TEST REPORT

KOSTEC Co., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si, Gyeonggi-do, Korea Tel:031-222-4251, Fax:031-222-4252

Report No.: KST-FCR-230009(1)

1. Applicant

Name :

bitsensing Inc.

· Address :

4,5F, 4, Godeung-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea

2. Test Item

Product Name:

Mini-H

Model Name:

MOD611

· Brand:

• FCC ID:

2AVBK-MOD611

3. Manufacturer

Name :

bitsensing Inc.

Address :

4,5F, 4, Godeung-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea

4. Date of Test:

2023. 10. 23. ~ 2023. 10. 24.

5. Test Method Used:

FCC CFR 47, Part 15. Subpart C

ANSI C 63.10-2013

6. Test Result:

Compliance

7. Note:

Supplementary Information

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with measurement procedures specified in ANSI C 63.10-2013.

We attest to the accuracy of data and all measurements reported herein were performed by KOSTEC Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report is not related to KOLAS accreditation.

Affirmation

Tested by

Name: Choo, Kwang-Yeol (Signature)

Technical Manager

Name: Park, Gyeong-Hyeon...

2023, 11, 28,

KOSTEC Co., Ltd.

Table of Contents

1. GENERAL INFORMATION	
1.1 Test Facility	
1.2 Location	
1.3 Revision History of test report	
2. EQUIPMENT DESCRIPTION	5
3. SYSTEM CONFIGURATION FOR TEST	6
3.1 Characteristics of equipment	6
3.2 Used peripherals list	6
3.3 Product Modification	6
3.4 Operating Mode	6
3.5 Test Setup of EUT	6
3.6 Used Test Equipment List	7
3.7 Measurement uncertainty	
4. SUMMARY TEST RESULTS	10
5. MEASUREMENT RESULTS	11
5.1 Bandwidth of Signal	
5.2 Duty cycle, Off Time Requirement	
5.3 Radiated Power	15
5.4 Spurious emissions	
5.5 Frequency Stability	25
5.6 Antenna requirement	27
5.7 AC Power Conducted emissions	28

1. GENERAL INFORMATION

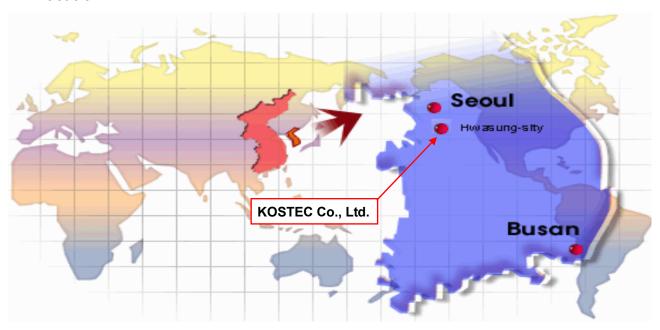
1.1 Test Facility

Test laboratory and address

KOSTEC Co., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

Telephone Number: 82-31-222-4251 Facsimile Number: 82-31-222-4252


Registration information

KOLAS No.: KT232

RRA (National Radio Research Agency): KR0041

FCC Designation No.: KR0041 IC Designation No.: KR0041 VCCI Membership No.: 2005

1.2 Location

KST-FCR-RFS-Rev.0.6 Page: 3 / 30

1.3 Revision History of test report

Rev.	Revisions	Revisions Effect page Reviewed		Date	
-	Initial issue	All	Gyeong Hyeon, Park	2023. 10. 26.	
1	Added FMCW desensitization factor	16	Gyeong Hyeon, Park	2023. 11. 28.	

KST-FCR-RFS-Rev.0.6 Page: 4 / 30

2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

Equipment Name	Mini-H
Model No	MOD611
Usage	60GHz mmWave IoT radar sensor
Serial Number	Proto type
Modulation type	FMCW
Maximum output power(e.i.r.p)	11.82 dBm
Operated Frequency	57 GHz ~ 64 GHz
Channel Number	1
Operation temperature	-20 °C ~ 85 °C
Power Source	DC 5 V
Antenna Description	Patch Antenna(Fixed), gain : 5 dBi
Remark	 The device was operating at its maximum output power for all measurements. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case (Y) is shown in the report. The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description. Certificated Module(Single modular) is mounted in the EUT as following: Applicant: ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD Contains FCC ID: 2AC7Z-ESP32WROVERE Model No.: ESP32-WROVER-E
FCC ID	2AVBK-MOD611

KST-FCR-RFS-Rev.0.6 Page: 5 / 30

3. SYSTEM CONFIGURATION FOR TEST

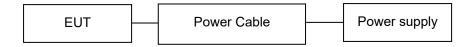
3.1 Characteristics of equipment

The Equipment Under Test (EUT) contains the following capabilities: This equipment is 60GHz mmWave IoT radar sensor. The detailed explanation is refer as user manual.

3.2 Used peripherals list

Description	tion Model No. Serial No.		Manufacture	Remark
AC/DC Adaptor	WL2017-1000USB	None	Shenzhen Songkang Investment Development co.,Ltd	For AC Conducted Emissions

3.3 Product Modification


N/A

3.4 Operating Mode

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.5 Test Setup of EUT

The measurements were taken in continuous transmit mode using the test mode. The cables were provided by the applicant.

