

FCC TEST REPORT

Test report On Behalf of JiaXing HengLe Electronic Technology Co., Ltd. For Wireless Cabinet Model No.: 20190416HLJJ-MP3-V10

FCC ID: 2AVDK-433M-SEND

Prepared for : JiaXing HengLe Electronic Technology Co., Ltd. No. 209 Tiansheng West Road, Qixing Town, Nanhu District, Jiaxing City, Zhejiang Province, China

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

 Date of Test:
 Dec. 4, 2019 ~ Dec. 12, 2019

 Date of Report:
 Dec. 12, 2019

 Report Number:
 HK1911273029E

TEST RESULT CERTIFICATION

Applicant's name:	JiaXing HengLe Electronic Technology Co., Ltd.						
	No. 209 Tiansheng West Road, Qixing Town, Nanhu District, Jiaxing City, Zhejiang Province, China						
	JiaXing HengLe Electronic Technology Co., Ltd.						
Address:	No. 209 Tiansheng West Road, Qixing Town, Nanhu District, Jiaxing City, Zhejiang Province, China						
Product description							
Trade Mark:	/						
Product name:	Wireless Cabinet						
Model and/or type reference :	20190416HLJJ-MP3-V10						
Standards	FCC Part15 Subpart C 2017, Section 15.231 ANSI C63.10: 2013						

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Dec. 4, 2019 ~ Dec. 12, 2019
Date of Issue:	Dec. 12, 2019
Test Result	Pass

:

ŝ

Testing Engineer

Gary Qian) (Gary Qian) Edan Mu

Technical Manager

(Eden Hu)

Authorized Signatory:

)ason Zhou

(Jason Zhou)

