

Global United Technology Services Co., Ltd.

Report No.: GTS202003000184F01

TEST REPORT

Applicant: Shenzhen Shi Aiker Electronic Technology Co., Ltd.

Address of Applicant: 6th Floor, Building C, No. 9 East, Shangxue Technology

Industrial City, Xinxue Community, Bantian Street, Longgang

District, Shenzhen, China

Manufacturer/Factory: Shenzhen Shi Aiker Electronic Technology Co., Ltd.

Address of 6th Floor, Building C. No. 9 East, Shangxue Technology

Industrial City, Xinxue Community, Bantian Street, Longgang Manufacturer/Factory:

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: G400 Fast wireless charger

Model No.: G400

FCC ID: 2AVG2-G400

FCC CFR Title 47 Part 15 Subpart C **Applicable standards:**

Date of sample receipt: Dec. 02, 2019

Date of Test: Apr. 06, 2020- Apr. 16, 2020

Date of report issued: Apr. 16, 2020

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

2 Version

Version No.	Date	Description
00	Apr. 16, 2020	Original

Prepared By:	Typontly	Date:	Apr. 16, 2020	
	Project Engineer	_		
Check By:	Reviewer	Date:	Apr. 16, 2020	_

3 Contents

			Page
1	COVE	ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	5
	5.4	DEVIATION FROM STANDARDS	6
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	6
	5.7	TEST LOCATION	
	5.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT:	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	RADIATED EMISSION	13
	7.4	20DB OCCUPY BANDWIDTH	18
8	TES	T SETUP PHOTO	19
9	EUT	CONSTRUCTIONAL DETAILS	19

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Radiated Emission	15.209(a)(f)	Pass
20dB Bandwidth	15.215	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	-2 and a level of confidence of 9	25%

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	G400 Fast wireless charger
Model/Type reference:	G400
Serial No.:	NA
Test sample(s) ID:	GTS202003000184-1
Sample(s) Status	Engineer sample
Power supply:	DC 5V or 9V from adapter
Operation frequency:	110KHz - 205KHz
Modulation type:	ASK
Antenna type:	Loop coil antenna

5.2 Test mode

Equipment under test was operated during the measurement under the following conditions:

☐ Charging and communication mode

Test Mo	Test Modes:					
Mode 1	AC/DC Adapter (5V/2A) + EUT + Mobile Phone1 (Battery Status: <1%)	Record				
Mode 2	AC/DC Adapter (5V/2A) + EUT + Mobile Phone1 (Battery Status: <50%)	Pre-tested				
Mode 3	AC/DC Adapter (5V/2A) + EUT + Mobile Phone1 (Battery Status: 100%)	Pre-tested				
Mode 4	AC/DC Adapter (9V/1.8A) + EUT + Mobile Phone1 (Battery Status: <1%)	Pre-tested				
Mode 5	AC/DC Adapter (9V/1.8A) + EUT + Mobile Phone1 (Battery Status: <50%)	Pre-tested				
Mode 6	AC/DC Adapter (9V/1.8A) + EUT + Mobile Phone1 (Battery Status: 100%)	Pre-tested				
Note: All	Note: All test modes were pre-tested, but we only recorded the worst case in this report.					

5.3 Description of Support Units

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
A doptor	CHENYANG	CD107	Input: 100-240V~, 50/60Hz, 0.5A	CE/FCC	loborotory
Adapter	ELECTRONICS	CD107	Output: 5V2A / 9V1.8A	CE/FCC	laboratory

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Other Information Requested by the Customer

None.

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020	
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020	
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020	
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020	
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020	
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020	
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020	

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 26 2019	June. 25 2020		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020		

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

7 Test results and Measurement Data

7.1 Antenna requirement:

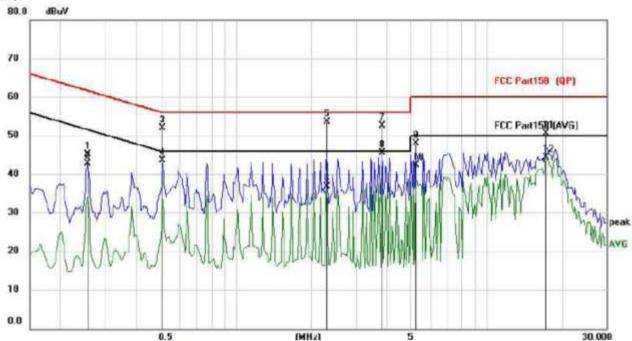
Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

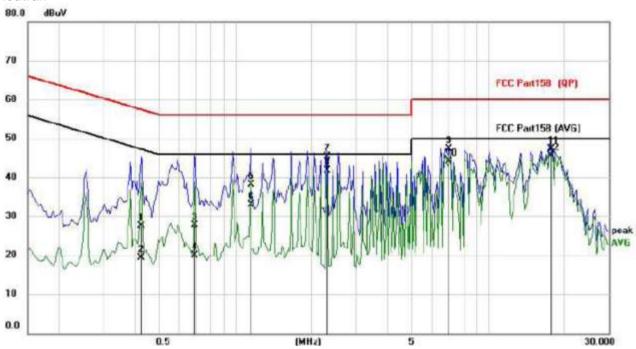
EUT Antenna:

