TEST REPORT

FCC ID: 2AVEN-CW286 Product: Electronic scale Model No.: CW286 Additional Model No.: Please refer to page 5 Trade Mark: N/A Report No.: TCT191217E009 Issued Date: Dec. 25, 2019

Issued for:

Floor 3 & 6, Building A, No. 22, Huanping Road, Gaoqiao Community, Pingdi Street, Longgang District, Shenzhen, Guangdong, China

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification
2.	Test Result Summary4
3.	EUT Description5
4.	General Information
	4.1. Test environment and mode
	4.2. Description of Support Units
5.	Facilities and Accreditations7
	5.1. Facilities
	5.2. Location7
	5.3. Measurement Uncertainty7
6.	Test Results and Measurement Data8
	6.1. Antenna requirement8
	6.2. Conducted Emission9
	6.3. Conducted Output Power10
	6.4. Emission Bandwidth
	6.5. Power Spectral Density16
	6.6. Test Specification16
	6.7. Conducted Band Edge and Spurious Emission Measurement
	6.8. Radiated Spurious Emission Measurement
A	ppendix A: Photographs of Test Setup
A	ppendix B: Photographs of EUT

Page 2 of 39

Report No.: TCT191217E009

1. Test Certification

Product:	Electronic scale		
Model No.:	CW286		
Additional Model No.:	Please refer to page 5		
Trade Mark:	N/A		
Applicant:	Shenzhen Unique Scales Co., Ltd		
Address: Floor 3 & 6, Building A, No. 22, Huanping Road, Gaoqiao Commu Pingdi Street, Longgang District, Shenzhen, Guangdong, China			
Manufacturer:	Shenzhen Unique Scales Co., Ltd		
Address:	Floor 3 & 6, Building A, No. 22, Huanping Road, Gaoqiao Community, Pingdi Street, Longgang District, Shenzhen, Guangdong, China		
Date of Test:	Dec. 18, 2019 – Dec. 24, 2019		
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013		

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Rleo	Date:	Dec. 24, 2019	
Reviewed By:	Beryl Zhao	Date:	Dec. 25, 2019	
Approved By:	Tomsin Tomsin	Date:	Dec. 25, 2019	
			Page	3 of 39

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 39

3. EUT Description

Product:	Electronic scale	
Model No.:	CW286	
Additional Model No.:	CW222, CW223, CW225, CW226, CW227, CW228, CW229, CW230, CW270, CW272, CW273, CW275, CW276, CW277, CW278, CW279, CW280, CW281, CW282, CW283, CW285, CW287, CW288, CW289, CW290, CW291, CW292, CW293, CW295, CW296, CW297, CW298, CW299, CW300, CW311, CW312, CW313, CW315, CW316, CW317, CW318, CW319	
Trade Mark:	N/A	
Bluetooth Version: V4.2		
Operation Frequency: 2402MHz~2480MHz		
Channel Separation: 2MHz		
Number of Channel:	40	
Modulation Technology:	GFSK	
Antenna Type:	PCB Antenna	
Antenna Gain:	-2dBi	
Power Supply:	DC 4.5V(3*AAA Batteries)	
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.	

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	0	\mathcal{D}_{\dots}	<	J	🤇		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Remark: Channel 0, 19 & 39 have been tested.						

4. General Information

4.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	25.0 °C	25.0 °C			
Humidity:	55 % RH	55 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with new battery.

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	/		5) /	

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 645098
 - Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

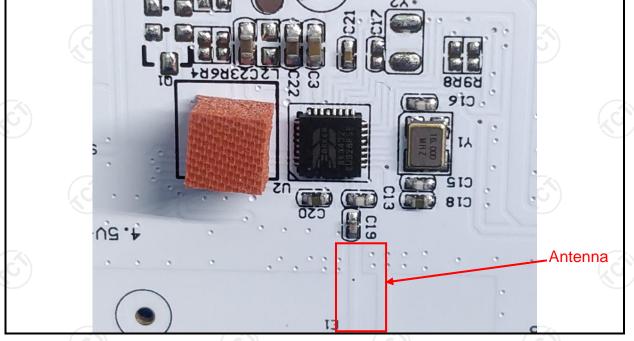
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Item	MU
Conducted Emission	±2.56dB
RF power, conducted	±0.12dB
Spurious emissions, conducted	±0.11dB
All emissions, radiated(<1G)	±3.92dB
All emissions, radiated(>1G)	±4.28dB
Temperature	±0.1°C
Humidity	±1.0%
	RF power, conducted Spurious emissions, conducted All emissions, radiated(<1G)

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:FCC Part15 C Section 15.203 /247(c)15.203 requirement:An intentional radiator shall be designed to ensure that no antenna oth


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is -2dBi.

6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto		
	Frequency range	Limit (o	dBuV)		
	(MHz)	Quasi-peak	Average <		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Refere	nce Plane			
Test Setup:	E.U.T Adap Test table/Insulation plan Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne			
Test Mode:	Charging + Transmitting Mode				
		ig mode			
Test Procedure:	 The E.U.T is connelimpedance stabilizing provides a 500hm/5 measuring equipment The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables 	cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checke nce. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uh hination. (Please test setup and d for maximun d the maximun ipment and all o ed according to		
	 The E.U.T is connelimpedance stabilizing provides a 500hm/s measuring equipment The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative 	cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checke nce. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uh hination. (Please test setup and d for maximun d the maximun ipment and all c ed according to		