KST-FCR-RFS-Rev.0.6 Page: 6 / 30

3.6 Used Test Equipment List

No.	Instrument	Model	S/N	Manufacturer	Next Cal Date	Cal interval	used
1	T & H Chamber	PL-3J	15003623	ESPEC CORP	2023.11.03	1 year	
2	T & H Chamber	SH-662	93000067	ESPEC CORP	2024.08.16	1 year	
3	T & H Chamber	SH-642	93011406	ESPEC CORP	2024.08.17	1 year	\boxtimes
4	Spectrum Analyzer	8563EC	3046A00527	Agilent Technology	2024.01.11	1 year	
5	Spectrum Analyzer	FSV30	104029	Rohde & Schwarz	2024.08.16	1 year	
6	Spectrum Analyzer	FSV30	20-353063	Rohde & Schwarz	2024.01.11	1 year	
7	Spectrum Analyzer	FSV40	101727	Rohde & Schwarz	2024.08.16	1 year	
8	Signal Analyzer	FSW43	101294	Rohde & Schwarz	2024.01.13	1 year	
9	Signal Analyzer	FSW85	101602	Rohde & Schwarz	2024.06.27	1 year	\boxtimes
10	EMI Test Receiver	ESCI7	100823	Rohde & Schwarz	2024.01.11	1 year	
11	EMI Test Receiver	ESPI	100488	Rohde & Schwarz	2024.01.10	1 year	
12	EMI Test Receiver	ESI	837514/004	Rohde & Schwarz	2024.08.16	1 year	\boxtimes
13	Vector Signal Analyzer	89441A	3416A02620	Agilent Technology	2024.01.13	1 year	
14	Network Analyzer	8753ES	US39170869	AGILENT	2024.08.16	1 year	
15	EPM Series Power meter	E4418B	GB39512547	Agilent Technology	2024.01.12	1 year	
16	RF Power Sensor	E9300A	MY41496631	Agilent Technology	2024.01.12	1 year	
17	Microwave Frequency Counter	5352B	2908A00480	Agilent Technology	2024.01.11	1 year	
18	Audio Analyzer	8903B	3514A16919	Agilent Technology	2024.01.11	1 year	
19	Audio Telephone Analyzer	DD-5601CID	520010281	CREDIX	2024.01.10	1 year	
20	Modulation Analyzer	8901A	3041A05716	H.P	2024.01.10	1 year	
21	Digital storage Oscilloscope	TDS3052	B015962	Tektronix	2024.08.17	1 year	
22	ESG-D Series Signal Generator	E4436B	US39260458	Agilent Technology	2024.01.12	1 year	
23	Vector Signal Generator	SMBV100A	257557	Rohde & Schwarz	2024.01.12	1 year	
24	GNSS Signal Generator	TC-2800A	2800A000494	TESCOM CO., LTD.	2024.01.11	1 year	
25	Signal Generator	SMB100A	179628	Rohde & Schwarz	2024.01.27	1 year	
26	Signal Generator	N5173B	MY57280148	KEYSIGHT	2024.05.31	1 year	
27	SLIDAC	None	0207-4	Myoung sung Ele.	2024.01.10	1 year	
28	DC Power supply	DDPS-3K	U03-109	Digitech Power	2024.01.18	1 year	
29	DC Power supply	E3610A	KR24104505	Agilent Technology	2024.01.10	1 year	
30	DC Power supply	UP-3005T	68	Unicon Co.,Ltd	2024.01.10	1 year	
31	DC Power Supply	SM 3400-D	114701000117	DELTAELEKTRONIKA	2024.01.10	1 year	
32	DC Power supply	6632B	MY43004005	Agilent Technology	2024.01.11	1 year	
33	DC Power Supply	6632B	MY43004137	Agilent Technology	2024.01.11	1 year	
34	Termination	1433-3	LM718	WEINSCHEL	2024.01.12	1 year	
35	Termination	1432-3	QR946	AEROFLEX/WEINSCHEL	2024.01.12	1 year	
36	Attenuator	8498A	3318A09485	HP	2024.01.11	1 year	
37	Step Attenuator	8494B	3308A32809	HP	2024.01.12	1 year	
38	RF Step Attenuator	RSP	100091	Rohde & Schwarz	2024.01.13	1 year	
39	Attenuator	18B50W-20F	64671	INMET	2024.01.12	1 year	
40	Attenuator	10 dB	1	Rohde & Schwarz	2024.01.12	1 year	
41	Attenuator	54A-10	74564	WEINSCHEL	2024.08.16	1 year	
42	Attenuator	56-10	66920	WEINSCHEL	2024.01.12	1 year	
43	Attenuator	48-40-33	BL5992	Weinschel Corp.	2023.12.27	1 year	
44	Attenuator	SA18N100-20	001	FAIRVIEW MICROWAVE	2024.08.16	1 year	
45	Attenuator	SA26B-10	33464/2134	FAIRVIEW MICROWAVE	2024.08.18	1 year	
46	Attenuator	SA4018-10	DC 2126	FAIRVIEW MICROWAVE	2024.08.18	1 year	
47	Power divider	11636B	51212	HP	2024.06.16		
48	3Way Power divider	KPDSU3W	00070365	KMW	2024.01.13	1 year	
49	4Way Power divider	70052651	173834	KRYTAR	2024.06.16	1 year	
50	3Way Power divider	1580	SQ361	WEINSCHEL	1	1 year	
51	OSP	OSP120	101577	Rohde & Schwarz	2024.01.13	1 year	
IJΙ	USF	USF 120	1010//	NUTICE & SCHWAIZ	2024.01.13	1 year	

