12. 125

12.4.4 Sending Data

The ESP32 12S module carries out a data-transmit operation in three stages:
e Read data from internal storage and transfer it to FIFO
¢ Read data to be sent from FIFO

e Clock out data serially, or in parallel, as configured by the user

Tx data < D.. >< D,

)
% FIFO Address< addr, >< addr, >
mode0 Data < D, >< D, >

T Fipo Adress addr 3 addr, X addr, X addr, >
model pata < D', >< D" | >< D' >< D" >

Figure 64: Tx FIFO Data Mode

Table 57: Register Configuration

[2S_TX_FIFO_MOD|2:0] Description

0 16-bit dual channel data
Tx FIFO mode0 2 32-bit dual channel data

3 32-bit single channel data
Tx FIFO mode1 1 16-bit single channel data

At the first stage, there are two modes for data to be sent and written into FIFO. In Tx FIFO mode0, the Tx
data-to-be-sent are written into FIFO according to the time order. In Tx FIFO mode1, the data-to-be-sent are
divided into 16 high- and 16 low-order bits. Then, both the 16 high- and 16 low-order bits are recomposed and
written into FIFO. The details are shown in Figure 64 with the corresponding registers listed in Table 57. D;L
consists of 16 high-order bits of D,, and 16 zeros. D., consists of 16 low-order bits of D,, and 16 zeros. That is
to say, D, = {D,[31 : 16],16'h0}, D,, = {D,[15 : 0], 16'h0}.

At the second stage, the system reads data that will be sent from FIFO, according to the relevant register
configuration. The mode in which the system reads data from FIFO is relevant to the configuration of
12S_TX_FIFO_MOD[2.0] and 12S_TX_CHAN_MOD|2:0]. 12S_TX_FIFO_MODI2.0] determines whether the data are
16-bit or 32-bit, as shown in Table 57, while 12S_TX_CHAN_MOD|2:0] determines the format of the
data-to-be-sent, as shown in Table 58.

Table 58: Send Channel Mode

12S_TX_CHAN_MODI[2:0] | Description
0 Dual channel mode

Mono mode

When 12S_TX_MSB_RIGHT equals O, the left-channel data are "holding”
1 their values and the right-channel data change into the left-channel data.

Espressif Systems 301 ESP32 Technical Reference Manual V3.1

12. 125

12S_TX_CHAN_MODI[2:0] | Description
When 12S_TX_MSB_RIGHT equals 1, the right-channel data are "holding”
their values and the left-channel data change into the right-channel data.

Mono mode

When 12S_TX_MSB_RIGHT equals 0, the right-channel data are "holding”
2 their values and the left-channel data change into the right-channel data.
When 12S_TX_MSB_RIGHT equals 1, the left-channel data are "holding”
their values and the right-channel data change into the left-channel data.

Mono mode

When 12S_TX_MSB_RIGHT equals 0, the left-channel data are constants
3 in the range of REG[31:0].

When 125_TX_MSB_RIGHT equals 1, the right-channel data are constants
in the range of REG[31:0].

Mono mode

When 12S_TX_MSB_RIGHT equals 0, the right-channel data are constants
4 in the range of REG[31:0].

When 12S_TX_MSB_RIGHT equals 1, the left-channel data are constants
in the range of REG[31:0].

REG[31:0] is the value of register 125_CONF_SINGLE_DATA_REG[31:0].

The output of the third stage is determined by the mode of the 12S and 12S_TX_BITS_MODI5:0] bits of register
12S_SAMPLE_RATE_CONF_REG.

12.4.5 Receiving Data
The data-receive phase of the ESP32 12S module consists of another three stages:

e The input serial-bit stream is transformed into a 64-bit parallel-data stream in 12S mode. In LCD mode, the
input parallel-data stream will be extended to a 64-bit parallel-data stream.

e Received data are written into FIFO.
e Data are read from FIFO by CPU/DMA and written into the internal memory.

At the first stage of receiving data, the received-data stream is expanded to a zero-padded parallel-data stream
with 32 high-order bits and 32 low-order bits, according to the level of the 125n1_WS_out (or 12Sn1_WS_in) signal.
The 125_RX_MSB_RIGHT bit of register 125_CONF_REG is used to determine how the data are to be

expanded.

TN

SD 0x7654 X OXFEDC X 0x3210 X OxBA98)
|

Data0 ' Datal ' Data?2 ' Data3 '

Figure 65: The First Stage of Receiving Data
For example, as is shown in Figure 65, if the width of serial data is 16 bits, when 12S_RX_RIGHT_FIRST equals 1,

Data0 will be discarded and 12S will start receiving data from Datal. If 12S_RX_MSB_RIGHT equals 1, data of the
first stage would be {0z F EDC0000, 02:32100000}. If 1I25_RX_MSB_RIGHT equals 0, data of the first stage would

Espressif Systems 302 ESP32 Technical Reference Manual V3.1

12. 125

be {0232100000, 02 F EDC0000}. When 12S_RX_RIGHT_FIRST equals 0, 12S will start receiving data from DataO.
If 125_RX_MSB_RIGHT equals 1, data of the first stage would be {0z F EDC0000, 0276540000}. If
12S_RX_MSB_RIGHT equals 0, data of the first stage would be {0276540000, 0z F' EDC0000}.

As is shown in Table 59 and Figure 66, at the second stage, the received data of the Rx unit is written into FIFO.
There are four modes of writing received data into FIFO. Each mode corresponds to a value of
12S_RX_FIFO_MOD[2:0] bit.

Table 59: Modes of Writing Received Data into FIFO and the Corresponding Register Configuration

12S_RX_FIFO_MOD|2:0] Data format
0 16-bit dual channel data
1 16-bit single channel data
2 32-bit dual channel data
3 32-bit single channel data
31 16 15 0 31 16 15 0
N chan 0 chan 1 t, chan_, chan_
w1 chan 0| chan_ 1 w2 chan chan_,,
mode0 model
31 0 31 0
. chan 0 t, chan,
n+1 chan 1 n+ chan_,,
mode2 mode3

Figure 66: Modes of Writing Received Data into FIFO

At the third stage, CPU or DMA will read data from FIFO and write them into the internal memory directly. The
register configuration that each mode corresponds to is shown in Table 60.

Table 60: The Register Configuration to Which the Four Modes Correspond

12S_RX_MSB_RIGHT | 12S_RX_CHAN_MOD | mode0 mode1 mode2 mode3
0 - -
1 left channel + left channel +
left channel | left channel left channel | left channel
0 5 + right channel| right channel + | + right channel| right channel +
right channel right channel
3 - -
0 - -
1 right channel + right channel +
1 right channel | right channel right channel | right channel
5 + left channel | left channel + | + left channel | left channel +
left channel left channel
3 - -
Espressif Systems 303 ESP32 Technical Reference Manual V3.1

12. 125

12.4.6 12S Master/Slave Mode

The ESP32 12S module can be configured to act as a master or slave device on the 12S bus. The module
supports slave transmitter and receiver configurations in addition to master transmitter and receiver
configurations. All these modes can support full-duplex and half-duplex communication over the 12S bus.

12S_RX_SLAVE_MOD bit and 12S_TX_SLAVE_MOD bit of register 125_CONF_REG can configure 12S to slave
receiving mode and slave transmitting mode, respectively.

12S_TX_START bit of register 12S_CONF_REG is used to enable transmission. When I12S is in master transmitting
mode and this bit is set, the module will keep driving the clock signal and data of left and right channels. If FIFO
sends out all the buffered data and there are no new data to shift, the last batch of data will be looped on the
data line. When this bit is reset, master will stop driving clock and data lines. When 12S is configured to slave
transmitting mode and this bit is set, the module will wait for the master BCK clock to enable a transmit
operation.

The 12S_RX_START bit of register 12S_CONF_REG is used to enable a receive operation. When 12S is in master
transmitting mode and this bit is set, the module will keep driving the clock signal and sampling the input data
stream until this bit is reset. If 12S is configured to slave receiving mode and this bit is set, the receiving module
will wait for the master BCK clock to enable a receiving operation.