6.3. Conducted Output Power

6.3.1. Test Specification

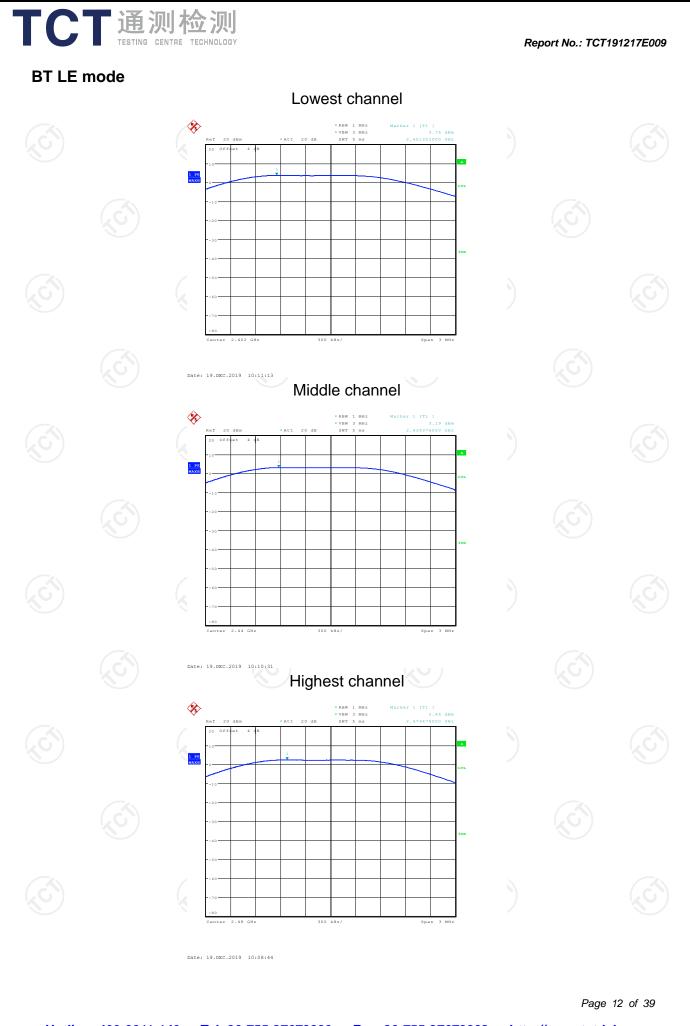
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	30dBm				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Refer to item 4.1				
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 × RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 				
Test Result:	PASS				

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 39


6.3.3. Test Data

TCT通测检测 TESTING CENTRE TECHNOLOGY

BT LE mode			
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result
Lowest	3.76	30.00	PASS
Middle	3.19	30.00	PASS
Highest	2.46	30.00	PASS

Test plots as follows:

l'est plots as fo							
						Page	11 of 39
Hotline: 400-6	611-140 Tel: 8	6-755-2767333	<u>9 Fax: 86</u>	<u>-755-27673</u>	<u>332 http:</u>	//www.tct-la	<u>b.com</u>

