	TEST REPOR	रा				
FCC ID :	2AVEN-CF568	2AVEN-CF568				
Test Report No:	TCT230718E015					
Date of issue:	Aug. 25, 2023					
Testing laboratory:	SHENZHEN TONGCE TESTI	NG LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name: :	Shenzhen Unique Scales Co.,	Shenzhen Unique Scales Co., Ltd				
Address:		301&601, no.22, Huanping Road, Gaoqiao Community, Pingdi Street, Longgang District, Shenzhen City, China				
Manufacturer's name :	Shenzhen Unique Scales Co.,	, Ltd				
Address:	301&601, no.22, Huanping Road, Gaoqiao Community, Pingdi Street, Longgang District, Shenzhen City, China					
Standard(s) :	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013					
Product Name::	Electronic scale					
Trade Mark:	N/A					
Model/Type reference :	Refer to Model(s) list of page 3	3~4				
Rating(s):	Rechargeable Li-ion Battery D	DC 3.7V				
Date of receipt of test item	Jul. 18, 2023					
Date (s) of performance of test:	Jul. 18, 2023 - Aug. 25, 2023					
Tested by (+signature) :	Onnado YE	Onnodo Krongerre				
	Beryl ZHAO	Boyl 2 TCT				
Check by (+signature) :						

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	3
1.3. Operation Frequency	5
2. Test Result Summary	
3. General Information	7
3.1. Test environment and mode	7
3.2. Description of Support Units	
4. Facilities and Accreditations	9
4.1. Facilities	9
4.2. Location	9
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	
5.2. Conducted Emission	
5.3. Maximum Conducted (Average) Output Power	
5.4. Emission Bandwidth	
5.5. Power Spectral Density	
5.6. Conducted Band Edge and Spurious Emission Measure	ement18
5.7. Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C. Photographs of EUT	
Appendix C. Photographs of EUT	
Appendix C: Photographs of EUT	
Appendix C. Photographis of EUT	
Appendix C. Photographis of EUT	
Appendix C. Photographis of EUT	
Appendix C. Photographis of EUT	
Appendix C. Photographis of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Electronic scale
Model/Type reference:	CF568BLE+WIFI
Sample Number:	TCT230718E014-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	Dipole Antenna
Antenna Gain:	2.46dBi
Rating(s):	Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	CF568BLE+WIFI	
Other models	CW299BLE+WIFI, CF350BLE+WIFI, CF351BLE+WIFI, CF366BLE+WIFI, CF367BLE+WIFI, CF368BLE+WIFI, CF369BLE+WIFI, CF376BLE+WIFI, CF377BLE+WIFI, CF378BLE+WIFI, CF379BLE+WIFI, CF380BLE+WIFI, CF385BLE+WIFI, CF399BLE+WIFI, CF388BLE+WIFI, CF390BLE+WIFI CF391BLE+WIFI, CF392BLE+WIFI, CF393BLE+WIFI, CF395BLE+WIFI, CF396BLE+WIFI, CF393BLE+WIFI, CF500BLE+WIFI, CF501BLE+WIFI, CF505BLE+WIFI, CF500BLE+WIFI, CF507BLE+WIFI, CF508BLE+WIFI, CF509BLE+WIFI, CF510BLE+WIFI, CF512BLE+WIFI, CF516BLE+WIFI, CF517BLE+WIFI, CF526BLE+WIFI, CF522BLE+WIFI, CF523BLE+WIFI, CF530BLE+WIFI, CF527BLE+WIFI, CF523BLE+WIFI, CF530BLE+WIFI, CF532BLE+WIFI, CF533BLE+WIFI, CF538BLE+WIFI, CF536BLE+WIFI, CF537BLE+WIFI, CF538BLE+WIFI, CF539BLE+WIFI, CF550BLE+WIFI, CF538BLE+WIFI, CF539BLE+WIFI, CF550BLE+WIFI, CF538BLE+WIFI, CF539BLE+WIFI, CF555BLE+WIFI,	

Page 3 of 74

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT230718E015

		ort No.: TCT230718E015
	CF556BLE+WIFI, CF557BLE+WIFI, CF558BLE+WIFI, CF559BLE+WIFI, CF560BLE+WIFI, CF562BLE+WIFI,	
	CF563BLE+WIFI, CF565BLE+WIFI, CF566BLE+WIFI, CF563BLE+WIFI, CF565BLE+WIFI, CF566BLE+WIFI,	
	CF569BLE+WIFI, CF570BLE+WIFI, CF570BLE+WIFI, CF571BLE+WIFI,	
	CF575BLE+WIFI, CF576BLE+WIFI, CF577BLE+WIFI,	
	CF578BLE+WIFI, CF579BLE+WIFI, CF580BLE+WIFI,	(\mathbf{G})
	CF581BLE+WIFI, CF582BLE+WIFI, CF583BLE+WIFI,	
	CF585BLE+WIFI, CF586BLE+WIFI, CF587BLE+WIFI,	
	CF588BLE+WIFI, CF589BLE+WIFI, CF590BLE+WIFI,	
	CF591BLE+WIFI, CF592BLE+WIFI, CF593BLE+WIFI,	
	CF595BLE+WIFI, CF596BLE+WIFI, CF597BLE+WIFI,	
	CF598BLE+WIFI, CF599BLE+WIFI, CF600BLE+WIFI,	
	CF601BLE+WIFI, CF602BLE+WIFI, CF603BLE+WIFI,	
	CF605BLE+WIFI, CF606BLE+WIFI, CF607BLE+WIFI,	(.c)
	CF608BLE+WIFI, CF609BLE+WIFI, CF610BLE+WIFI,	
	CF611BLE+WIFI, CF612BLE+WIFI, CF613BLE+WIFI,	
	CF615BLE+WIFI, CF616BLE+WIFI, CF617BLE+WIFI,	<u>_</u>
	CF618BLE+WIFI, CF619BLE+WIFI, CF620BLE+WIFI,	$\langle G \rangle$
	CF621BLE+WIFI, CF622BLE+WIFI, CF623BLE+WIFI,	
	CF625BLE+WIFI, CF626BLE+WIFI, CF627BLE+WIFI,	
	CF628BLE+WIFI, CF629BLE+WIFI, CF630BLE+WIFI,	
	CF631BLE+WIFI, CF632BLE+WIFI, CF633BLE+WIFI,	(\mathcal{O})
	CF635BLE+WIFI, CF636BLE+WIFI, CF637BLE+WIFI,	
	CF638BLE+WIFI, CF639BLE+WIFI, CF650BLE+WIFI,	
	CF651BLE+WIFI, CF652BLE+WIFI, CF653BLE+WIFI,	
	CF655BLE+WIFI, CF656BLE+WIFI, CF657BLE+WIFI,	$\langle \mathcal{G} \rangle$
	CF658BLE+WIFI, CF659BLE+WIFI, CF660BLE+WIFI,	
	CF661BLE+WIFI, CF662BLE+WIFI, CF663BLE+WIFI,	
	CF665BLE+WIFI, CF666BLE+WIFI, CF667BLE+WIFI,	
	CF668BLE+WIFI, CF669BLE+WIFI, CF670BLE+WIFI, CF671BLE+WIFI, CF672BLE+WIFI, CF673BLE+WIFI,	(\mathbf{C})
	CF675BLE+WIFI, CF676BLE+WIFI, CF677BLE+WIFI, CF675BLE+WIFI, CF676BLE+WIFI, CF677BLE+WIFI,	
	CF678BLE+WIFI, CF679BLE+WIFI, CF678BLE+WIFI, CF678BLE+WIFI, CF679BLE+WIFI, CF679BLE+WIFI, CF680BLE+WIFI,	
	CF681BLE+WIFI, CFF682BLE+WIFI, CF683BLE+WIFI,	
	CF685BLE+WIFI, CF686BLE+WIFI, CF687BLE+WIFI,	$(\dot{\mathbf{C}})$
	CF688BLE+WIFI, CF689BLE+WIFI, CF690BLE+WIFI,	
	CF691BLE+WIFI, CF692BLE+WIFI, CF693BLE+WIFI,	
	CF695BLE+WIFI, CF696BLE+WIFI, CF697BLE+WIFI,	
	CF698BLE+WIFI, CF699BLE+WIFI, CF818BLE+WIFI,	$(\mathbf{z}^{\mathbf{v}})$
	CF819BLE+WIFI, BS 483, BS 484, BS 475, BS 476,	
	BHEASY2021, BHBT2022F, BHEASY, BH20S.BH20D	
	BHWIFI2022, BHEASY3, BH20CF, BH20SW, BHSWC23,	
	BH20WP	$(\mathbf{x}\mathbf{O})$
ote: CE568B	LE+WIFI is tested model, other models are derivative models. The models are	identical in circuit ar
PCB layo	out, only different on the model names. So the test data of CF568BLE+WIFI ca	
remainin	g models.	

1.3. Operation Frequency

For 802.11b/g/n(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
/	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
X	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Page 5 of 74

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 6 of 74

3. General Information

3.1. Test environment and mode

Condition	Conducted Emission	Radiated Emission
Temperature:	23.5 °C	24.1 °C
Humidity:	52 % RH	54 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	EspRFTestTool_v2.8_Manua	al
Power Level:	Default	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel and modulations with Fully-charged battery	
above the ground plane of 3	8m & 1.5m for the measure 8m chamber. Measurements in During the test, each emission ing, investigated all operating	n both horizontal and vertica n was maximized by: having

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

3.2. Description of Support Units

TCT 通测检测 TCT 通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	ETA0U82CBC	RT10206CS/AE	1	SAMSUNG
			C. 1	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

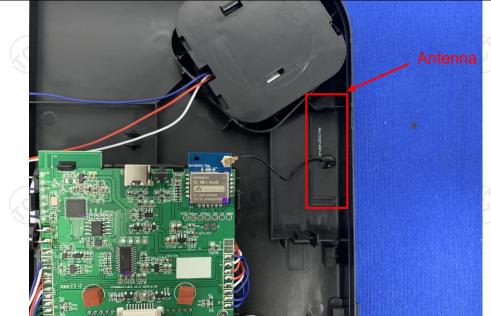
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

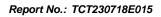

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is dipole antenna which permanently attached, and the best case gain of the antenna is 2.46dBi.