12.4.7 12S PDM

As is shown in Figure 59, ESP32 12S0 allows for pulse density modulation (PDM), which enables fast conversion
between pulse code modulation (PCM) and PDM signals.

The output clock of PDM is mapped to the 12S0*_WS_out signal. Its configuration is identical to 12S’s BCK.
Please refer to section 12.3, "The Clock of 12S Module”, for further details. The bit width for both received and
transmitted 12S PCM signals is 16 bits.

HP_BYPASS
PCM 7| HPF = Filter | PDM
— 18 > LPF I {8 | —
group0
L

Figure 67: PDM Transmitting Module

The PDM transmitting module is used to convert PCM signals into PDM signals, as shown in Figure 67. HPF is a
high-speed channel filter, and LPF is a low-speed channel filter. The PDM signal is derived from the PCM signal,

after upsampling and filtering. Signal 12S_TX_PDM_HP_BYPASS of register 12S_PDM_CONF_REG can be set to
bypass the HPF at the PCM input. Filter module groupO carries out the upsampling. If the frequency of the PDM
signal is fgm and the frequency of the PCM signal is fyem, the relation between fogm and fpem is given by:

125 TX PDM_FP
125 TX PDM_FS

fpdm = 64Xfpcm><

The upsampling factor of 64 is the result of the two upsampling stages.

Table 61 lists the configuration rates of the 12S_TX_PDM_FP bit and the 12S_TX_PDM_FS bit of register
12S_PDM_FREQ_CONF_REG, whose output PDM signal frequency remains 48x128 KHz at different PCM signal
frequencies.

Espressif Systems 304 ESP32 Technical Reference Manual V3.1

12. 125

Table 61: Upsampling Rate Configuration

Foom (KHzZ) 12S_TX_PDM_FP 12S_TX_PDM_FS Foam (KH2)
48 960 480
441 960 441
32 960 320
48x128
24 960 240
16 960 160
8 960 80

The 12S_TX_PDM_SINC_OSR2 bit of 12S_PDM_CONF_REG is the upsampling rate of the Filter group0.

125 TX PDM_SINC_OSR2 = VQS_TX_PDM_FPJ

125 TX PDM_FS

As is shown in Figure 68, the 12S_TX_PDM_EN bit and the 125_PCM2PDM_CONV_EN bit of register
12S_PDM_CONF_REG should be set to 1 to use the PDM sending module. The
12S_TX_PDM_SIGMADELTA_IN_SHIFT bit, 12S_TX_PDM_SINC_IN_SHIFT bit, 12S_TX_PDM_LP_IN_SHIFT bit
and 12S_TX_PDM_HP_IN_SHIFT bit of register 125_PDM_CONF_REG are used to adjust the size of the input
signal of each filter module.

12S00_WS_ out
>
12S PDM
Tx 12S00_Data_out[23]

Figure 68: PDM Sends Signal

As is shown in Figure 69, the 12S_RX_PDM_EN bit and the 125_PDM2PCM_CONV_EN bit of register
12S_PDM_CONF_REG should be set to 1, in order to use the PDM receiving module. As is shown in Figure 70,
the PDM receiving module will convert the received PDM signal into a 16-bit PCM signal. Filter group1 is used to
downsample the PDM signal, and the 12S_RX_PDM_SINC_DSR_16_EN bit of register 12S_PDM_CONF_REG is
used to adjust the corresponding down-sampling rate.

12S0I_WS_out

=
12S PDM

Rx
12S01_Data_in[15]
44—

Figure 69: PDM Receives Signal

Table 62 shows the configuration of the 125_RX_PDM_SINC_DSR_16_EN bit whose PCM signal frequency
remains 48 KHz at different PDM signal frequencies.

Espressif Systems 305 ESP32 Technical Reference Manual V3.1

12. 125

PDM Filter PCM
— groupl LPF 18 —»

\ 4

Figure 70: PDM Receive Module

Table 62: Down-sampling Configuration

PDM freq (KHz2) I2S_RX_PDM_SINC_DSR_16_EN PCM freq (KHz)
Foomx128 1 ;
Foomx64 0 pem

12.5 LCD Mode

There are three operational modes in the LCD mode of ESP32 12S:
e | CD master transmitting mode
e Camera slave receiving mode
e ADC/DAC mode

The clock configuration of the LCD master transmitting mode is identical to 12S’s clock configuration. In the LCD
mode, the frequency of WS is half of fgck.

In the ADC/DAC mode, use PLL_D2_CLK as the clock source.

12.5.1 LCD Master Transmitting Mode

As is shown in Figure 71, the WR signal of LCD connects to the WS signal of 12S. The LCD data bus width is 24
bits.

Master Slave

12S LCD
2SnO_WS_out————» WR

12SN0_Data_ Ut SD

Figure 71: LCD Master Transmitting Mode

The 12S_LCD_EN bit of register 12S_CONF2_REG needs to be set and the 12S_TX_SLAVE_MOD bit of register
12S_CONF_REG needs to be cleared, in order to configure 12S to the LCD master transmitting mode. Meanwhile,
data should be sent under the correct mode, according to the 12S_TX_CHAN_MODI2:0] bit of register
12S_CONF_CHAN_REG and the 12S_TX_FIFO_MODI2:0] bit of register 12S_FIFO_CONF_REG. The WS signal
needs to be inverted when it is routed through the GPIO Matrix. For details, please refer to the chapter about
IO_MUX and the GPIO Matrix. The 12S_LCD_TX_SDX2_EN bit and the 12S_LCD_TX_WRX2_EN bit of register
12S5_CONF2_REG should be set to the LCD master transmitting mode, so that both the data bus and WR signal
work in the appropriate mode.

Espressif Systems 306 ESP32 Technical Reference Manual V3.1

12. 125

YAV ANAWAWAWAWAWAWAN
SD[23:O]—§<EDO;>< pp. X D2 X D3 »—

Figure 72: LCD Master Transmitting Data Frame, Form 1

et aWaWaWaWaWalaWal
soi23:0) — 00X BLX D0 X D1 52X 03X 02 X03)

Figure 73: LCD Master Transmitting Data Frame, Form 2

As is shown in Figure 72 and Figure 73, the 12S_LCD_TX_WRX2_EN bit should be set to 1 and the
[2S_LCD_TX_SDX2_EN bit should be set to 0 in the data frame, form 1. Both 12S_LCD_TX_SDX2_EN bit and
12S_LCD_TX_WRX2_EN bit are set to 1 in the data frame, form 2.

12.5.2 Camera Slave Receiving Mode

ESP32 12S supports a camera slave mode for high-speed data transfer from external camera modules. As
shown in Figure 74, in this mode, 12S is set to slave receiving mode. Besides the 16-channel data signal bus
12Snl_Data_in, there are other signals, such as 12Sn_H_SYNGC, 125n_V_SYNC and 125n_H_ENABLE.

The PCLK in the Camera module connects to 12Sn_WS_in in the 12S module, as Figure 74 shows.

Master Slave

Camera VSYNC|—{12Sn_V_SYNC I2S
HSYNC —{ 12Sn_H_SYNC
HREF —{ 12Sn_H_ENABLE
PCLK |—{ 12Snl_WS _in

SD =P |2Sn|_Data_in

Figure 74: Camera Slave Receiving Mode

When 12S is in the camera slave receiving mode, and when 12Sn_H_SYNC, 12S_V_SYNC and 12S_H_REF are
held high, the master starts transmitting data, that is,

transmission_start = (I12SN_H_SYNC == 1)&&(125n_V_SYNC == 1)&&(125n_H_ENABLE == 1)

Thus, during data transmission, these three signals should be kept at a high level. For example, if the
12Sn_V_SYNC signal of a camera is at low level during data transmission, it will be inverted when routed to the
128 module. ESP32 supports signal inversion through the GPIO matrix. For details, please refer to the chapter
about I0_MUX and the GPIO Matrix.

