

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Apr. 11, 2022

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address....... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Shi Aiker Electronic Technology Co., Ltd.

6th Floor, Building C, No. 9 East, Shangxue Technology Industrial

Shenzhen

Test specification:

FCC Rules and Regulations Part 15 Subpart C (Section 15.209),

ANSI C63.10: 2013

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purpses as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Magnetic wireless charger

Trade Mark N/A

Manufacturer Shenzhen Shi Aiker Electronic Technology Co., Ltd.

Model/Type reference..... AP06

Listed Models AP07,AP08,AP09,AP10,AP11

Modulation Type ASK

Operation Frequency...... From 110KHz~205KHz

Output: Wireless Charging: 15W(Max)

Result...... PASS

Shenzhen CTA Testing Technology Co., Ltd.

Report No.: CTA22033101601 Page 2 of 22

TEST REPORT

Equipment under Test Magnetic wireless charger

AP06 Model /Type

AP07,AP08,AP09,AP10,AP11 Listed Models

PCB board, structure and internal of these model(s) are the same, **Model Declaration**

So no additional models were tested.

Applicant Shenzhen Shi Aiker Electronic Technology Co., Ltd.

6th Floor, Building C, No. 9 East, Shangxue Technology Industrial Address

City, Xinxue Community, Bantian Street, Longgang District,

Shenzhen

Shenzhen Shi Aiker Electronic Technology Co., Ltd. Manufacturer

6th Floor, Building C, No. 9 East, Shangxue Technology Industrial Address

City, Xinxue Community, Bantian Street, Longgang District,

Shenzhen

	TES		
Test Result:	PASS		

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTA TESTING laboratory.

Contents

	Contents	
1	TEST STANDARDS	4
	- TANDARIO	~1G
2	SUMMARY	STING
<u> </u>	50 W W A K 1	<u></u>
		5 5 5 5 5
2.1	General Remarks	5
2.2	Product Description	5 C
2.3	Description of the test mode	5
2.4 2.5	Special Accessories Modifications	5
2.5	Wodifications	3
<u>3</u>	TEST ENVIRONMENT	<u> 6</u>
	Address of the test laboratory Test Facility Environmental conditions Summary of measurement results	
3.1	Address of the test laboratory	6
3.2	Test Facility	6.6
3.3	Environmental conditions	7 TEST 7
3.4	Summary of measurement results	7
3.5	Statement of the measurement uncertainty	CTA 7
3.6	Equipments Used during the Test	CTATES TO TO THE STATE OF THE S
<u>4</u>	TEST CONDITIONS AND RESULTS	9
<u></u>	TINO	<u> </u>
	(ES)"	_
4.1	AC Power Conducted Emission	9
4.2	Radiated Emission The 20dB bandwidth	12
4.3	AC Power Conducted Emission Radiated Emission The 20dB bandwidth Antenna Requirement	16 17
4.4	Antenna Nequirement	STIN
		TATES
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	<u>18</u>
<u>6</u>	PHOTOS OF THE EUT	
_	G	CAL
ATESTIN		
,	CTATESTING	

Report No.: CTA22033101601 Page 4 of 22

TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart C (Section 15.207): Conducted limits.

FCC Rules and Regulations Part 15 Subpart C (Section 15.200): D FCC Rules and Regulations Part 15 Subpart C (Section 15.209): Radiated emission limits; general requirements.

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 22 Report No.: CTA22033101601

SUMMARY

General Remarks

Date of receipt of test sample		Mar. 20, 2022
Testing commenced on		Mar. 20, 2022
Testing concluded on	:	Apr. 11, 2022

2.2 Product Description

: M	lar. 20, 2022
: Ap	pr. 11, 2022
-11	Magnetic wireless charger
SIII	AP06
	V1.0
	V1.0
	CTA220331016-1# (Engineer sample), CTA220331016-2# (Normal sample)
	Input: DC 5V/9V/12V From External circuit Output: Wireless Charging: 15W(Max)
	110KHz - 205KHz
	ASK
	Loop coil antenna

Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

□ Charging and communication mode

Test Modes:				
Mode 1	Wireless Charging	Recorded		
Mode 2	Standby	Pre-tested		
Note: All test modes were pre-tested, but we only recorded the worst case in this report.				