	Instrument	Model	S/N	Manufacturer	Next Cal Date	Cal interval	used
52 \	White noise audio filter	ST31EQ	101902	SoundTech	2024.08.16	1 year	
53 [Dual directional coupler	778D	17693	HEWLETT PACKARD	2024.01.11	1 year	
54 [Dual directional coupler	772D	2839A00924	HEWLETT PACKARD	2024.01.11	1 year	
55 E	Band rejection filter	3TNF-0006	26	DOVER Tech	2024.01.11	1 year	
56 E	Band rejection filter	3TNF-0007	311	DOVER Tech	2024.01.11	1 year	
57 E	Band rejection filter	WTR-BRF2442-84NN	09020001	WAVE TECH Co.,LTD	2024.01.11	1 year	
58 E	Band rejection filter	WRCJV12-5695-5725-5825- 5855-50SS	1	Wainwright Instruments GmbH	2024.01.11	1 year	
59 E	Band rejection filter	WRCJV12-5120-5150-5350- 5380-40SS	4	Wainwright Instruments GmbH	2024.01.11	1 year	
60 E	Band rejection filter	WRCGV10-2360-2400-2500- 2540-50SS	2	Wainwright Instruments GmbH	2024.01.11	1 year	
61 E	Band rejection filter	CTF-155M-S1	001	RF One Electronics	2024.08.16	1 year	
62 E	Band rejection filter	CTF-435M-S1	001	RF One Electronics	2024.08.16	1 year	
63 E	Band rejection filter	CTF-5890M-70MS1	1	RF One Electronics	2024.01.11	1 year	
64 I	Highpass Filter	WHJS1100-10EF	1	WAINWRIGHT	2024.01.12	1 year	
65 I	Highpass Filter	WHJS3000-10EF	1	WAINWRIGHT	2024.01.11	1 year	
66 I	Highpass Filter	WHNX6-5530-7000-26500- 40CC	2	Wainwright Instruments GmbH	2024.01.12	1 year	
67 I	Highpass Filter	WHNX6-2370-3000-26500- 40CC	4	Wainwright Instruments GmbH	2024.01.12	1 year	
	WideBand Radio Communication Tester	CMW500	102276	Rohde & Schwarz	2024.01.10	1 year	
69 \	WideBand Radio Communication Tester	CMW500	117235	Rohde & Schwarz	2024.01.10	1 year	
70	WideBand Radio Communication Tester	MT8000A	6261987920	Anritsu	2024.01.13	1 year	
71	WideBand Radio Communication Tester	MT8821C	6262287695	Anritsu	2024.01.13	1 year	
	Bluetooth Tester	TC-3000B	3000B6A0166	TESCOM CO., LTD.	2024.01.10	1 year	
73 I	Loop Antenna	6502	9203-0493	EMCO	2025.05.23	2 year	
74 l	Loop Antenna	FMZB1513	#374	Schwarzbeck	2025.02.21	2 year	\boxtimes
75 E	BiconiLog Antenna _(R)	3142C	35880	ETS-LINDGREN	2024.10.13	2 year	\boxtimes
76	Trilog-Broadband Antenna _(R)	VULB 9168	9168-606	SCHWARZBECK	2024.11.30	2 year	
77 E	Biconical Antenna(T)	VUBA9117	9117-342	Schwarz beck	2024.01.24	2 year	
78 I	Horn Antenna	3115	9605-4834	EMCO	2024.03.06	1 year	
79 I	Horn Antenna	QMS-00208	21909	STEATITE ANTENNA	2024.05.04	1 year	
80 I	Horn Antenna _(R)	3117	00135191	ETS-LINDGREN	2024.04.03	1 year	\boxtimes
81 I	Horn Antenna _(T)	3115	2996	EMCO	2024.01.12	1 year	
82 I	Horn Antenna _(R)	BBHA 9170	9170-722	SCHWARZBECK	2024.01.12	1 year	\boxtimes
	Horn Antenna _(T)	BBHA 9170	743	SCHWARZBECK	2024.01.18	1 year	
84 /	AMPLIFIER(A_10)	TK-PA01S	220109-L	TESTEK	2024.01.11	1 year	
	AMPLIFIER(C_3)	TK-PA01S	200141-L	TESTEK	2024.08.16	1 year	\boxtimes
	PREAMPLIFIER(C_3)	8449B	3008A02577	Agilent	2024.01.10	1 year	\boxtimes
 	RF PRE AMPLIFIER	SCU08F2	100762	Rohde & Schwarz	2023.11.29	1 year	
	AMPLIFIER	TK-PA18	150003	TESTEK	2024.01.10	1 year	
-	AMPLIFIER	TK-PA1840H	160010-L	TESTEK	2024.01.12	1 year	
	Horn Antenna	M19RH	T01	OML, Inc.	2024.04.05	1 year	
-	Horn Antenna	M12RH	T02	OML, Inc.	2024.04.07	1 year	
 	Horn Antenna	M08RH	T03	OML, Inc.	2024.04.07	1 year	
 	Horn Antenna	M05RH	T04	OML, Inc.	2024.04.06	1 year	
-	Horn Antenna	M03RH	T05	OML, Inc.	2024.04.06	1 year	
 	Harmonic Mixer	M12HWD	200529-1	OML, Inc.	2024.04.14	1 year	
	Harmonic Mixer Harmonic Mixer	M08HWD	200529-1 200529-1	OML, Inc.	2024.04.17	1 year	
	Harmonic Mixer	M05HWD		OML, Inc.	2024.04.14	1 year	
 	Source Module	M03HWD S19MS-A	200529-1 200529-1	OML, Inc.	2024.04.14	1 year 1 year	
 	Source Module	S12MS-A	200529-1	OML, Inc.	2024.04.13	1 year	
 	Source Module	S08MS-A	200529-1	OML, Inc.	2024.04.13	1 year	
-	Source Module	S05MS-A	200529-1	OML, Inc.	2024.04.13	1 year	
<u> </u>	Source Module	S03MS-A	200529-1	OML, Inc.	2024.04.13	1 year	

Note: The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna(Up to 40 GHz) for measurement is calibrated in accordance with the requirements of C 63.5.