In order to make 12S work in camera mode, the 12S_LCD_EN bit and the 12S_CAMERA_EN bit of register
12S5_CONF2_REG are set to 1, the 125_RX_SLAVE_MOD bit of register 12S_CONF_REG is set to 1, the
12S_RX_MSB_RIGHT bit and the 12S_RX_RIGHT_FIRST bit of I2S_CONF_REG are set to 0. Thus, 12S works in

Espressif Systems 307 ESP32 Technical Reference Manual V3.1

12. 125

the LCD slave receiving mode. At the same time, in order to use the correct mode to receive data, both the
12S_RX_CHAN_MODI2:0] bit of register 12S_CONF_CHAN_REG and the 12S_RX_FIFO_MODI2:0] bit of register
12S_FIFO_CONF_REG are set to 1.

12.5.3 ADC/DAC mode

In LCD mode, ESP32’s ADC and DAC can receive data. When the 12S0 module connects to the on-chip ADC,
the 12S0 module should be set to master receiving mode. Figure 75 shows the signal connection between the
1250 module and the ADC.

12S0 ADC controller
WS —»{ WS
SAR
ADC

Data [« Data

Figure 75: ADC Interface of 12S0

Firstly, the 12S_LCD_EN bit of register 12S_CONF2_REG is set to 1, and the 12S_RX_SLAVE_MOD bit of register
12S5_CONF_REG is set to 0, so that the 1250 module works in LCD master receiving mode, and the 1250 module
clock is configured such that the WS signal of 1250 outputs an appropriate frequency. Then, the
APB_CTRL_SARADC_DATA_TO_I2S bit of register APB_CTRL_APB_SARADC_CTRL_REG is set to 1. Enable
12S to receive data after configuring the relevant registers of SARADC. For details, please refer to Chapter
On-Chip Sensors and Analog Signal Processing.

12S0 DAC controller

12S_CLK [———#{ DAC_CLK
~+{DAC1

Datal- ;s DAC2

Data2---

Data[7:0] [—

Figure 76: DAC Interface of I12S

12S_CLK :'r-""._ . ,-"r ._}r_."#"'._ /—_/__)'—\ # _,."r. "".__ /—_}r_:"#"'._ . /—_:'r-"'-._ . ;'rM"._) r__:'r-‘l"._) /—_W ,

TN N
DATA_.< OXAB_ X i0x12 X i OxCD X | 0x34)—

| |
' Data2 Data3

DataO Datal
DAC1_DATA 0x12 0x34)
Datal ! Data3 !
DAC2_DATA OXAB 0xCD —
; Data0 Data2 !

Figure 77: Data Input by 12S DAC Interface

The 12S0 module should be configured to master transmitting mode when it connects to the on-chip DAC. Figure
76 shows the signal connection between the 1250 module and the DAC. The DAC’s control module regards
12S_CLK as the clock in this configuration. As shown in Figure 77, when the data bus inputs data to the DAC’s

Espressif Systems 308 ESP32 Technical Reference Manual V3.1

12. 125

control module, the latter will input right-channel data to DAC1 module and left-channel data to DAC2 module.
When using the 12S DMA module, 8 bits of data-to-be-transmitted are shifted to the left by 8 bits of
data-to-be-received into the DMA double-byte type of buffer.

The 12S_LCD_EN bit of register 12S_CONF2_REG should be set to 1, while 125_RX_SHORT_SYNC,
12S_TX_SHORT_SYNC, I12S_CONF_REG , 125_RX_MSB_SHIFT and 12S_TX_MSB_SHIFT should all be reset to
0. The 12S5_TX_SLAVE_MOD bit of register 12S_CONF_REG should be set to 0, as well, when using the DAC
mode of 12S0. Select a suitable transmit mode according to the standards of transmitting a 16-bit digital data
stream. Configure the 12S0 module clock to output a suitable frequency for the 12S_CLK and the WS of 12S.
Enable 1250 to send data after configuring the relevant DAC registers.

12.6 12S Interrupts

12.6.1 FIFO Interrupts
e |2S5_TX_HUNG_INT: Triggered when transmitting data is timed out.
e |2S_RX_HUNG_INT: Triggered when receiving data is timed out.
e [2S_TX_REMPTY_INT: Triggered when the transmit FIFO is empty.
e |2S5_TX_WFULL_INT: Triggered when the transmit FIFO is full.
e [2S_RX_REMPTY_INT: Triggered when the receive FIFO is empty.
e [2S_RX_WFULL_INT: Triggered when the receive FIFO is full.
e [2S_TX_PUT_DATA_INT: Triggered when the transmit FIFO is almost empty.

e [2S5_RX_TAKE_DATA_INT: Triggered when the receive FIFO is almost full.

12.6.2 DMA Interrupts
e |2S5_OUT_TOTAL_EOF_INT: Triggered when all transmitting linked lists are used up.
e [2S_IN_DSCR_EMPTY_INT: Triggered when there are no valid receiving linked lists left.
e [2S_OUT_DSCR_ERR_INT: Triggered when invalid rxlink descriptors are encountered.
e |2S_IN_DSCR_ERR_INT: Triggered when invalid txlink descriptors are encountered.
e [2S_OUT_EOF_INT: Triggered when rxlink has finished sending a packet.
e |2S_OUT_DONE_INT: Triggered when all transmitted and buffered data have been read.
e |2S_IN_SUC_EOF_INT: Triggered when all data have been received.

e [2S_IN_DONE_INT: Triggered when the current txlink descriptor is handled.

Espressif Systems 309 ESP32 Technical Reference Manual V3.1

12. 125

12.7 Register Summary

Name ‘ Description 12S0 1251 Acc
128 FIFO registers
Writes the data sent by 12S into
I12S_FIFO_WR_REG FIFO Ox3FF4F000 | Ox3FFED000 | WO
Stores the data that 12S receives
12S_FIFO_RD_REG Ox3FF4F004 | Ox3FFED004 | RO
from FIFO
Configuration registers
12S_CONF_REG Configuration and start/stop bits | Ox3FF4F008 | Ox3FFED008 | R/W
12S5_CONF1_REG PCM configuration register Ox3FF4FOAQ | Ox3FFEDOAO | R/W
ADC/LCD/camera configuration
12S_CONF2_REG) Ox3FF4FOA8 | Ox3FFBDOA8 | R/W
register
Signal delay and timing parame-
I12S_TIMING_REG tors Ox3FF4F01C | Ox3FFED0O1C| R/W
r
12S_FIFO_CONF_REG FIFO configuration Ox3FF4F020 | Ox3FFED020 | R/W
12S_CONF_SINGLE_DATA_REG Static channel output value Ox3FF4F028 | Ox3FFED028 | R/W
[2S_CONF_CHAN_REG Channel configuration Ox3FF4F02C | Ox3FFED02C | R/W
12S_LC_HUNG_CONF_REG Timeout detection configuration Ox3FF4F074 | Ox3FF6D074 | R/W
12S_CLKM_CONF_REG Bitclock configuration Ox3FF4FOAC | Ox3FFBDOAC| R/W
12S_SAMPLE_RATE_CONF_REG Sample rate configuration Ox3FF4FOBO | Ox3FFEDOBO | R/W
12S_PD_CONF_REG Power-down register Ox3FF4FOA4 | Ox3FFBD0OA4 | R/W
I2S_STATE_REG I2S status register Ox3FF4FOBC | Ox3FFEDOBC| RO
DMA registers
12S_LC_CONF_REG DMA configuration register Ox3FF4F060 | Ox3FFED060 | R/W
12S_RXEOF_NUM_REG Receive data count Ox3FF4F024 | Ox3FFED024 | R/W
DMA transmit linked list configu-
12S_OUT_LINK_REG , Ox3FF4F030 | Ox3FFED0O30 | R/W
ration and address
DMA receive linked list configura-
[12S_IN_LINK_REG i Ox3FF4F034 | Ox3FFED034 | R/W
tion and address
The address of transmit link de-
12S_OUT_EOF_DES_ADDR_REG] , Ox3FF4F038 | Ox3FFED038 | RO
scriptor producing EOF
The address of receive link de-
12S_IN_EOF_DES_ADDR_REG) , Ox3FF4F03C | Ox3FFEDO3C | RO
scriptor producing EOF
The address of transmit buffer
12S_OUT_EOF_BFR_DES_ADDR_REG) Ox3FF4F040 | Ox3FFED040 | RO
producing EOF
The address of current inlink de-
12S_INLINK_DSCR_REG i Ox3FF4F048 | Ox3FFED048 | RO
scriptor
The address of next inlink de-
12S_INLINK_DSCR_BFO_REG) Ox3FF4F04C | Ox3FFED04C | RO
scriptor
The address of next inlink data
12S_INLINK_DSCR_BF1_REG buff Ox3FF4F050 | Ox3FFBED050 | RO
uffer
The address of current outlink de-
12S_OUTLINK_DSCR_REG) Ox3FF4F054 | Ox3FFED054 | RO
scriptor
The address of next outlink de-
[12S_OUTLINK_DSCR_BFO_REG Ox3FF4F058 | Ox3FFED058 | RO

