

TEST REPORT

Product Name	:	EZ-BCam
Model Number	:	EZ-BCam V1
FCC ID	:	2AVDC-XOC01B2433

Prepared for Address	:	SYBER SENSE IOT COMPANY LIMITED FLAT/RM 10 BLK A 16/F HI TECH INDUSTRIAL CENTRE 5-21 PAK TIN PAR STREET TSUEN WAN HongKong China
Prepared by Address	::	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Tel: (0755) 26954280 Fax: (0755) 26954282
Report Number Date(s) of Tests	:	ENS2304240153W00102R May 6, 2023 to May 13, 2023

Date of issue : May 22, 2023

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

TEST RESULT CERTIFICATION

Applicant	:	SYBER SENSE IOT COMPANY LIMITED
Address	:	FLAT/RM 10 BLK A 16/F HI TECH INDUSTRIAL CENTRE 5-21 PAK TIN PAR STREET TSUEN WAN HongKong China
Manufacturer	:	SYBER SENSE IOT COMPANY LIMITED
Address	:	FLAT/RM 10 BLK A 16/F HI TECH INDUSTRIAL CENTRE 5-21 PAK TIN PAR STREET TSUEN WAN HongKong China
EUT	:	EZ-BCam
Model Name	:	EZ-BCam V1
Trademark	:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD	TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS		

The above equipment was tested by SHENZHEN EMTEK CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.231 REQUIREMENTS.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :

May 6, 2023 to May 13, 2023

Prepared by :

Una Yu / /Editor

ENZHE

S

*

Reviewer :

Approve & Authorized Signer :

Lisa Wang/Manager

Joe Xia/Supervisor

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Table of Contents

1 EUT TECHNICAL DESCRIPTION	4
2 SUMMARY OF TEST RESULT	5
3 TEST METHODOLOGY	6
3.1 GENERAL DESCRIPTION OF APPLIED STANDARDS	6
3.3 DESCRIPTION OF TEST MODES	7
4 FACILITIES AND ACCREDITATIONS	
4.1 FACILITIES	
4.2 LABORATORY ACCREDITATIONS AND LISTINGS	8
5 TEST SYSTEM UNCERTAINTY	9
6 SETUP OF EQUIPMENT UNDER TEST	
6.1 RADIO FREQUENCY TEST SETUP 1	10
6.2 RADIO FREQUENCY TEST SETUP 2	10
6.3 CONDUCTED EMISSION TEST SETUP	12
6.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.5 SUPPORT EQUIPMENT	
7 TEST REQUIREMENTS	14
7.1 RADIATED SPURIOUS EMISSION	14

1 EUT TECHNICAL DESCRIPTION

Characteristics	Description		
Product:	EZ-BCam		
Model Number:	EZ-BCam V1		
Sample Number:	2#		
Modulation:	ASK modulation		
Operating Frequency Range(s):	433.97MHz		
Number of Channels:	1 channel		
Max Transmit Power:	88.31 dBuV/m		
Antenna Type :	Internal antenna		
Power Supply :	DC 3.7V from internal battery DC 5V from USB port		
Data of received:	May 6, 2023		

Note: for more details, please refer to the User's manual of the EUT.

2 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark	
15.231(b)	Radiated Spurious Emissions			
NOTE1: N/A (Not Applicable)				

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AVDC-XOC01B2433 filing to comply with Section 15.231 of the FCC Part 15, Subpart C Rules

3 TEST METHODOLOGY

3.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C

3.2 MEASUREMENT EQUIPMENT USED

3.2.1 Radiated Emission Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.	Cal. Interval
TYPE		NUMBER	NUMBER		
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	May 14, 2022	1 Year
Pre-Amplifie	Lunar EM	LNA30M3G-2 5	J10100000070	May 14, 2022	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	661	Aug. 22, 2021	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1177	Jun. 12, 2021	2 Year
Pre-Amplifie	SKET	LNPA_0118G- 45	SK2019051801	May 14, 2022	1 Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	Jun. 12, 2021	2 Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	May 14, 2022	1 Year

3.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting mode is programmed.