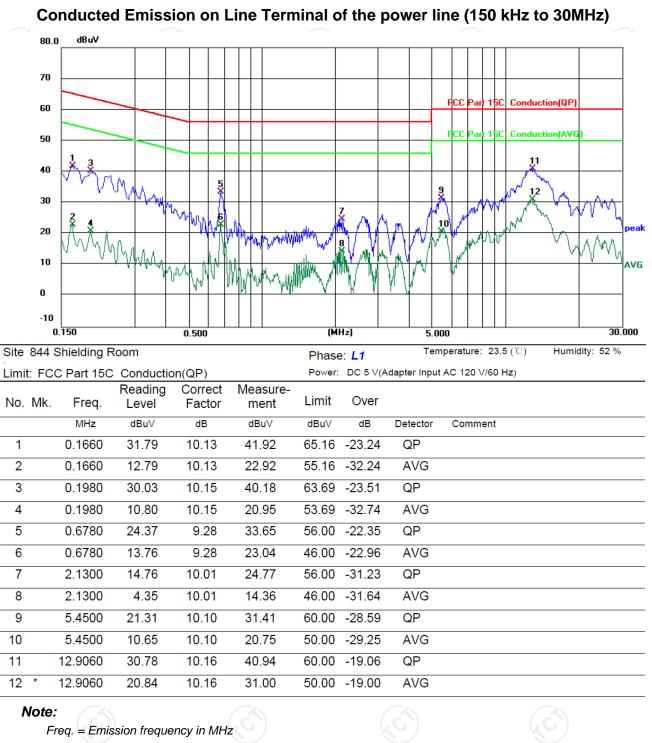
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto				
	Frequency range	Limit (Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference	e Plane					
Test Setup:							
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	X				
Test Mode:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization IN Test table height=0.8m Charging + Transmittir	I EMI Receiver	X				
	 E.U.T: Equipment Under Test LISN: Line Impedence Stabilization IN Test table height=0.8m Charging + Transmittin 1. The E.U.T is connel line impedance stat provides a 500hm/s measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interfered emission, the relative the interface cables 	I EMI Receiver Mg Mode Acted to the main abilization network 50uH coupling im ant. Ces are also conne ISN that provides a with 50ohm tern diagram of the . line are checked nce. In order to fin re positions of equits s must be chang	k (L.I.S.N.). This pedance for the ected to the main a 500hm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all c jed according to				
Test Mode: Test Procedure: Test Result:	 E.U.T: Equipment Under Test LISN: Line Impedence Stabilization IN Test table height=0.8m Charging + Transmittin 1. The E.U.T is conner line impedance sta provides a 500hm/s measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative 	I EMI Receiver Mg Mode Acted to the main abilization network 50uH coupling im ant. Ces are also conne ISN that provides a with 50ohm tern diagram of the . line are checked nce. In order to fin re positions of equits s must be chang	k (L.I.S.N.). Thi apedance for th ected to the mai a 500hm/50ul nination. (Pleas test setup an ed for maximur nd the maximur ipment and all c jed according t				

Page 11 of 74

Cond	ucted Emission	Shielding R	oom Test Site (8	43)
Equipment Manufacturer		Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024
Line-5	ТСТ	CE-05	/	Jul. 03, 2024
EMI Test Software	Shurple Technology	EZ-EMC	1	1 68


Page 12 of 74

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.2.3. Test data

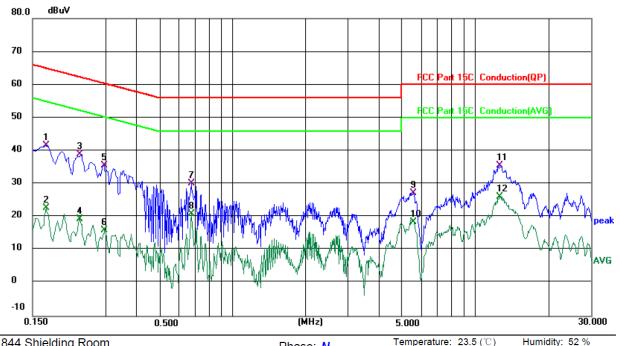
TCT 通测检测 TCT 通测检测

Please refer to following diagram for individual

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)


 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Site 844	Shielding I	Room			Phas	e: N	Te	mperature: 23.5 (℃)	Humidity: 52 %
Limit: FC	C Part 150	C Conduction	on(QP)		Power	r: DC 5 V(Adapter Inpu	ut AC 120 ∀/60 Hz)	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBu∨	dBuV	dB	Detector	Comment	
1	0.1700	31.46	10.11	41.57	64.96	-23.39	QP		
2	0.1700	12.55	10.11	22.66	54.96	-32.30	AVG		
3 *	0.2353	29.08	9.95	39.03	62.26	-23.23	QP		
4	0.2353	9.46	9.95	19.41	52.26	-32.85	AVG		
5	0.2940	25.98	9.65	35.63	60.41	-24.78	QP		
6	0.2940	6.24	9.65	15.89	50.41	-34.52	AVG		
7	0.6780	20.98	9.29	30.27	56.00	-25.73	QP		
8	0.6780	11.72	9.29	21.01	46.00	-24.99	AVG		
9	5.5860	17.05	10.12	27.17	60.00	-32.83	QP		
10	5.5860	8.35	10.12	18.47	50.00	-31.53	AVG		
11	12.7140	25.33	10.23	35.56	60.00	-24.44	QP		
12	12.7140	15.78	10.23	26.01	50.00	-23.99	AVG		

Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Maximum Conducted (Average) Output Power

5.3.1. Test Specification

	FCC Dert45 C Cention 45 247 (h)(2)
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectru analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS

5.3.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
1	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
	Combiner Box	Ascentest	AT890-RFB		

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS
x~ /	

5.4.2. Test Instruments

1					
	Equipment	Manufacturer	Model	Serial Number	Calibration Due
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
	Combiner Box	Ascentest	AT890-RFB		(GY

Page 16 of 74

5.5. Power Spectral Density

5.5.1. Test Specification

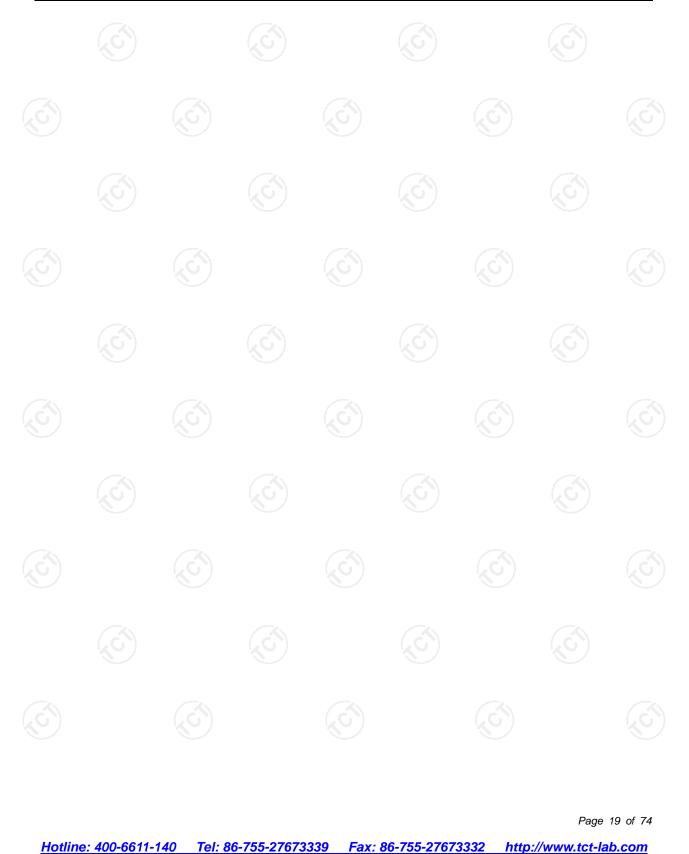
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
6	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
2	Combiner Box	Ascentest	AT890-RFB	1	/

5.6. Conducted Band Edge and Spurious Emission Measurement

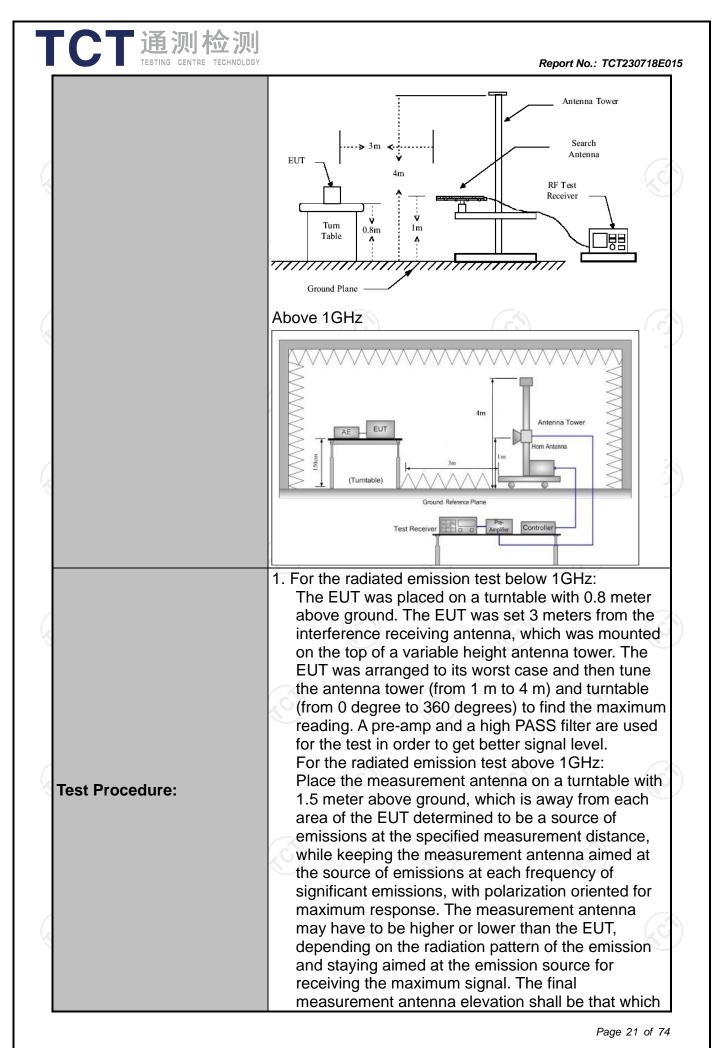
5.6.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously.
Test Procedure:	 Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Page 18 of 74

5.6.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
(Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Ś	Combiner Box	Ascentest	AT890-RFB	, ~	/



5.7. Radiated Spurious Emission Measurement

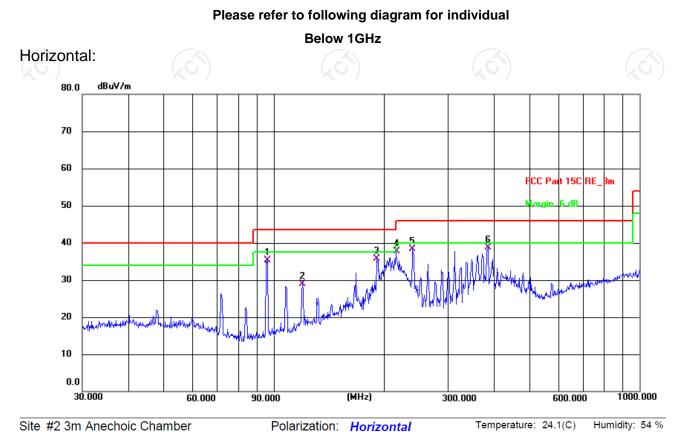
5.7.1. Test Specification

Test Requirement:	FCC Part15	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10	0:2013					
Frequency Range:	9 kHz to 25 (GHz					
Measurement Distance:	3 m	(<u>(</u> G)				
Antenna Polarization:	Horizontal &	Vertical				/	
Operation mode:	Transmitting	mode wi	th modulat	ion		(
	Frequency	Detector	RBW	VBW		Remark	
	9kHz- 150kHz	Quasi-pea		1kHz		si-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz		si-peak Value	
·····	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quas	si-peak Value	
		Peak	1MHz	3MHz		eak Value	
	Above 1GHz	Peak	1MHz	10Hz		erage Value	
	Frequen	icy	Field Stro (microvolts)	-		asurement Ince (meters)	
	0.009-0.4	190	2400/F(I			300	
	0.490-1.7		24000/F(,		30	
	1.705-3		30	/	30		
	30-88		100		3		
	88-216		150		3		
Limit:	216-96	0	200		3		
	Above 9	60	500		3		
			(
	Frequency		eld Strength rovolts/meter) Measure Distar (meter		се	Detector	
			500	3		Average	
	Above 1GHz	Z	5000 3		Peak		
Test setup:	For radiated	stance = 3m	s below 30	Pre -/	Compu		
	30MHz to 10						

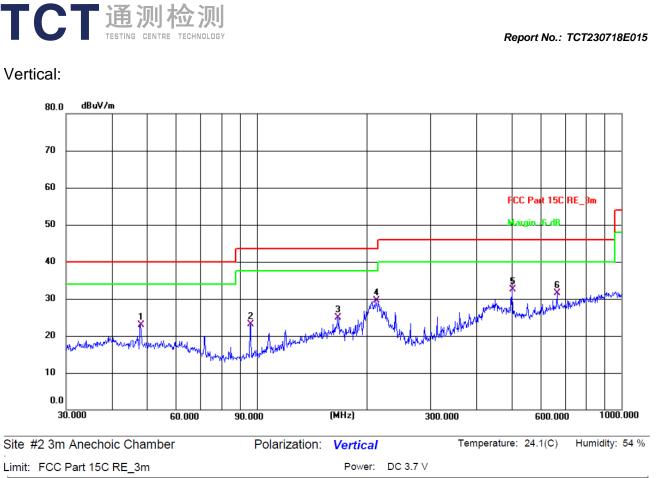
Page 20 of 74

TESTING CENTRE TECHNOLOGY	Report No.: TCT230718E015
	 Report No.: TCT230718E015 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the
	transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

