

FCC TEST REPORT

Test report
On Behalf of
SHENZHEN REDLEAF TECHNOLOGY CO., LTD.
For

Trail Camera
Model No.: DTC10, DTC10L, DTC20, DTC30, TC06, TC08, TC09

FCC ID: 2AVBN-DTC10

Prepared For: SHENZHEN REDLEAF TECHNOLOGY CO., LTD.

3F, Building E, Huichao Industrial Park, Gushu Road 2, Xixiang Town, Bao'an

District ShenZhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Mar. 24, 2022 ~ Apr. 07, 2022

Date of Report: Apr. 07, 2022

Report Number: HK2203241167-1E

TEST RESULT CERTIFICATION

Applicant's name	SHENZHEN REDLEAF	TECHNOLOGY CC)., LTD.
------------------	------------------	---------------	----------

Address 3F, Building E, Huichao Industrial Park, Gushu Road 2, Xixiang

Town, Bao'an District ShenZhen, China

Manufacture's Name...... SHENZHEN REDLEAF TECHNOLOGY CO., LTD.

3F, Building E, Huichao Industrial Park, Gushu Road 2, Xixiang

Town, Bao'an District ShenZhen, China

Product description

Trade Mark: Trail Camera
Product name.....: Trail Camera

Model and/or type reference :: DTC10, DTC10L, DTC20, DTC30, TC06, TC08, TC09

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date of Issue...... Apr. 07, 2022

Test Result..... Pass

Testing Engineer :

(Gary Qian)

Technical Manager

eden tv

(Eden Hu)

Authorized Signatory:

Jason Muu

(Jason Zhou)

TABLE OF CONTENTS

Report No.: HK2203241167-1E

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	
	1.3. MEASUREMENT UNCERTAINTY	
2.	EUT DESCRIPTION	
	2.1. GENERAL DESCRIPTION OF EUT	7
	2.2. CARRIER FREQUENCY OF CHANNELS	
	2.3. OPERATION OF EUT DURING TESTING	8
	2.4. DESCRIPTION OF TEST SETUP	
3.	ENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	12
	4.2. TEST RESULT	14
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4. EMISSION BANDWIDTH	
	4.5. POWER SPECTRAL DENSITY	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	31
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	41
	4.8. ANTENNA REQUIREMENT	67
5.	PHOTOGRAPH OF TEST	68
•	DUOTOC OF THE FUT	70

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Apr. 07, 2022	Jason Zhou
TING	TING	TING	G

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	ltem	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5 mg	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

AFICATION

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	Trail Camera	HUAKTESTING	HUAKTESTIN
Model Name:	DTC10	TESTING	
Series Model:	DTC10L, DTC20, DTC30, T	TC06, TC08, TC09	HUAKTESTING
Model Difference:	All model's the function, are the same, only with and model named different DTC10.	a product color,	appearance
FCC ID:	2AVBN-DTC10		
Antenna Type:	Internal Antenna	AKTESTING	AK TESTIN
Antenna Gain:	2dBi	0 m	0 110
Operation frequency:	802.11b/g/n 20:2412~2462 802.11n 40: 2422~2452MH		LAKTESTING
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH	ANTESTING (
Modulation Type:	CCK/OFDM/DBPSK/DAPSK		
Power Source:	DC12V from battery or DC	5V from USB	
Power Rating:	DC12V from battery or DC	5V from USB	Va.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

2.2. CARRIER FREQUENCY OF CHANNELS

	Channel List For 802.11b/802.11g/802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452	TSTING.		

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
STING	XTESTING CO	04	2427	07	2442	TESTINI	WTE
@ H		05	2432	08	2447	HUAK	MON.
03	2422	06	2437	09	2452		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. OPERATION OF EUT DURING TESTING

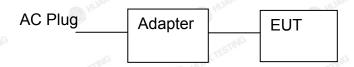
Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted and radiation below 1GHz testing:

Operation of EUT during radiation above 1GHz testing:

Adapter information Model: HW-100225C00

Input: 100-240V, 50-60Hz, 0.75A Output:5V, 2A/9V, 2A/10V, 2.25A MAX

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

3. ENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
est Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

ESTING	Mode	Dat	a rate
	802.11b	1N	Иbps
13	802.11g	61	/lbps
	802.11n(H20)	6.5	Mbps
M HU	802.11n(H40)	13.5	5Mbps Mbps
			(1)23

Final Test Mode:

Operation mode:	CTING	Keep the EUT in	continuous tra	ansmitting
Operation mode:	HUAKTES	with modulation		

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

20	Equipment	Model No	. Serial N	lo. FCC ID	Trade Name
1	1	ie I	AK TESTING	CTING I	TESTIN /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

TEST RESULTS AND MEASUREMENT DATA

CONDUCTED EMISSION

Test Specification

THE THE	TING	TING	TING	717			
Test Requirement:	FCC Part15 C Secti	on 15.207	AK TEO HUAKT	E			
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	HUAKTE	AY TESTING				
Receiver setup:	RBW=9 kHz, VBW=	30 kHz, Sweep	time=auto				
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	(MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46 0.5-5 56 46					
Test Setup:	40	t	r — AC power	ESTA			
Test Mode:	Charging + transmit	ting with modula	tion				
Test Procedure:	provides a 50ohr measuring equipr 2. The peripheral de power through a coupling impedar refer to the bloophotographs). 3. Both sides of A conducted interfeemission, the relations	stabilization networks. m/50uH couplingment. evices are also could be also to the coupling are also to the coupling are charted. C. line are charted are coupling are coupling are charted. It is positions of the coupling are charted.	work (L.I.S.N.). To impedance for to onnected to the maides a 500hm/50 termination. (Pleathe test setup a ecked for maximum to find the maximum equipment and all anged according	this the ain uH ase and um um I of			
Test Result:	PASS	0,,,,					
Want -	Allife		Alle S				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

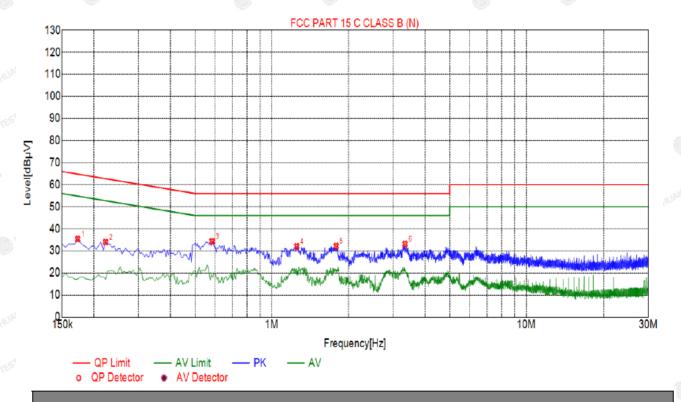
this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Instruments


Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESCI 7	HKE-010	Feb. 18, 2022	Feb. 17, 2023	
LISN	R&S	ENV216	HKE-002	Feb. 18, 2022	Feb. 17, 2023	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 18, 2022	Feb. 17, 2023	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. TEST RESULT


Test Specification: Line

Sus	Suspected List									
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре		
1	0.3345	31.72	20.04	59.34	27.62	11.68	PK	L		
2	0.6540	34.25	20.05	56.00	21.75	14.20	PK	L		
3	1.2525	33.56	20.09	56.00	22.44	13.47	PK	L		
4	1.6350	33.35	20.12	56.00	22.65	13.23	PK	L		
5	3.2775	35.03	20.24	56.00	20.97	14.79	PK	L		
6	6.9225	32.38	20.20	60.00	27.62	12.18	PK	L		

Remark: Margin = Limit — Level
Correction factor = Cable lose + LISN insertion loss
Level=Test receiver reading + correction factor

Test Specification: Neutral

	Sus	Suspected List									
-0-	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре		
	1	0.1725	35.35	20.04	64.84	29.49	15.31	PK	N		
	2	0.2220	33.97	20.04	62.74	28.77	13.93	PK	N		
8	3	0.5820	34.33	20.05	56.00	21.67	14.28	PK	N		
9	4	1.2525	32.02	20.09	56.00	23.98	11.93	PK	N		

56.00

56.00

23.85

22.89

12.01

12.87

PK

Ν

Remark: Margin = Limit - Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

32.15

33.11

20.14

20.24

1.7880

3.3360

5

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 15	5.247 (b)(3)	V TESTIN
Test Method:	KDB 558074	O HUND	MD HD PAGE
Limit:	30dBm	AKTESTING	-n/G
Test Setup:	Power meter	EUT	HUAKTES IN
Test Mode:	Transmitting mode with n	nodulation	
Test Procedure:	 The testing follows the FCC KDB 558074 D0 v05r02. The RF output of EUT meter by RF cable an compensated to the result of the resul	of 15.247 Meas Gu was connected to the ad attenuator. The presents for each mean ower setting and erously.	idance the power eath loss was asurement. nable the
Test Result:	PASS	Number of the Party of the Part	0 "

Test Instruments

ATTAL YOU	40	A CALL	ATTEN AND	ATTAC PARTY	ATTAL PARTY		
	RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
Power meter	Agilent	E4419B	HKE-085	Feb. 18, 2022	Feb. 17, 2023		
Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

TING	TING	TIME	TING
LTD.	HUAK TES!	TX 802.11b Mode	HUAKTES!
Test Frequency		Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	3.36	30
CH06	2437	0.69	30
CH11	2462	2.94	30
		TX 802.11g Mode	
CH01	2412	2.07	30
CH06	2437	0.50	30 HILIAN TEST
CH11	2462	2.79	30
. 50	TESTING	TX 802.11n20 Mode	TESTING.
CH01	2412	3.19	30
CH06	2437	1.67 HUMETES	30
CH11	2462	1.98	30
		TX 802.11n40 Mode	9
CH03	2422	2.12	30
CH06	2437	1.95	30 MARTES
CH09	2452	2.39	30

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AND AND STREET OF HULL

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement:	nent: FCC Part15 C Section 15.247 (a)(2)					
Test Method:	KDB 558074	● HUA	HUAR			
Limit:	>500kHz	W.TESTING				
Test Setup:	Spectrum Analyzer	EUT	MI HUAK TES THE			
Test Mode:	Transmitting mode with I	modulation				
Test Procedure:	15.247 Meas Guidan 2. Set to the maximum p EUT transmit continu 3. Make the measureme resolution bandwidth Video bandwidth (VB an accurate measure	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 				
Test Result:	PASS	Harry	(1) HO			

Test Instruments

ATTAL HO.	AD.	a HO.	ALL HO.	ATTLE HID.	ALL HO.		
RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

Test data

Toot shannel	6dB Emission Bandwidth (MHz)					
Test channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)		
Lowest	10.08	16.56	17.80	36.48		
Middle	10.04	16.56	17.76	36.32		
Highest	10.04	16.56	17.80	36.48		
Limit:	S HUAKTES		>500k	a G		
Test Result:	, ak	TESTING HUAK TESTI	PASS	TIME WAX TESTING		

Test plots as follows:

802.11b Modulation

Lowest channel

Middle channel

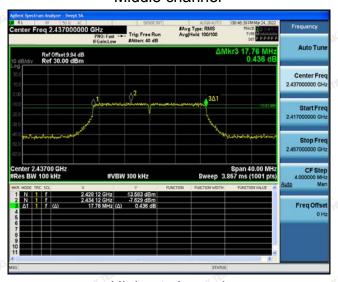
Highest channel

802.11g Modulation

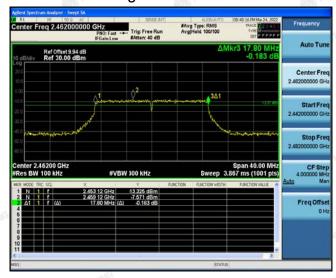
Lowest channel

Middle channel


Highest channel

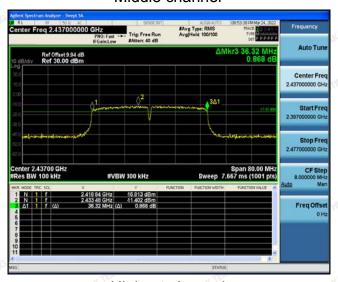


802.11n (HT20) Modulation


Lowest channel

Middle channel

Highest channel



802.11n (HT40) Modulation

Lowest channel

Middle channel

Highest channel

4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)						
Test Method:	KDB 558074						
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.						
Test Setup:	Spectrum Analyzer EUI						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 						
Test Result:	PASS (MATTER MATTER MAT						

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Test Instruments

	RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

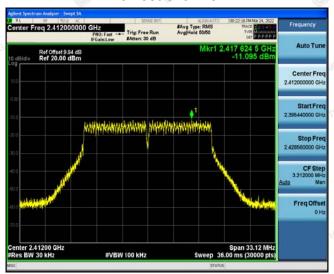
3kHz)				
V TESTIN				
HUM				
KTESTING				
-16				
HUAKTESTII				
3				
NK TESTIN				
D Ho.				
PASS				