Contents

1.1 TEST FACILITY. 4 1.2 TEST FACILITY. 4 1.3 MEASUREMENT UNCERTAINTY. 4 2. General Information 5 2.1 Description of Device (EUT) 5 2.2 DESCRIPTION OF TEST SETUP. 6 2.3. List of channels 6 2.5. Test Equipment List 7 3. Conducted Emission Test. 8 3.1 Conducted Power Line Emission Limit. 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data. 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 5.1 Standard Applicable 14 5.2 Test Procedure 19 4.3. Corrected Amplitude & Margin Calculation 11 5.4. Test Data 11 5.5. Test Procedure 14 5.6. Test Procedure 14 5.7. Test Procedure 16 6.1. Standard Applicable 14 5.2. Test Procedure 16 6.3. Environmental Condition	1. TEST SUMMARY	4
1.3 MEASUREMENT UNCERTAINTY 4 2. General Information 5 2.1. Description of Device (EUT) 5 2.2. DESCRIPTION OF TEST SETUP 6 2.3. List of channels 6 2.5. Test Equipment List 7 3. Conducted Emission Test 8 3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4.8 Actiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 5.5. Test Procedure 14 5.4. Test Data 14 5.7. Test Procedure 16 6.1. Standard Applicable 16	1.1 TEST FACILITY	4
2. General Information 5 2.1. Description of Device (EUT) 5 2.2. DESCRIPTION OF TEST SETUP 6 2.3. List of channels 6 2.5. Test Equipment List 7 3. Conducted Emission Test 8 3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.7. Test Procedure 18 7.1. Standard Applicable <td< td=""><td>1.2 TEST FACILITY</td><td>4</td></td<>	1.2 TEST FACILITY	4
2.1. Description of Device (EUT) 5 2.2. DESCRIPTION OF TEST SETUP 6 2.3. List of channels 6 2.5. Test Equipment List 7 3. Conducted Emission Test 8 3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 6.1. Standard Applicable 14 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.5. Environmental Conditions 16 6.4. Test Data 16 6.5. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18	1.3 MEASUREMENT UNCERTAINTY	4
2.2. DESCRIPTION OF TEST SETUP 6 2.3. List of channels 6 2.5. Test Equipment List 7 3. Conducted Emission Test 8 3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 6.1. Standard Applicable 14 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.5. Environmental Conditions 16 6.4. Test Data 16 6.5. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 <t< td=""><td>2. General Information</td><td>5</td></t<>	2. General Information	5
2.3. List of channels 6 2.5. Test Equipment List 7 3. Conducted Emission Test 8 3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 5.2. Test Data 11 5.2. Test Data 11 5.2. Test Data 11 5.2. Test Data 11 4.5. Test Data 11 5.2. Test Procedure 14 5.2. Test Procedure 14 5.2. Test Procedure 14 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.5. Environmental Conditions 16 6.4. Test Data 16 7.0. Lycycle 18 7.1. Standard Applicable	2.1. Description of Device (EUT)	5
2.5. Test Equipment List 7 3. Conducted Emission Test 8 3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data. 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 11 6. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	2.2. DESCRIPTION OF TEST SETUP	6
3. Conducted Emission Test 8 3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 11 6. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.5. Test Data 16 6.6.4. Test Data 16 7.1. Standard Applicable 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19	2.3. List of channels	6
3.1 Conducted Power Line Emission Limit 8 3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 6.5. Environmental Conditions 16 6.4. Test Data 16 7.5. Test Procedure 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19	2.5. Test Equipment List	7
3.2 Test Setup 8 3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 6.1. Standard Applicable 14 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	3. Conducted Emission Test	8
3.3 Test Procedure 8 3.4 Test Data 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 6. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	3.1 Conducted Power Line Emission Limit	8
3.4 Test Data. 8 4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 14 6. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7.0 Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	3.2 Test Setup	8
4. Radiated Emissions 9 4.1. Standard Applicable 9 4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7.5. Test Data 18 7.1. Standard Applicable 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	3.3 Test Procedure	8
4.1. Standard Applicable94.2. Test Procedure94.3. Corrected Amplitude & Margin Calculation114.4. Environmental Conditions114.5. Test Data115. 20DB Occupy Bandwidth Test145. 1. Standard Applicable145.2. Test Procedure145.4. Test Data146. Transmission Time166.1. Standard Applicable166.2. Test Procedure166.3. Environmental Conditions166.4. Test Data167. Duty Cycle187.1. Standard Applicable187.2. Test Procedure187.4. INTRODUCTION TO PDCF reference:187.5. Test Data198. Antenna Connected Construction23	3.4 Test Data	8
4.2. Test Procedure 9 4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7.1. Standard Applicable 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	4. Radiated Emissions	9
4.3. Corrected Amplitude & Margin Calculation 11 4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 5.2. Test Procedure 14 5.4. Test Data 14 6.7. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	4.1. Standard Applicable	9
4.4. Environmental Conditions 11 4.5. Test Data 11 5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 6. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	4.2. Test Procedure	9
4.5. Test Data115. 20DB Occupy Bandwidth Test145.1. Standard Applicable145.2. Test Procedure145.4. Test Data146. Transmission Time166.1. Standard Applicable166.2. Test Procedure166.3. Environmental Conditions166.4. Test Data167. Duty Cycle187.1. Standard Applicable187.2. Test Procedure187.2. Test Procedure187.3. Test Procedure187.4. INTRODUCTION TO PDCF reference:187.5. Test Data198. Antenna Connected Construction23	4.3. Corrected Amplitude & Margin Calculation	11
5. 20DB Occupy Bandwidth Test 14 5.1. Standard Applicable 14 5.2. Test Procedure 14 5.4. Test Data 14 5.4. Test Data 14 6. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	4.4. Environmental Conditions	11
5.1. Standard Applicable145.2. Test Procedure145.4. Test Data146. Transmission Time166.1. Standard Applicable166.2. Test Procedure166.3. Environmental Conditions166.4. Test Data167. Duty Cycle187.1. Standard Applicable187.2. Test Procedure187.4. INTRODUCTION TO PDCF reference:187.5. Test Data198. Antenna Connected Construction23	4.5. Test Data	11
5.2. Test Procedure145.4. Test Data146. Transmission Time166.1. Standard Applicable166.2. Test Procedure166.3. Environmental Conditions166.4. Test Data167. Duty Cycle187.1. Standard Applicable187.2. Test Procedure187.4. INTRODUCTION TO PDCF reference:187.5. Test Data198. Antenna Connected Construction23	5. 20DB Occupy Bandwidth Test	14
5.4. Test Data146. Transmission Time166.1. Standard Applicable166.2. Test Procedure166.3. Environmental Conditions166.4. Test Data167. Duty Cycle187.1. Standard Applicable187.2. Test Procedure187.4. INTRODUCTION TO PDCF reference:187.5. Test Data198. Antenna Connected Construction23	5.1. Standard Applicable	14
6. Transmission Time 16 6.1. Standard Applicable 16 6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	5.2. Test Procedure	14
6.1. Standard Applicable166.2. Test Procedure166.3. Environmental Conditions166.4. Test Data167. Duty Cycle187.1. Standard Applicable187.2. Test Procedure187.4. INTRODUCTION TO PDCF reference:187.5. Test Data198. Antenna Connected Construction23	5.4. Test Data	14
6.2. Test Procedure 16 6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23		
6.3. Environmental Conditions 16 6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	6.1. Standard Applicable	16
6.4. Test Data 16 7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23		
7. Duty Cycle 18 7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	6.3. Environmental Conditions	16
7.1. Standard Applicable 18 7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	6.4. Test Data	16
7.2. Test Procedure 18 7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23	7. Duty Cycle	18
7.4. INTRODUCTION TO PDCF reference: 18 7.5. Test Data 19 8. Antenna Connected Construction 23		
7.5. Test Data		
8. Antenna Connected Construction23		
9 PHOTOGRAPH OF TEST 24		
	9. PHOTOGRAPH OF TEST	
10. PHOTOS OF THE EUT25	10. PHOTOS OF THE EUT	25