scriptor

Espressif Systems

310

ESP32 Technical Reference Manual V3.1

12. 125

12S_OUTLINK_DSCR_BF1_REG lszearddress of next outlink data Ox3FF4F05C | 0x3FFBD05C | RO
12S_LC_STATEO_REG DMA receive status Ox3FF4F06C | 0x3FFBD06C | RO
12S_LC_STATE1_REG DMA transmit status Ox3FF4F070 | Ox3FFED070 | RO
Pulse density (DE) modulation registers
12S_PDM_CONF_REG PDM configuration Ox3FF4F0B4 | Ox3FFEDOB4 | R/W
12S_PDM_FREQ_CONF_REG PDM frequencies Ox3FF4F0B8 | Ox3FFEDOB8 | R/W
Interrupt registers
I2S_INT_RAW_REG Raw interrupt status Ox3FF4F00C | 0x3FF6D0O0C | RO
[2S_INT_ST_REG Masked interrupt status Ox3FF4F010 | Ox3FFED0O10 | RO
I12S_INT_ENA_REG Interrupt enable bits Ox3FF4F014 | Ox3FFED014 | R/W
[2S_INT_CLR_REG Interrupt clear bits Ox3FF4F018 | Ox3FFBD0O18 | WO
Espressif Systems 311 ESP32 Technical Reference Manual V3.1

12. 125

12.8 Registers

Register 12.1: 12S_FIFO_WR_REG (0x0000)

Q/Q
\@?
&
\q/%/
E o]
‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 ‘

12S_FIFO_WR_REG Writes the data sent by 12S into FIFO. (WO)

Register 12.2: 12S_FIFO_RD_REG (0x0004)

Q\%@'
Q\Q/
&7
\q/%/
‘31 0‘
‘o 0 0 0 0 0 0 0 0 0 0 0 o‘

12S_FIFO_RD_REG Stores the data that 12S receives from FIFO. (RO)

Espressif Systems 312 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.3: 12S_CONF_REG (0x0008)

T

%
5
%
e
%
F
%
e
%
e
%
o
%
e
%
T
S

& FEEEEC T EEE T EEECEEEE
E oo [[[L[] [0]

| | |11|10|9|8|7|6
’o 0 000000 O0O0UO0 O O|O|O|O|1|1|1|1|O|O|O|O|O|O|O|0|0|0|0|0‘Reset

12

12S_SIG_LOOPBACK Enable signal loopback mode, with transmitter module and receiver module
sharing the same WS and BCK signals. (R/W)

12S_RX_MSB_RIGHT Set this to place right-channel data at the MSB in the receive FIFO. (R/W)
12S_TX_MSB_RIGHT Set this bit to place right-channel data at the MSB in the transmit FIFO. (R/W)
12S_RX_MONO Set this bit to enable receiver's mono mode in PCM standard mode. (R/W)
12S_TX_MONO Set this bit to enable transmitter’'s mono mode in PCM standard mode. (R/W)
12S_RX_SHORT_SYNC Set this bit to enable receiver in PCM standard mode. (R/W)
12S_TX_SHORT_SYNC Set this bit to enable transmitter in PCM standard mode. (R/W)
12S_RX_MSB_SHIFT Set this bit to enable receiver in Philips standard mode. (R/W)
12S_TX_MSB_SHIFT Set this bit to enable transmitter in Philips standard mode. (R/W)
12S_RX_RIGHT_FIRST Set this bit to receive right-channel data first. (R/W)
12S_TX_RIGHT_FIRST Set this bit to transmit right-channel data first. (R/W)
12S_RX_SLAVE_MOD Set this bit to enable slave receiver mode. (R/W)

12S_TX_SLAVE_MOD Set this bit to enable slave transmitter mode. (R/W)

12S_RX_START Set this bit to start receiving data. (R/W)

12S_TX_START Set this bit to start transmitting data. (R/W)

12S_RX_FIFO_RESET Set this bit to reset the receive FIFO. (R/W)

12S_TX_FIFO_RESET Set this bit to reset the transmit FIFO. (R/W)

12S_RX_RESET Set this bit to reset the receiver. (R/W)

12S_TX_RESET Set this bit to reset the transmitter. (R/W)

Espressif Systems 313 ESP32 Technical Reference Manual V3.1

12.

2S

Register 12.4: 12S_INT_RAW_REG (0x000c)

QS
SRR Q
RS » N
C§<Q€k<§v> é\/ & Qi?/v N @”&/ é&x/\/ \ep
G EREY S AT S
R KD %Q’/ E S ®>Q'<k \/Q’Qk\y/ \8
O GREL ORESESToN N L&
S SOFLIFILIT D PPN E K O
Q,Q’é e \é/o O%Q)(A \%/\%/(\-/Q:\-//C_/,(_/Q:\—/st/,(_/Q:\—/
@ PP PEPEPEEPEEPEEPEEPE

(=[]]c]

[o]efufofsfe]]s]s]s
0 00000000000 o0 ofofJoJo[oJoJoJo[o]ofo[ofofo]o[o]o]o]Reset

Espressif Systems 314

12S_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the 12S_OUT_TOTAL_EOF_INT in-
terrupt. (RO)

12S_IN_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the 12S_IN_DSCR_EMPTY_INT in-
terrupt. (RO)

12S_OUT_DSCR_ERR_INT_RAW The raw interrupt status bit for the 12S_OUT_DSCR_ERR_INT in-
terrupt. (RO)

12S_IN_DSCR_ERR_INT_RAW The raw interrupt status bit for the 12S_IN_DSCR_ERR_INT interrupt.
(RO)

12S_OUT_EOF_INT_RAW The raw interrupt status bit for the 12S_OUT_EOF_INT interrupt. (RO)
12S_OUT_DONE_INT_RAW The raw interrupt status bit for the 12S_OUT_DONE_INT interrupt. (RO)

12S_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the 12S_IN_SUC_EOF_INT interrupt.
(RO)

I2S_IN_DONE_INT_RAW The raw interrupt status bit for the 12S_IN_DONE_INT interrupt. (RO)
12S_TX_HUNG_INT_RAW The raw interrupt status bit for the 12S_TX_HUNG_INT interrupt. (RO)
12S_RX_HUNG_INT_RAW The raw interrupt status bit for the 12S_RX_HUNG_INT interrupt. (RO)
12S_TX_REMPTY_INT_RAW The raw interrupt status bit for the 1I2S_TX_REMPTY_INT interrupt. (RO)
12S_TX_WFULL_INT_RAW The raw interrupt status bit for the 12S_TX_WFULL_INT interrupt. (RO)

12S_RX_REMPTY_INT_RAW The raw interrupt status bit for the 12S_RX_REMPTY_INT interrupt.
(RO)

12S_RX_WFULL_INT_RAW The raw interrupt status bit for the 12S_RX_WFULL_INT interrupt. (RO)

12S_TX_PUT_DATA_INT_RAW The raw interrupt status bit for the 12S_TX_PUT_DATA_INT interrupt.
(RO)

12S_RX_TAKE_DATA_INT_RAW The raw interrupt status bit for the 12S_RX_TAKE_DATA_INT inter-
rupt. (RO)

ESP32 Technical Reference Manual V3.1

12. 125

Register 12.5: 12S_INT_ST_REG (0x0010)