Test plots as follows:

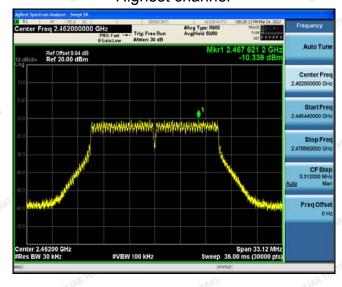
802.11b Modulation

Lowest channel

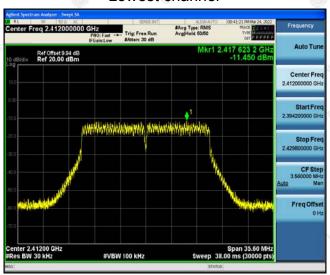
Middle channel

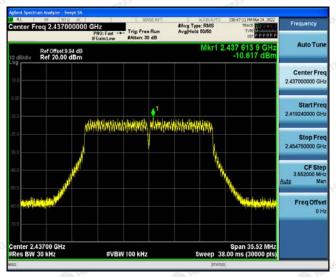

Highest channel

802.11g Modulation

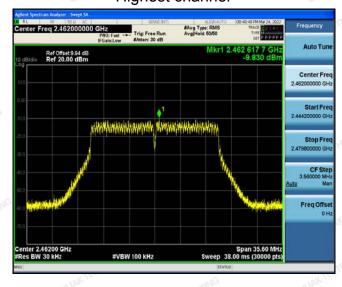

Lowest channel

Middle channel


Highest channel

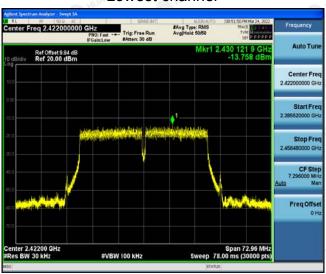


802.11n (HT20) Modulation

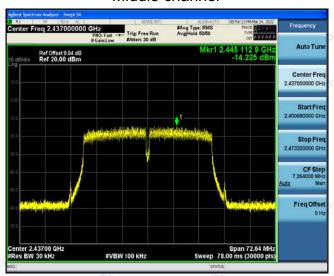

Lowest channel

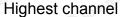
Middle channel

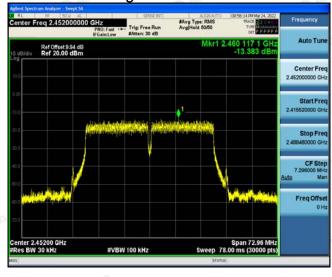
Highest channel



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


802.11n (HT40) Modulation


Lowest channel

Middle channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

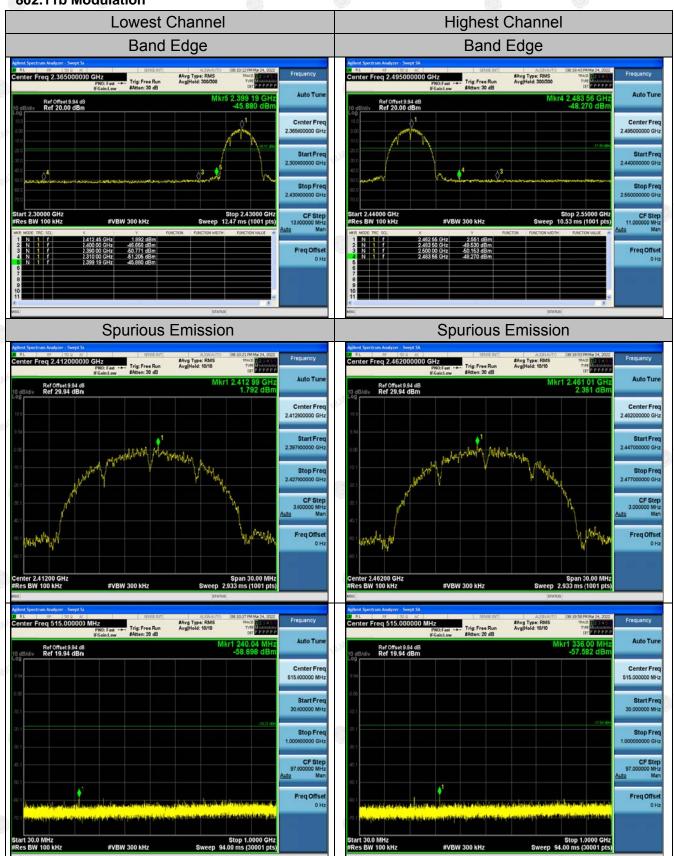
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

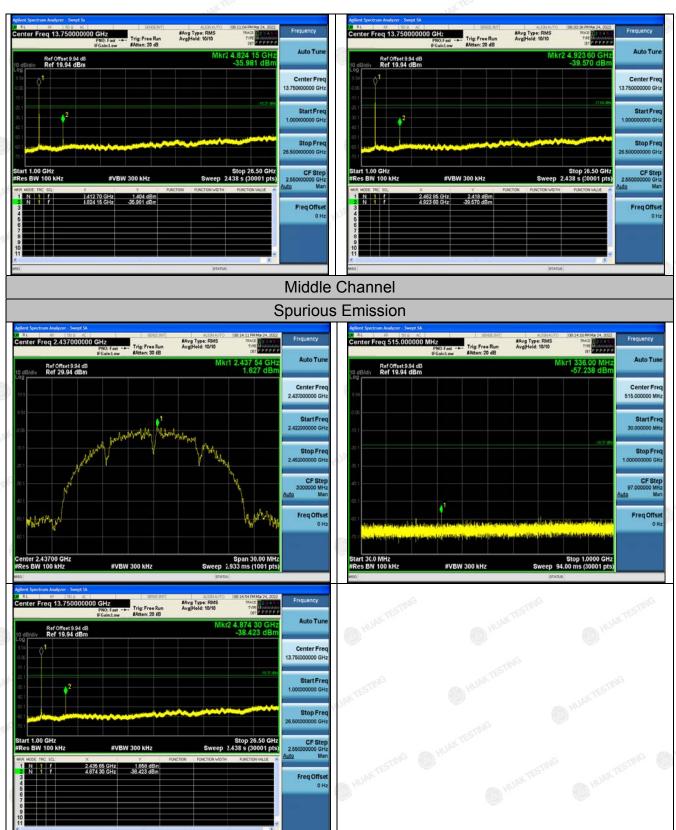
4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