5.7.2. Test Instruments


	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC		1

Page 23 of 74


5.7.3. Test Data

Lį	mit: F	CC Part 15C R	E 3m				Power:	DC 3.7 V		
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ľ	1	96.0986	24.62	10.60	35.22	43.50	-8.28	QP	Ρ	
	2	119.8555	15.87	12.97	28.84	43.50	-14.66	QP	Ρ	
	3	191.0738	24.29	11.41	35.70	43.50	-7.80	QP	Ρ	
	4	216.0237	25.95	11.73	37.68	46.00	-8.32	QP	Ρ	
	5	239.9873	25.47	12.85	38.32	46.00	-7.68	QP	Ρ	
[6 *	386.6338	22.05	16.68	38.73	46.00	-7.27	QP	Ρ	

Page 24 of 74

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	47.9940	9.24	13. <mark>6</mark> 7	22.91	40.00	-17.09	QP	Ρ	
2	96.0985	12.56	10.60	23.16	43.50	-20.34	QP	Ρ	
3	166.6513	10.46	14.44	24.90	43.50	-18.60	QP	Ρ	
4	212.2695	18.06	11.46	29.52	43.50	-13.98	QP	Ρ	
5 *	501.1790	13.10	19.31	32.41	46.00	-13.59	QP	Ρ	
6	665.8034	8.59	22.82	31.41	46.00	-14.59	QP	Ρ	

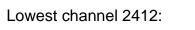
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Highest channel and 802.11b)) was submitted only.

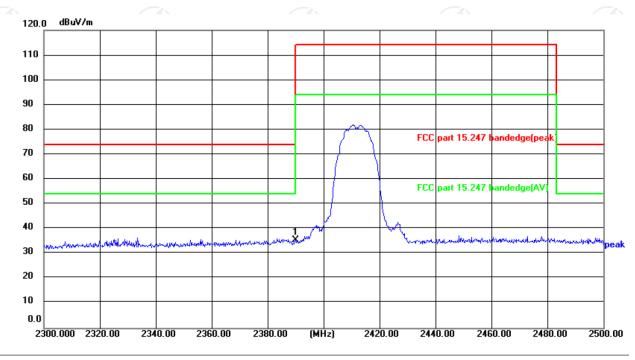
```
3. Freq. = Emission frequency in MHz
```

```
Measurement (dB\mu V/m) = Reading \ level (dB\mu V) + Corr. \ Factor (dB)
```

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier


Limit $(dB\mu V/m) = Limit$ stated in standard

 $Margin (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$


 * is meaning the worst frequency has been tested in the test frequency range.

Test Result of Radiated Spurious at Band edges

Horizontal:

Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°C) Humidity: 50 %

Limit: FCC part 15.247 bandedge(peak)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2390.000	52.59	-17.10	35.49	74.00	-38.51	peak	Ρ	
									2

S)

5

Power:DC 3.7 V

Page 26 of 74

	120.0 dBuV/m		1	1								
1	110										╆	
1	100											
ę	90											
ŧ	80							FCC	part 15.247	bandedge(p	eak	
	70					m						
	60					1	\uparrow	FCC	part 15.247	bandedge(A	w L	
	40											
	30	. MMMMun	alaster and the second second	Londourh Martin	un in the second		here	a, we have	hanne water wa	2 matter programmers	rumhan	duharra
	20											
1	10											
			1	1								
: # t:	0.0 2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz)	oic Chamb	er	Polarizati	on: Vertic	al ower:DC			0.00 24 ture: 25.3(* Remark	С) Н	480.00 umidity:	250 50 %
: #	2300.000 23 #3 3m Anech FCC part 15. Frequency	oic Chamb 247 bande Reading	er dge(peak) Factor	Polarizati	on: Vertic P Limit	al ower:DC	Tei 2 3.7 V	mpera	ture: 25.3(°	С) Н		
: # t:	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz)	oic Chamb 247 bande Reading (dBuV)	er dge(peak) Factor (dB/m)	Polarization	on: Vertic P Limit (dBuV/m)	cal ower:DC Margin (dB)	Ter C 3.7 V Detector	mpera P/F	ture: 25.3(°	С) Н		
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %
: # t: *	2300.000 23 #3 3m Anecho FCC part 15. Frequency (MHz) 2390.000 Measuremen	oic Chamb 247 bande Reading (dBuV) 52.36	er dge(peak) Factor (dB/m) -17.10	Polarization Level (dBuV/m) 35.26	on: Vertic P Limit (dBuV/m) 74.00	al ower:DC Margin (dB) -38.74	Tel C 3.7 V Detector peak	P/F P	ture: 25.3(` Remark	с) Н	umidity:	50 %

Page 27 of 74

20 10 0.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480	CT230718E015	eport No.: TCT	Re						佥 测			ГС
orizontal: 100 100										2462:	channel	iahest (
Image: Non-State Image: Non-State<												
Image: Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°) Humit imit: FCC part 15.247 bandedge(peak) Power:DC 3.7 V No. Frequency Reading Factor Level Limit Margin Detector P/F Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P											n dBuV/m	120 (
100 90 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
90 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
80 FCC part 15.247 bandedge(peak 60 FCC part 15.247 bandedge(peak 70 FCC part 15.247 bandedge(peak) 70 Frequency 70 Factor 70 (dBuV/m) 70 Factor 70 Frequency 70 Factor 70 Factor 70 Factor 70 Factor 70 Facto												
70 FCC part 15.247 badedge[pesk 60 FCC part 15.247 badedge[AV 50 FCC part 15.247 badedge[Pesk FCC part 15.247 badedge[Pesk] Ferequency Reading Factor Vo. Frequency Reading (dBuV) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) Ferequency Ferequency (dBuV) (dBuV/m) (dBuV/m) Ferequency (dBuV) Factor Ferequency Ferequency (dBuV) Factor Ferequency Ferequency (dBuV) (dBuV/m) (dBuV/m) Ferequency (dBuV) Factor Ferequency Ferequency (dBuV) Factor Ferequen												
60 50 FCC pat 15.247 kandedge(AV 60 50 50 50 60 50 50 50 60 50 50 50 60 50 50 50 60 50 50 50 60 50 50 50 60 50 50 50 50 50 50 50 50 50 52.34 50.00 2360.00 50 52.34 -16.88 35.46 74.00 50 52.34 -16.88 35.46 74.00		andedge(peak)	part 15.247 b	FCC								
50 FCC part 15.247 bandedge(AV) 30 FCC part 15.247 bandedge(AV) 30			[
30 30<		andedge(AV)	part 15.247 b	FCC								
20 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>40</td></td<>												40
10 0.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480 ite: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°C) Huminitianiti: FCC part 15.247 bandedge(peak) Power:DC 3.7 V No. Frequency Reading Factor Level Limit Margin Detector P/F Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P	t Xvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	- marken	hand for and stand	-	mehrenne	Anni-airis-secolars	New and Washington Maring	and the second and the se	man hours	ant the second second	understaat on an	30
0.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480 itit: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°C) Huminiania imit: FCC part 15.247 bandedge(peak) Power:DC 3.7 V No. Frequency Reading Factor Level Limit Margin Detector P/F Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P												20
2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480 Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°C) Huminiania imit: FCC part 15.247 bandedge(peak) Power:DC 3.7 V Power:DC 3.7 V No. Frequency (MHz) Reading (dBuV) Factor (dBuV/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector P/F Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P												10
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°C) Huminities imit: FCC part 15.247 bandedge(peak) Power:DC 3.7 V No. Frequency (dBuV) Factor (dBuV/m) (dBuV/m) (dBuV/m) Detector P/F Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P	00 2500.00	0.00 2480.00	0.00 2460	244	420.00	12) 2	0.00 (MI	0.00 239	0.00 236	0 00 234	200 000 232	
imit: FCC part 15.247 bandedge(peak) No. Frequency (MHz) (dBuV) (dB/m) Level (dBuV/m) (dB) Detector P/F Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P						-						
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector P/F Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P	dity: 50 %) Humidity	ture: 25.3(℃	nperat								
INO. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector P/P Remark 1 * 2483.500 52.34 -16.88 35.46 74.00 -38.54 peak P						Margin		1				Fr
			Remark	P/F	Detector	(dB)						INO.
				Р	peak	-38.54	74.00	35.46	-16.88	52.34	483.500	1 * 2

Page 28 of 74

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

													: No.:		
al:															
20.0	dBu¥/m					_						-			
10														7	
									FCC	part 15.2	47)	anded	lge(pea	k	
"											T				
									FCC	part 15.2	47 1	andec	ge(AV)		
io -															
10 -							 		water	mont			5	1 X	
80 🂾	Happin March 1998	aray and a reading on	and allow and allow and	and the section of th	~1~1~~~4140	-	 en-serverstander								
:0 -								_							
• -															
0.0															

Site: #3 3m Anechoic Chamber Temperature: 25.3(℃) Humidity: 50 % Polarization: Vertical Limit: FCC part 15.247 bandedge(peak) Power:DC 3.7 V Limit Frequency Reading Factor Level Margin P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 2483.500 52.38 -16.88 35.50 74.00 -38.50 Ρ peak

Note:

V

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode 802.11b was submitted only.

			M	odulation T	ype: 802.11	lb			
			L	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	44.24		0.75	44.99		74	54	-9.01
7236	Н	33.21		9.87	43.08	'	74	54	-10.92
	Н								
4824	V-	44.70		0.75	45.45		74	54	-8.55
7236	V	32.49	(2G	9.87	42.36	G`)	74	54	-11.64
	V				7				

Above 1GHz

			Mi	ddle chann	el: 2437 MI	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	43.92		0.97	44.89		74	54	-9.11
7311	Н	31.26		9.83	41.09		74	54	-12.91
	H				(
			KO.)	X				
4874	V	41.45		0.97	42.42	·	74	54	-11.58
7311	V	30.89		9.83	40.72		74	54	-13.28
	V								
				((

			/ H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	43.13		1.18	44.31		74	54	-9.69
7386	H	33.27		10.07	43.34	<u> </u>	74	54	-10.66
	Η								
4924	V	42.08		1.18	43.26		74	54	-10.74
7386	V	32.05		10.07	42.12		74	54	-11.88
	V			0	J				

Note:

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC	T	的加检					Rep	ort No.: TCT2	30718E015
			Μ	odulation T	ype: 802.1	1g			
			L	ow channe.	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	43.87		0.75	44.62		74	54	-9.38
7236	Н	34.35		9.87	44.22		74	54	-9.78
	Н			()				
4824	V	42.86		0.75	43.61		74	54	-10.39
7236	\mathcal{N}	33.09	()	9.87	42.96	×	74	54	-11.04
	V)	(6)		(<u>,</u> G)	

Middle channel: 2437 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	42.19		0.97	43.16		74	54	-10.84
7311	Н	32.57		9.83	42.40		74	54	-11.60
	Н								
				6	(
4874	V	40.17	<u> </u>	0.97	41.14		74	54	-12.86
7311	V	31.84		9.83	41.67		74	54	-12.33
	V								

			ŀ	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	42.99		1.18	44.17		74	54	-9.83
7386	H	32.86		10.07	42.93	<u> </u>	74	54	-11.07
	H			/	×)			
4924	V	43.89		1.18	45.07		74	54	-8.93
7386	V	33.65		10.07	43.72		74	54	-10.28
()	V	C ut		(, 0	S)		$\mathcal{S}^{\rightarrow}$		