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
Adapter	1	GS-551	Input: 100-240V~, 50/60Hz, 0.6A Output:DC 5V 2A/9V 1.67A/12V 1.67A	CE/FCC	laboratory
/	-ING	/	/	/	/

2.5 Modifications

No modifications were implemented to meet testing criteria.

Page 6 of 22 Report No.: CTA22033101601

TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	24 ° C
THE PARTY AND TH	CTAIL
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

o i ower conducted Emission.				
Temperature:	25 ° C			
ING				
Humidity:	46 %			
TIN	O			
Atmospheric pressure:	950-1050mbar			

Conducted testing:

Atmospheric pressure:	950-1050mbar	
Conducted testing:		
Temperature:	25 ° C	TATES
Humidity:	44 %	_
Atmospheric pressure:	950-1050mbar	

Page 7 of 22 Report No.: CTA22033101601

Summary of measurement results

Description of test	Result
Conducted emissions test	Compliant
Radiated emission test	Compliant
The 20dB bandwidth measurement	Compliant
Antenna requirement	Compliant
3.5 Statement of the measurement uncertainty	(EM)

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of

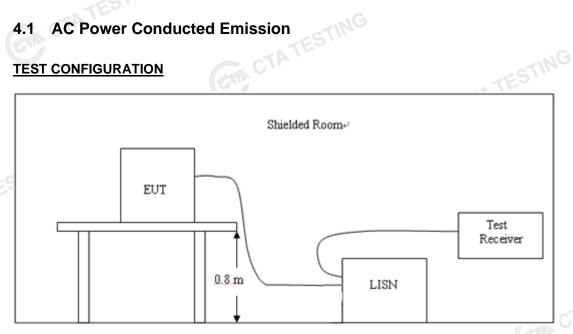
Hereafter the best measurement capability for Shenzhen CTA laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. CTATES

Report No.: CTA22033101601 Page 8 of 22

Equipments Used during the Test 3.6


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
CTATE	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
,	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
1G	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
,	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
TE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
CTA	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
G	Note: The Cal.Interval	was one year.	CW.		Con Ci	ATESTINA

Report No.: CTA22033101601 Page 9 of 22

TEST CONDITIONS AND RESULTS

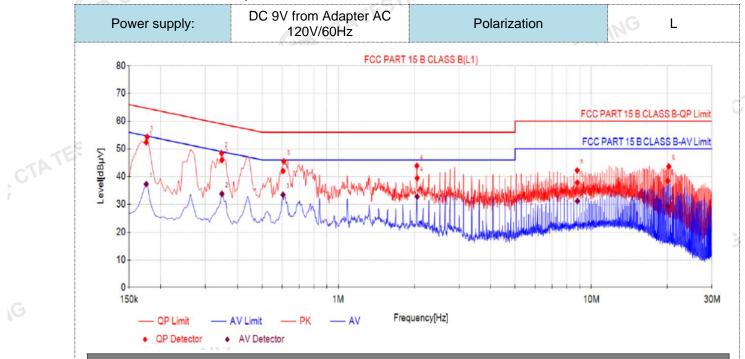
4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

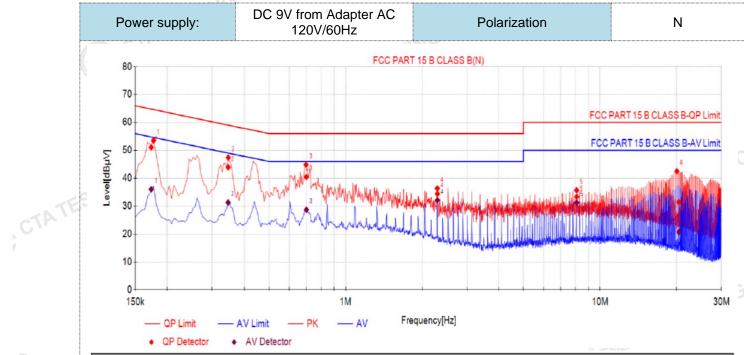

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit	Limit (dBuV)		
Frequency range (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency	uency.	·		
CTATESTING	TATESTING	NG		