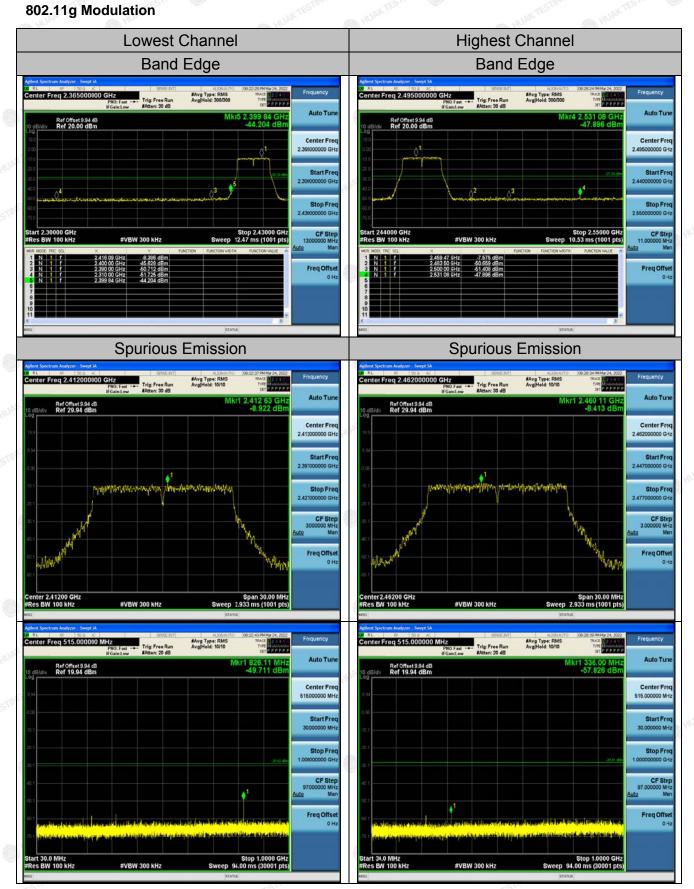
Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded 				
	against the limit line in the operating frequency band. PASS				

Test Instruments

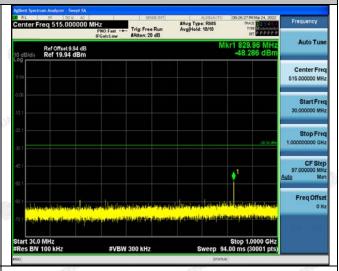

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023	
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 18, 2022	Feb. 17, 2023	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 18, 2022	Feb. 17, 2023	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Test Data