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC		的加检					Repo	ort No.: TCT2	30718E015
			Modu	lation Type	: 802.11n (l	HT20)			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	41.74		0.75	42.49		74	54	-11.51
7236	Н	29.36		9.87	39.23		74	54	-14.77
· · · · · ·	Н			()		<u> </u>		
4824	V	42.99		0.75	43.74		74	54	-10.26
7236	N	31.43		9.87	41.30		74	54	-12.70
	V)	(<u> </u>			

Middle channel: 2437 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4874	Н	41.87		0.97	42.84		74	54	-11.16	
7311	Н	32.61		9.83	42.44		74	54	-11.56	
	Н									
				6	(
4874	V	44.19	<u> </u>	0.97	45.16		74	54	-8.84	
7311	V	33.68		9.83	43.51		74	54	-10.49	
	V									

(\mathbf{c})		()) F	ligh channe	el: 2462 MH	z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	41.33		1.18	42.51		74	54	-11.49
7386	Н	31.45		10.07	41.52	<u> </u>	74	54	-12.48
	H			/	`	<u> </u>			
4924	V	43.06		1.18	44.24		74	54	-9.76
7386	V	32.70		10.07	42.77		74	54	-11.23
(\mathbf{F})	V	(2 6)		(, (· · · ·		$\mathcal{G}^{\rightarrow}$		(
Madai									

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

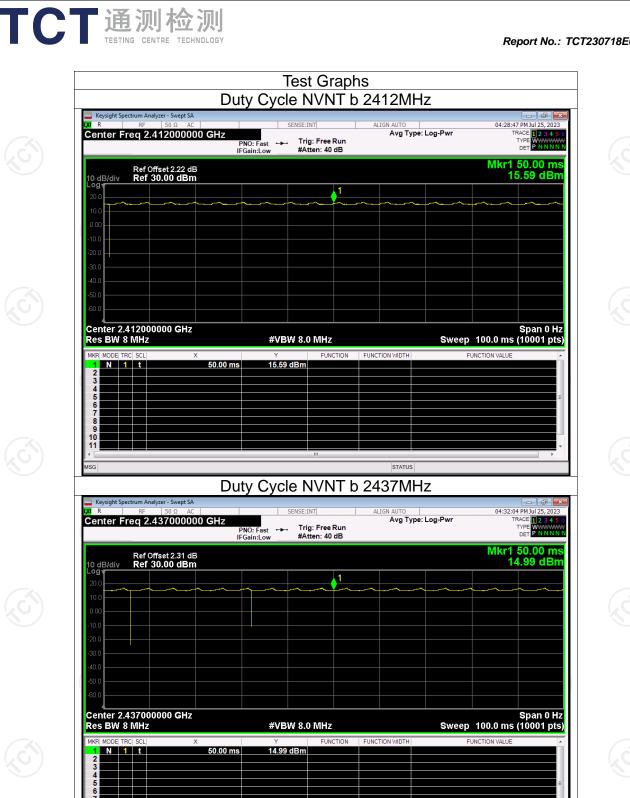
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

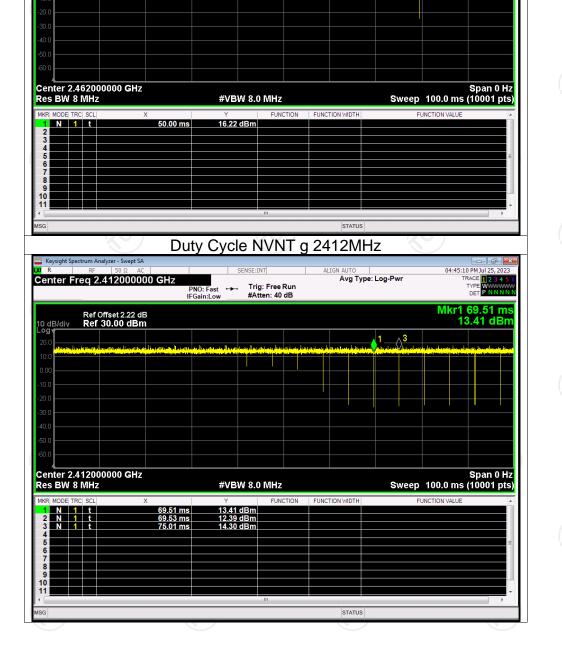
Appendix A: Test Result of Conducted Test


Duty Cycle										
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)					
NVNT	b	2412	99.98	0	0.18					
NVNT	b	2437	99.98	0	0.18					
NVNT	b	2462	99.98	0	0.18					
NVNT	g	2412	99.98	0 (C)	0.18					
NVNT	g	2437	99.98	0	0.18					
NVNT	g	2462	99.98	0	0.18					
NVNT	n20	2412	99.98	0	0.02					
NVNT	n20	2437	99.98		0.02					
NVNT	n20	2462	99.98	0	0.02					

Tel: 86-755-27673339

STATUS

Fax: 86-755-27673332


Report No.: TCT230718E015

Hotline: 400-6611-140

http://www.tct-lab.com

Page 34 of 74

Duty Cycle NVNT b 2462MHz

PNO: Fast ↔→ IFGain:Low

Trig: Free Run #Atten: 40 dB

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spe K/R

10 d Log

Center Freg 2.462000000 GHz

Ref Offset 2.37 dB Ref 30.00 dBm

Report No.: TCT230718E015

Page 35 of 74

04:34:02 PM Jul 25 TRACE 1 2

TYP DE

Mkr1 50.00 ms 16.22 dBm

Avg Type: Log-Pwr

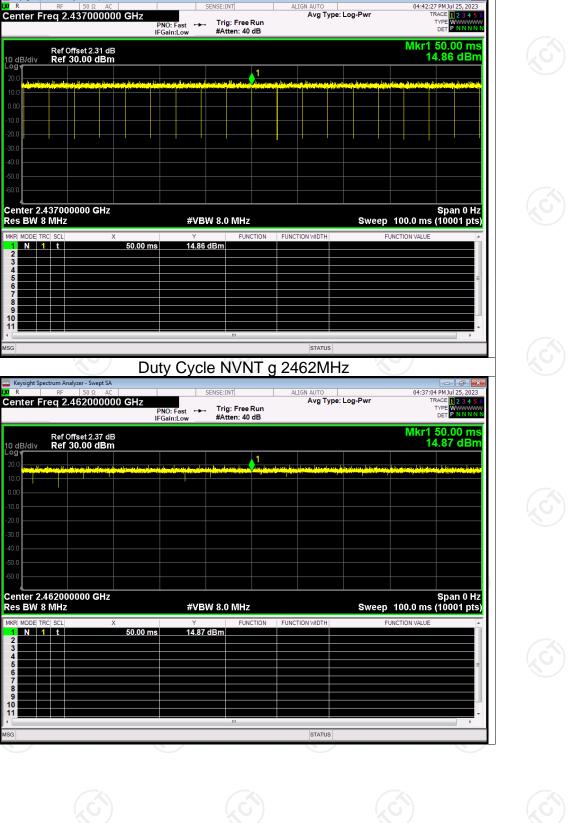
10 d Log 1 Center 2.437000000 GHz Res BW 8 MHz #VBW 8.0 MHz 14.86 dB 50.00 ms N 1 t

Ref Offset 2.31 dB Ref 30.00 dBm

Duty Cycle NVNT g 2437MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spe K/R