1. TEST SUMMARY

1.1 TEST FACILITY

Standard Section	Test Item	Result			
15.203	Antenna Requirement	PASS			
15.207	Conducted Emission	N/A			
15.205/15.209/15.231(b)	Spurious Emission	PASS			
15.231(c)	20dB Occupied Bandwidth	PASS			
15.231(a) (1)	Deactivation Testing	PASS			
Remark: "N/A" is an abbreviation for Not Applicable.					

1.2 TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

1.3 MEASUREMENT UNCERTAINTY

Measurement uncertainty							
Parameter	Uncertainty						
Occupied Bandwidth	Conducted	±1.5%					
Conducted Spurious Emission	Conducted	±2.17dB					
Transmission Time	Conducted	±5%					
Conducted Emissions	Conducted	±2.88dB					
Transmitter Spurious Emissions	Radiated	±5.1dB					

2. General Information

2.1. Description of Device (EUT)

Product Name	:	Wireless Bluetooth Cabinet				
Model No.	:	20190416HLJJ-MP3-V10				
Serial No	•	N/A				
Model Difference	••	N/A				
Trade Mark	•••	N/A				
Test Power Supply	:	DC 4.5V from battery				
	•	Operation Frequency:	433.92MHz			
		Number of Channel:	1 Channels			
Product Description		Modulation Type:	ASK			
Description		Antenna Type:	Internal Antenna			
		Antenna Gain(Peak):	0 dBi			
Remark: 1)For a mo	Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications					
or the User's Manual.						

2.2. DESCRIPTION OF TEST SETUP

Operation of EUT during Radiation and Above1GHz Radiation testing:

Note:New battery is used during all test

2.3. List of channels

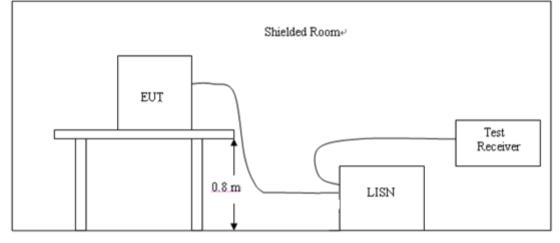
Channel	Freq.	Note
	(MHz)	(Modulation Type)
01	433.92	ASK

2.5. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 27, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 27, 2018	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 27, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 27, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 27, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 27, 2018	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 27, 2018	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 27, 2018	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 27, 2018	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 27, 2018	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 27, 2018	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 27, 2018	3 Year

3. Conducted Emission Test

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Fraguanau	Maximum RF Line Voltage (dBµV)				
Frequency (MHz)	CLAS	SS A	CLASS B		
(11112)	Q.P.	Ave.	Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Data

Not applicable for device which is battery supply.