A A A
99D G A A
ST <)
SRS E (T &8 8 SETILLESS
G R OO EAT S S
PO (SRS @ @ @0’/9\3&/
> eI eGP X WL EERO

(\\Q)
&

’ 31 17 | 16 | 15 | 14

| | | | |
]oo0ooooo0ooooo0|ooo|ooo|ooo|ooo|ooo|oo‘Reset

12S_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the 12S_OUT_TOTAL_EOF_INT
interrupt. (RO)

12S_IN_DSCR_EMPTY_INT_ST The masked interrupt status bit for the 12S_IN_DSCR_EMPTY_INT
interrupt. (RO)

12S_OUT_DSCR_ERR_INT_ST The masked interrupt status bit for the 12S_OUT_DSCR_ERR_INT
interrupt. (RO)

I2S_IN_DSCR_ERR_INT_ST The masked interrupt status bit for the 12S_IN_DSCR_ERR_INT inter-
rupt. (RO)

12S_OUT_EOF_INT_ST The masked interrupt status bit for the 12S_OUT_EOF_INT interrupt. (RO)
12S_OUT_DONE_INT_ST The masked interrupt status bit for the 12S_OUT_DONE_INT interrupt. (RO)

12S_IN_SUC_EOF_INT_ST The masked interrupt status bit for the 12S_IN_SUC_EOF_INT interrupt.
(RO)

12S_IN_DONE_INT_ST The masked interrupt status bit for the 12S_IN_DONE_INT interrupt. (RO)
12S_TX_HUNG_INT_ST The masked interrupt status bit for the 125_TX_HUNG_INT interrupt. (RO)
12S_RX_HUNG_INT_ST The masked interrupt status bit for the 12S_RX_HUNG_INT interrupt. (RO)

12S_TX_REMPTY_INT_ST The masked interrupt status bit for the 12S_TX_REMPTY_INT interrupt.
(RO)

12S_TX_WFULL_INT_ST The masked interrupt status bit for the 12S_TX_WFULL_INT interrupt. (RO)

12S_RX_REMPTY_INT_ST The masked interrupt status bit for the 12S_RX_REMPTY_INT interrupt.
(RO)

12S_RX_WFULL_INT_ST The masked interrupt status bit for the 12S_RX_WFULL_INT interrupt. (RO)

12S_TX_PUT_DATA_INT_ST The masked interrupt status bit for the 12S_TX_PUT_DATA_INT inter-
rupt. (RO)

12S_RX_TAKE_DATA_INT_ST The masked interrupt status bit for the 12S_RX_TAKE_DATA_INT inter-
rupt. (RO)

Espressif Systems 315 ESP32 Technical Reference Manual V3.1

12.

2S

Register 12.6: 12S_INT_ENA_REG (0x0014)

I K7 00'7’\
& RSO
<

%) s /
Q
X PGP PEPEPELPELPEEPELPE

17|16|15|14|13|12|11

12S_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the 12S_OUT_TOTAL_EOF_INT inter-
rupt. (R/W)

12S_IN_DSCR_EMPTY_INT_ENA The interrupt enable bit for the 12S_IN_DSCR_EMPTY_INT inter-
rupt. (R/W)

12S_OUT_DSCR_ERR_INT_ENA Theinterrupt enable bit for the 12S_OUT_DSCR_ERR_INT interrupt.
RW)

12S_IN_DSCR_ERR_INT_ENA The interrupt enable bit for the 12S_IN_DSCR_ERR_INT interrupt.
(R/W)

12S_OUT_EOF_INT_ENA The interrupt enable bit for the 125_OUT_EOF_INT interrupt. (R/W)
12S_OUT_DONE_INT_ENA The interrupt enable bit for the 12S_OUT_DONE_INT interrupt. (R/W)
12S_IN_SUC_EOF_INT_ENA The interrupt enable bit for the 12S_IN_SUC_EOF_INT interrupt. (R/W)
I2S_IN_DONE_INT_ENA The interrupt enable bit for the 12S_IN_DONE_INT interrupt. (R/W)
12S_TX_HUNG_INT_ENA The interrupt enable bit for the 12S_TX_HUNG_INT interrupt. (R/W)
12S_RX_HUNG_INT_ENA The interrupt enable bit for the 12S_RX_HUNG_INT interrupt. (R/W)
12S_TX_REMPTY_INT_ENA The interrupt enable bit for the 12S_TX_REMPTY_INT interrupt. (R/W)
12S_TX_WFULL_INT_ENA The interrupt enable bit for the 12S_TX_WFULL_INT interrupt. (R/W)
12S_RX_REMPTY_INT_ENA The interrupt enable bit for the 12S_RX_REMPTY_INT interrupt. (R/W)
12S_RX_WFULL_INT_ENA The interrupt enable bit for the 12S_RX_WFULL_INT interrupt. (R/W)

12S_TX_PUT_DATA_INT_ENA The interrupt enable bit for the 12S_TX_PUT_DATA_INT interrupt.
(R/W)

12S_RX_TAKE_DATA _INT_ENA The interrupt enable bit for the 125_RX_TAKE_DATA_INT interrupt.
(R'W)

Espressif Systems 316 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.7: 12S_INT_CLR_REG (0x0018)

’31 17|16 15 14|l3 12 11|10 9 8|7 6 5|4 3 2|l 0‘

’ooooooooooooooo|ooo

12S_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the 12S_OUT_TOTAL_EOF_INT interrupt. (WO)
12S_IN_DSCR_EMPTY_INT_CLR Set this bit to clear the I12S_IN_DSCR_EMPTY_INT interrupt. (WO)
12S_OUT_DSCR_ERR_INT_CLR Set this bit to clear the 12S_OUT_DSCR_ERR_INT interrupt. (WO)
12S_IN_DSCR_ERR_INT_CLR Set this bit to clear the 12S_IN_DSCR_ERR_INT interrupt. (WO)
12S_OUT_EOF_INT_CLR Set this bit to clear the 12S_OUT_EOF_INT interrupt. (WO)
12S_OUT_DONE_INT_CLR Set this bit to clear the 12S_OUT_DONE_INT interrupt. (WO)
12S_IN_SUC_EOF_INT_CLR Set this bit to clear the I12S_IN_SUC_EOF_INT interrupt. (WO)
I12S_IN_DONE_INT_CLR Set this bit to clear the I2S_IN_DONE_INT interrupt. (WO)
12S_TX_HUNG_INT_CLR Set this bit to clear the 12S_TX_HUNG_INT interrupt. (WO)
12S_RX_HUNG_INT_CLR Set this bit to clear the 12S_RX_HUNG_INT interrupt. (WO)
12S_TX_REMPTY_INT_CLR Set this bit to clear the 12S_TX_REMPTY_INT interrupt. (WO)
12S_TX_WFULL_INT_CLR Set this bit to clear the 12S_TX_WFULL_INT interrupt. (WO)
12S_RX_REMPTY_INT_CLR Set this bit to clear the 12S_RX_REMPTY_INT interrupt. (WO)
12S_RX_WFULL_INT_CLR Set this bit to clear the 12S_RX_WFULL_INT interrupt. (WO)
12S_TX_PUT_DATA_INT_CLR Set this bit to clear the 12S_TX_PUT_DATA_INT interrupt. (WO)

12S_RX_TAKE_DATA_INT_CLR Set this bit to clear the 12S_RX_TAKE_DATA_INT interrupt. (WO)

Espressif Systems 317 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.8: 12S_TIMING_REG (0x001c)

S K K
2 R S Ky 4
S <</9Q/§§ ey ,\& & $ /\9&@9 o N ~ &
& %@/ $707 SO N O RO A R
- S8 & o © S R I R
@) S O o Q7 o O O/ & O e
S SRS 2 > S Q 9 3 g N &
& R A AR R R MR s
@ NN S SR I SR SN SR .