3.7 Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Measurement uncertainty
Radiated Disturbance(Below 1 GHz)	3.80 dB (CL: Approx 95 %, k=2)
Radiated Disturbance(1 GHz ~ 40 GHz)	3.42 dB (CL: Approx 95 %, k=2)
Radiated Disturbance(Above 40 GHz)	6.30 dB (CL: Approx 95 %, k=2)

KST-FCR-RFS-Rev.0.6 Page: 9 / 30

4. SUMMARY TEST RESULTS

Description of Test	FCC Rule	Reference Clause	Used	Test Result
Bandwidth of Signal	15.255(c)	Clause 5.1	\boxtimes	Compliance
Duty cycle, Off Time Requirement	15.255(c)(2)(iii)(A)	Clause 5.2	\boxtimes	Compliance
Radiated Power	15.255(c)(2)(iii)(A)	Clause 5.3	\boxtimes	Compliance
Spurious Emissions	15.255(d), 15.209	Clause 5.4	\boxtimes	Compliance
Frequency Stability	15.255(f)	Clause 5.5	\boxtimes	Compliance
Antenna Requirement	15.203	Clause 5.6	\boxtimes	Compliance
AC Conducted emission	15.207	Clause 5.7	\boxtimes	Compliance
Group Installation	15.255(h)	-		N/A) ^{Note1)}

Compliance/pass: The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

Note:

1) The test is not applicable since there are no external phase-locking inputs in this EUT

Procedure Reference

FCC CFR 47, Part 15. Subpart C ANSI C 63.10-2013

(ST-FCR-RFS-Rev.0.6 Page: 10 / 30

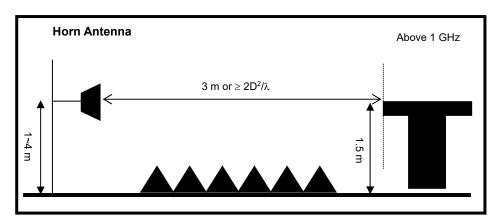
5. MEASUREMENT RESULTS

5.1 Bandwidth of Signal

5.1.1 Standard Applicable [FCC §15.215(c)]

FCC

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.


5.1.2 Test Environment conditions

• Ambient temperature : (21 ~ 22) $^{\circ}$ • Relative Humidity : (51 ~ 53) % R.H.

5.1.3 Measurement Procedure

The test was performed according to ANSI C63.10, clause 9.3

5.1.4 Test setup

KST-FCR-RFS-Rev.0.6 Page: 11 / 30

5.1.5 Measurement Result

Contor	Center Freq.	Measured -20 dBc Frequency		20 dB	Lower Limit	Upper Limit		
	(GHz)	Lower Result (GHz)	Upper Result (GHz)	Bandwidth (MHz)	(GHz)	(GHz)	Result	
	60.8	57.963	63.627	5 660	57	64	Compliance	

Occupied Bandwidth

KST-FCR-RFS-Rev.0.6 Page: 12 / 30

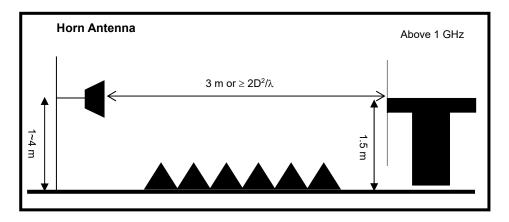
5.2 Duty cycle, Off Time Requirement

5.2.1 Standard Applicable [FCC §15.255(c)(2)(iii)(A)]

FCC

(iii) 57.0-64.0 GHz:

(A) The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section;


5.2.2 Test Environment conditions

• Ambient temperature : (21 ~ 22) $^{\circ}$ • Relative Humidity : (51 ~ 53) % R.H.

5.2.3 Measurement Procedure

The test was performed according to ANSI C63.10, clause 9.5, 9.6, 9.7 The duty cycle was tested with the spectrum analyzer set to zero-span.

5.2.4 Test setup

KST-FCR-RFS-Rev.0.6 Page: 13 / 30

5.2.5 Measurement Result

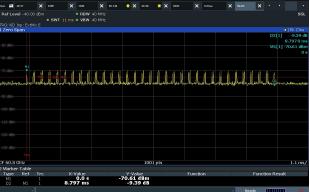
TX On + TX OFF Time (ms)			Duty Result (%)	Duty Factor (dB)	
99.00	99.00 8.76		8.85	-10.53	

TX OFF Time Ratio (%)	atio Regulation Time (ms) TX OFF Time within Regulation Time Limit (ms)		The ratio of TX OFF Time Limit (%)	Result	
91.15	91.15 33.00		≥77.27	Compliance	

Calculating formula:

TX OFF Time = TX ON + TX OFF Time – TX ON Time

Duty = (TX ON Time / TX ON + TX OFF Time) * 100


Duty factor = 10 * log(TX ON + TX OFF Time / TX ON Time)