The antenna is Inductive loop coil Antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Avei	rage		
	0.15-0.5	66 to 56*	56 to			
	0.5-5	56	4			
	5-30 * Decreases with the logarithm	60	5	0		
Test setup:	Reference Plane	ir or the frequency.				
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0 firm 1. The E.U.T and simulators a	EMI Receiver	power	through a		
rest procedure.	line impedance stabilization 50ohm/50uH coupling impedance are LISN that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10	n network (L.I.S.N.). edance for the meas also connected to the n/50uH coupling imported the block diagram checked for maximud the maximum emis all of the interface of	This provides turing equipm the main power bedance with of the test seam conducted assion, the related beautiful to the side of the test seam conducted the test seam conducted the test seam the test	ent. er through a 500hm tup and		
Test Instruments:	Refer to section 6.0 for details	i				
Test mode:	Refer to section 5.2 for details)				
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz	<u> </u>	1	1		
Test results:	Pass					

Measurement data:



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2553	34.26	10.92	45.18	61.58	-16.40	QP
2	0.2553	31.73	10.92	42.65	51.58	-8.93	AVG
3	0.5088	40.90	10.92	51.82	56.00	-4.18	QP
4	0.5088	32.67	10.92	43.59	46.00	-2.41	AVG
5	2.2989	42.45	10.98	53.43	56.00	-2.57	QP
6	2.2989	25.72	10.98	36.70	46.00	-9.30	AVG
7	3.8307	41.37	11.04	52.41	56.00	-3.59	QP
8 *	3.8307	34.52	11.04	45.56	46.00	-0.44	AVG
9	5.2347	36.76	11.11	47.87	60.00	-12.13	QP
10	5.2347	31.26	11.11	42.37	50.00	-7.63	AVG
11	17.2350	38.88	11.56	50.44	60.00	-9.56	QP
12	17.2350	32.75	11.56	44.31	50.00	-5.69	AVG

Neutral:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.4230	16.65	10.92	27.57	57.39	-29.82	QP
2	0.4230	8.45	10.92	19.37	47.39	-28.02	AVG
3	0.6882	16.84	10.92	27.76	56.00	-28.24	QP
4	0.6882	8.89	10.92	19.81	46.00	-26.19	AVG
5	1.1484	27.12	10.92	38.04	56.00	-17.96	QP
6	1.1484	21.96	10.92	32.88	46.00	-13.12	AVG
7	2.2989	34.30	10.98	45.28	56.00	-10.72	QP
8 *	2.2989	30.66	10.98	41.64	46.00	-4.36	AVG
9	7.0209	36.04	11.20	47.24	60.00	-12.76	QP
10	7.0209	32.83	11.20	44.03	50.00	-5.97	AVG
11	17.7459	35.71	11.58	47.29	60.00	-12.71	QP
12	17.7459	33.95	11.58	45.53	50.00	-4.47	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Radiated Emission

	1						
Test Requirement:	FCC Part15 C Se	ection 15.20	9				
Test Method:	ANSI C63.10:201	13					
Test Frequency Range:	9kHz to 1GHz						
Test site:	Measurement Dis	stance: 3m					
Receiver setup:	Frequency	Detector		RBW	VBW	Remark	
	9kHz- 30MHz	Quasi-pea		10kHz	30kHz	Quasi-peak Value	
	30MHz-1GHz	Quasi-pea	ak /	120kHz	300kHz	Quasi-peak Value	
	Above 1GHz	Peak AV		1MHz	3MHz	Peak Value	
	Remark: For the		ands	1MHz	10Hz z 110-490	Average Value kHz and above 1000	
	MHz. Radiated e						
	measurements e	mploying ar	n ave	rage dete	ector.		
Limit:	Limits for freque	ency below	30M	lHz			
(Spurious Emissions)	Frequency	Limit (uV		Dista	surement ance(m)	Remark	
	0.009-0.490	2400/F(k			300	Quasi-peak Value	
	0.490-1.705	24000/F(I	kHz)		30	Quasi-peak Value	
	1.705-30	30	- 201	A1.1-	30	Quasi-peak Value	
	Limits for freque				/m @2m\	Domork	
	Frequen 30MHz-88	_	LIII	nit (dBuV/ 40.0		Remark Quasi-peak Value	
	88MHz-216			43.5		Quasi-peak Value	
	216MHz-960MHz			46.0		Quasi-peak Value	
	960MHz-1GHz			54.0	0	Quasi-peak Value	
	Above 10	SH ₇		54.0	0	Average Value	
				74.0		Peak Value	
	emission limits in	mploying a 9-90 kHz, 1 these three	CISP 110-4 e ban	PR quasi-p 90 kHz a	oeak detect nd above 1	or except for the 000 MHz. Radiated	
Test Procedure:	 frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the 						