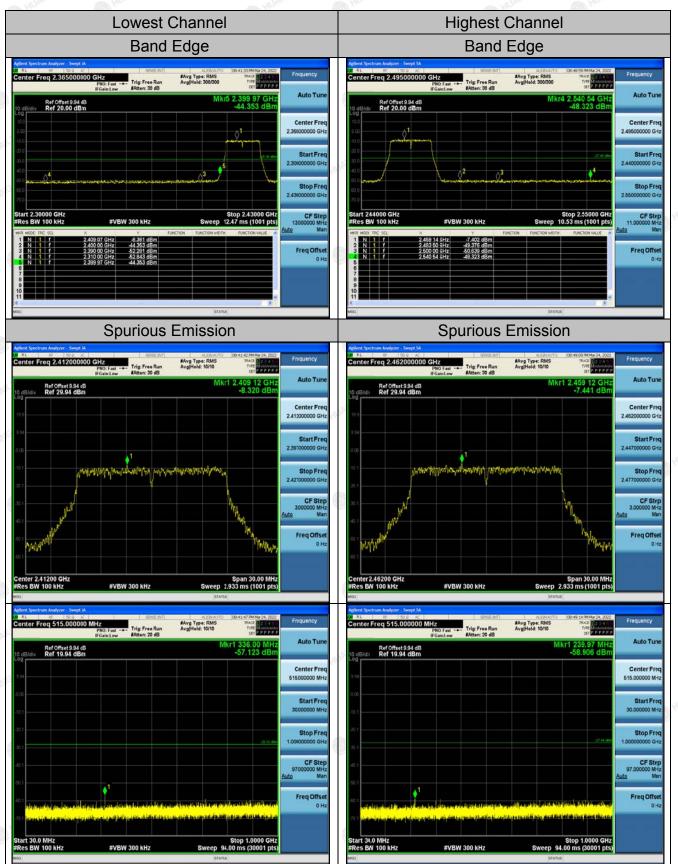
802.11b Modulation

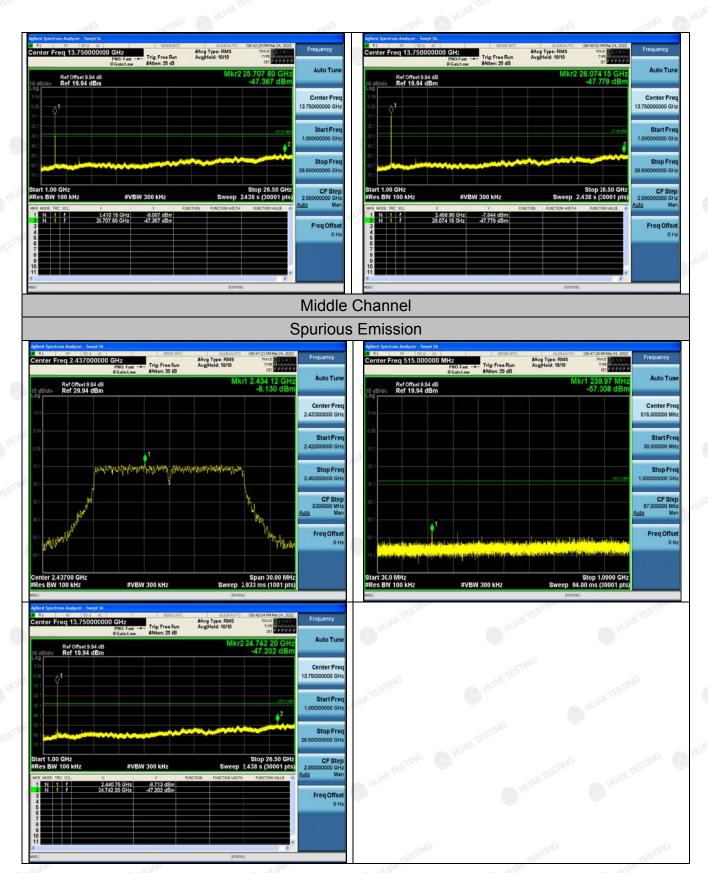
and the thing



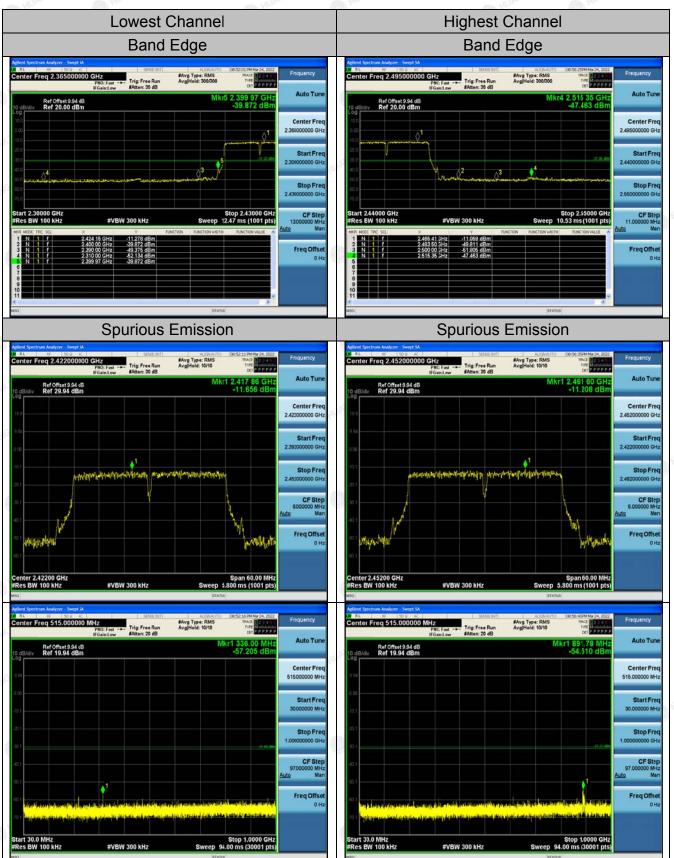
Middle Channel

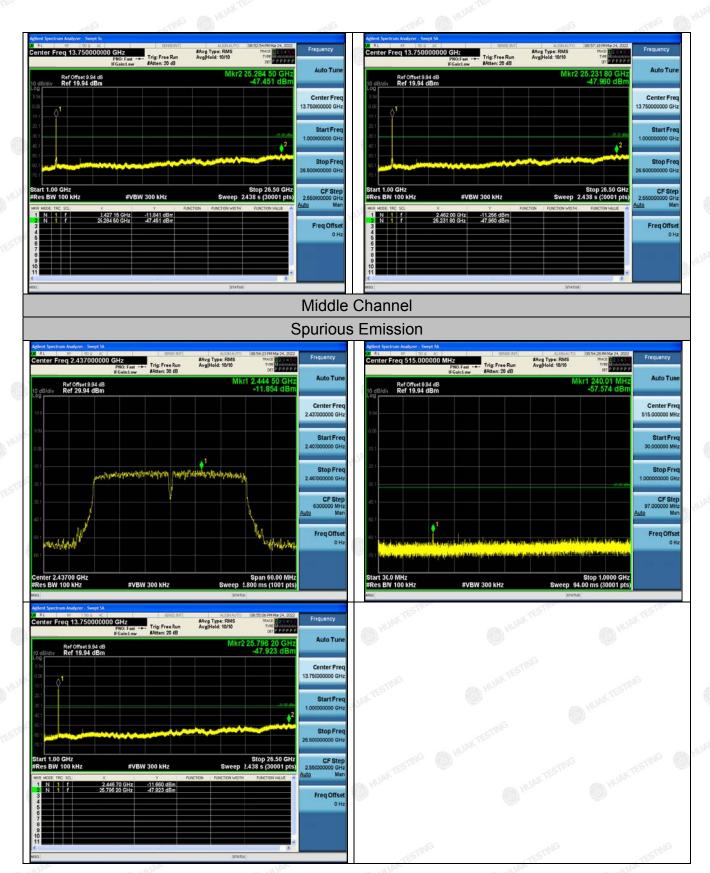
Spurious Emission



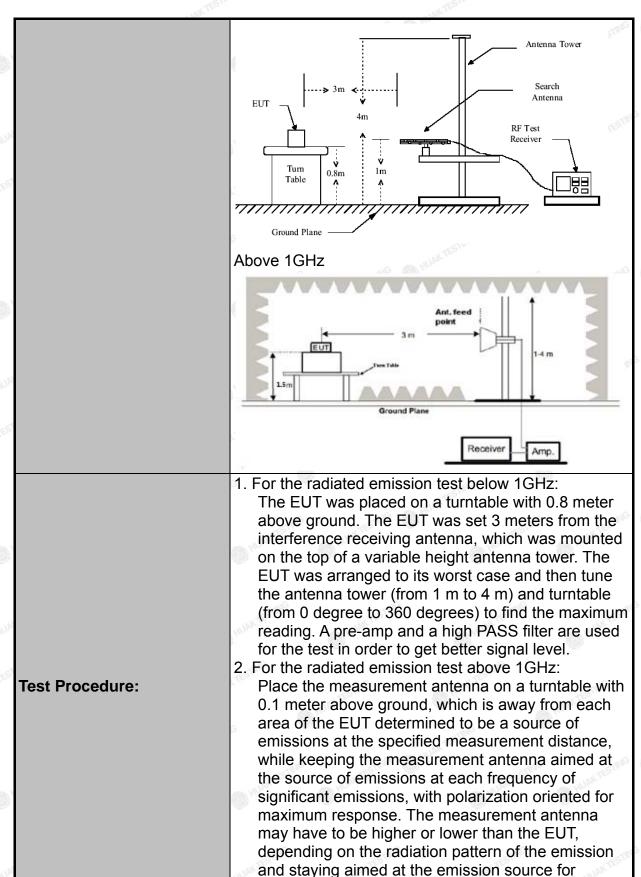

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


802.11n (HT20) Modulation



802.11n (HT40) Modulation


4.7. RADIATED SPURIOUS EMISSION MEASUREMENT

Test Specification

						-	
Test Requirement:	FCC Part15	C Sectio	n 15.209	TEST	NG.	TESTIN	
Test Method:	ANSI C63.10): 2013		HUAR		HUAR	
Frequency Range:	9 kHz to 25 (GHz		TING			
Measurement Distance:	3 m	TESTING		WAKTES		TESTING	
Antenna Polarization:	Horizontal &	Vertical				HOUR	
Operation mode:	Transmitting	mode w	th modula	ition			
	Frequency	Detector	RBW	VBW	STING	Remark	
	9kHz- 150kHz	Quasi-pea		1kHz		si-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz		si-peak Value	
	30MHz-1GHz	Quasi-pea	ak 120KHz	300KHz	Quas	si-peak Value	
	Above 1GHz	Peak	1MHz	3MHz		eak Value	
	Above IGHZ	Peak	1MHz	10Hz	Ave	erage Value	
	Frequen	су		Field Strength (microvolts/meter)		Measurement Distance (meters)	
	0.009-0.4	90	2400/F	(KHz)		300	
	0.490-1.7		24000/		30		
	1.705-3	0	30	-100		30	
	30-88	10			3		
Limit:	88-216 216-96	15 20		TING	3		
L	Above 9	50		3			
	7,5500 500						
	Frequency		Field Strength (microvolts/meter)		ement nce rs)	Detector	
	Above 4CH	MAKTES	500		- /	Average	
	Above 1GHz	(III)	5000	3		Peak	
Test setup:	For radiated	Gr	- 3 m	RX Ant		AND STATE	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

receiving the maximum signal.

MAKTE	" LANTEL
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak;Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. 6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

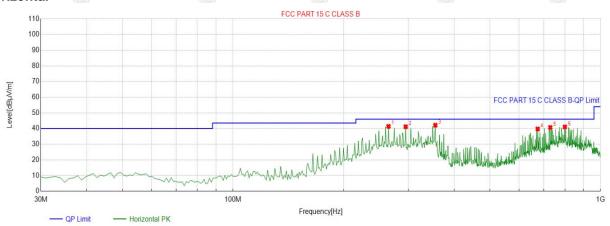
Test Instruments

	Rad	iated Emission	Test Site (966	5)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESCI-7	HKE-010	Feb. 18, 2022	Feb. 17, 2023	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023	
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	Feb. 17, 2023	
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 18, 2022	Feb. 17, 2023	
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 18, 2022	Feb. 17, 2023	
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	Feb. 17, 2023	
Preamplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	Feb. 17, 2023	
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	Feb. 17, 2023	
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 18, 2022	Feb. 17, 2023	
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 18, 2022	Feb. 17, 2023	
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 18, 2022	Feb. 17, 2023	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A	
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 18, 2022	Feb. 17, 2023	
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A	
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 18, 2022	Feb. 17, 2023	
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023	