TX OFF Time Ratio = (TX OFF Time / TX ON + TX OFF Time) * 100

TX ON + TX OFF Time

KST-FCR-RFS-Rev.0.6 Page: 14 / 30

5.3 Radiated Power

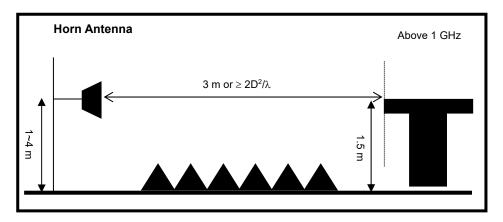
5.3.1 Standard Applicable [FCC §15.255(c)(2)(iii)(A)]

FCC

(c)(2)(iii)(A) The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section;

- (e) Limits on transmitter conducted output power.
 - (1) Except as specified in paragraph (e)(2) of this section, the peak transmitter conducted output power of devices other than field disturbance sensors/radars shall not exceed 500 mW. Depending on the gain of the antenna, it may be necessary to operate the intentional radiator using a lower peak transmitter output power in order to comply with the EIRP limits specified in paragraph (c) of this section.

5.3.2 Test Environment conditions


• Ambient temperature : (21 ~ 22) °C • Relative Humidity : (51 ~ 53) % R.H.

5.3.3 Measurement Procedure

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's swept mode measurement capability for signals with continuous operation.
- 2.RBW = 1~5% of the expected OBW, The analyzer limits maximum RBW at 40 MHz.
- $3.VBW \ge 3 \times RBW$
- 4. Span as required, enough to observe the fundamental spike around 60.8 GHz
- 5. No. of sweep points ≥ 2 x span / RBW
- 6. Detector and Trace mode = Suitable for peak and average measurements respectively over 100 sweeps
- 7. The trace was allowed to stabilize

5.3.4 Test setup

KST-FCR-RFS-Rev.0.6 Page: 15 / 30

5.3.5 Measurement Result

Peak EIRP

Freq. (GHz)	Reading (dBm)	Pol. (H/V)	Tested Distance (m)	Factor (dB)	FMCW desensitiz ation factor(dB)	Meas. Result (dBm)	Limit (dBm)	Margin. (dB)	Result
60.8	-68.27	Н	1	79.84	0.25	11.82	14	2.18	Compliance

※Note

Wavelength = Speed of light / Measurement frequency = 30 / 6 400 = 0.0047

 $R_{\text{(Far Field)}} = (2 * (\text{Max antenna length of EUT})^2) / \text{Wavelength} = (2 * (0.008 2)^2 / 0.004 7 = 0.028 7 \text{ m})$

Our measurement is performed at a minimum distance of 1 m > R_(Far field)

Calculation of test results

•Factor (dB): Mixer Loss(dB) + Cable Loss(dB) + FSPL(dB) - Antenna Gain(dBi)

•Meas Result (dBm): Reading(dBm) + Factor(dB)

FSPL measurement

•FSPL = TxPower - RxPower;

•RxPower = S.A Measured Level - Rx Ant Gain + Mixer Conversion Loss + Cable Loss;

•TxPower = OML Source Output + Tx Ant Gain;

These calculation results are same as results which were calculated with formulas described in the section 9 of ANSI C63.10-2013

FMCW desensitization factor

The derivation of the FMCW desensitization factor is given in Keysight Application Note 5952-1039 Appendix B.

$$\alpha = \frac{1}{\sqrt{1 + \left(\frac{2\ln(2)}{\pi}\right)^2 \left(\frac{F_s}{T_s B^2}\right)^2}}$$

and

FMCW desensitization factor = $20 \text{ Log}(\alpha)$

Where

 F_S = FMCW Sweep Width or Chirp Width

T_S = FMCW Sweep Time(Declared by manufacturer)

B = 3-dB bandwidth of Gaussian RBW Filter

	FMCW Sweep Width (MHz)	FMCW Sweep Time (us)	3-dB bandwidth of Gaussian RBW Filter(MHz)	FMCW desensitization factor(dB)
L	5 660	8 145	40	0.25

Peak EIRP

KST-FCR-RFS-Rev.0.6 Page: 16 / 30

5.4 Spurious emissions

5.4.1 Standard Applicable [FCC §15.255(d), 15.209]

FCC

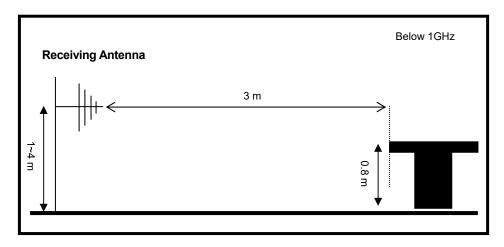
- (d) Limits on spurious emissions.
- (1) The power density of any emissions outside the 57–71 GHz band shall consist solely of spurious emissions.
- (2)Click to open paragraph tools Radiated emissions below 40 GHz shall not exceed the general limits in § 15.209.

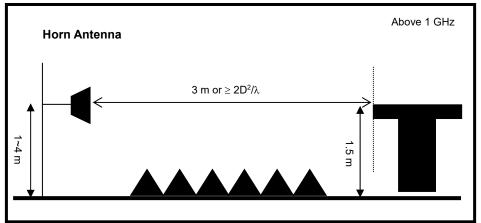
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm2 at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

5.4.2 Test Environment conditions

5.4.3 Measurement Procedure


The measurements procedure of the Spurious RF Radiated emissions is as following describe method.


- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until the measurements for all frequencies are complete.