4. Radiated Emissions

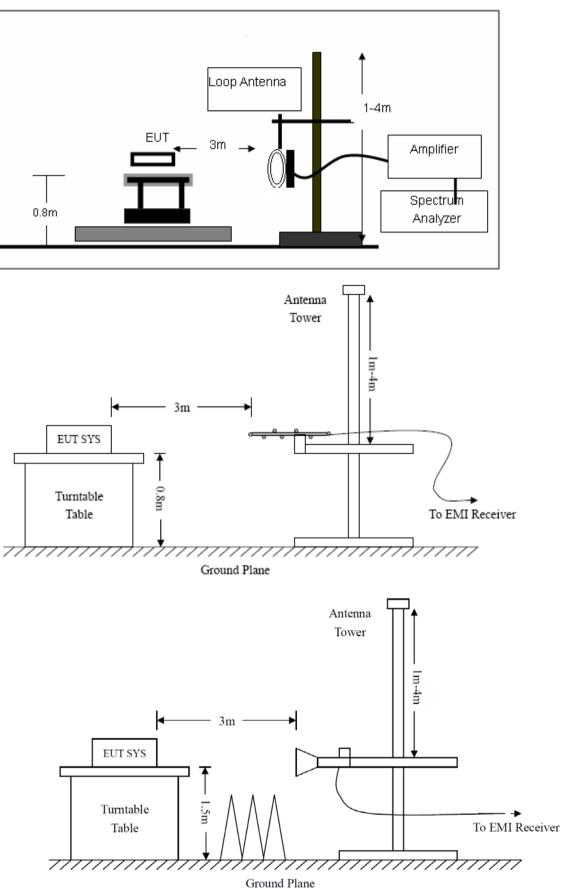
4.1. Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
2 250	225
2	125
1,250 to 3,750 **	125 to 375 **
3,750	375
3,750 to 12,500 **	375 to 1,250 **
12,500	1,250
	Fundamental (microvolts/meter) 2,250 1,250 1,250 to 3,750 ** 3,750 3,750 to 12,500 **

** linear interpolations

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

4.2. Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.231(b) and FCC Part 15.209 Limit.

4.3. Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading +Ant.Loss +Cab. Loss - Ampl.Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -6dB follows:

Margin = Corr. Ampl. - FCC Part15C Limit

4.4. Environmental Conditions

Temperature:	21 ℃
Relative Humidity:	50%
ATM Pressure:	1011 mbar

4.5. Test Data

According to the data below, the FCC Part 15.205, 15.209 and 15.231 standards, and had the worst margin of:

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Horizontal

No.	Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	dB	(°)	(cm)	
1	433.9115	67.53	12.33	N/A	79.86	100.8	-20.94	163	100	peak
	433.0000	/	/	-8.35	71.51	80.8	-9.29	92	200	Ave
2	866.0037	24.69	15.82	N/A	40.51	60.8	-20.29	95	100	QP

Vertical

No.	Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	dB	(°)	(cm)	
1	433.9102	68.98	12.23	N/A	81.21	100.8	-19.59	126	100	peak
	433.0000	/	/	-8.35	72.86	80.8	-7.94	236	100	Ave
2	866.0154	25.31	16.26	N/A	41.57	60.8	-19.23	24	200	QP

Above 1GHz Horizontal

No.	Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	dB	(°)	(cm)	
1	1302.2	22.63	25.83	N/A	48.46	74	-25.54	25	100	Peak
	1302.2	/	/	-8.35	40.11	54	-13.89	59	100	Ave
2	1736.3	23.69	27.25	N/A	50.94	74	-23.06	236	100	Peak
	1736.3	/	/	-8.35	42.59	54	-11.41	193	100	Ave