10 dB/div Log

N 1 t

10 11

Report No.: TCT230718E015

Page 36 of 74

Duty Cycle NVNT n20 2412MHz

Trig: Free Run #Atten: 40 dB

PNO: Fast ↔→ IFGain:Low

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Sp

10 d Log

Center Freq 2.412000000 GHz

Ref Offset 2.22 dB Ref 30.00 dBm

<mark>، 1</mark>

Report No.: TCT230718E015

Page 37 of 74

04:48:15 PM Jul 25 TRACE 12

TYP DE

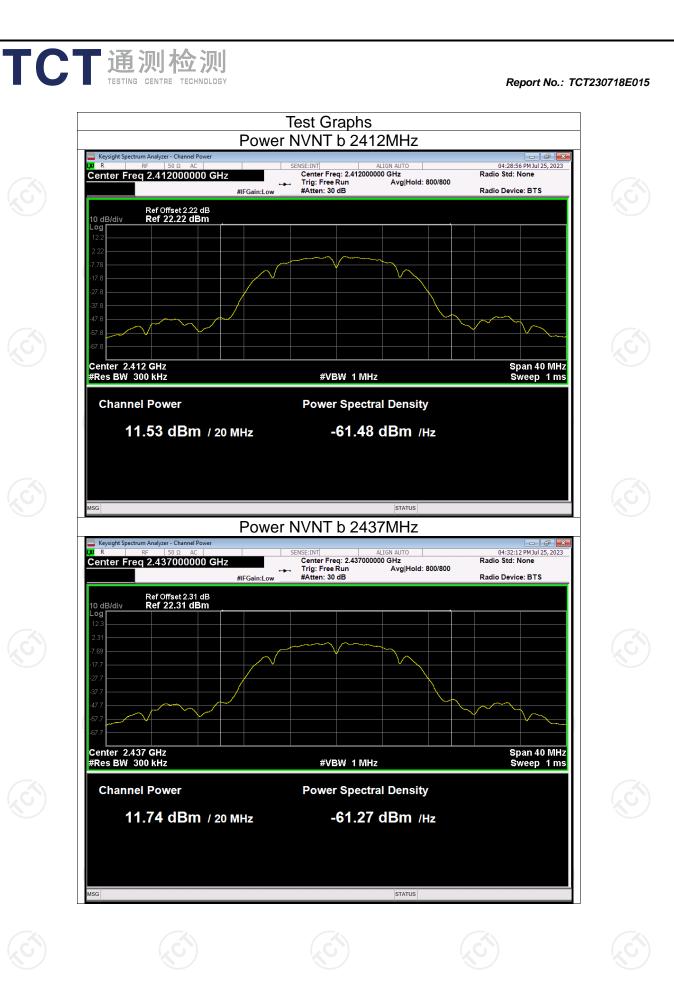
Mkr1 11.60 ms 13.04 dBm

AUTO Avg Type: Log-Pwr

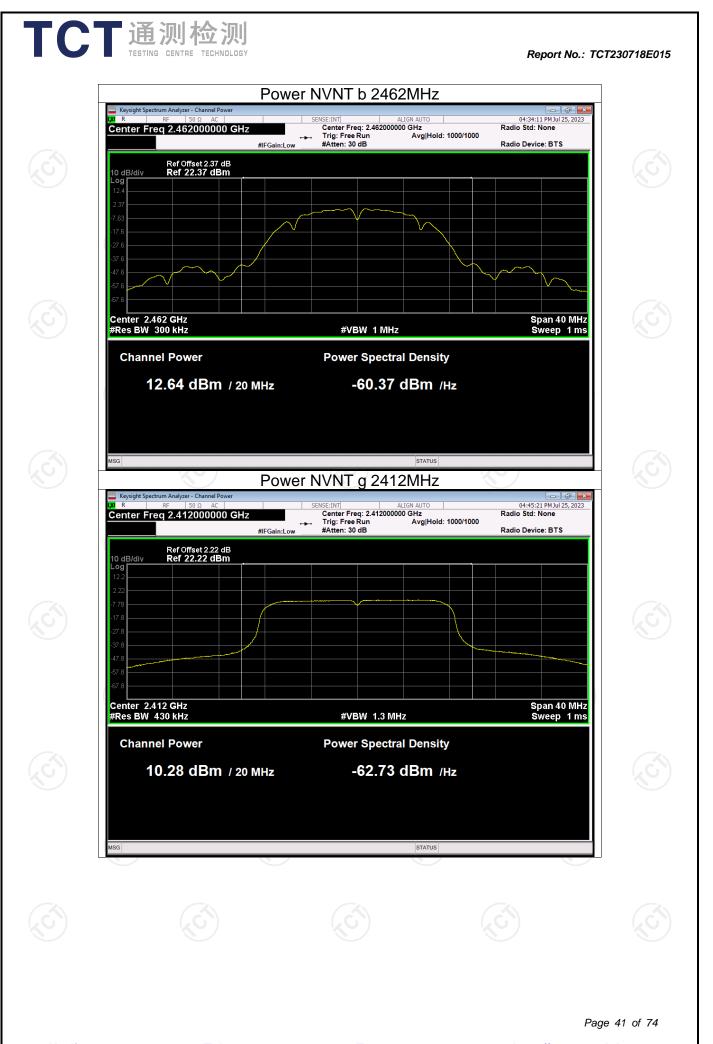
^3

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

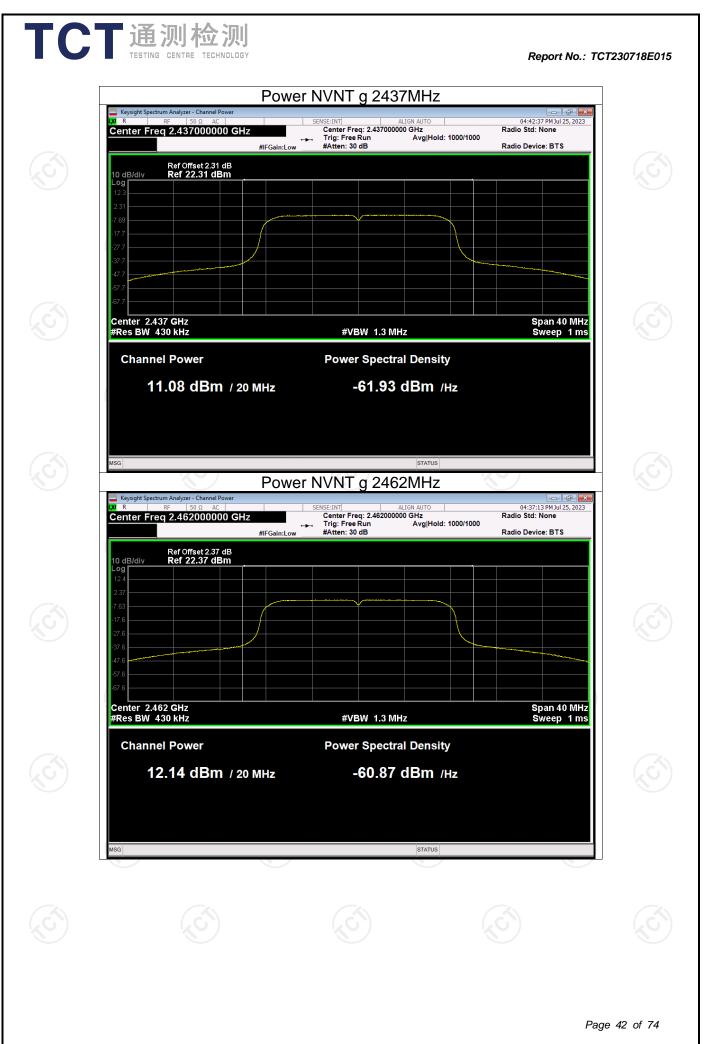
		Duty Cycle	e NVNT n2	0 2462MH	Z		
LXI R	rum Analyzer - Swept SA RF 50 Ω AC eq 2.462000000 C	Hz PNO: Fast ↔ IFGain:Low	SENSE:INT - Trig: Free Run #Atten: 40 dB	ALIGN AUTO Avg Type: Lo		3:51 PMJul 25, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P.N.N.N.N	
10 dB/div Logy	Ref Offset 2.37 dB Ref 30.00 dBm	al one and the adverted of the	1	n eventer for a Sine veneral Statistica veneral co	Mkr	1 50.00 ms 16.83 dBm	
10.0 0.00 -10.0							
-20.0							
-50.0	62000000 GHz					Span 0 Hz	
Res BW 8 M	SCL X	Y	FUNCTION	FUNCTION WIDTH	Sweep 100.0 m	ns (10001 pts)	
2 3 4 5 6							
7 8 9 10 11						-	
MSG	N.		" 	STATUS		, F	

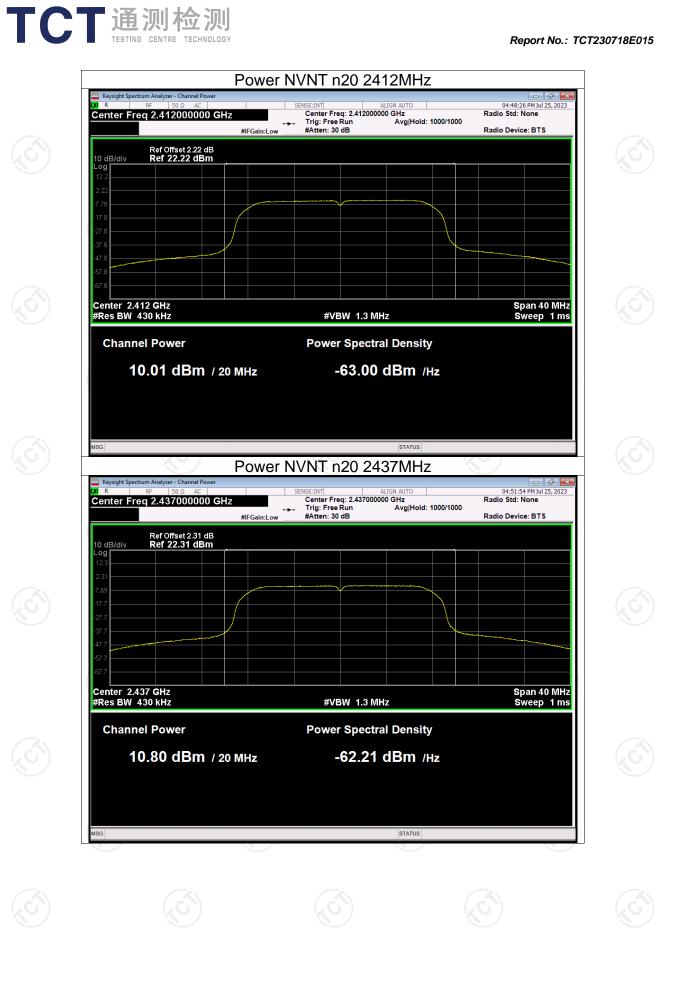

Report No 101230/10E013	Report No.:	TCT230718E015
-------------------------	-------------	---------------

СТ	通测检测
	TESTING CENTRE TECHNOLOGY


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	11.53	30	Pass
NVNT	C b	2437	11.74	30	Pass
NVNT	b	2462	12.64	30	Pass
NVNT	g	2412	10.28	30	Pass
NVNT	g	2437	11.08	30	Pass
NVNT	g	2462	12.14	30	Pass
NVNT	n20	2412	10.01	30	Pass
NVNT	n20	2437	10.80	30	Pass
NVNT	n20	2462	11.74	30	Pass

Maximum Conducted Output Power




Page 40 of 74

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TC	通测检 TESTING CENTRE TECH				R	eport No.: TCT	230718E015
	w Keysight Spectrum Analyzer - Channel	Power	IVNT n20 2			- 6 -	
	tx/ R RF 50 Ω AC Center Freq 2.4620000	00 GHz #IFGain:Low	SENSE:INT Center Freq: 2.4620 → Trig: Free Run #Atten: 30 dB	ALIGN AUTO 000000 GHz Avg Hold: 1000/	Radio Std		
	Ref Offset 2.37 10 dB/div Ref 22.37 dl Log	'dB Bm					
	2.37 -7.63 -17.6						
	-27.6 -37.6 -47.6					~~~~~	
(\mathbf{c})	-67.6 -67.6 Center 2.462 GHz				S	Span 40 MHz	
	#Res BW 430 kHz Channel Power		#VBW 1.3 Power Spec	MHz ctral Density		Sweep 1 ms	
	11.74 dBn	1 / 20 MHz	-61.2	7 dBm /Hz			
(C)	MSG		N.	STATUS	~~~~		
(\mathbf{c})							
						Paae	44 of 74
<u>Hotline</u>	e: 400-6611-140 Te	<u>l: 86-755-27673</u>	<u>3339 Fax:</u>	<u>86-755-2767</u>	<u>3332 http</u>	://www.tct-la	

	-6dB Bandwidth											
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict							
NVNT	b	2412	10.061	0.5	Pass							
NVNT	b	2437	10.060	0.5	Pass							
NVNT	b	2462	10.067	0.5	Pass							
NVNT	g	2412	15.083	0.5	Pass							
NVNT	g	2437	15.077	0.5	Pass							
NVNT	g	2462	15.088	0.5	Pass							