Frequency and Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	433.97				

Test Frequency and Channel list:

Lowest Frequency		Middle F	requency	Highest Frequency		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	0	433.97				

4 FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description EMC Lab.	 Accredited by CNAS The Certificate Registration Number is L2291. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017)
	Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943 Accredited by A2LA The Certificate Number is 4321.01. Accredited by Industry Canada
	The Conformity Assessment Body Identifier is CN0008
Name of Firm	: EMTEK (SHENZHEN) CO., LTD.
Site Location	: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

5 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

6 SETUP OF EQUIPMENT UNDER TEST

6.1 RADIO FREQUENCY TEST SETUP 1

The component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

6.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360° , and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360° , and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.)

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

6.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8 m.

According to the requirements in ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

6.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
1	1	1	/

Auxiliary Cable List and Details						
Cable Description	Shielded/Unshielded	With / Without Ferrite				
1	/	1	1			

Auxiliary Equipment List and Details						
Description	Manufacturer	Model	Serial Number			
1	1	1	1			

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2304240153W00102R

7 TEST REQUIREMENTS

7.1 RADIATED SPURIOUS EMISSION

7.1.1 Applicable Standard

According to FCC Part 15.231(b) and 15.209

7.1.2 Conformance Limit

Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following: According to FCC Part 15.231 the field strength Limited

Frequencies	Field strength of fu	undamental @3m	Effective limit	for 433.97MHz
(MHZ)	(uV/m)	dB(uV/m)	(uV/m)	dB(uV/m)
40.66-40.70	2250	67		
70-130	1250	62		
130-174	1250 to 3750*	62 to 71.5*		
174-260	3750	71.5		
260-470	3750 to 12500*	71.5 to 81.9*	10996.67	80.83
Above 470	12500	81.9		
* Linear interpola	ation			
Frequencies	Field strength of Spur	ious emissions @3m	Effective limit	for 433.97MHz
(IVIHZ)	(uV/m)	dB(uV/m)	(uV/m)	dB(uV/m)
40.66-40.70	225	47		
70-130	125	41.9		
130-174	125 to 375*	41.9 to 51.5*		
174-260	375	51.5		
260-470	375 to 1250*	51.5 to 61.9*	1099.67	60.83
Above 470	1250	61.9		

* Linear interpolation

The field intensity in micro-volts per meter can then be determined by the following equation: FI(V/m) = 10FI (dBV/m) / 20 The FCC specified emission limits were calculated according the EUT operating frequency and obtained by following linear interpolation equations:

(a) For fundamental frequency:

$$f_{EUT} : EUT Operating Frequency Emission Limit (V/m) = [fEUT(MHz) - 260(MHz)] X
$$\frac{12500(V/m) - 3750(V/m)}{470(MHz) - 260(MHz)} + 3750(V/m)$$$$

(b) For spurious frequencies:

 f_{EUT} : EUT Operating Frequency Emission Limit (V/m)

= [f_{EUT}(MHz) – 260(MHz)] X 4375(V/m) + 375(V/m) + 375(V/m)

470(MHz) – 260(MHz) Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 1 5.209(a) limit in the table below has to be followed. Note:

(1) The tighter limit applies at the band edges.

(2) Emission level (dBuV/m)=20log Emission level (uV/m).

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

FCC Part15 (15.231) , Subpart C					
	Field Strength	Field Strength of Spurious			
	Of Fundamental	Emissions			
	AV:80.83 dBuV/m at 3m	AV:60.83 dBuV/m at 3m			
422 07MH-	distance	distance			
455.97 MHZ	PK:100.83dBuV/m at 3m	PK:80.83 dBuV/m at 3m			
	distance	distance			

According to FCC Part15.205, Restricted bands

J		-	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366 156.52475-156.52525		2483.5-2500	17.7-21.4
8.37625-8.38675 156.7-156.9		2690-2900	22.01-23.12
8.41425-8.41475	8.41425-8.41475 162.0125-167.17		23.6-24.0
12.29-12.293	12.29-12.293 167.72-173.2		31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance	
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30	See the remark	
1.705~30.0	30	30	7	
30-88	100	40	3	
88-216	150	43.5	3	
216-960	200	46	3	
Above 960	500	54	3	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

7.1.3 Test Configuration

Test according to clause 6.2 radio frequency test setup 2

7.1.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for f<30MHz(150KHz to 30MHz),1MHz for f<5GHz

 $VBW \ge RBW$ Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Calculation of Average factor

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100ms or the repetition cycle period, whichever is a shorter time frame, the duty cycle is measured by placing the spectrum analyzer to set zero span at 100kHz resolution bandwidth. Averaging factor in dB=20log (duty cycle)

Repeat above procedures until all frequency measured was complete.