’31 25|24|23 22|21|20|19 18|17 16|15 14|13 12|11 10|9 8|7 6|5 4|3 2|1 O‘

]o 0 0 0 0 0 o|o|o o|o|o|o o|o o|o 0|0 o|o o|o 0|0 o|o o|o o|0 O‘Reset

12S_TX_BCK_IN_INV Set this bit to invert the BCK signal into the slave transmitter. (R/W)
12S_DATA_ENABLE_DELAY Number of delay cycles for data valid flag. (R/W)

12S_RX_DSYNC_SW Set this bit to synchronize signals into the receiver in double sync method.
(R/W)

12S_TX_DSYNC_SW Set this bit to synchronize signals into the transmitter in double sync method.
(R/W)

12S_RX_BCK_OUT_DELAY Number of delay cycles for BCK signal out of the receiver. (R/W)
12S_RX_WS_OUT_DELAY Number of delay cycles for WS signal out of the receiver. (R/W)
12S_TX_SD_OUT_DELAY Number of delay cycles for SD signal out of the transmitter. (R/W)
12S_TX_WS_OUT_DELAY Number of delay cycles for WS signal out of the transmitter. (R/W)
12S_TX_BCK_OUT_DELAY Number of delay cycles for BCK signal out of the transmitter. (R/W)
12S_RX_SD_IN_DELAY Number of delay cycles for SD signal into the receiver. (R/W)
12S_RX_WS_IN_DELAY Number of delay cycles for WS signal into the receiver. (R/W)
12S_RX_BCK_IN_DELAY Number of delay cycles for BCK signal into the receiver. (R/W)
12S_TX_WS_IN_DELAY Number of delay cycles for WS signal into the transmitter. (R/W)

12S_TX_BCK_IN_DELAY Number of delay cycles for BCK signal into the transmitter. (R/W)

Espressif Systems 318 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.9: 12S_FIFO_CONF_REG (0x0020)

S
o@% 2
S& @ @
s
QOQQOQ/ @OQ P N §\5 /0
L7 &L Q7 8 v &
S N X < X OQ\ Q?‘
Q)%Q)&\\Q) c_);\;s\-/ O_)/+/ %//C\-/ %9% O_;/(\-/ %gj‘/
N AN % % £\ \ %
’31 21|20|19|18 16|15 13|12|11 6|5 O‘
]ooooooooooo|o|o|o 0 o|o 0 o|w| 32 | 32 ‘Reset

12S_RX_FIFO_MOD_FORCE_EN The bit should always be set to 1. (R/W)
12S_TX_FIFO_MOD_FORCE_EN The bit should always be set to 1. (R/W)
12S_RX_FIFO_MOD Receive FIFO mode configuration bit. (R/W)
12S_TX_FIFO_MOD Transmit FIFO mode configuration bit. (R/W)
12S_DSCR_EN Set this bit to enable 12S DMA mode. (R/W)
12S_TX_DATA_NUM Threshold of data length in the transmit FIFO. (R/W)

12S_RX_DATA_NUM Threshold of data length in the receive FIFO. (R/W)

Register 12.10: 12S_RXEOF_NUM_REG (0x0024)

E]

’ 64 ‘ Reset

12S_RXEOF_NUM_REG The length of the data to be received. It will trigger 12S_IN_SUC_EOF_INT.
(R/W)

Register 12.11: 12S_CONF_SINGLE_DATA_REG (0x0028)

E]

’ 0 ‘ Reset

12S_CONF_SINGLE_DATA_REG The right channel or the left channel outputs constant values stored
in this register according to TX_CHAN_MOD and 12S_TX_MSB_RIGHT. (R/W)

Espressif Systems 319 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.12: 12S_CONF_CHAN_REG (0x002c)

X X
A
%Q’Q\Q) %gt\‘/ %S\-/
N & %

12S_RX_CHAN_MOD 2S receiver channel mode configuration bits. Please refer to Section 12.4.5
for further details. (R/W)

12S_TX_CHAN_MOD 12S transmitter channel mode configuration bits. Please refer to Section 12.4.4
for further details. (R/W)

Register 12.13: 12S_OUT_LINK_REG (0x0030)

N
¢
) «Qeiééi;@{—/) /\\>§h/
Q &
@ 3%%9\\‘;90 @5@6 \‘L%Q\)
S e]
[o]oJoJoJo 0 0o 0 0o o o o 0x000000 |Reset

12S_OUTLINK_RESTART Set this bit to restart outlink descriptor. (R/W)
12S_OUTLINK_START Set this bit to start outlink descriptor. (R/W)
12S_OUTLINK_STOP Set this bit to stop outlink descriptor. (R/W)

12S_OUTLINK_ADDR The address of first outlink descriptor. (R/W)

Register 12.14: 12S_IN_LINK_REG (0x0034)

«?és’\ Q Q@
O &
NGSH > Sl
5SSV s s
& FE P’ & N
’31|30|29|28|27 20|19 O‘
] 0 | 0 | 0 | 0 |0 0 00 0 0 O 0| 0x000000 ‘Reset

12S_INLINK_RESTART Set this bit to restart inlink descriptor. (R/W)
12S_INLINK_START Set this bit to start inlink descriptor. (R/W)
12S_INLINK_STOP Set this bit to stop inlink descriptor. (R/W)

12S_INLINK_ADDR The address of first inlink descriptor. (R/W)

Espressif Systems 320 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.15: 12S_OUT_EOF_DES_ADDR_REG (0x0038)

‘ 0x000000000 ‘ Reset

12S_OUT_EOF_DES_ADDR_REG The address of outlink descriptor that produces EOF. (RO)

Register 12.16: 12S_IN_EOF_DES_ADDR_REG (0x003c)

‘31 O‘

‘ 0x000000000 ‘ Reset

12S_IN_EOF_DES_ADDR_REG The address of inlink descriptor that produces EOF. (RO)

Register 12.17: 12S_OUT_EOF_BFR_DES_ADDR_REG (0x0040)

‘31 O‘

‘ 0x000000000 ‘ Reset

12S_OUT_EOF_BFR_DES_ADDR_REG The address of the buffer corresponding to the outlink de-
scriptor that produces EOF. (RO)

Register 12.18: 12S_INLINK_DSCR_REG (0x0048)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

12S_INLINK_DSCR_REG The address of current inlink descriptor. (RO)

Register 12.19: 12S_INLINK_DSCR_BFO0_REG (0x004c)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

12S_INLINK_DSCR_BFO0_REG The address of next inlink descriptor. (RO)

Register 12.20: 12S_INLINK_DSCR_BF1_REG (0x0050)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

12S_INLINK_DSCR_BF1_REG The address of next inlink data buffer. (RO)

Espressif Systems 321 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.21: 12S_OUTLINK_DSCR_REG (0x0054)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

12S_OUTLINK_DSCR_REG The address of current outlink descriptor. (RO)

Register 12.22: 12S_OUTLINK_DSCR_BFO0_REG (0x0058)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

12S_OUTLINK_DSCR_BFO0_REG The address of next outlink descriptor. (RO)

Register 12.23: 12S_OUTLINK_DSCR_BF1_REG (0x005c)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

12S_OUTLINK_DSCR_BF1_REG The address of next outlink data buffer. (RO)

Espressif Systems 322 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.24: 12S_LC_CONF_REG (0x0060)

12S_CHECK_OWNER Set this bit to check the owner bit by hardware. (R/W)

12S_OUT_DATA_BURST_EN Transmitter data transfer mode configuration bit. (R/W)
1: Transmit data in burst mode;
0: Transmit data in byte mode.

12S_INDSCR_BURST_EN DMA inlink descriptor transfer mode configuration bit. (R/W)
1: Transfer inlink descriptor in burst mode;
0: Transfer inlink descriptor in byte mode.

12S_OUTDSCR_BURST_EN DMA outlink descriptor transfer mode configuration bit. (R/W)
1. Transfer outlink descriptor in burst mode;
0: Transfer outlink descriptor in byte mode.

12S_OUT_EOF_MODE DMA 12S_OUT_EOF_INT generation mode. (R/W)
1: When DMA has popped all data from the FIFO;
0: When AHB has pushed all data to the FIFO.

