand and	40 dBµV-						L. M. M.	Humath	and the second	in the
30 dBµV	· · · · · · · · · · · · · · · · · · ·								30 dBµV	10 10 cm					- 4			
20 dBµV									20 dBµV								<u> </u>	
10 dBµV	_								10 dBµV									
0 dBµV									0 dBµV									
Start 18.0 GHz			691	pts			Stor	9 30.0 GHz	Start 18.0	GHz			691	l pts			Stop	30.0 GHz
					Measuri	ng 🚺)[Measur	ing 💷		

Note.

1. No spurious emission were detected above 18 GHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3.5 Conducted spurious emissions & band edge

Test setup	_		_	
EUT		Attenuator		Spectrum analyzer

Test procedure

Band edge

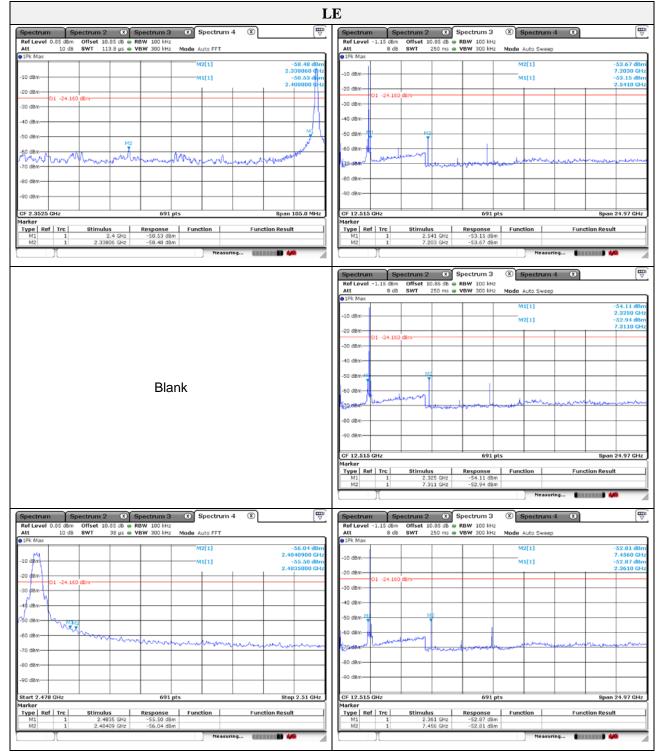
ANSI C63.10 – Section 11.11

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100 kHz
- 4. VBW = 300 kHz
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep time = auto
- 8. The trace was allowed to stabilize

Out of band emissions

ANSI C63.10 - Section 11.11

- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize


Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF-20T0110 Page (27) of (29)

Test results

Note:

- 1. For reference level, refer to section 3.3(Power spectral density)
- 2. The channel found to contain the maximum PSD level can be used to establish the reference level.

The authenticity of the test report, contact shchoi@kes.co.kr

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Report No.: KES-RF-20T0110 Page (28) of (29)

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	101389	1 year	2021.01.15
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2021.01.15
DC Power Supply	Agilent	6632B	US36351824	1 year	2021.01.14
Power Meter	Anritsu	ML2495A	1438001	1 year	2021.01.14
Pulse Power Sensor	Anritsu	MA2411B	1339205	1 year	2021.01.14
Attenuator	KEYSIGHT	8493C	82506	1 year	2021.01.14
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2021.02.15
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	715	2 years	2020.09.20
Horn Antenna	A.H	SAS-571	414	2 years	2021.02.11
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA 9170550	2 years	2021.02.19
Preamplifier	R&S	SCU01	100603	1 year	2020.11.25
Preamplifier	AGILENT	8449B	3008A01742	1 year	2021.01.02
EMI Test Receiver	R&S	ESU26	100551	1 year	2021.04.01
EMI TEST RECEIVER	R & S	ESR3	101781	1 year	2021.01.10
PULSE LIMITER	R & S	ESH3-Z2	101915	1 year	2021.01.02
LISN	R & S	ENV216	101787	1 year	2021.01.02

Appendix A. Measurement equipment

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Laptop	LG Electronics Inc.,	LGS53	306QCZP560949
Test board	N/A	N/A	N/A