Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT

FCC Part 27

 Report Reference No......
 CTA24042900108

 FCC ID......
 2AVFN-FT205L

Compiled by

(position+printed name+signature) .: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature) .:

Project Engineer Lushan Kong

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue...... May. 07, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Leax Arkivator Telecom USA Inc

Address 833 E Arapaho Rd.Suite 203 Richardson, TX 75081

Test specification

FCC CFR Title 47 Part 2, Part 27

Standard ANSI/TIA-603-E-2016

KDB 971168 D01

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description...... Industrial 4G Router

Trade Mark N/A

Manufacturer Leax Arkivator Telecom USA Inc

Model/Type reference..... FT205L

Listed Models N/A

Ratings DC 12.0V From external circuit

Modulation QPSK, 16QAM

Hardware version V1.0

Software version V1.0

Frequency..... E-UTRA Band 66

Result.....: PASS

Page 2 of 15 Report No.: CTA24042900108 CTATES!

TEST REPORT

Equipment under

Test

Industrial 4G Router

Model /Type

FT205L

Listed Models

N/A

Applicant

Leax Arkivator Telecom USA Inc

Address

833 E Arapaho Rd. Suite 203 Richardson, TX 75081

Manufacturer

Leax Arkivator Telecom USA Inc

Address

833 E Arapaho Rd.Suite 203 Richardson, TX 75081

Test result	Pass *

* In the configuration tested, the EUT complied with the standards specified page 4.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. Jon CTATESTIN

Contents

	кер	port No.: C1A24042900108	Page 3 of 15
		Contents	Page 3 of 15
	1	SUMMARY	4
	1.	.1 TEST STANDARDS	
	1.	.2 Test Description	
	1.		
	1.	.4 Test Facility	5
	1.	.5 STATEMENT OF THE MEASUREMENT UNCERTAINTY	5
	_	GENERAL INFORMATION	TING
	2		
	2.		ε
	2.		
	2.	2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY	6
	2.	2.4 EQUIPMENTS USED DURING THE TEST	6
	2.	2.5 RELATED SUBMITTAL(S) / GRANT (S)	7
	2.	2.6 Modifications	
CJ	3	TEST CONDITIONS AND RESULTS	s
Ĭ	,		
	3.		
	3.	3.2 Spurious Emission	
	4	TEST SETUP PHOTOS OF THE EUT	15
	_	PHOTOS OF THE EUT	
	5	PHOTOS OF THE EUT	15

Report No.: CTA24042900108 Page 4 of 15

SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

CTATES' ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

FCCKDB971168D01 Power Meas License Digital Systems

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power(Conducted Measurement)	Part 2.1046 Part 27.50(d)(4)	Referring to the FCC ID No: XMR202008EC25AFXD issued by the Testing Lab (TA technology(shanghai) co., Ltd.)
RF Output Power(Radiated Measurement)	Part 2.1046 Part 27.50(d)(4)	Pass
Peak-to-Average Ratio	Part 27.50(d)(5)	Referring to the FCC ID No: XMR202008EC25AFXD issued by the Testing Lab (TA technology(shanghai) co., Ltd.)
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 27.53(h)	Referring to the FCC ID No: XMR202008EC25AFXD issued by the Testing Lab (TA technology(shanghai) co., Ltd.)
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(h)	Referring to the FCC ID No: XMR202008EC25AFXD issued by the Testing Lab (TA technology(shanghai) co., Ltd.)
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(h)	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(h)	Referring to the FCC ID No: XMR202008EC25AFXD issued by the Testing Lab (TA technology(shanghai) co., Ltd.)
Frequency stability	Part 2.1055 Part 27.54	Referring to the FCC ID No: XMR202008EC25AFXD issued by the Testing Lab (TA technology(shanghai) co., Ltd.)

Note1: the LTE module in this product has already finished the certification (FCC ID: XMR202008EC25AFXD), Reference the results in the original test report.

1.3 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Report No.: CTA24042900108 Page 5 of 15

1.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

1.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

ne best measurement capability for		Measuremen	
Test	Range	t Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	1 7EST	0.57 dB	(1)
Spectrum bandwidth		1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 6 of 15 Report No.: CTA24042900108

GENERAL INFORMATION

2.1 Environmental conditions

Date of receipt of test sample	 Apr. 11, 2024
-ATES.	
Testing commenced on	 Apr. 11, 2024
Car	TES
Testing concluded on	May. 07, 2024

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C	a cī
Relative Humidity:	55 %	
Air Pressure:	101 kPa	Town Williams

2.2 General Description of EUT

Product Name:	Industrial 4G Router
Model/Type reference:	FT205L
Power supply:	DC 12.0V From external circuit
Adapter information:	Model: GQ12-120100-CU Input: AC 100-240V 50/60Hz 0.4A Output: 12.0V 1.0A
Testing comple ID:	CTA240429001-1# (Engineer sample),
Testing sample ID:	CTA240429001-2# (Normal sample)
LTE	
Operation Band:	E-UTRA Band 66
Support Bandwidth:	Band 66: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz
TX/RXFrequency Range:	E-UTRA Band 66(1710 MHz -1780MHz)
Modulation Type:	QPSK, 16QAM
Release Version:	Release 9
Category:	Cat 4
Antenna Type:	External antenna
Antenna Gain:	Band 66: 5.000dBi
Note: For more details, refer	to the user's manual of the EUT.
2.3 Description of Test M	odes and Test Frequency
•	der typical exercting condition. The CMMEOO yeard to control the ELIT.