12S_OUT_AUTO_WRBACK Set this bit to enable automatic outlink-writeback when all the data in tx
buffer has been transmitted. (R/W)

12S_OUT_LOOP_TEST Set this bit to loop test outlink. (R/W)
12S_IN_LOOP_TEST Set this bit to loop test inlink. (R/W)

12S_AHBM_RST Set this bit to reset AHB interface of DMA. (R/W)
12S_AHBM_FIFO_RST Set this bit to reset AHB interface cmdFIFO of DMA. (R/W)
12S_OUT_RST Set this bit to reset out DMA FSM. (R/W)

I2S_IN_RST Set this bit to reset in DMA FSM. (R/W)

Register 12.25: 12S_LC_STATEO_REG (0x006c)

’ 0x000000000 ‘ Reset

12S_LC_STATEO_REG Receiver DMA channel status register. (RO)

Espressif Systems 323 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.26: 12S_LC_STATE1_REG (0x0070)

’ 0x000000000 ‘ Reset

12S_LC_STATE1_REG Transmitter DMA channel status register. (RO)

Register 12.27: 12S_LC_HUNG_CONF_REG (0x0074)

i %\%\é
& K &
& & &
NN N
AN N AN
& <<O/ {(7 <<O/
3 AN 07
Q@Q‘C\ o oY o
N 5 % \Z
’31 12|11|10 8|7 O‘
]o 00000 OOOOTO OGO OGO OGO OGO OGO OT OO0 O o|1|0 0 0| 0x010 ‘Reset

12S_LC_FIFO_TIMEOUT_ENA The enable bit for FIFO timeout. (R/W)

12S_LC_FIFO_TIMEOUT SHIFT The bits are used to set the tick counter threshold. The tick counter
is reset when the counter value >= 88000/212s-lc-fifo_timeout_shift - (R /)

12S_LC_FIFO_TIMEOUT When the value of FIFO hung counter is equal to this bit value, sending
data-timeout interrupt or receiving data-timeout interrupt will be triggered. (R/W)

Espressif Systems 324 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.28: 12S_CONF1_REG (0x00a0)

a &
@Q)ﬁv Qer & Oer
S %/\OQQE) ’ QCFM > Qc?\/
@6® d/Q—\\-/ Q\/ ,d_/ '(\‘/
@ N
’31 9|S|7|6 4|3|2 O‘
]ooooooooooooooooooooooo|o|1| 0x0 |1| ox1 ‘Reset

12S_TX_STOP_EN Set this bit and the transmitter will stop transmitting BCK signal and WS signal
when tx FIFO is empty. (R/W)

12S_RX_PCM_BYPASS Set this bit to bypass the Compress/Decompress module for the received
data. (R/W)

12S_RX_PCM_CONF Compress/Decompress module configuration bit. (R/W)
0: Decompress received data;
1: Compress received data.

12S_TX_PCM_BYPASS Set this bit to bypass the Compress/Decompress module for the transmitted
data. (R/W)

12S_TX_PCM_CONF Compress/Decompress module configuration bit. (R/W)
0: Decompress transmitted data;
1: Compress transmitted data.

Register 12.29: 12S_PD_CONF_REG (0x00a4)

O
o
oYes
3\) &03 y
Q}@b Q,@Q}QS\@Q« &
& & & PP’
E Jofa]e]o]
]oooooooooooooooooooooooooooo|1|o|1|o‘Reset

12S_FIFO_FORCE_PU Force FIFO power-up. (R/W)

12S_FIFO_FORCE_PD Force FIFO power-down. (R/W)

Espressif Systems 325 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.30: 12S_CONF2_REG (0x00a8)

a N
NP S
&3/%@ o@\@@&
?\Q;(/é /(\“/%d/@/
%)
& SL (& L
& FEPE & EEF
[s[7[s[s]s s[2[1]0]
]oooooooooooooooooooooooo|o|0|1|0 o|o|o|o‘Reset

12S_INTER_VALID_EN Set this bit to enable camera’s internal validation. (R/W)
12S_EXT_ADC_START_EN Set this bit to enable the start of external ADC . (R/W)

12S_LCD_EN Set this bit to enable LCD mode. (R/W)

12S_LCD_TX_SDX2_EN Set this bit to duplicate data pairs (Data Frame, Form 2) in LCD mode. (R/W)
12S_LCD_TX_WRX2_EN One datum will be written twice in LCD mode. (R/W)

12S_CAMERA_EN Set this bit to enable camera mode. (R/W)

Register 12.31: 12S_CLKM_CONF_REG (0x00ac)

Q
N
e 57
5 oS o o
N G N\ N\ \
’31 22|21|20|19 14|13 8|7 O‘
]oooooooooooooo|o|o| 0x00 | 0x00 | 4 ‘Reset

12S_CLKA_ENA Set this bit to enable clk_apll. (R/W)
12S_CLKM_DIV_A Fractional clock divider’s denominator value. (R/W)
12S_CLKM_DIV_B Fractional clock divider’s numerator value. (R/W)

12S_CLKM_DIV_NUM 12S clock divider’s integral value. (R/W)

Espressif Systems 326 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.32: 12S_SAMPLE_RATE_CONF_REG (0x00b0)

N\ N\
O
> & O Q >
&7 S/ {.9 %9
5 3 & & &
Q)(AQ) Q:\— ’C\‘/ Q:\—/ ’C\‘/
&Z)% \q/%/ \q/%/ \q/%/ \q/%/
’31 24|23 18|17 12|11 6|5 O‘
[0 0 0o 0 0 0 0 0 16 [16 [6 | 6 |Reset

12S_RX_BITS_MOD Set the bits to configure the bit length of 12S receiver channel. (R/W)

12S_TX_BITS_MOD Set the bits to configure the bit length of 12S transmitter channel. (R/W)

12S_RX_BCK_DIV_NUM Bit clock configuration bit in receiver mode. (R/W)

12S_TX_BCK_DIV_NUM Bit clock configuration bit in transmitter mode. (R/W)

Espressif Systems

327

ESP32 Technical Reference Manual V3.1

12. 125

Register 12.33: 12S_PDM_CONF_REG (0x00b4)

¢
& &
o, 0@ £ & ¢ T o
G5 & F S & (NS
4Q ?9 \e/ & [%9) e} §/®/
L F & g0 8 IS SAS XS
7 7 ; 7 O' 4
SN & N © S L
) < S < W
Q)éQ) c_/ el ,(_/ /<\~/ 'Q\‘/ c_/ Q)GQ) ,d_/ Q QO Q-\\-/d/
\\Q)fo Qf‘)/\‘],%/ Q/@/ \(1/%/ Q/%./ qg)/ iéo \Q,%/ \(qu?/\q,o_,/\(f‘)/
’31 26|25|24|23 22|21 20|19 18|17 16|15 8|7 4|3|2|1|0‘
[o 0o 0o o o ofof1]od Joxd [oxd [odt[o oo o0 0 o0 of o0 [1[1]0]0]Reset

12S_TX_PDM_HP_BYPASS Set this bit to bypass the transmitter’'s PDM HP filter. (R/W)

12S_RX_PDM_SINC_DSR_16_EN PDM downsampling rate for filter group 1 in receiver mode. (R/W)
1: downsampling rate = 128;
0: downsampling rate = 64.