14.840

15.034

15.106

	LOUNGEDE	OFULLE	511160
EdD Do			

2412

2437

2462

Report No.: TCT230718E015

Pass

Pass

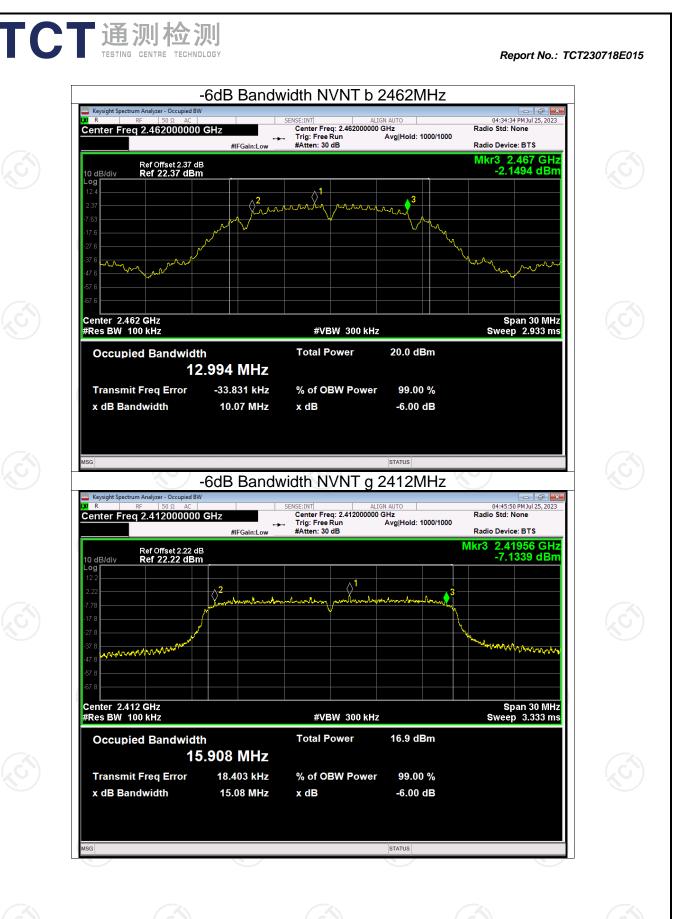
Pass

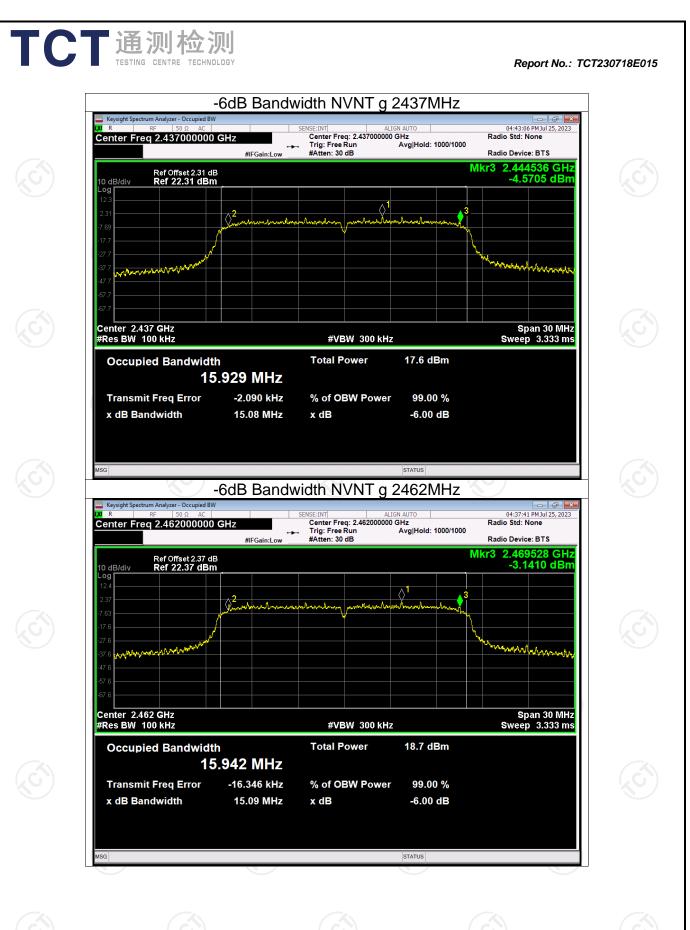
Page 45 of 74

0.5

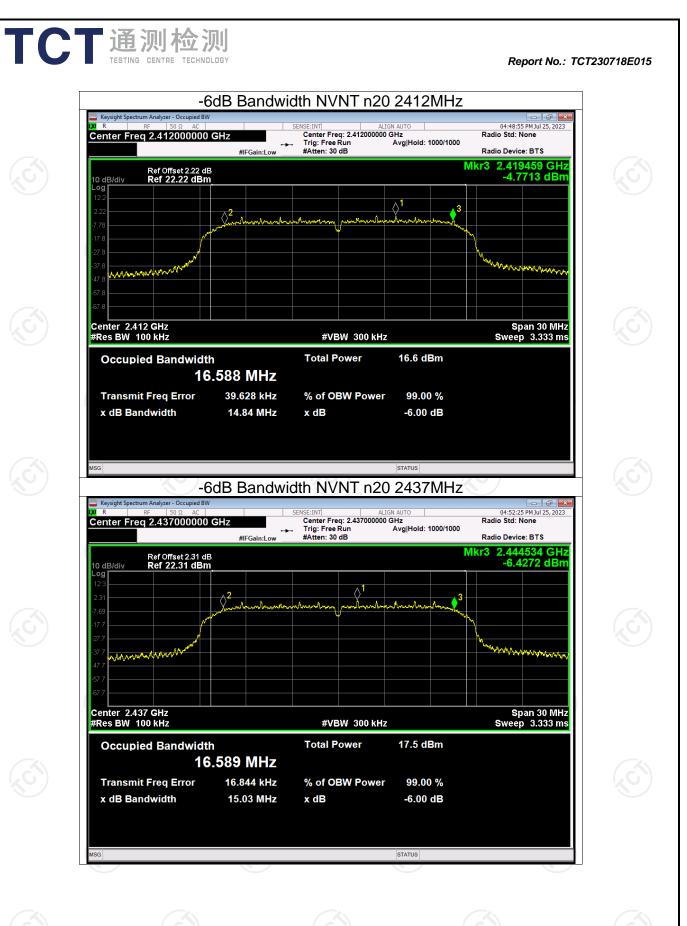
0.5

0.5


Co

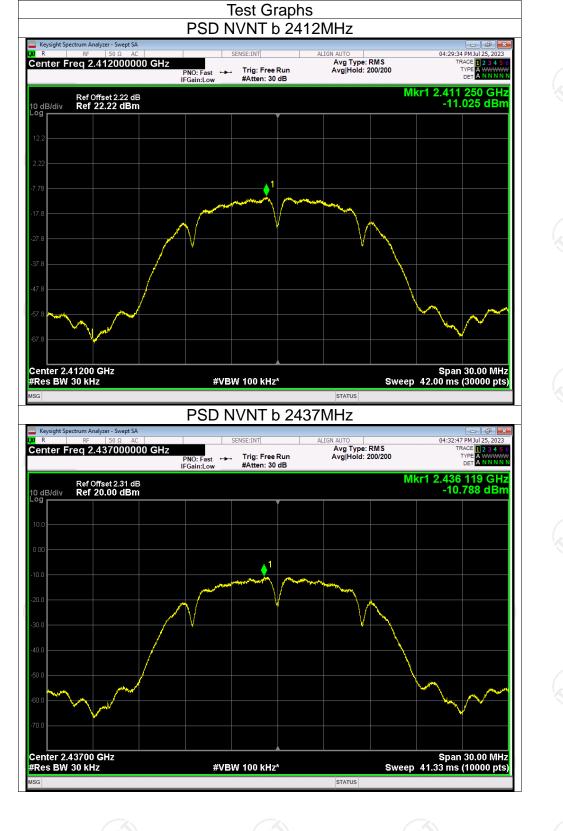

NVNT

NVNT

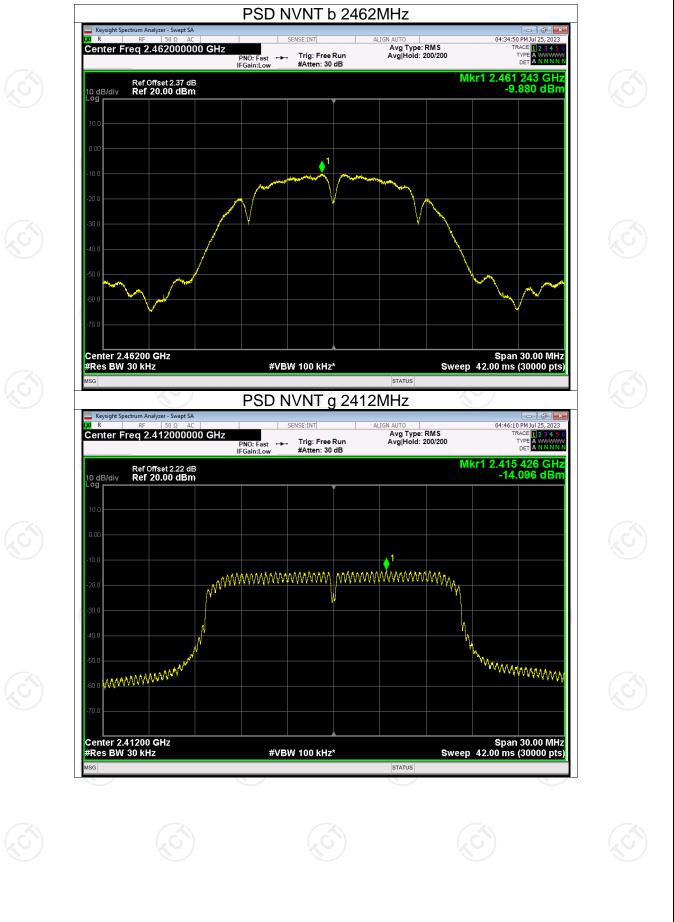

NVNT

Page 48 of 74

ce: BTS	Radio Std: 00 Radio Devi	GN AUTO GHz Avg Hold: 1000/100	SENSE:INT AL Center Freq: 2.46200000 → Trig: Free Run #Atten: 30 dB	GHz #IFGain:Low	RF 50 Ω AC q 2.462000000 (Center Fre
9535 GHz 2714 dBm	Mkr3 2.46 -6.2				Ref Offset 2.37 dB Ref 22.37 dBm	10 dB/div Log 12.4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A A A A A A A A A A A A A A A A A A A	alourhoese here		J ² Jacobert Contraction of the second seco	and the second second	2.37 -7.63 -17.6 -27.6 -37.6 -47.6 -57.6
pan 30 MHz p 3.333 ms	S		#VBW 300 kH		62 GHz 00 kHz	-67.6 -67.6 Center 2.40 #Res BW 1
		18.4 dBm	Total Power	.624 MHz	ed Bandwidth 16	Occupi
		99.00 % -6.00 dB	% of OBW Power x dB	-17.585 kHz 15.11 MHz	t Freq Error	Transmi x dB Ba
	8	STATUS	NO -		S	MSG

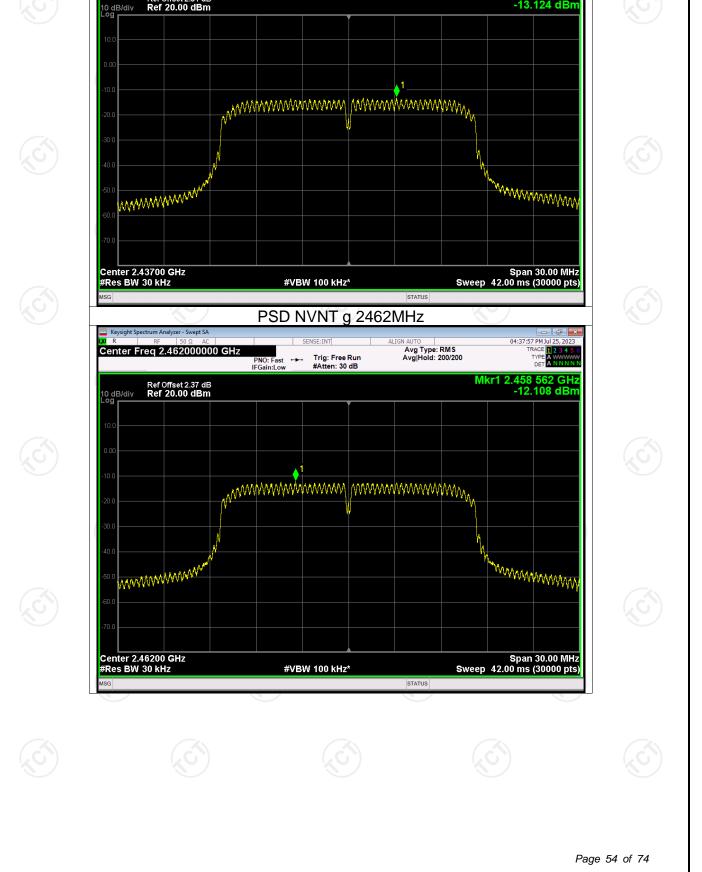

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
<b>NVNT</b>	b	2412	-11.03	-21.03	8	Pass
NVNT	b	2437	-10.79	-20.79	8	Pass
NVNT	b	2462	-9.88	-19.88	8	Pass
NVNT	g	2412	-14.10	-24.10	8	Pass
NVNT	g	2437	-13.12	-23.12	8 ( )	Pass
NVNT	g	2462	-12.11	-22.11	8	Pass
NVNT	n20	2412	-14.20	-24.20	8	Pass
NVNT	n20	2437	-13.51	-23.51	8	Pass
<b>NVNT</b>	n20	2462	-12.81	-22.81	6 8	Pass

# Maximum Power Spectral Density Level


Note: Result[dBm/3kHz] = Result[dBm/30kHz] +10log(3kHz/30kHz)