Vertical

No.	Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	dB	(°)	(cm)	
1	1302.2	26.68	25.83	N/A	52.51	74	-21.49	293	100	Peak
	1302.2	/	/	-8.35	44.16	54	-9.84	62	100	Ave
2	1736.3	27.98	27.25	N/A	55.23	74	-18.77	294	100	Peak
	1736.3	/	/	-8.35	46.88	54	-7.12	92	100	Ave

Note: Testing is carried out with frequency rang 30MHz to the tenth harmonics, which above 5th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The fundamental frequency is 433MHz, so the fundamental and spurious emissions radiated limit base on the the operating frequency 433MHz.

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m		Limit@3m (dBµV/m)		

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

5. 20DB Occupy Bandwidth Test

5.1. Standard Applicable

According to FCC Part 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

Temperature:	21°C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

5.4. Test Data

Freq. (MHz)	Modulation Type	20dB Bandwidth (kHz)	Limit (kHz)	Results
433.92	ASK	9.545	<1082.5	PASS

R RF 50 Ω AC ef Value 10.00 dBm		SENSE:INT Center Freg: 433.92000	ALIGN AUTO	02:01:01 PMDec 12, 20 Radio Std: None
	#IEGain:Low	Talas Face Prince	Avg Hold>10/10	Radio Device: BTS
	HI Gam.cow			
dB/div Ref 10.00 dBm				
ba and a second se				
).0		\wedge		
0.0		and the second		
1.0 March March Mr.	mannam	www.	wmbwhener Mmmmh	. ma 1
D.O Manager and the stress of the state	ν για α		" " " " " " " " " " " " " " " " " " "	and when when the first
.0				
.0				
).0				
				0
enter 433.9 MHz Res BW 1 kHz		#VBW 3 kHz		Span 100 kl Sweep 123.4 r
Occupied Bandwidth	1	Total Power	0.30 dBm	
	5.036 kHz			
Transmit Freq Error	-2.876 kHz	OBW Power	99.00 %	
x dB Bandwidth	9.545 kHz	x dB	-20.00 dB	

6. Transmission Time

6.1. Standard Applicable

According to FCC Part 15.231(a)(1), the transmitter shall be complied the following requirements:

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.2. Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.3. Environmental Conditions

Temperature:	20°C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

6.4. Test Data

Transmission Type	Test Frequency	Transmission Time	Limit	Result
	MHz	seconds	S	Result
Manually	433.92	2.340	5	PASS

Please refer the following plot.

R RF 50Ω AC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	12:22:06 PM Dec 12, 20 TRACE 1 2 3 4 5
	PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB	· · · ·	DET N N N N
) dB/div Ref 10.00 dBm			∆Mkr1 2.340 -0.04 d
		1Δ2	
0.0			
D.0			
			en a lunater de la secona
0.0			
0.0			
enter 433.920000 MHz			Span 0 H
es BW 1.0 MHz	#VBW 1.0 MHz	Swe	ep 5.001 s (1001 pt
R MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH F	UNCTION VALUE
1 Δ2 1 t (Δ) 2.34 2 F 1 t 1.17	0 s (Δ) -0.04 dB 0 s 5.22 dBm		
7			

7. Duty Cycle

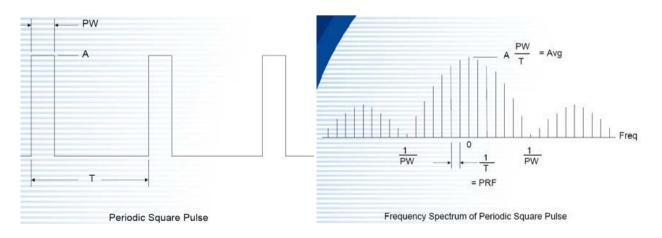
7.1. Standard Applicable

According to FCC Part 15.231(b)(2) and 15.35 (c), For pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

7.2. Test Procedure

1) The EUT was placed on a turntable which is 0.8m above ground plane.