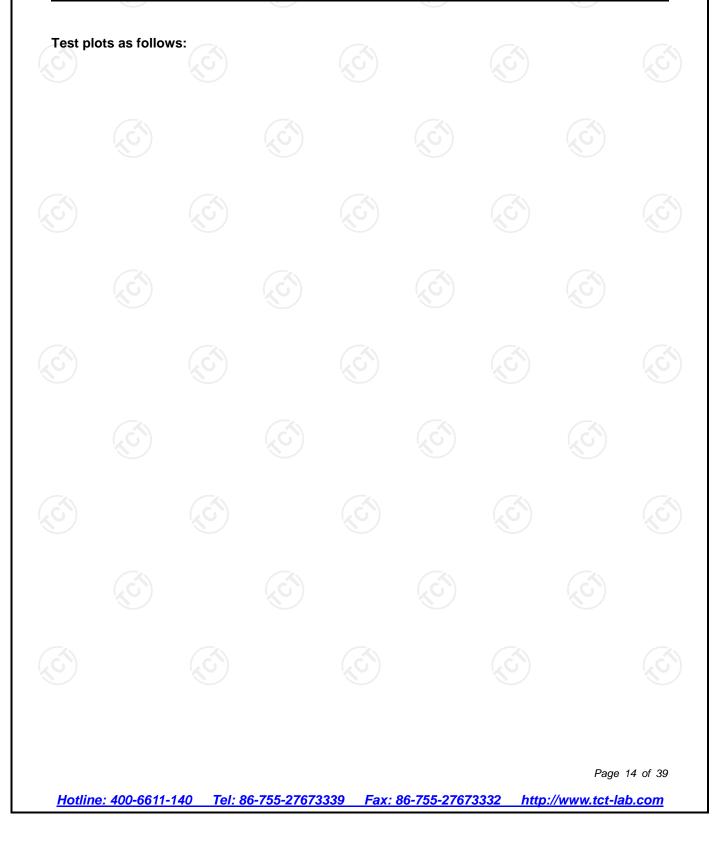
6.4. Emission Bandwidth

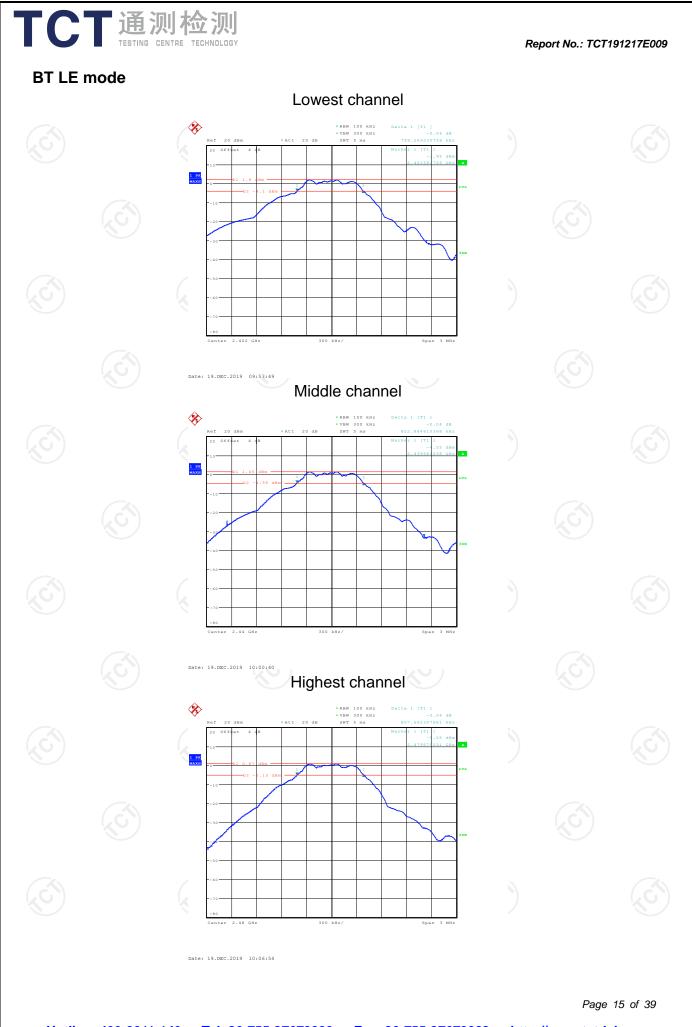
6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 13 of 39

6.4.3. Test data

	Test channel	6dB Emission I	Bandwidth (kHz))
6	Test channel	BT LE mode	Limit	Result
0	Lowest	799.27	>500k	O
	Middle	802.88	>500k	PASS
	Highest	807.69	>500k	$\langle \mathcal{O} \rangle$

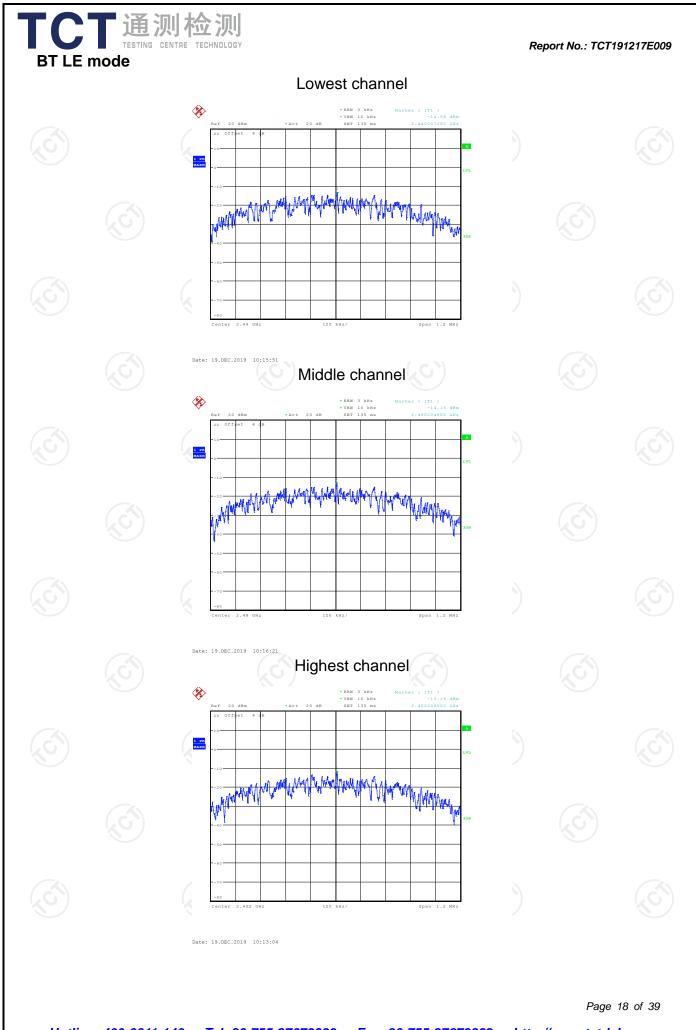
6.5. Power Spectral Density

6.6. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

6.6.1. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
2	Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
	RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020
	Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6.2. Test data

ot chonnol	Power Spectral Density (dBm/3kHz)				
stunanner	BT LE mode	Limit	Result		
Lowest	-14.58	8 dBm/3kHz	C		
Middle	-14.15	8 dBm/3kHz	PASS		
Highest	-13.19	8 dBm/3kHz	$\langle \mathcal{O} \rangle$		
	Middle	Est channelBT LE modeLowest-14.58Middle-14.15	BT LE modeLimitLowest-14.588 dBm/3kHzMiddle-14.158 dBm/3kHz		

Test plots as follows:

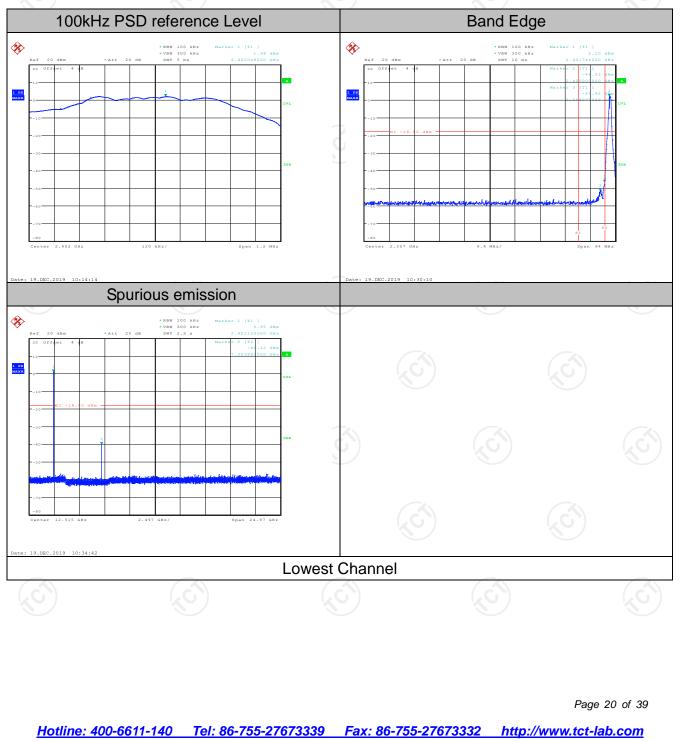
l est pl	ots as follov	vs:						
<u>Hotlin</u>	ne: 400-6611-	-140 Tel: 8	36-755-27673	3339 Fax:	<u>86-755-2767</u>	<u>3332 http</u>	Page ://www.tct-la	17 of 39 1 b.com

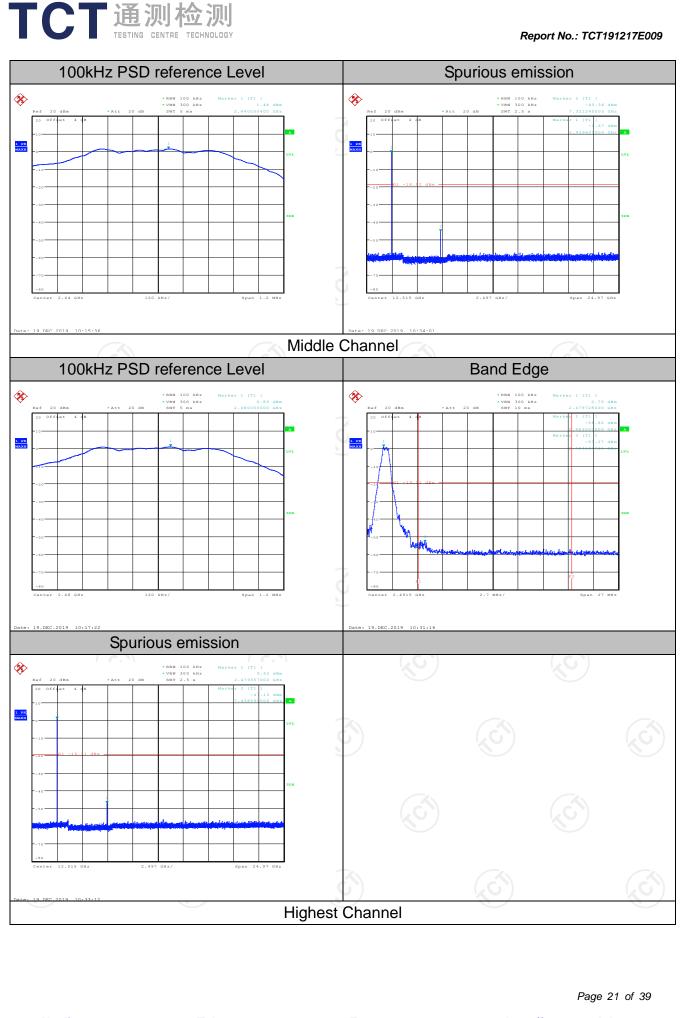
6.7. Conducted Band Edge and Spurious Emission Measurement

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is
	 used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Page 19 of 39