Report No.: GTS202003000184F01 EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test setup: Below 30MHz < 3m > Test Antenna EUT+ Tum Table 1m < 80cm > Tum Table Receiver-30MHz ~ 1000MHz Test Antenna < 1m ... 4m > EUT Turn Table. < 80cm Turn Table Receiver Preamplifier-Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: **Pass**

Measurement data:

Measurement data:

For 9 KHz-30MHz

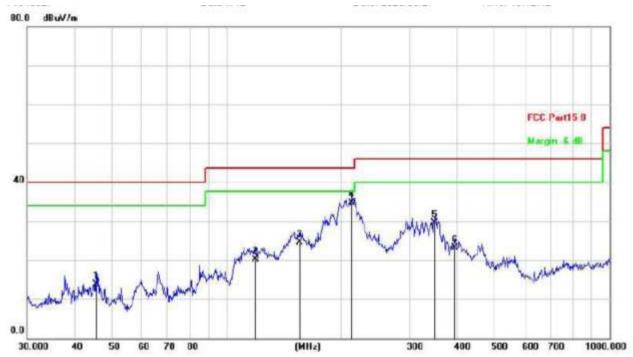
WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.113(F)	58.80	Loop	23.64	0.01	82.45	103.91	21.46	PK
0.113(F)	50.00	Loop	23.64	0.01	73.65	83.91	10.26	AV
0.110	41.33	Loop	23.55	0.01	64.89	106.78	41.89	PK
0.110	33.60	Loop	23.55	0.01	57.16	86.78	29.62	AV
0.685	25.82	Loop	25.07	-0.17	50.72	70.89	20.17	QP
1.735	21.65	Loop	27.12	-0.25	48.52	62.82	14.30	QP
6.525	26.48	Loop	23.91	-0.24	50.15	69.54	19.39	QP

Remark:

- 1. Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.
- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. Emission level (dBuV/m) =Reading + Antenna Factor + Cable Loss.
- 6. Margin value = Limit value- Emission level.

30MHz~1GHz


Horizontal

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	47.9940	43.78	-18.39	25.39	40.00	-14.61	QP
	57.9993	42.66	-18.69	23.97	40.00	-16.03	QP
1	105.2718	47.50	-20.35	27.15	43.50	-16.35	QP
*	187.0958	52.45	-19.31	33.14	43.50	-10.36	QP
	204.9551	51.23	-19.99	31.24	43.50	-12.26	QP
	337.2155	43.84	-17.47	26.37	46.00	-19.63	QP
		MHz 47.9940 57.9993 105.2718 * 187.0958 204.9551	Mk. Freq. Level MHz dBuV 47.9940 43.78 57.9993 42.66 105.2718 47.50 * 187.0958 52.45 204.9551 51.23	Mk. Freq. Level Factor MHz dBuV dB 47.9940 43.78 -18.39 57.9993 42.66 -18.69 105.2718 47.50 -20.35 * 187.0958 52.45 -19.31 204.9551 51.23 -19.99	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 47.9940 43.78 -18.39 25.39 57.9993 42.66 -18.69 23.97 105.2718 47.50 -20.35 27.15 * 187.0958 52.45 -19.31 33.14 204.9551 51.23 -19.99 31.24	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 47.9940 43.78 -18.39 25.39 40.00 57.9993 42.66 -18.69 23.97 40.00 105.2718 47.50 -20.35 27.15 43.50 * 187.0958 52.45 -19.31 33.14 43.50 204.9551 51.23 -19.99 31.24 43.50	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB 47.9940 43.78 -18.39 25.39 40.00 -14.61 57.9993 42.66 -18.69 23.97 40.00 -16.03 105.2718 47.50 -20.35 27.15 43.50 -16.35 * 187.0958 52.45 -19.31 33.14 43.50 -10.36 204.9551 51.23 -19.99 31.24 43.50 -12.26

Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		45.5348	31.57	-17.93	13.64	40.00	-26.36	QP
2		118.6014	40.14	-19.95	20.19	43.50	-23.31	QP
3		154.8204	41.69	-17.12	24.57	43.50	-18.93	QP
4	*	212.2695	54.38	-19.70	34.68	43.50	-8.82	QP
5		348.0274	47.35	-17.89	29.46	46.00	-16.54	QP
6		393.4723	39.70	-16.53	23.17	46.00	-22.83	QP

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.215			
Test Method:	ANSI C63.10:2013			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Mode	Freq (KHz)	20dB Bandwidth (KHz)	99% OBW (KHz)	Conclusion
Tx Mode	136	2.662	3.198	PASS

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----