KST-FCR-RFS-Rev.0.6 Page: 17 / 30

5.4.4 Test setup

All measurements were taken at a distance greater than the calculated far field as below Wavelength = Speed of light / Measurement frequency = 30 / 6400 = 0.0047 (2 * (Max antenna length of EUT)²) / Wavelength = $(2 * (0.0082)^2 / 0.0047 = 0.0287m$

KST-FCR-RFS-Rev.0.6 Page: 18 / 30

5.4.5 Measurement Result

■ Below 1 GHz

Freq.	Reading (dB ⊮/m)	Antenna			CL	AMP	Meas	Limit	Mgn	Б
(MHz)		Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	Result (dB ⊭V/m)	(dB≠V/m)		Result
35.51	28.02	1.0	V	20.20	0.77	52.03	28.02	40.00	11.98	Compliance
80.24	27.13	1.0	V	11.93	1.06	51.78	27.13	40.00	12.87	Compliance
118.10	25.67	1.0	V	12.76	1.51	51.63	25.67	43.50	17.83	Compliance
141.77	15.34	1.5	Н	13.85	1.71	51.54	15.34	43.50	28.16	Compliance
163.16	30.92	1.0	V	15.05	1.86	51.50	30.92	43.50	12.58	Compliance
165.47	21.09	1.5	Н	15.14	1.87	51.49	21.09	43.50	22.41	Compliance

Freq.(Mt2): Measurement frequency, Reading(dB μ V/m): includes values for Antenna factor, Cable loss, and Amp gain, Antenna (Height, Pol, Fctr): Antenna Height, Polarization and Factor, Cbl(dB): Cable loss, Pre AMP(dB): Preamplifier gain(dB), Meas Result (dB μ V/m): Reading(dB μ V/m)+ Antenna factor.(dB/m)+ CL(dB) - Pre AMP(dB)

 $Limit(dB\,\rlap/\!\!M/m): Limit\ value\ specified\ with\ FCC\ Rule,\ Mgn(dB): FCC\ Limit\ (dB\,\rlap/\!\!M/m)\ -\ Meas\ Result(dB\,\rlap/\!\!M/m)$

- The transmitter radiated spectrum was investigated from 9 kHz to 1 GHz.
- The spurious signals detected do not depend on the operating mode.

KST-FCR-RFS-Rev.0.6 Page: 19 / 30

■ 1 GHz – 40 GHz

Freq.	Reading (dB \(\mu \right) /m)		Antenna		CL	AMP	Meas Result (dB ///m)		Limit (dB⊯/m)		Mgn. (^{dB})		Result	
(GHz)	PK	PK	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	rtocuit
						No critic	cal peaks fo	und						

※Note

- Above 1 GHz is measured average and peak detector mode on Spectrum analyzer in accordance with FCC Rule15.35
- Limit: 54 dBμV/m(Average), 74 dBμV /m(Peak), Attenuated more than 20 dB below the permissible value.
 It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to measured.
 The transmitter radiated spectrum was investigated from 1 GHz to 40 GHz.

KST-FCR-RFS-Rev.0.6 Page: 20 / 30

■ 40 GHz – 200 GHz

Freq. (GHz)	Reading (dBm)	Pol. (H/V)	Factor (dB)	Tested Distance (m)	Meas. Result (dBm)	Limit (dBm)	Limit (pW/cm²)	Margin. (dB)	Result
41.946	-55.68	Н	45.49	0.5	-10.19	5.67	90	15.86	Compliance
63.827	-94.03	Н	83.97	0.5	-10.06	5.67	90	15.73	Compliance
64.425	-96.39	Н	83.24	0.5	-13.15	5.67	90	18.82	Compliance
101.484	-92.49	Н	68.39	0.5	-24.10	5.67	90	29.77	Compliance
140.841	-93.65	Н	83.52	0.1	-10.13	19.65	90	29.78	Compliance

***Note**

Calculation of test results

- •Factor (dB): Mixer Loss(dB) + Cable Loss(dB) + FSPL(dB) Antenna Gain(dBi)
- •Meas Result (dBm): Reading(dBm) + Factor(dB)

FSPL measurement

- •FSPL = TxPower RxPower;
- •RxPower = S.A Measured Level Rx Ant Gain + Mixer Conversion Loss + Cable Loss;
- •TxPower = OML Source Output + Tx Ant Gain;

FCC Limit

•Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm2 at a distance of 3 meters.

Notes:

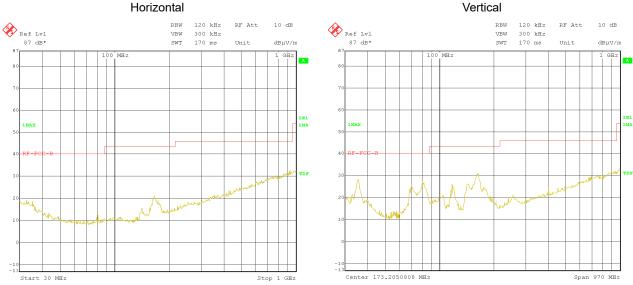
90 pW/cm² = 1 pW = 10^{-9} mW; 90 * 10^{-9} mW = 9 * 10^{-8} mW

 $1 \text{ mW/cm}^2 = 155.76 \text{ dBuV/m}$

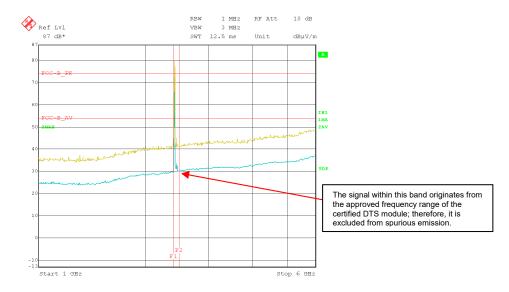
 $9 * 10^{-8} \text{ mW/cm}^2 = 85.31 \text{ dBuV/m} @ 3 \text{ m}$