Report No.: TCT191217E009

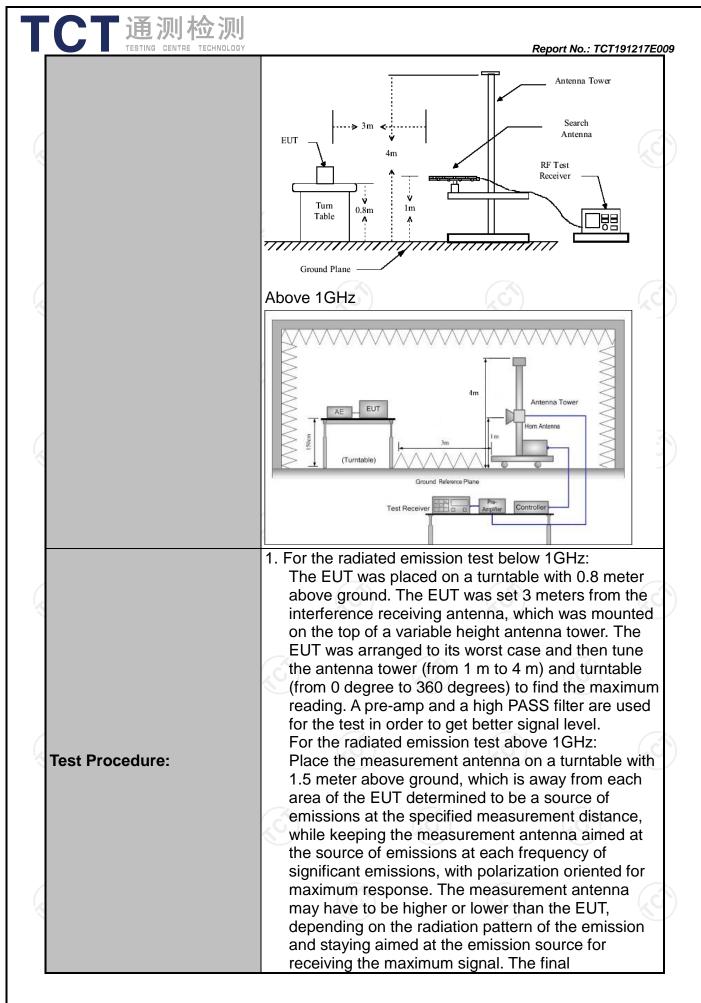

6.7.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

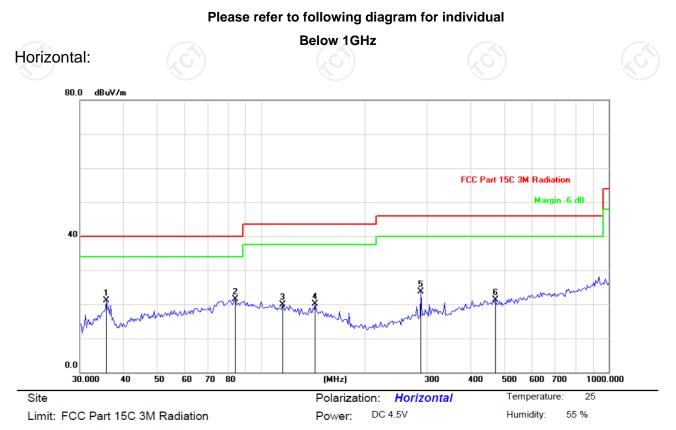

6.8. Radiated Spurious Emission Measurement

6.8.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

	FCC Part15 C Section 15.209					
ANSI C63.10): 2013					
9 kHz to 25 (GHz				6	
3 m	X	\mathbf{S}		K	9	
Horizontal &	Vertical					
Refer to item	n 4.1	(<i>(</i> ')			
Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW < 200Hz	VBW 1kHz	Qua	Remark si-peak Value	
150kHz- 30MHz			30kHz		si-peak Value	
30MHz-1GHz			300KHz		si-peak Value	
Above 1GHz					eak Value erage Value	
	Teak	1101112	TOTIZ		erage value	
		(microvolts	/meter)	Measurement Distance (meters)		
				300		
				30 30		
				3		
				3		
		200			3	
Above 960		500			3	
		(°)				
Frequency		Id Strength ovolts/meter)		ince Detector		
	(500				
Above 1GHz	2	5000	3	8	Peak	
For radiated	emissions	s below 30	MHz			
Dis	stance = 3m			Comp	ater 🗖 🔍	
1	\rightarrow	\frown	Pre -	Amplifier		
0.8m						
	Ground	d Plane	L			
30MHz to 1G	Hz					
	3 m Horizontal & Refer to item Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	Horizontal & Vertical Refer to item 4.1 Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Frequency Fiel Above 1GHz Fiel For radiated emissions Distance = 3m Image: State of the state	3 m Horizontal & Vertical Refer to item 4.1	3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector RBW VBW 9kHz. 150kHz Quasi-peak 200Hz 1kHz 150kHz Quasi-peak 9kHz 30kHz 30MHz 30MHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30MHz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 0.009-0.490 24000/F(KHz) 0.009-0.490 24000/F(KHz) 0.009-0.490 24000/F(KHz) 0.009-0.490 24000/F(KHz) 0.009-0.490 24000/F(KHz) 1.705-30 30 30-30 0.490-1.705 24000/F(KHz) 1.705-30 30 30-30 0.490-1.705 216-960 200 Above 960 5000 Above 1GHz 5000 30 Above 1GHz <td< td=""><td>3 m Horizontal & Vertical Refer to item 4.1</td></td<>	3 m Horizontal & Vertical Refer to item 4.1	

Page 22 of 39


CT 通测检	辺山 IDLOGY Report No.: TCT191217Ed
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
Test mode:	Power control level for the tested mode of operation. Refer to section 4.1 for details
Test results:	PASS

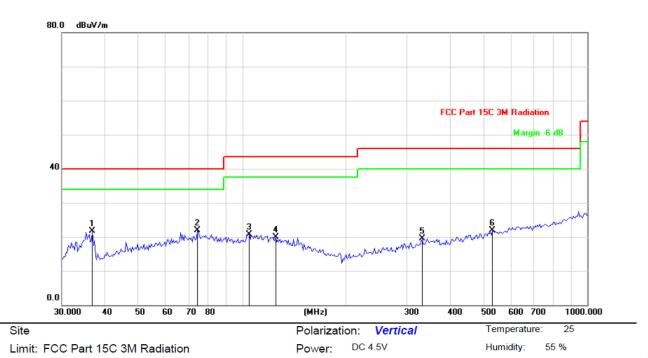
6.8.2. Test Instruments

	Radiated Emission Test Site (966)											
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due								
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 29, 2020								
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020								
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020								
Pre-amplifier	HP	8447D	2727A05017	Sep. 08, 2020								
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 11, 2020								
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 06, 2020								
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 11, 2020								
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 06, 2020								
Antenna Mast	Keleto	RE-AM	N/A	N/A								
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 08, 2020								
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 08, 2020								
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 08, 2020								
Coax cable (9KHz-40GHz)	ТСТ	RE-high-04	N/A	Sep. 08, 2020								
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A								

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data

No.	Mk. Freq.		Reading . Freq. Level		Correct Measure- Factor ment		Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		35.7616	32.11	-11.03	21.08	40.00	-18.92	peak
2	*	84.2839	35.47	-14.01	21.46	40.00	-18.54	peak
3		114.8224	29.98	-10.16	19.82	43.50	-23.68	peak
4		142.7692	36.16	-16.13	20.03	43.50	-23.47	peak
5		288.2839	35.06	-11.31	23.75	46.00	-22.25	peak
6		471.4664	29.31	-7.92	21.39	46.00	-24.61	peak