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

2.4 Equipments Used during the Test									
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date				
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01				
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01				
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01				

Report No.: CTA2404	12900106	(20)		Га	ige 7 or 15
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A

2.5 Related Submittal(s) / Grant (s) This submittal(s) / toot

This submittal(s) (test report) is intended for filing to comply with of the FCC Part 27 Rules. CTATEST

2.6 Modifications

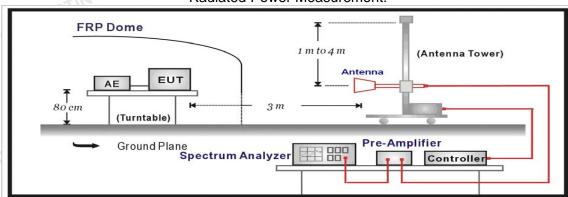
No modifications were implemented to meet testing criteria. CTATESTING

Page 8 of 15 Report No.: CTA24042900108 CTATES

TEST CONDITIONS AND RESULTS

Output Power 3.1

LIMIT


According to §27.50 (d) (4): Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

Radiated Power Measurement:

- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- The output of the test antenna shall be connected to the measuring receiver. c)
- The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum f)
- The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receives
- The maximum signal level detected by the measuring receiver shall be noted.
- The transmitter shall be replaced by a substitution antenna.

Report No.: CTA24042900108 Page 9 of 15

The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.

- The substitution antenna shall be connected to a calibrated signal generator. k)
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q) Test site anechoic chamber refer to ANSI C63.4.

TEST RESULTS

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 66; recorded worst case for each Channel Bandwidth of LTE FDD Band 66.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$

LTE FDD Band 66_Channel Bandwidth 1.4MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1710.7	-18.02	2.75	8.98	35.7	23.91	30.00	-6.09	V
1745.0	-19.21	2.85	9.47	35.7	23.11	30.00	-6.89	V
1779.3	-19.64	2.92	9.5	35.7	22.64	30.00	-7.36	V

LTE FDD Band 66_Channel Bandwidth 3MHz_QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
P	1711.5	-19.29	2.75	8.98	35.7	22.64	30.00	-7.36	V
	1745.0	-18.81	2.85	9.47	35.7	23.51	30.00	-6.49	V
	1778.5	-18.04	2.92	9.5	35.7	24.24	30.00	-5.76	V

LTE FDD Band 66 Channel Bandwidth 5MHz QPSK

		LTE FDD	Band 66_0	Channel Bai	ndwidth 5N	//Hz_QPS	(CTING
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.5	-18.87	2.75	8.98	35.7	23.06	30.00	-6.94	V
1745.0	-19.35	C 2.85	9.47	35.7	22.97	30.00	-7.03	V
1777.5	-18.74	2.92	9.5	35.7	23.54	30.00	-6.46	V

LTE FDD Band 66 Channel Bandwidth 10MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.0	-18.54	2.75	8.98	35.7	23.39	30.00	-6.61	V
1745.0	-18.10	2.85	9.47	35.7	24.22	30.00	-5.78	V
1775.0	-19.94	2.92	9.5	35.7	22.34	30.00	-7.66	V

Report No.: CTA24042900108 Page 10 of 15

LTE FDD Band 66_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.5	-18.35	2.75	8.98	35.7	23.58	30.00	-6.42	V
1745.0	-19.85	2.85	9.47	35.7	22.47	30.00	-7.53	V
1772.5	-18.89	2.92	9.5	35.7	23.39	30.00	-6.61	V

LTE FDD Band 66_Channel Bandwidth 20MHz_QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
Ī	1720.0	-19.03	2.75	8.98	35.7	22.90	30.00	-7.10	VCTA
Ī	1745.0	-19.59	2.85	9.47	35.7	22.73	30.00	-7.27	V
Ī	1770.0	-18.32	2.92	9.5	35.7	23.96	30.00	-6.04	V

LTE FDD Band 66_Channel Bandwidth 1.4MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1710.7	-19.13	2.75	8.98	35.7	22.80	30.00	-7.20	STV
1745.0	-20.41	2.85	9.47	35.7	21.91	30.00	-8.09	V
1779.3	-20.13	2.92	9.5	35.7	22.15	30.00	-7.85	V

LTE FDD Band 66_Channel Bandwidth 3MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1711.5	-20.42	2.75	8.98	35.7	21.51	30.00	-8.49	V
1745.0	-19.25	2.85	9.47	35.7	23.07	30.00	-6.93	V
1778.5	-20.49	2.92	9.5	35.7	21.79	30.00	-8.21	V