= -9.89 dBm @ 3 m

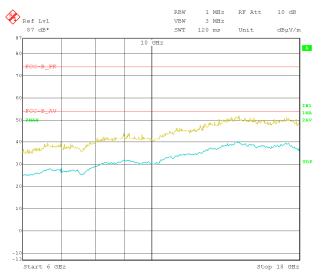
= -0.35 dBm @ 1 m


= 5.67 dBm @ 0.5 m

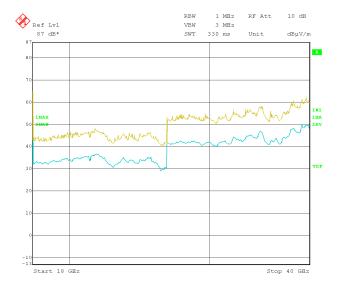
= 19.65 dBm @ 0.1 m

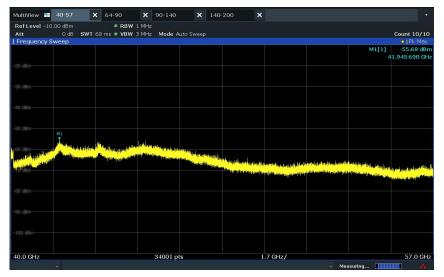

KST-FCR-RFS-Rev.0.6 Page: 21 / 30

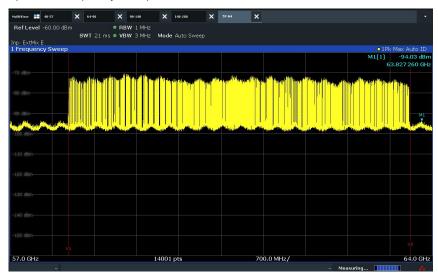
5.4.6 Plots


- *The worst case only.
- Below 1 GHz

■ 1 GHz ~ 6 GHz

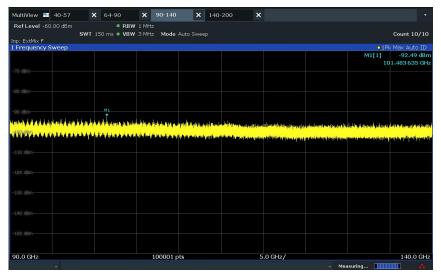

• 6 GHz ~ 18 GHz

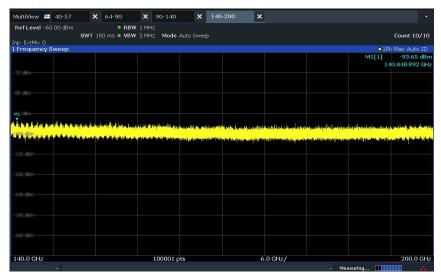

KST-FCR-RFS-Rev.0.6 Page: 22 / 30


■ 18 GHz ~ 40 GHz

■ 40 GHz ~ 57 GHz

• 57 GHz ~ 64 GHz(Allowed frequency band)


KST-FCR-RFS-Rev.0.6 Page: 23 / 30


• 64 GHz ~ 90 GHz

• 90 GHz ~ 140 GHz

■ 140 GHz ~ 200 GHz

KST-FCR-RFS-Rev.0.6 Page: 24 / 30

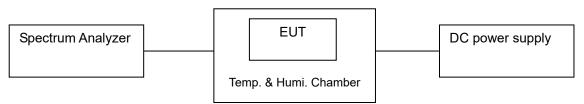
5.5 Frequency Stability

5.5.1 Standard Applicable [FCC §15.255(f)]

FCC

(f) Frequency stability. Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range −20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

5.5.2 Test Environment conditions


• Ambient temperature : (20 ~ 21) °C • Relative Humidity : (53 ~ 55) % R.H.

5.5.3 Measurement Procedure

The spectrum analyzer is set to the as follows:

- Set the RBW: 1 % to 3 % of the 99 % bandwidth.
- Set the VBW: \geq 3 x RBW.
- Detector = Peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- The frequency drift was investigated for every 10 $^{\circ}$ C increment until the unit is stabilized then recorded the reading in tabular format with the temperature range of -20 $^{\circ}$ C to 85 $^{\circ}$ C. (Manufacturer declaration)
- Voltage supplied to EUT is 12 V reference temperature was done at 20 °C.
- The voltage was varied by ± 15 % of nominal.

5.5.4 Test setup

KST-FCR-RFS-Rev.0.6 Page: 25 / 30

5.5.5 Measurement Result

Temp(°C)	Power Supply	Frequer	icy Ra	ange(GHz)	Limit(GHz)	Result
85		58.018 51	~	63.602 19		Compliance
80		58.014 36	~	63.598 37		Compliance
70		58.009 51	~	63.594 16		Compliance
60		58.004 85	~	63.590 04		Compliance
50		58.001 07	~	63.586 72		Compliance
40	DC 5 (Vnom)	57.996 56	~	63.583 26	57 ~ 64	Compliance
30	DC 5 (VIIOIII)	57.992 80	~	63.578 50		Compliance
20(Ref.)		57.987 98	~	63.574 97		Compliance
10		57.984 38	~	63.571 81		Compliance
0		57.979 43	~	63.568 56		Compliance
-10		57.975 71	~	63.563 82		Compliance
-20		57.970 75	~	63.558 94		Compliance
Nom Temperature	DC 4.25 (Vmin)	57.987 96	~	63.574 98		Compliance
Nom Temperature	DC 5.75 (Vmax)	57.987 97	~	63.574 97		Compliance