Page 10 of 22 Report No.: CTA22033101601

TEST RESULTS

1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Final	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.1755	10.50	41.86	52.36	64.70	12.34	26.78	37.28	54.70	17.42	PASS
2	0.3494	10.50	35.46	45.96	58.98	13.02	23.28	33.78	48.98	15.20	PASS
3	0.6049	10.50	31.48	41.98	56.00	14.02	22.93	33.43	46.00	12.57	PASS
4	2.0535	10.50	28.94	39.44	56.00	16.56	22.21	32.71	46.00	13.29	PASS
5	8.8202	10.50	27.32	37.82	60.00	22.18	20.63	31.13	50.00	18.87	PASS
6	20.0652	10.50	27.94	38.44	60.00	21.56	18.81	29.31	50.00	20.69	PASS

Note: Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- CTA TESTING 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

CTA TESTING

Page 11 of 22 Report No.: CTA22033101601

	Final Data List												
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
	1	0.1734	10.50	40.56	51.06	64.79	13.73	25.55	36.05	54.79	18.74	PASS	
	2	0.3477	10.50	33.44	43.94	59.02	15.08	20.78	31.28	49.02	17.74	PASS	
	3	0.7011	10.50	29.93	40.43	56.00	15.57	18.20	28.70	46.00	17.30	PASS	
	4	2.2986	10.50	23.88	34.38	56.00	21.62	21.62	32.12	46.00	13.88	PASS	
	5	8.1043	10.50	22.82	33.32	60.00	26.68	20.72	31.22	50.00	18.78	PASS	
	6	20.4251	10.50	20.93	31.43	60.00	28.57	10.22	20.72	50.00	29.28	PASS	
Note: Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV)													
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)													
3). QPMargin(dB) = QP Limit (dBμV) - QP Value (dBμV)													
		Margin(dB)			-	-							

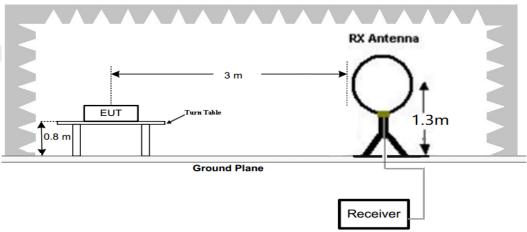
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTING

Page 12 of 22 Report No.: CTA22033101601

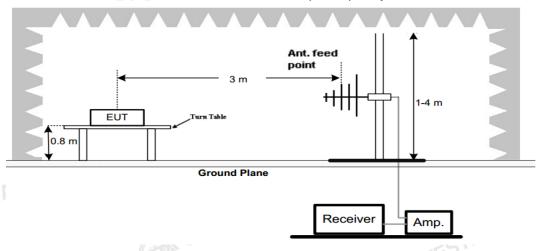
Radiated Emission 4.2

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

emission	


	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
CTATE	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
CAL	1.705-30	3	20log(30)+ 40log(30/3)	30
1	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500

TEST CONFIGURATION

Radiated Emission Test Set-Up, Frequency Below 30MHz

Radiated Emission Test Set-Up, Frequency below 1000MHz

Report No.: CTA22033101601 Page 13 of 22

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3

Setting test receiver/spectrum as following table states:

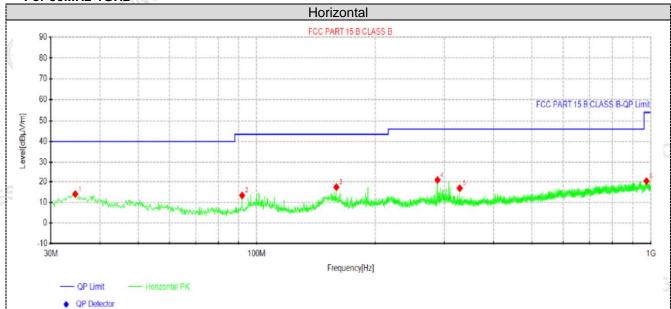
Test Frequency range	Test Receiver/Spectrum Setting	Detector	
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
ESULTS	CTATES CTATES	TATE	
Hz-30MHz		CAN	
WOR	ST-CASE RADIATED EMISSION BELOW 30 MHz		

TEST RESULTS

For 9 KHz-30MHz

WORST-CASE RADIATED EMISSION BELOW 30 MHz

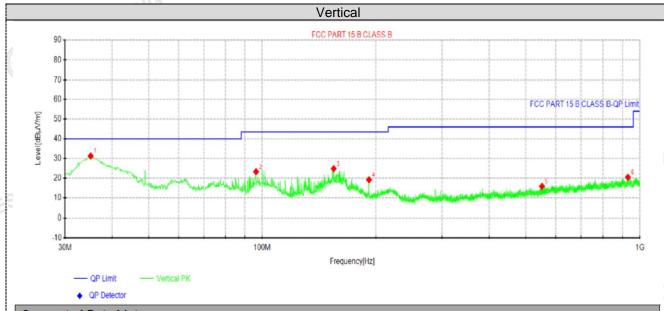
Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.12414(F)	78.78	Loop	23.63	0.02	102.43	105.73	3.30	PK
0.12414(F)	59.40	Loop	23.63	0.02	83.05	85.73	2.68	AV
0.110	53.01	Loop	23.51	0.02	76.54	106.78	30.24	PK
0.110	42.89	Loop	23.51	0.02	66.42	86.78	20.36	AV
0.288	30.00	Loop	23.82	-0.17	53.65	98.42	44.77	QP
0.471	27.81	Loop	24.21	-0.28	51.74	94.14	42.40	QP
0.549	26.61	Loop	24.32	-0.3	50.63	72.81	22.18	QP
							Sechon	


Remark:

- Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.
- 2. The test limit distance is 3m limit.
- PK means Peak Value, QP means Quasi Peak Value, AV means Average Value. 3.
- F means Fundamental Frequency. 4.
- Emission level (dBuV/m) =Reading + Antenna Factor + Cable Loss.
- Margin value = Limit value- Emission level.

Page 14 of 22 Report No.: CTA22033101601

For 30MHz-1GHz


CTATESTING

S	Suspected Data List									
	2	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity
IN	10.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	34.6075	32.05	14.13	-17.92	40.00	25.87	100	1	Horizontal
	2	91.8375	33.06	13.42	-19.64	43.50	30.08	100	13	Horizontal
	3	159.373	39.07	17.44	-21.63	43.50	26.06	100	13	Horizontal
	4	288.02	38.40	20.87	-17.53	46.00	25.13	100	147	Horizontal
	5	328.032	33.53	16.88	-16.65	46.00	29.12	100	309	Horizontal
	6	973.931	29.05	20.35	-8.70	54.00	33.65	100	131	Horizontal

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	35.0925	49.08	31.25	-17.83	40.00	8.75	100	317	Vertical
2	96.3238	42.22	23.28	-18.94	43.50	20.22	100	310	Vertical
3	154.766	46.54	24.85	-21.69	43.50	18.65	100	84	Vertical
4	191.99	39.00	19.21	-19.79	43.50	24.29	100	253	Vertical
5	552.102	29.50	15.89	-13.61	46.00	30.11	100	268	Vertical
6	929.068	29.47	20.47	-9.00	46.00	25.53	100	3	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 16 of 22 Report No.: CTA22033101601

The 20dB bandwidth 4.3

TEST CONFIGURATION

TEST PROCEDURE

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

LIMIT

The 20dB bandwidth shall be less than 80% of the permitted frequency band.