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 18, 2022	Feb. 17, 2023	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

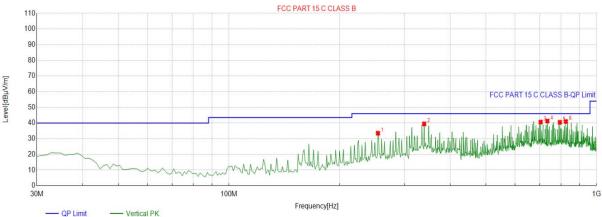


Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal



QP Detector

Suspected List										
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dalavitu	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	264.9750	-13.59	54.96	41.37	46.00	4.63	100	323	Horizontal	
2	295.0751	-12.79	53.95	41.16	46.00	4.84	100	288	Horizontal	
3	355.2753	-11.51	53.63	42.12	46.00	3.88	100	288	Horizontal	
4	674.7247	-4.71	44.46	39.75	46.00	6.25	100	114	Horizontal	
5	730.0701	-4.54	45.24	40.70	46.00	5.30	100	80	Horizontal	
6	799.9800	-3.12	44.17	41.05	46.00	4.95	100	233	Horizontal	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Suspected List										
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevit.	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[cm] [°] Polar	Polarity	
1	254.2943	-13.45	46.99	33.54	46.00	12.46	100	211	Vertical	
2	339.7397	-11.64	51.10	39.46	46.00	6.54	100	3	Vertical	
3	704.8248	-4.97	45.61	40.64	46.00	5.36	100	307	Vertical	
4	734.9249	-4.34	45.67	41.33	46.00	4.67	100	263	Vertical	
5	795.1251	-3.19	43.69	40.50	46.00	5.50	100	219	Vertical	
6	825.2252	-2.56	43.55	40.99	46.00	5.01	100	1	Vertical	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (M	1Hz) Lev	el@3m (dBµV/m)	Limit@	3m (dBµV/m)
(i)	(D)		(i)	🔘
TOG	TING		TING	
TING	AK TES	TING	- WAKTES	ONNG
- MAKTES-	(iii)	- UVAKTES	(i)	MAKTES

Note:1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. Theemission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.36	-3.64	53.72	74	-20.28	peak
4824	45.7	-3.64	42.06	54	-11.94	AVG
7236	48.35	-0.95	47.4	74	-26.6	peak
7236	41.45	-0.95	40.5	54	-13.5	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.12	-3.64	56.48	74	-17.52	peak
4824	38.7	-3.64	35.06	54	-18.94	AVG
7236	51.91	-0.95	50.96	74	-23.04	peak
7236	35.06	-0.95	34.11	54	-19.89	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.51	-3.51	56	74	-18	peak
4874	40.83	-3.51	37.32	54	-16.68	AVG
7311	56.38	-0.82	55.56	74	-18.44	peak
7311	40.39	-0.82	39.57	54	-14.43	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	μV) (dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.02	-3.51	54.51	74	-19.49	peak
4874	41.34	-3.51	37.83	54	-16.17	AVG
7311	52.66	-0.82	51.84	74	-22.16	peak
7311	38.33	-0.82	37.51	54	-16.49	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.79	-3.43	50.36	74	-23.64	peak
4924	40.61	-3.43	37.18	54	-16.82	AVG
7386	51.15	-0.75	50.4	74 HUP	-23.6	peak
7386	35.47	-0.75	34.72	54	-19.28	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.31	-3.43	53.88	74	-20.12	peak
4924	49.42	-3.43	45.99	54	-8.01	AVG
7386	53.57	-0.75	52.82	74	-21.18	peak
7386	40.11	-0.75	39.36	54	-14.64	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	s Margin _D	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	52.49	-3.64	48.85	74	-25.15	peak
4824	38.09	-3.64	34.45	54 ^M	-19.55	AVG
7236	48.98	-0.95	48.03	74	-25.97	peak
7236	37.03	-0.95	36.08	54	-17.92	AVG
Remark: Factor	r = Antenna Factor +	Cable Loss	– Pre-amplifier.	IG MILL	TING	ESTIN