LTE FDD Band 66_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.5	-20.10	2.75	8.98	35.7	21.83	30.00	-8.17	V
1745.0	-19.67	2.85	9.47	35.7	22.65	30.00	-7.35	V
1777.5	-19.27	2.92	9.5	35.7	23.01	30.00	-6.99	V

LTE FDD Band 66_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.0	-20.46	2.75	8.98	35.7	21.47	30.00	-8.53	V
1745.0	-19.92	2.85	9.47	35.7	22.40	30.00	-7.60	V
1775.0	-20.86	2.92	9.5	35.7	21.42	30.00	-8.58	V

LTE FDD Band 66_Channel Bandwidth 15MHz_16QAM

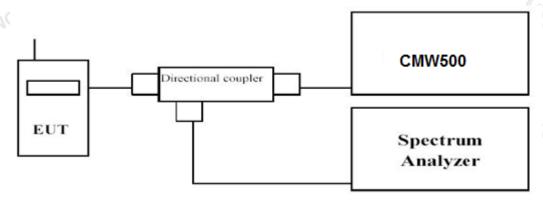
				The second second				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.5	-20.57	2.75	8.98	35.7	21.36	30.00	-8.64	V
1745.0	-20.76	2.85	9.47	35.7	21.56	30.00	-8.44	V
1772.5	-19.70	2.92	9.5	35.7	22.58	30.00	-7.42	V

Page 11 of 15 Report No.: CTA24042900108

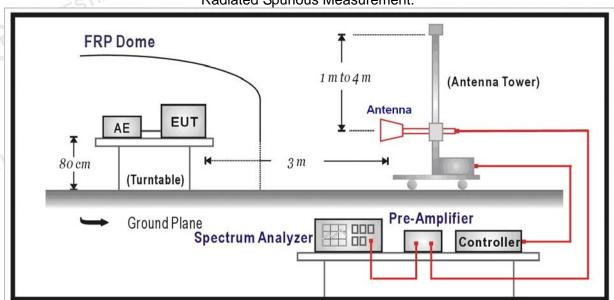
rtoport rton	oport (10): 01/124042000100										
		LTE FDD I	Band 66_Cl	nannel Band	dwidth 20N	ЛHz_16QA	M	res !!			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
1720.0	-19.92	2.75	8.98	35.7	22.01	30.00	-7.99	V			
1745.0	-20.22	2.85	9.47	35.7	22.10	30.00	-7.90	V			
1770.0	-19.02	2.92	9.5	35.7	23.26	30.00	-6.74	V			

CTATES! CTATESTING C VI

Page 12 of 15 Report No.: CTA24042900108 CTATES!


Spurious Emission 3.2

LIMIT


According to §27.53 (h): for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE CTATESTING

Report No.: CTA24042900108 Page 13 of 15

Radiated Spurious Measurement:

a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.

- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- The transmitter shall be replaced by a substitution antenna.
- The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Radiated Measurement:

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE CTATE! FDD Band 66:

LTE FDD Band 66_Channel Bandwidth 20MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance (m)	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3440.00	-44.06	4.02	3.00	12.5	-35.58	-13.00	-22.58	Н
5160.00	-53.69	5.11	3.00	13.38	-45.42	-13.00	-32.42	Н
3440.00	-43.03	4.02	3.00	12.5	-34.55	-13.00	-21.55	V
5160.00	-49.71	5.11	3.00	13.38	-41.44	-13.00	-28.44	V
					EW.	CTATES		CTAT

Report No.: CTA24042900108 Page 14 of 15

LTE FDD Band 66_Channel Bandwidth 20MHz_QPSK_ Middle Channel

Frequency	P _{Mea}	P _d	Distance	G _a Antenna	EIRP	Limit	Margin	Polarization
(MHz) 3490.00	(dBm) -45.03	(dB) 4.02	(m) 3.00	Gain(dB) 12.5	(dBm) -36.55	(dBm) -13.00	(dB) -23.55	Ш
5235.00	- 4 5.03 -53.31	5.11	3.00	13.38	-36.55 -45.04	-13.00	-32.04	Н
3490.00 5235.00	-42.99 -54.30	4.02 5.11	3.00	12.5 13.38	-34.51 -46.03	-13.00 -13.00	-21.51 -33.03	V

LTE FDD Band 66_Channel Bandwidth 20MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance (m)	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3540.00	-44.59	4.02	3.00	12.5	-36.11	-13.00	-23.11	(CV)
5310.00	-47.32	5.11	3.00	13.38	-39.05	-13.00	-26.05	H
3540.00	-45.78	4.02	3.00	12.5	-37.30	-13.00	-24.30	V
5310.00	-53.94	5.11	3.00	13.38	-45.67	-13.00	-32.67	V

Notes:

- 1.All channel bandwidth were tested, the report recorded the worst data.
- 2. EIRP=PMea(dBm)-Pcl(dB)+PAg(dB)+Ga(dBi)
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = EIRP Limit
- 5. We measured all modes and only recorded the worst case.

Je 15 CTATES Report No.: CTA24042900108 Page 15 of 15

Test Setup Photos of the EUT

CTATESTING

Reference to the test report No. CTA24042900101.