# Image: Second state Image: Second state<






Page 52 of 74



TCT通测检测 TESTING CENTRE TECHNOLOGY

### Report No.: TCT230718E015



PSD NVNT g 2437MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

Avg Type: RMS Avg|Hold: 200/200

Report No.: TCT230718E015

04:43:24 PM Jul 25, 20 TRACE 1 2 3 4 TYPE A WWW DET A N N

TYP

Mkr1 2.440 094 GHz -13.124 dBm

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spectrum Analyzer - Swept S

Center Freg 2.437000000 GHz

Ref Offset 2.31 dB Ref 20.00 dBm

0 R



PSD NVNT n20 2412MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

AI IGN

Avg Type: RMS Avg|Hold: 200/200

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight Spe

Center Freg 2.412000000 GHz

0 R

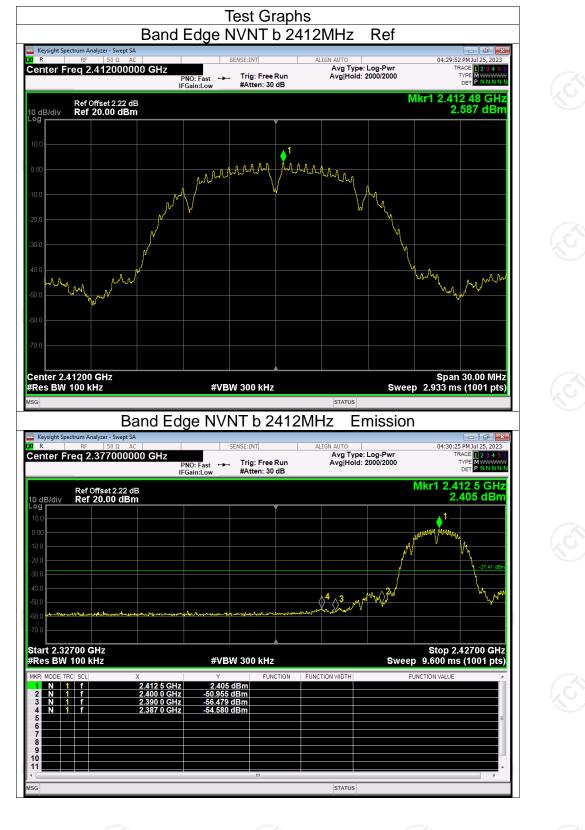
Report No.: TCT230718E015

04:49:14 PM Jul 25, 2 TRACE 1 2 3 TYPE A WW DET A N N

TYP

Keysight Spectrum Ana KM R RF Center Freq 2.4	50 Ω AC		VNT n20 24 SENSE:INT . Trig: Free Run	ALIGN AUTO Avg Type: RM Avg Hold: 200/	S	58 PM Jul 25, 2023 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N	
Ref Of 10 dB/div Ref 2 Log	fset 2.37 dB 20.00 dBm	IFGain:Low	#Atten: 30 dB		Mkr1 2.46 -1:	6 351 GHz 2.814 dBm	
10.0							
-10.0	aN	www.ww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 1 1 1 1 1	MAAA		
-30.0	N		W				
-50.0 .60.0	M M				W~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WWWWWW	
-70.0							
Center 2.46200 #Res BW 30 kHz ^{MSG}		#VB	W 100 kHz*	STATUS	Spa Sweep 42.00 m	n 30.00 MHz s (30000 pts)	

Band Edge									
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict				
NVNT	b	2412	-57.16	-30	Pass				
NVNT	b	2462	-57.96	-30	Pass				
NVNT	g	2412	-52.19	-30	Pass				
NVNT	g	2462	-47.55	-30	Pass				
NVNT	n20	2412	-52.03	-30	Pass				
NVNT	n20	2462	-47.34	-30	Pass				


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page	57	of	74
------	----	----	----

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Report No.: TCT230718E015



Page 58 of 74





Keysight Sp

d R

### Band Edge NVNT b 2462MHz Emission er - Swept SA



### Report No.: TCT230718E015

35:09 PM Jul 25, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N

MMan

04:35:42 PM Jul 2

TYP DE



Report No.: TCT230718E015

### who who was a mmmmmmm Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2462MHz Emission zer - Swept SA Keysight Sp d R 04:38:50 PM Jul 2 Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.497000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low -----Mkr1 2.457 0 GHz 1.099 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Log **r** Mr. 02 Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz

Band Edge NVNT g 2462MHz

PNO: Fast ↔→ IFGain:Low

Trig: Free Run #Atten: 30 dB

**♦**¹

Ref

-myA

Avg Type: Log-Pwr Avg|Hold: 2000/2000

mbrand low

### Report No.: TCT230718E015

04:38:17 PM Jul 25, 202 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYP

Mkr1 2.463 23 GHz 1.301 dBm

Center Freg 2.462000000 GHz

Ref Offset 2.37 dB Ref 20.00 dBm

🔤 Keysight Sp

10 dB/div Loa

1 f 1 f 1 f

N

10 11

2.457 0 G 2.483 5 G

2.500 0 GHz 2.483 8 GHz

0 R



FUNCTION WIDTH

**FION** 

-46.538 dBm -55.872 dBm -46.252 dBm

### TCT通测检测 TESTING CENTRE TECHNOLOGY Band Edge NVNT n20 2412MHz Ref 🔤 Keysight S 04:49:37 PM Jul 25, 202 TRACE 1 2 3 4 TYPE MWWW DET P N N N K/R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.413 26 GHz -0.435 dBm Ref Offset 2.22 dB Ref 20.00 dBm 10 dB/div Loa Ø un hand mark mark mark 1. Ambarbarbarb MMannam MANNE Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT n20 2412MHz Emission er - Swept SA Keysight Sp 04:50:09 PM.1ul 2 (I R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.377000000 GHz Trig: Free Run #Atten: 30 dB TYP PNO: Fast ↔→ IFGain:Low Mkr1 2.417 0 GHz -0.597 dBm Ref Offset 2.22 dB Ref 20.00 dBm 10 dB/div Log **r** المراسلية المراسية المراسلية

______2 10 the strategy Start 2.32700 GHz #Res BW 100 kHz Stop 2.42700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION 1 f 1 f 1 f -41.866 dBm -53.448 dBm -52.466 dBm N 2.389 5 GH; 10 11 STATUS

Report No.: TCT230718E015



Mkr1 2.463 26 GHz 1.330 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa ø andraw Mountain hah mburk Muran m.A munnun Marina Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT n20 2462MHz Emission r - Swept SA Keysight Sp 04:55:53 PM.1ul 2 (I R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.497000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low -----Mkr1 2.463 3 GHz 1.411 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Log **r** . (6)⁷⁴  $\wedge^3$ Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH **FION** 1 f 1 f 1 f 2.463 3 GHz 2.483 5 GHz 2.500 0 GHz 2.483 9 GHz -47.106 dBm -57.099 dBm -46.018 dBm N 10 11 STATUS

Band Edge NVNT n20 2462MHz

PNO: Fast ↔→ IFGain:Low

Trig: Free Run #Atten: 30 dB

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight S

Center Freg 2.462000000 GHz

K/R

Report No.: TCT230718E015

155:20 PM Jul 25, 202 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYP

Ref

Avg Type: Log-Pwr Avg|Hold: 2000/2000

# TCT通测检测 TESTING CENTRE TECHNOLOGY

# **Conducted RF Spurious Emission**

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-47.41	-30	Pass
NVNT	b	2437	-49.15	-30	Pass
<b>NVNT</b>	b	<b>C</b> 2462	-49.06	-30	Pass
NVNT	g	2412	-45.57	-30	Pass
NVNT	g	2437	-46.44	-30	Pass
NVNT	g	2462	-47.22	-30	Pass
NVNT 🖉	n20	2412	-45.35	-30	Pass
NVNT	n20	2437	-46.64	-30	Pass
NVNT	n20	2462	-46.50	-30	Pass

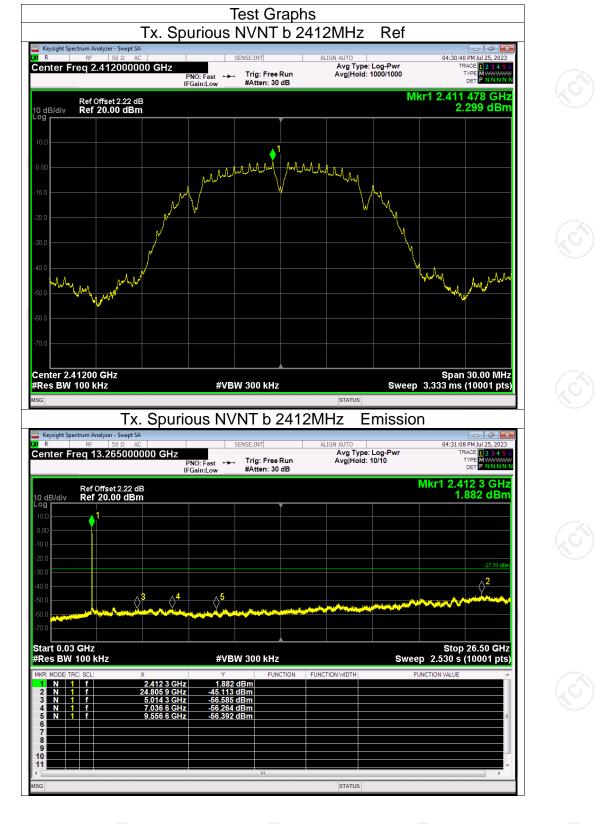




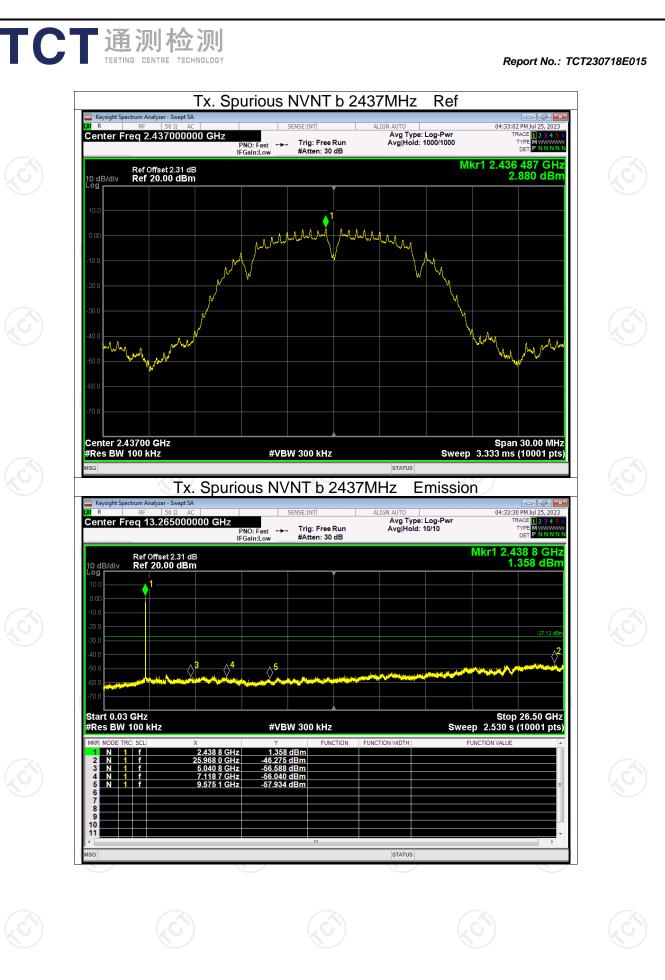




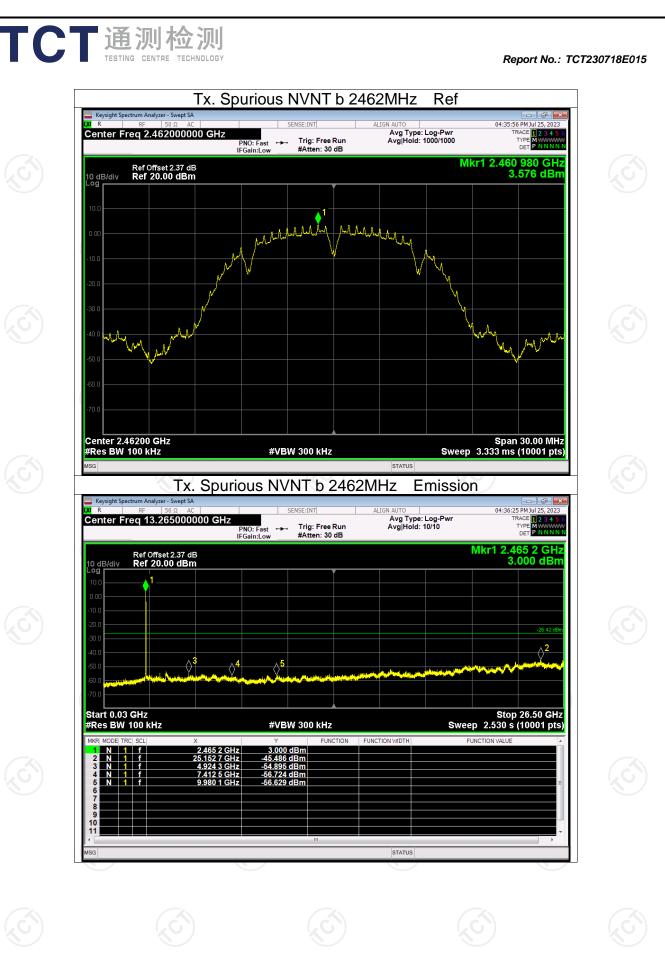










Report No.: TCT230718E015



Page 65 of 74



Page 66 of 74



Tx. Spurious NVNT g 2412MHz Ref 🔤 Keysight S 04:47:20 PM Jul 25, 202 TRACE 1 2 3 4 TYPE MWWW DET P N N N K/R Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 30 dB TYP PNO: Fast ↔→ IFGain:Low Mkr1 2.416 980 GHz -0.527 dBm Ref Offset 2.22 dB Ref 20.00 dBm 10 dB/div Loa ø In mary American marken worldwhampen mmannom MANAMAMA Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 3.333 ms (10001 pts) #VBW 300 kHz STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