2) Set EUT operating in continuous transmitting mode


3) Set Test Receiver into spectrum analyzer mode, Tune the spectrum analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth(RBW) to 1000kHz and video bandwidth(VBW) to 1000kHz, Span was set to 0Hz.

4) The Duty Cycle was measured and recorded.

7.4. INTRODUCTION TO PDCF reference:

(§15.35 Measurement detector functions and bandwidths.)

1) Part 15 of the FCC Rules provides for the operation of low power communication devices without an individual license (e.g., intrusion detectors, pulsed water tank level gauges, etc.), subject to certain requirements. Some of these devices use extremely narrow pulses to generate wideband emissions, which are measured to determine compliance with the rules. These measurements are typically performed with a receiver or spectrum analyzer. Depending on a number of factors (e.g., resolution bandwidth, pulsewidth, etc.), the spectrum analyzer may not always display the true peak value of the measured emission. This effect, called "pulse desensitization," relates to the capabilities of the measuring instrument. For the measurement and reporting of the true peak of pulsed emissions, it may be necessary to apply a "pulse desensitization correction factor" (PDCF) to the measured value, pursuant to 47 CFR 15.35(a).

If using spectrum analyzer to measure pulse signal , it have to make sure the RBW use is at least 2/PW. •When RBW is less than 2/PW, you are able to measure the true peak level of the pulse signal. If this is the case ,

PDCF is required to compensate to determine true peak value. Pulse desensitization: PW =29250usec (0.6* 13+ 1.65*13), Period=67500usec, Level=A RBW>2/PW=0.068K, 1/T=0.15K NOTE: 2 / PW < RBW, first don't need

2). For the actual test, please refer to the ANSI C63.10, Annex C refer to section 5 for more detail

7.5. Test Data

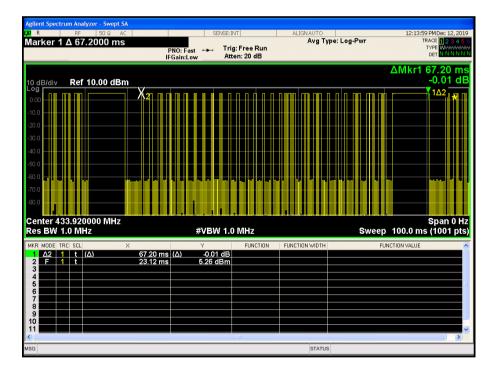
In a 100ms observation period found 4.96ms burst 4 pcs, 0.5ms burst 17 pcs, the Duty Cycle can calculate as below:

Type of Pulse	Width of Pulse	Quantity of Pulse	Transmission Time	Total Time(T _{on})
	ms		ms	ms
Pulse 1 (Wide)	8.50	1	8.50	
Pulse 2 (Middle)	0.54	28	15.12	27.22
Pulse 3 (Narrow)	0.18	20	3.60	

Test Period (T _p)	Total Time (T _{on})	Duty Cycle	Duty Cycle Factor
ms	ms	%	dB
71.20	27.22	38.23	-8.35

Remark: Duty Cycle Factor=20*log (Duty Cycle)