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	51.19	-3.64	47.55	74	-26.45	peak
4824	39.11	-3.64	35.47	54	-18.53	AVG
7236	48.32	-0.95	47.37	74	-26.63	peak
7236	33.99	-0.95	33.04	54	-20.96	AVG
TESTING .	With the same		ESTING WIEST	(000)	TESTING	WIEST

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	58.20	-3.51	54.69	74	-19.31	peak
4874	41.71	-3.51	38.2	54	-15.8	AVG
7311	50.47	-0.82	49.65	74	-24.35	peak
7311	38.42	-0.82	37.6	54	-16.4	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	61.29	-3.51	57.78	74	-16.22	peak
4874	40.24	-3.51	36.73	54	-17.27	AVG
7311	54.22	-0.82	53.4	74	-20.6	peak
7311	38.43	-0.82	37.61	54	-16.39	AVG

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	61.95	-3.43	58.52	74	-15.48	peak
4924	47.4	-3.43	43.97	54	-10.03	AVG
7386	52.36	-0.75	51.61	74 HUA	-22.39	peak
7386	43.66	-0.75	42.91	54	-11.09	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	54.05	-3.43	50.62	74	-23.38	peak
4924	43.93	-3.43	40.5	54	-13.5	AVG
7386	51.88	-0.75	51.13	74	-22.87	peak
7386	40.84	-0.75	40.09	54	-13.91	AVG
	-	-1100		717	The state of the s	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	51.64	-3.64	48	74	-26	peak
4824	39.51	-3.64	35.87	54	-18.13	AVG
7236	50.09	-0.95	49.14	74	-24.86	peak
7236	38.37	-0.95	37.42	54	-16.58	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	50.65	-3.64	47.01	74	-26.99	peak
4824	45.1	-3.64	41.46	54	-12.54	AVG
7236	49.76	-0.95	48.81	74	-25.19	peak
7236	40.61	-0.95	39.66	54	-14.34	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
57.54	-3.51	54.03	74.00	-19.97	peak
45.48	-3.51	41.97	54.00	-12.03	AVG
52.51	-0.82	51.69	74.00	-22.31	peak
39.82	-0.82	39.00	54.00	-15.00	AVG
	(dBµV) 57.54 45.48 52.51	(dBµV) (dB) 57.54 -3.51 45.48 -3.51 52.51 -0.82	(dBμV) (dB) (dBμV/m) 57.54 -3.51 54.03 45.48 -3.51 41.97 52.51 -0.82 51.69	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.54 -3.51 54.03 74.00 45.48 -3.51 41.97 54.00 52.51 -0.82 51.69 74.00	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 57.54 -3.51 54.03 74.00 -19.97 45.48 -3.51 41.97 54.00 -12.03 52.51 -0.82 51.69 74.00 -22.31

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	54.81	-3.51	51.30	74.00	-22.70	peak
4874	45.50	-3.51	41.99	54.00	-12.01	AVG
7311	50.63	-0.82	49.81	74.00	-24.19	peak
7311	42.37	-0.82	41.55	54.00	-12.45	AVG
	JG WIN HILL		•	IG WILL HOLD		•

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Trine
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	52.53	-3.43	49.1	74	-24.9	peak
4924	43.21	-3.43	39.78	54	-14.22	AVG
7386	50.06	-0.75	49.31	74	-24.69	peak
7386	38.49	-0.75	37.74	54	-16.26	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Data star Tura
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
53.75	-3.43	50.32	74	-23.68	peak
40.54	-3.43	37.11	54	-16.89	AVG
51.39	-0.75	50.64	74	-23.36	peak
37.95	-0.75	37.2	54	-16.8	AVG
	(dBµV) 53.75 40.54 51.39	(dBµV) (dB) 53.75 -3.43 40.54 -3.43 51.39 -0.75	(dBμV) (dB) (dBμV/m) 53.75 -3.43 50.32 40.54 -3.43 37.11 51.39 -0.75 50.64	(dBμV) (dB) (dBμV/m) (dBμV/m) 53.75 -3.43 50.32 74 40.54 -3.43 37.11 54 51.39 -0.75 50.64 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 53.75 -3.43 50.32 74 -23.68 40.54 -3.43 37.11 54 -16.89 51.39 -0.75 50.64 74 -23.36

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.82	-3.63	55.19	74	-18.81	peak
4844	40.88	-3.63	37.25	54	-16.75	AVG
7266	50.23	-0.94	49.29	74	-24.71	peak
7266	39.45	-0.94	38.51	54	-15.49	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	53.21	-3.63	49.58	74	-24.42	peak
4844	37.73	-3.63	34.1	54	-19.9	AVG
7266	50.69	-0.94	49.75	74	-24.25	peak
7266	35.74	-0.94	34.8	54	-19.2	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor E	Emission Level	Limits	Margin	Data atom Tuma
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	60.63	-3.51	57.12	74	-16.88	peak
4874	41.02	-3.51	37.51	54	-16.49	AVG
7311	57.86	-0.82	57.04	74	-16.96	peak
7311	38.18	-0.82	37.36	54	-16.64	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data stan Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	55.14	-3.51	51.63	74	-22.37	peak
4874	40.65	-3.51	37.14	54	-16.86	AVG
7311	52.03	-0.82	51.21	74	-22.79	peak
7311	37.83	-0.82	37.01	54	-16.99	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	56.98	-3.43	53.55	74	-20.45	peak
4904	43.22	-3.43	39.79	54	-14.21	AVG
7356	53.75	-0.75	53	74	-21	peak
7356	40.81	-0.75	40.06	54	-13.94	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	52.73	-3.43	49.3	74	-24.7	peak
4904	40.87	-3.43	37.44	54	-16.56	AVG
7356	50.92	-0.75	50.17	74	-23.83	peak
7356	38.77	-0.75	38.02	54	-15.98	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	54.54	-5.81	48.73	74	-25.27	peak
2310.00	43.17	-5.81	37.36	54	-16.64	AVG
2390.00	52.89	-5.84	47.05	74	-26.95	peak
2390.00	40.85	-5.84	35.01	54	-18.99	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Det Stille
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	52.19	-5.81	46.38	74	-27.62	peak
2310.00	44.46	-5.81	38.65	54	-15.35	AVG
2390.00	51.54	-5.84	45.7	74	-28.3	peak
2390.00	41.39	-5.84	35.55	54	-18.45	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	- Pre-amplifier.	W _C	TING	TING