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7.1.5 Test Results

Duty cycle measure

Tost Model			Duty o	cycle measure			
Test Model	Chan	nel 0: 433.97	MHz		transmi	ission period	
Spectrum Analyzer 1 Swept SA	• +					Marker	▼ <mark>*</mark> *
RL +++ Align: Au	F Input Z: 50 Ω p: DC Corrections: Off ito Freq Ref: Int (S)	Atten: 10 dB	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	123456 WWWWWW PNNNNN	Select Marker Marker 1	
1 Spectrum	•			ΔMkr1	20.00 ms	Marker ∆ Time 20.0033 ms	Settings
Scale/Div 10 dB		Ref Level 0.00 di	Bm		0.07 dB	Marker Mode	Peak Search
-10.0						Normal	Pk Search Config
-20.0					_	ODelta (Δ)	Properties
-30.0						Fixed	Marker
-40.0 X2						Off	Function
-50.0						Delta Marker (Reset Delta)	Marker→
-60.0						Marker Table	Counter
-70.0						On Off	
-80.0	mender taken her av mendet i	outhe fronteener alternation for	is linear dura	L TALA AND A LINE AND A LINE AND	have all the parts and	A Marker Settings Diagram	
-90.0	aalaanaa iyo haalaa aha baha Xaala	nan dariman in a shi talih ng mi	and and an and of an	and and of their second allow		All Markers Off	
Center 433.970000 MH #Res BW 100 kHz	Z	#Video BW 300 k	(Hz	Sweep 800	Span 0 Hz ms (1001 pts)	Couple Markers On Off	
1 7 7	?						

Duty cycle=20ms/100ms=0.2

Spurious Emission below 30MHz (9KHz to30MHz)

Test mode:	TXI	/lode					
		1					
Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m((dBuV/m)	Ove	er(dB)
	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

433 97MHz

Limit line=Specific limits(dBuV) + distance extrapolation factor

Radiated spurious emission

Operation Mode:

-							1	
Freq.	Ant.Pol.	Emi	ssion Level(dB	uV/m)	Limit 3m(d	BuV/m)	Margi	n(dB)
(MHz)	H/V	PK	Factor(dB)	AV	PK	AV	PK	AV
433.97	V	88.29	-13.98	74.31	100.84	80.84	12.55	6.53
867.947	V	36.48	-13.98	22.5	80.84	60.84	44.36	38.34
1830.415	V	44.32	-13.98	30.34	74	54	29.68	23.66
2633.317	V	43.23	-13.98	29.25	74	54	30.77	24.75
5199.600	V	48.44	-13.98	34.46	74	54	25.56	19.54
433.970	Н	87.96	-13.98	73.98	100.84	80.84	12.88	6.86
867.880	Н	32.44	-13.98	18.46	80.84	60.84	48.4	42.38
1890.445	Н	44.58	-13.98	30.6	74	54	29.42	23.4
2528.264	Н	47.67	-13.98	33.69	74	54	26.33	20.31
5184.592	Н	51.54	-13.98	37.56	74	54	22.46	16.44

Note:

(1) All Readings are Peak Value.

(2) Correct Factor= Antenna Factor + Cable Loss- Amplifier Gain

(3) Emission Level= Reading Level+Probe Factor +Cable Loss

(4) True Value = Emission Level + Duty Cycle Correction Factor

(5) DF= Duty Cycle Correction Factor

(6) Duty Cycle Correction Factor (dB) = 20 × Log 10 Duty Cycle

(7) Margin = limit-TrueValue

(8) 20log (Duty cycle) =20log (20ms/100ms)=-13.98dB

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

*** End of Report ***