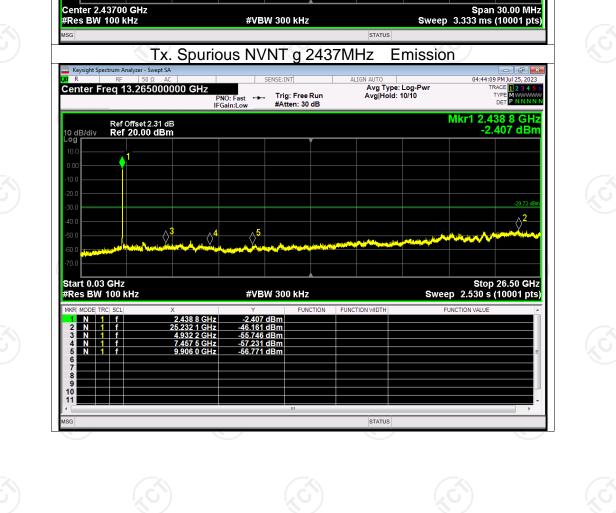
Keysight Sp (I R

Center Freg 13.265000000 GHz

### Tx. Spurious NVNT g 2412MHz Emission zer - Swept SA

Trig: Free Run #Atten: 30 dB

PNO: Fast IFGain:Low


Avg Type: Log-Pw Avg|Hold: 10/10

### Report No.: TCT230718E015

04:47:48 PM Jul 2

TYP

Mkr1 2.412 3 GHz -3.823 dBm



wwwwwww nd man with Span 30.00 MHz Sweep 3.333 ms (10001 pts)

Tx. Spurious NVNT g 2437MHz

PNO: Fast ↔→ IFGain:Low

monthembrandmanthame

Trig: Free Run #Atten: 30 dB

ø

walander

Ref

Anna

Avg Type: Log-Pwr Avg|Hold: 1000/1000

Morros

TCT通测检测 TESTING CENTRE TECHNOLOGY

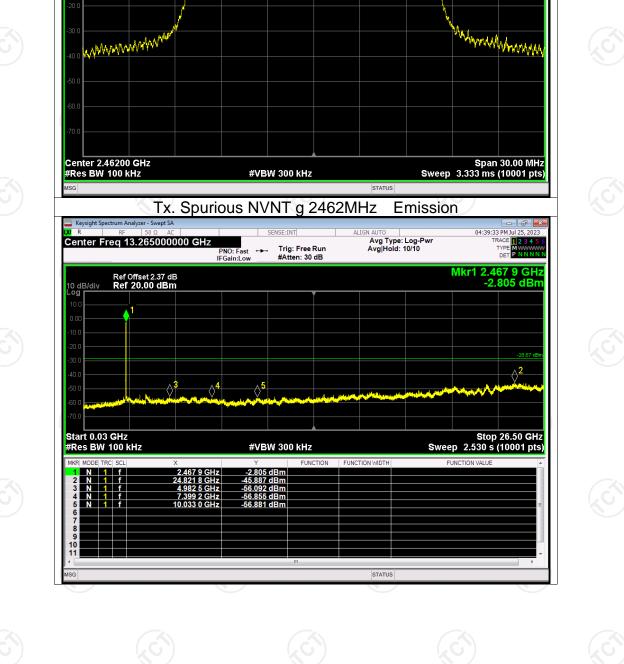
🔤 Keysight S

10 dB/div Loa

Center Freg 2.437000000 GHz

Ref Offset 2.31 dB Ref 20.00 dBm

K/R


Report No.: TCT230718E015

Page 69 of 74

04:43:41 PM Jul 25, 202 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYP

Mkr1 2.438 263 GHz 0.283 dBm



# Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.463 251 GHz 1.335 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa Ø In how have have here have Aunton Mayon

Tx. Spurious NVNT g 2462MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

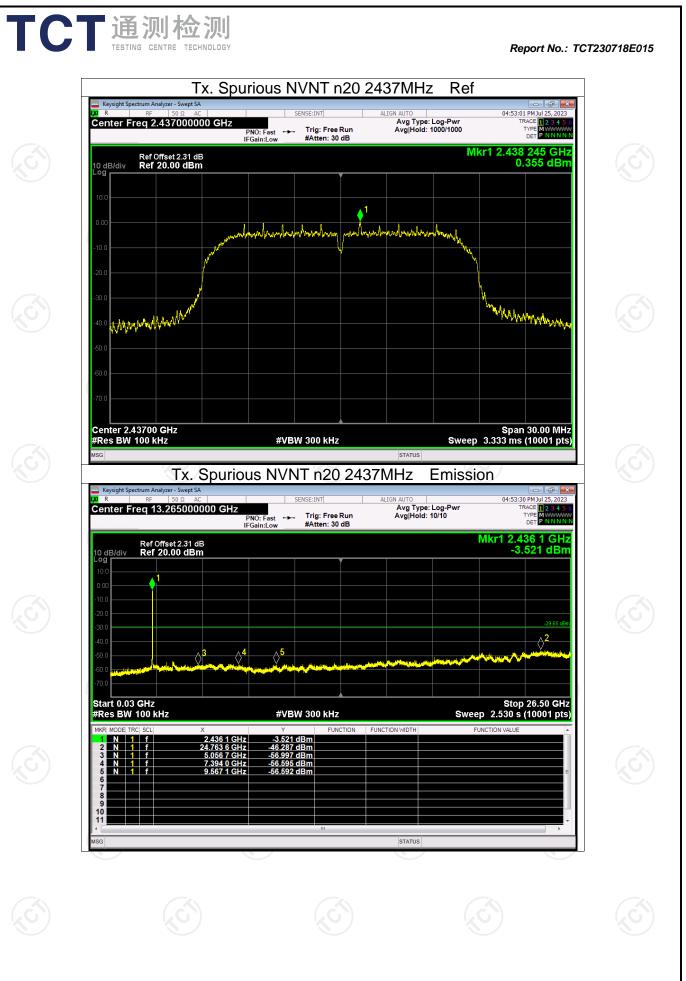
🔤 Keysight S

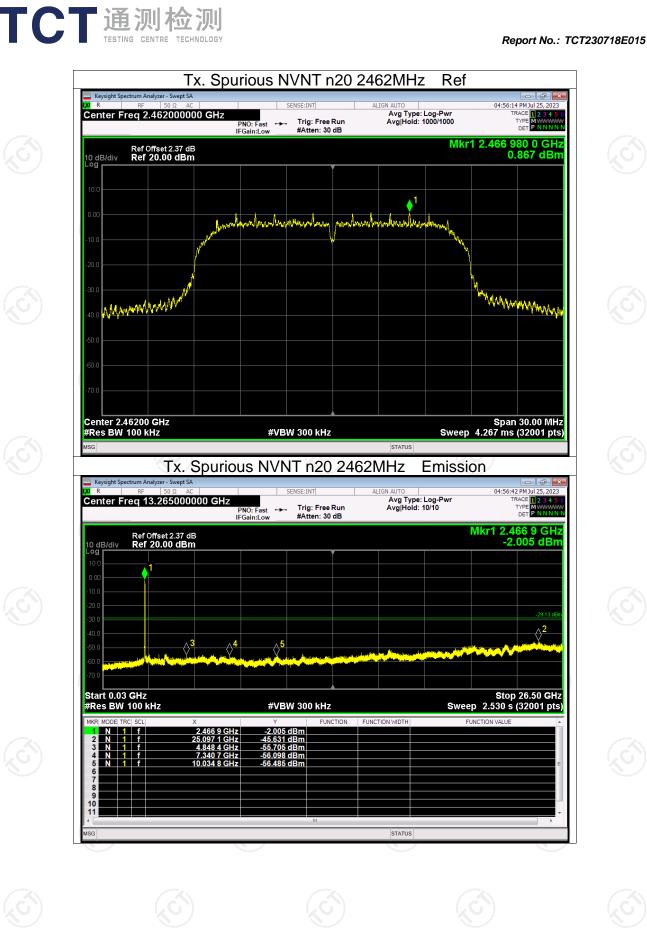
K/R

Page 70 of 74

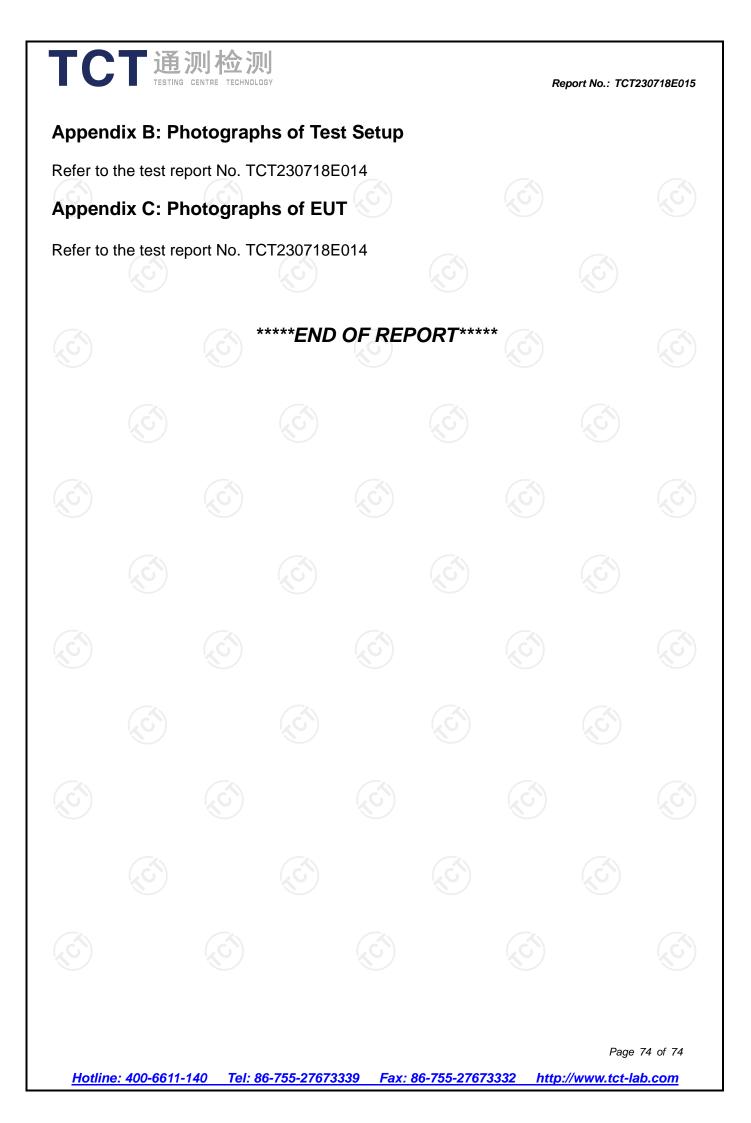
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT230718E015


39:05 PM Jul 25, 202 TRACE 1 2 3 4 TYPE MWWW DET P N N N


TYP

Ref




Page 71 of 74





Page 73 of 74