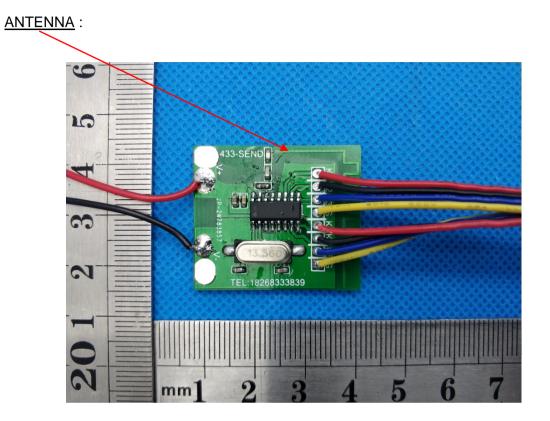
Please refer to the attached test plots



R RF 50 Ω		SENSE:I	NT	ALIGNAUTO		14:24 PM Dec 12, 20
arker 1 ∆ 8.50000 m			g: Free Run :en: 20 dB	Avg Type: L	.og-Pwr	TRACE 1234 TYPE WAAAAA DET NNNN
dB/div Ref 10.00 dl	3m				ΔMk	r1 8.500 m -0.05 d
enter 433.920000 MH es BW 1.0 MHz	2	#VBW 1.0) MHz		Sweep 100.0	Span 0 H ms (1001 pt
GADE TRC SCL Δ2 1 t (Δ) 3 1 t - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - -	× 8.500 ms (Δ) 10.72 ms	^Y −0.05 dB 5.30 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VAL	UE

Agilent Spectrum Analyzer - Swept SA OV R RF 50 Ω AC Marker 1 Δ 540.000 μs	PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB	ALIGNAUTO Avg Type: Log-Pwr	12:15:20 PMDec 12, 2019 TRACE 2 3 4 5 6 TYPE WWWWWWW DET NNNNN N
10 dB/div Ref 10.00 dBm			ΔMkr1 540.0 μs -0.01 dB
Log 0.00 10.0 20.0 20.0 4			
Center 433.920000 MHz Res BW 1.0 MHz	#VBW 1.0 MHz	Sweep	Span 0 Hz 30.00 ms (1001 pts)
MKR MODE TRC Scl. X 1 A2 1 t (Δ) 540.0 j 2 F 1 t (Δ) 540.0 j 3 - - - - 4 - - - - 5 - - - - 6 - - - - 9 - - - - 10 - - - - - 11 - - - - -	Y FUNCTION (Δ) -0.01 dB (s) 5.26 dBm	FUNCTION WIDTH FUN	CTION VALUE
MSG		STATUS	

lent Spectrum Analyzer - Swept SA R RF 50 Ω AC arker 1 Δ 180.000 μs		g: Free Run en: 20 dB	ALIGNAUTO Avg Type:	: Log-Pwr	12:17:22 PM Dec 12, 2019 TRACE 12 3 4 5 TYPE WWWWW DET N N N N N
dB/div Ref 10.00 dBm					∆Mkr1 180.0 µs 0.00 dE
enter 433.920000 MHz es BW 1.0 MHz	#VBW 1.0	MHz		Sweep 2	Span 0 H: 0.00 ms (1001 pts?
R MODE TRC SCL X Δ2 1 t (Δ) 180 F 1 t 6.30	0 μs (Δ) 0.00 dB 5 ms 5.25 dBm	FUNCTION	FUNCTION WIDTH	FUNCT	ION VALUE



R RF 50 Ω A larker 1 Δ 71.2000 ms		PNO: Fast • -Gain:Low		nt g:FreeRun en:20dB	ALIGN AUTO Avg T	vpe: Log-Pwr	12:08:35 PMDec 12, 2019 TRACE 12 3 4 5 0 TYPE WWWWWW DET NNNNN
0 dB/div Ref 10.00 dBr	m						ΔMkr1 71.20 ms -0.01 dE
0.00 0.00							
Center 433.920000 MHz Res BW 1.0 MHz		#\	/BW 1.0) MHz		Sweep	Span 0 H 100.0 ms (1001 pts
MRR MODE TRC: SCL 1 Δ2 1 t (Δ) 3 - - - - 3 - - - - 5 - - - - 6 - - - - 8 - - - - 9 - - - - 10 - - - -	× 71.20 ms 10.72 ms	(<u>Δ)</u> 5.	0.01 dB 30 dBm	FUNCTION	FUNCTION WIDTH	FUN	ACTION VALUE

8. Antenna Connected Construction

The RF antenna is a Internal Antenna which permanently attached, and the best case gain of the Antenna is 0dBi. It complies with the standard requirement.

9. PHOTOGRAPH OF TEST

10. PHOTOS OF THE EUT

Reference to the reporter: External photos and Internal photos

*****End of Report*****