Reference only

KST-FCR-RFS-Rev.0.6 Page: 26 / 30

5.6 Antenna requirement

5.6.1 Standard applicable [FCC §15.203]

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit so that broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

5.6.2 Antenna details

Frequency Band	Antenna Type	Gain [dBi]	Results
57~64	Patch Antenna(Fixed)	5 dBi(Max.)	Compliance

X The antennas of this E.U.T permanently attached

KST-FCR-RFS-Rev.0.6 Page: 27 / 30

5.7 AC Power Conducted emissions

5.7.1 Standard Applicable [FCC §15.207(a)]

For intentional radiator that is designed to be connected to the public utility(AC)power line, the radio frequency. Voltage that is conducted back onto the AC power line on any frequencies hopping mode within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line Impedance stabilization network(LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

§15.207 limits for AC line conducted emissions;

Fraguency of Emission(NL)	Conducted Limit (dBμV)						
Frequency of Emission(₩z)	Quasi-peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

^{*} Decreases with the logarithm of the frequency

5.7.2 Test Environment conditions

• Ambient temperature : (21 ~ 22) °C • Relative Humidity : (51 ~ 53) % R.H.

5.7.3 Measurement Procedure

EUT was placed on a non- metallic table height of 0.8 m above the reference ground plane. Cables connected to EUT were fixed to cause maximum emission. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the Maximum signal strength.

5.7.4 Used equipment

Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Cal interval	Used
Test receiver	ESCS30	100111	Rohde & Schwarz	2024. 01. 10.	1 year	
Pulse Limiter	ESH3-Z2	100097	Rohde & Schwarz	2024. 01. 10.	1 year	\boxtimes
LICN	ESH2-Z5	100044	R&S	2024. 01. 10.	1 year	
LISN	ESH3-Z5	100147	R&S	2024. 01. 10.	1 year	⊠

^{*}Test Program: " ESXS-K1 V2.2"

Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

0.009 kHz \sim 30 MHz(L) : 3.94 dB(CL: Approx 95 %, k=2) 0.009 kHz \sim 30 MHz(N) : 3.32 dB(CL: Approx 95 %, k=2)

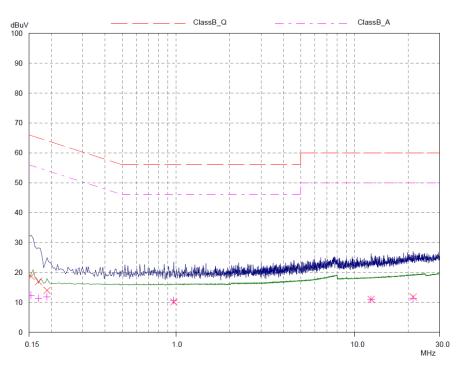
KST-FCR-RFS-Rev.0.6 Page: 28 / 30

5.7.5 Measurement Result

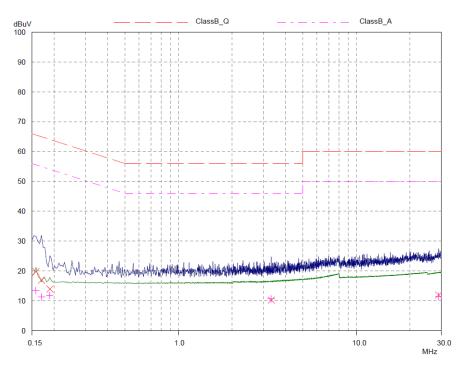
Freq.	Factor [dB]				QP			CISPR AV	
i ieq.			POL	Limit	Reading	Result	Limit	Reading	Result
[MHz]	LISN	CABLE +P/L		[dB#V]	[dB#V]	[dB#V]	[dB#V]	[dB <i>µ</i> V]	[dB#V]
0.154	0.29	9.89	L	65.79	18.65	18.94	55.79	12.01	12.30
0.170	0.28	9.89	L	64.98	16.95	17.23	54.98	10.89	11.17
0.189	0.27	9.90	L	64.08	13.96	14.23	54.08	11.51	11.78
0.970	0.27	9.96	L	56.00	10.13	10.40	46.00	10.16	10.43
12.396	0.99	10.28	L	60.00	10.93	11.92	50.00	10.54	11.53
21.291	1.12	10.43	L	60.00	11.77	12.89	50.00	11.02	12.14
0.158	0.25	9.89	N	65.58	19.79	20.04	55.58	12.95	13.20
0.170	0.25	9.89	N	64.98	16.95	17.20	54.98	11.01	11.26
0.189	0.24	9.90	N	64.08	13.98	14.22	54.08	11.35	11.59
3.322	0.40	10.05	N	56.00	10.25	10.65	46.00	10.29	10.69
29.017	0.78	10.55	N	60.00	11.94	12.72	50.00	11.09	11.87

^{*} LISN: LISN insertion Loss, Cable: Cable Loss, P/L:pulse limiter factor

KST-FCR-RFS-Rev.0.6 Page: 29 / 30


^{*} L: Line. Live, N: Line. Neutral

^{*} Reading: test receiver reading value (with cable loss & pulse limiter factor)


^{*} Result = LISN + Reading

Line. Neutral