(<u>(</u>(<u>(</u>)))

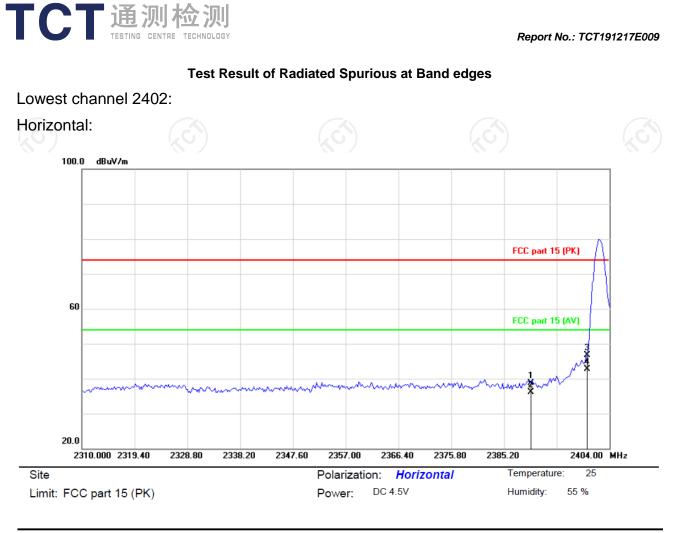
Report No.: TCT191217E009

Vertical:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		36.7811	32.74	-11.04	21.70	40.00	-18.30	peak
2	*	74.2694	37.98	-16.09	21.89	40.00	-18.11	peak
3		104.7977	29.06	-8.42	20.64	43.50	-22.86	peak
4		124.9248	33.37	-13.45	19.92	43.50	-23.58	peak
5		331.7857	29.71	-10.13	19.58	46.00	-26.42	peak
6		531.2910	29.14	-7.15	21.99	46.00	-24.01	peak

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.
- Freq. = Emission frequency in MHz Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dBμV/m) = Limit stated in standard


Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

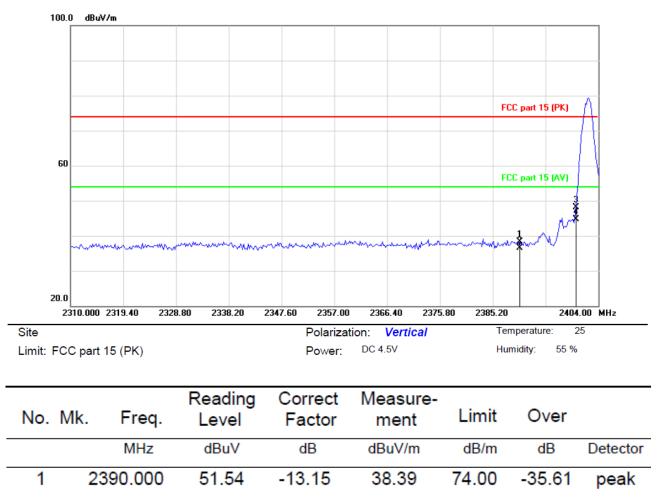
Any value more than 10dB below limit have not been specifically reported.

* is meaning the worst frequency has been tested in the test frequency range.

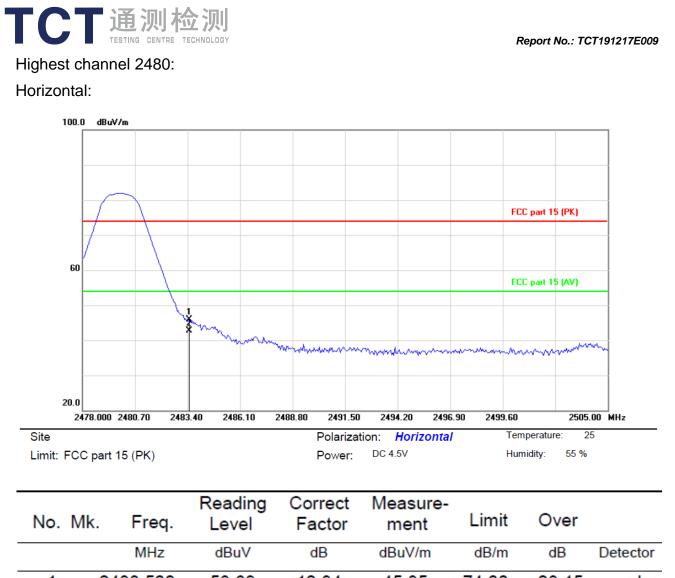
Page 27 of 39

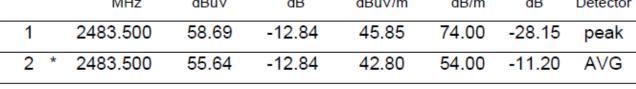
Report No.: TCT191217E009

No.	Mk.	Reading Correct Me Ik. Freq. Level Factor n				Limit	Limit Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	2	2390.000	51.92	-13.15	38.77	74.00	-35.23	peak
2	2	2390.000	49.17	-13.15	36.02	54.00	-17.98	AVG
3	2	2400.000	59.92	-13.12	46.80	74.00	-27.20	peak
4	*	2400.000	55.92	-13.12	42.80	54.00	-11.20	AVG