TEST RESULTS

Mode	Freq (KHz)	20dB Bandwidth (KHz)	Conclusion
Tx Mode	124.140	3.143	PASS

Page 17 of 22 Report No.: CTA22033101601

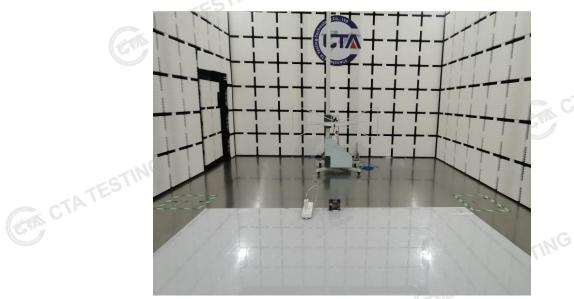
Antenna Requirement

Standard Applicable

Standard Applicable

CTA TESTING For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to CTATE ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Information


The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

Report No.: CTA22033101601 Page 18 of 22

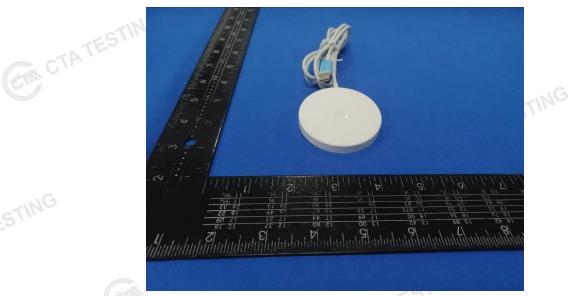
Test Setup Photos of the EUT

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

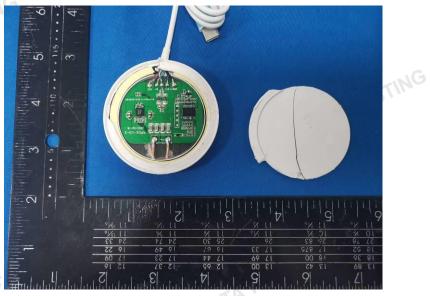
Report No.: CTA22033101601 Page 19 of 22

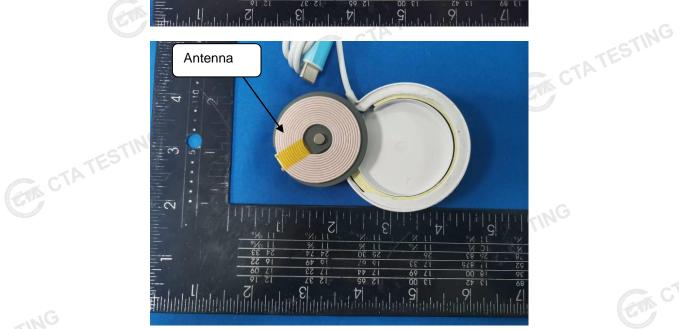
PHOTOS OF THE EUT

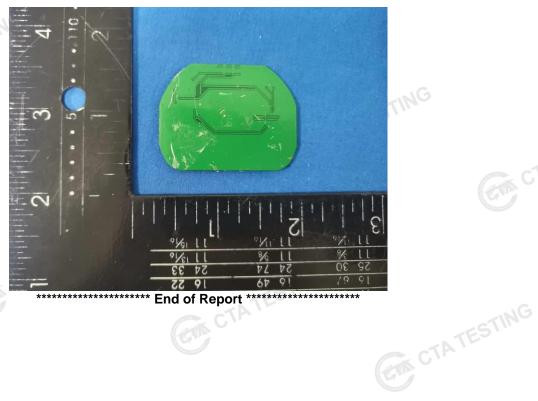


Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn


Report No.: CTA22033101601 Page 20 of 22




Report No.: CTA22033101601 Page 21 of 22

Report No.: CTA22033101601