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	52.98	-5.81	47.17	74	-26.83	peak
2483.50	41.46	-5.81	35.65	54	-18.35	AVG
2500.00	50.32	-6.06	44.26	74	-29.74	peak
2500.00	39.61	-6.06	33.55	54	-20.45	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.04	-5.81	47.23	74 HUAY	-26.77	peak
2483.50	40.51	-5.81	34.7	54	-19.3	AVG
2500.00	50.75	-6.06	44.69	74 TESTIN	-29.31	peak
2500.00	37.88	-6.06	31.82	54	-22.18	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

AFICATION

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data JAK TES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	57.54	-5.81	51.73	74	-22.27	peak
2310.00	44.87	-5.81	39.06	54	-14.94	AVG
2390.00	53.36	-5.84	47.52	74	-26.48	peak
2390.00	40.52	-5.84	34.68	54	-19.32	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	50.47	-5.81	44.66	74	-29.34	peak
2310.00	43.61	-5.81	37.8	54	-16.2	AVG
2390.00	49.75	-5.84	43.91	74	-30.09	peak
2390.00	41.07	-5.84	35.23	54	-18.77	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	w Limits	Margin	Data da EtiniG
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	52.15	-5.65	46.5	74	-27.5	peak
2483.50	40.38	-5.65	34.73	54 MAN	-19.27	AVG
2500.00	50.53	-5.65	44.88	74	-29.12	peak
2500.00	38.87	-5.65	33.22	54	-20.78	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss -	Pre-amplifier.	. 0	TESTING	AK TESTING

Vertical:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
UP	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	2483.50	51.57	-5.65	45.92	74	-28.08	peak
	2483.50	40.72	-5.65	35.07	54 MAN	-18.93	AVG
ſ	2500.00	50.8	-5.65	45.15	74	-28.85	peak
ſ	2500.00	36.87	-5.65	31.22	54	-22.78	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	D. L. L. TING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	51.1	-5.81	45.29	74	-28.71	peak
2310.00	41.08	-5.81	35.27	54	-18.73	AVG
2390.00	50.31	-5.84	44.47	74	-29.53	peak
2390.00	37.61	-5.84	31.77	54	-22.23	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss –	Pre-amplifier.	ic White	TING	STING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	52.63	-5.81	46.82	74	-27.18	peak
2310.00	40.17	-5.81	34.36	54	-19.64	AVG
2390.00	48.58	-5.84	42.74	74	-31.26	peak
2390.00	39.35	-5.84	33.51	54 TESTIN	-20.49	AVG
Remark: Factor	r = Antenna Factor +	- Cable I oss	_ Pre-amplifier	G HURY		alG A

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data MAKTES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	51.06	-5.65	45.41	74 must	-28.59	peak
2483.50	41.02	-5.65	35.37	54	-18.63	AVG
2500.00	48.45	-5.65	42.8	74 TESTIN	-31.2	peak
2500.00	36.15	-5.65	30.5	54	-23.5	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	51.94	-5.65	46.29	74	-27.71	peak
2483.50	42.26	-5.65	36.61	54	-17.39	AVG
2500.00	49.37	-5.65	43.72	74	-30.28	peak
2500.00	39.11	-5.65	33.46	54	-20.54	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits ■	Margin	Datastar Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	52.07	-5.81	46.26	74	-27.74	peak
2310.00	STING /	-5.81	TESTING	54 MAK	1	AVG
2390.00	61.62	-5.84	55.78	74	-18.22	peak
2390.00	44.82	-5.84	38.98	54	-15.02	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier.	G WILL	TING	ESTING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	56.15	-5.81	50.34	74	-23.66	peak
2310.00	ESTING /	-5.81	A TESTING	54	/	AVG
2390.00	60.20	-5.84	54.36	74	-19.64	peak
2390.00	51.39	-5.84	45.55	54	-8.45	AVG
TING	25 THE TOTAL STATE OF THE PARTY		THE COLLE		TIME	CSTAN

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

AL

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	52.11	-5.65	46.46	74 HUM	-27.54	peak
2483.50	1	-5.65	HUAR	54	1	AVG
2500.00	50.18	-5.65	44.53	74	-29.47	peak
2500.00	NK TESTING (1)	-5.65	ING I NYTESTING	54	TSTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Datastar Typa
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	52.69	-5.65	47.04	74	-26.96	peak
2483.50	1	-5.65) 1	54	1 🔘	AVG
2500.00	50.13	-5.65	44.48	74	-29.52	peak
2500.00	JAKTE /	-5.65	MAKTE	54	HUAKTES	AVG

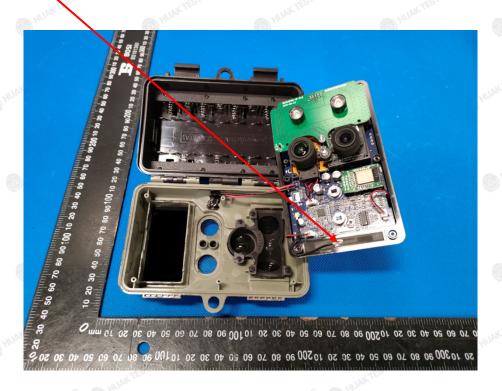
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.8. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

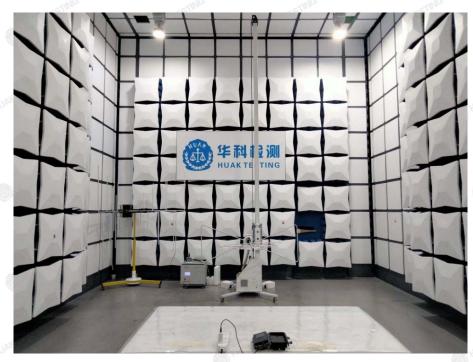

Refer to statement below for compliance.

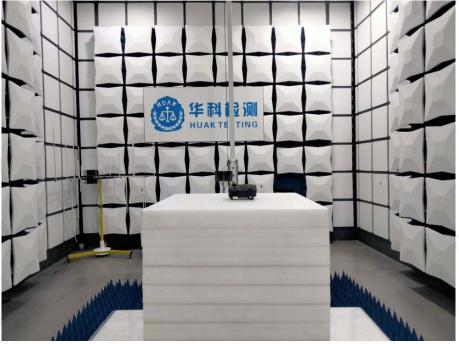
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is Internal Antenna, need professional installation. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 2dBi.

WIFI ANTENNA


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

PHOTOGRAPH OF TEST

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----