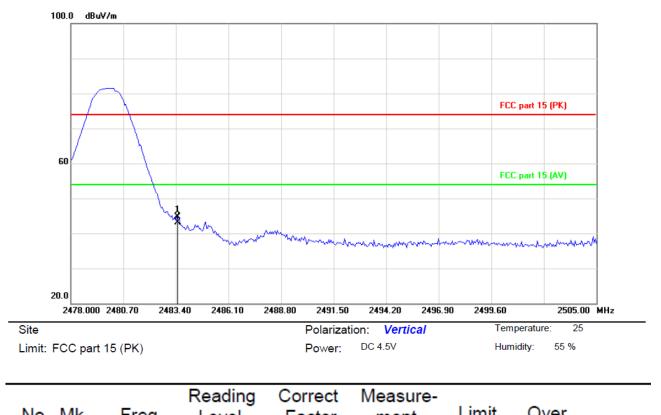
Page 28 of 39


Vertical:



1	2390.000	51.54	-13.15	38.39	74.00	-35.61	peak
2	2390.000	49.60	-13.15	36.45	54.00	-17.55	AVG
3	2400.000	61.31	-13.12	48.19	74.00	-25.81	peak
4 *	2400.000	57.82	-13.12	44.70	54.00	-9.30	AVG

Page 29 of 39


Report No.: TCT191217E009

Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY

	No. N	٨k.	Freq.	Level	Factor	ment	Limit	Over		
-			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	
-	1	24	83.500	57.53	-12.84	44.69	74.00	-29.31	peak	
-	2 '	* 24	83.500	55.94	-12.84	43.10	54.00	-10.90	AVG	

Report No.: TCT191217E009

Above 1GHz

Low channel: 2402 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	47.69		0.66	48.35		74	54	-5.65
7206	Н	38.83		9.50	48.33		74	54	-5.67
	Н								
	<u></u>			7		<u>_</u> 1.			
4804	V	44.72	-6.6	0.66	45.38		74	54	-8.62
7206	V	38.30		9.50	47.80		74	54	-6.20
	V								

Middle channel: 2440 MHz

iviluule cha									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	on Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	43.27	(ubµv) 	0.99	44.26	(dBµV/m)	74	54	-9.74
7320	H	38.51		9.87	48.38	~	74	54	-5.62
	CH)		-420	*)	(<u> </u>			
4880	V	44.94		0.99	45.93		74	54	-8.07
7320	V	39.05		9.87	48.92		74	54	-5.08
	V			(N				

High channel: 2480 MHz

Frequency	Ant Pol	Peak	AV	Correction	Emission Level		Peak limit	AV limit	Margin	
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(dB)	
4960	K H	47.39	R R	1.33	48.72		74	54	-5.28	
7440	Ĥ	39.60		10.22	49.82		74	54	-4.18	
	Н									
			-		-					
4960	V	47.93		1.33	49.26		74	54	-4.74	
7440	V	37.68		10.22	47.90		74	54	-6.10	
	V									

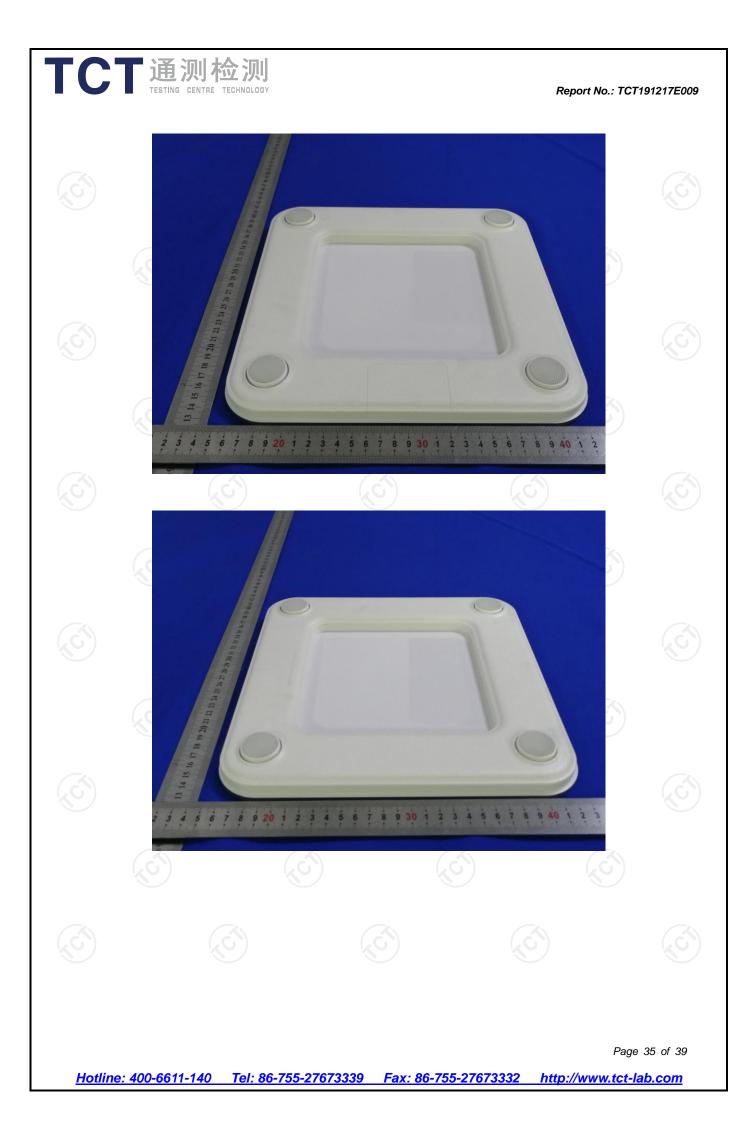
Note:

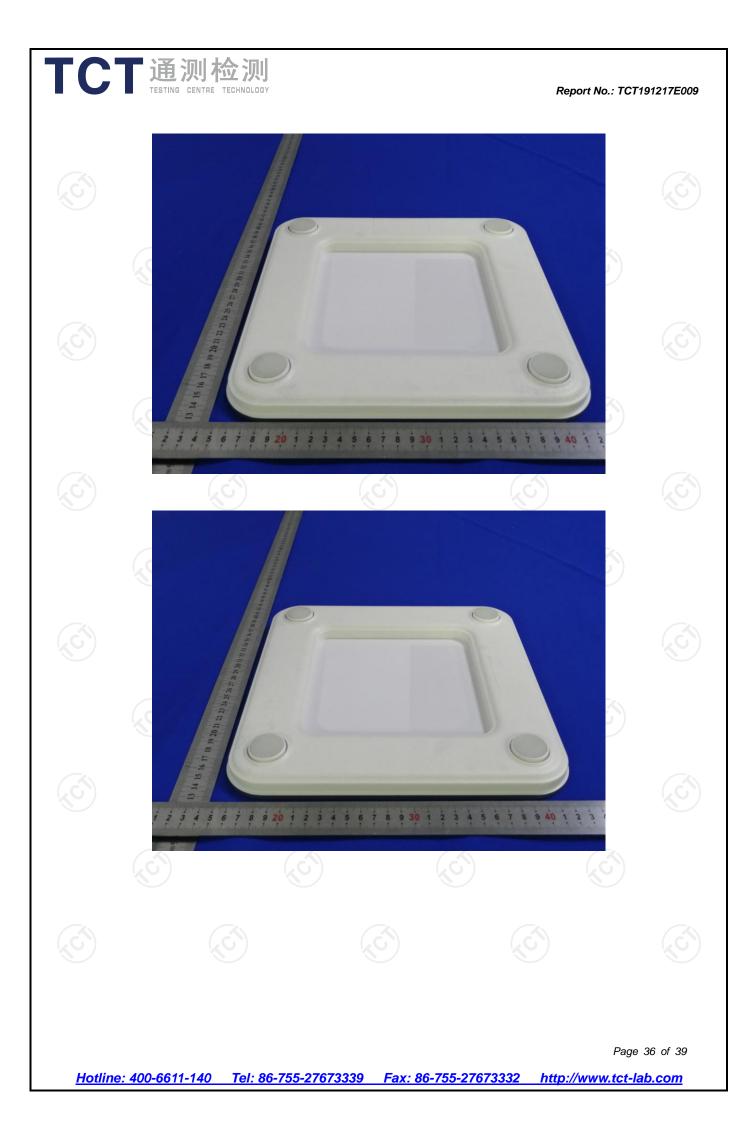
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

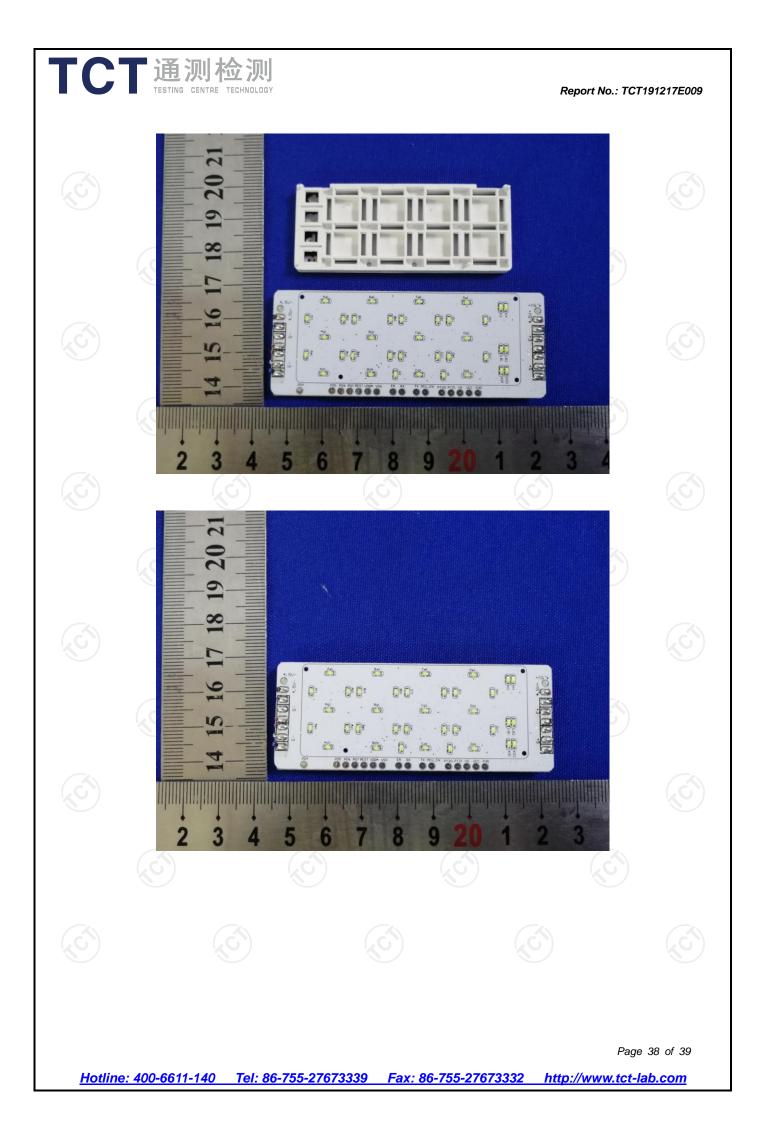
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.


5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


6. All the restriction bands are compliance with the limit of 15.209.


Page 33 of 39