12S_TX_PDM_SIGMADELTA_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)
0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

12S_TX_PDM_SINC_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)
0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

12S_TX_PDM_LP_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)
0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

12S_TX_PDM_HP_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)
0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

12S_TX_PDM_SINC_OSR2 Upsampling rate = 64xi2s_tx_pdm_sinc_osr2 (R/W)
12S_PDM2PCM_CONV_EN Set this bit to enable PDM-to-PCM converter. (R/W)
12S_PCM2PDM_CONV_EN Set this bit to enable PCM-to-PDM converter. (R/W)
12S_RX_PDM_EN Set this bit to enable receiver’s PDM mode. (R/W)

12S_TX_PDM_EN Set this bit to enable transmitter's PDM mode. (R/W)

Register 12.34: 12S_PDM_FREQ_CONF_REG (0x00b8)

K N
5 & £
Q)Q)Q)(A (%4 S/
N\ \ %
’ 31 20 | 19 10 | 9 0 ‘
]o 00 000 O0O0UO OO0 O 0| 960 | 441 ‘Reset

12S_TX_PDM_FP PCM-to-PDM converter's PDM frequency parameter. (R/W)

12S_TX_PDM_FS PCM-to-PDM converter’'s PCM frequency parameter. (R/W)

Espressif Systems 328 ESP32 Technical Reference Manual V3.1

12. 125

Register 12.35: 12S_STATE_REG (0x00bc)

ok
@VOQ?O
S
K
> S
Q&
Q?Q)é %gt\;f\;/d‘/
N NN
E el o]
]o 0 0 0 0 0 0 0 0 0 0 o|o|o|1‘Reset

12S_RX_FIFO_RESET_BACK This bit is used to confirm if the Rx FIFO reset is done. 1: reset is not
ready; O: reset is ready. (RO)

12S_TX_FIFO_RESET_BACK This bit is used to confirm if the Tx FIFO reset is done. 1: reset is not
ready; O: reset is ready. (RO)

12S_TX_IDLE The status bit of the transmitter. 1: the transmitter is idle; O: the transmitter is busy.
(RO)

Espressif Systems 329 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

13. UART Controllers

13.1 Overview

Embedded applications often require a simple method of exchanging data between devices that need minimal
system resources. The Universal Asynchronous Receiver/Transmitter (UART) is one such standard that can
realize a flexible full-duplex data exchange among different devices. The three UART controllers available on a
chip are compatible with UART-enabled devices from various manufacturers. The UART can also carry out an
IrDA (Infrared Data Exchange), or function as an RS-485 modem.

All UART controllers integrated in the ESP32 feature an identical set of registers for ease of programming and
flexibility. In this documentation, these controllers are referred to as UARTH, where n =0, 1, and 2, referring to
UARTO, UART1, and UART2, respectively.

13.2 UART Features

The UART modules have the following main features:

® Programmable baud rate

1024 x 8-bit RAM shared by three UART transmit-FIFOs and receive-FIFOs
e Supports input baud rate self-check

e Supports 5/6/7/8 bits of data length

e Supports 1/1.5/2/3/4 STOP bits

e Supports parity bit

e Supports RS485 Protocol

e Supports IrDA Protocol

e Supports DMA to communicate data in high speed

e Supports UART wake-up

e Supports both software and hardware flow control

13.83 Functional Description

13.3.1 Introduction

UART is a character-oriented data link that can be used to achieve communication between two devices. The
asynchronous mode of transmission means that it is not necessary to add clocking information to the data being
sent. This, in turn, requires that the data rate, STOP bits, parity, etc., be identical at the transmitting and receiving
end for the devices to communicate successfully.

A typical UART frame begins with a START bit, followed by a “character” and an optional parity bit for error
detection, and it ends with a STOP condition. The UART controllers available on the ESP32 provide hardware
support for multiple lengths of data and STOP bits. In addition, the controllers support both software and
hardware flow control, as well as DMA, for seamless high-speed data transfer. This allows the developer to
employ multiple UART ports in the system with minimal software overhead.

Espressif Systems 330 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

13.3.2 UART Architecture

DMA UARTN

apb_wr

— *"|Tx_FIFO T
apb_wdata fifo_rd <—,—> T
EE fiifo_rdata Tx_FIFO_Ctrl HW_Flow_Ctrl
s

ctsn

Tx_FSM
Clock CLK
UART_TICK_ALWAYS_ON
APBCLK |
'
REF_TICK _ |1
txd_out
CLK out
| sw.riowcm
fifo_wr Rx_FSM UART_LOOPBACK
apb_rd fifo-wdatd Ry FIFQ_Cirl
I — - - UART_RXD_INV |
apb_rdata |RX_FIFO Start_Detect
.

E e

Baudrate_Detect

wake_up
Wakeup_Ctrl

Figure 78: UART Basic Structure

Figure 78 shows the basic block diagram of the UART controller. The UART block can derive its clock from two
sources: the 80-MHz APB_CLK, or the reference clock REF_TICK (please refer to Chapter Reset and Clock for
more details). These two clock sources can be selected by configuring UART_TICK_REF_ALWAYS_ON.

Then, a divider in the clock path divides the selected clock source to generate clock signals that drive the UART
module. UART_CLKDIV_REG contains the clock divider value in two parts — UART_CLKDIV (integral part) and
UART_CLKDIV_FRAG (decimal part).

The UART controller can be further broken down into two functional blocks — the transmit block and the receive
block.

The transmit block contains a transmit-FIFO buffer, which buffers data awaiting to be transmitted. Software can
write Tx_FIFO via APB, and transmit data into Tx_FIFO via DMA. Tx_FIFO_Ctrl is used to control read- and
write-access to the Tx_FIFO. When Tx_FIFO is not null, Tx_FSM reads data via Tx_FIFO_Ctrl, and transmits data
out according to the set frame format. The outgoing bit stream can be inverted by appropriately configuring the
register UART_TXD_INV.

The receive-block contains a receive-FIFO buffer, which buffers incoming data awaiting to be processed. The
input bit stream, rxd_in, is fed to the UART controller. Negation of the input stream can be controlled by
configuring the UART_RXD_INV register. Baudrate_Detect measures the baud rate of the input signal by
measuring the minimum pulse width of the input bit stream. Start_Detect is used to detect a START bit in a frame
of incoming data. After detecting the START bit, RX_FSM stores data retrieved from the received frame into
Rx_FIFO through Rx_FIFO_Ctrl.

Software can read data in the Rx_FIFO through the APB. In order to free the CPU from engaging in data transfer
operations, the DMA can be configured for sending or receiving data.

HW_Flow_Ctrl is able to control the data flow of rxd_in and txd_out through standard UART RTS and CTS flow
control signals (rtsn_out and ctsn_in). SW_Flow_Citrl controls the data flow by inserting special characters in the
incoming and outgoing data flow. When UART is in Light-sleep mode (refer to Chapter Low-Power
Management), Wakeup_Ctrl will start counting pulses in rxd_in. If the number of pulses is greater than
UART_ACTIVE_THRESHOLD, a wake_up signal will be generated and sent to RTC. RTC will then wake up the

Espressif Systems 331 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

UART controller.

13.3.3 UART RAM

RAM

offset:0
UARTO Tx_FIFO block

offset:128

UART1 Tx_FIFO
offset:256

UART2 Tx_FIFO
offset:384

offset:512

UARTO Rx_FIFO
offset:640

UART1 Rx_FIFO
offset:768

UART2 Rx_FIFO

offset:896

Figure 79: UART shared RAM

Three UART controllers share a 1024 x 8-bit RAM space. As illustrated in Figure 79, RAM is allocated in different
blocks. One block holds 128 x 8-bit data. Figure 79 illustrates the default RAM allocated to Tx_FIFO and
Rx_FIFO of the three UART controllers. Tx_FIFO of UART/ can be extended by setting UART_TX_SIZE, while
Rx_FIFO of UARTn can be extended by setting UARTn_RX_SIZE.

NOTICE: Extending the FIFO space of a UART controller may take up the FIFO space of another UART
controller.

If none of the UART controllers is active, setting UART_MEM_PD, UART1_MEM_PD, and UART2_MEM_PD can
prompt the RAM to enter low-power mode.

In UARTO, bit UART_TXFIFO_RST and bit UART_RXFIFO_RST can be set to reset Tx_FIFO or Rx_FIFO,
respectively. In UARTT, bit UART1_TXFIFO_RST and bit UART1_RXFIFO_RST can be set to reset Tx_FIFO or
Rx_FIFO, respectively.

Note:

UART2 doesn’t have any register to reset Tx_FIFO or Rx_FIFO, and the UART1_TXFIFO_RST and UART1_RXFIFO_RST
in UART1 may impact the functioning of UART2. Therefore, these 2 registers in UART1 should only be used when the
Tx_FIFO and Rx_FIFO in UART2 do not have any data.

13.3.4 Baud Rate Detection

Setting UART_AUTOBAUD_EN for a UART controller will enable the baud rate detection function. The
Baudrate_Detect block shown in Figure 78 can filter glitches with a pulse width lower than
UART_GLITCH_FILT.

In order to use the baud rate detection feature, some random data should be sent to the receiver before starting

Espressif Systems 332 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

the UART communication stream. This is required so that the baud rate can be determined based on the pulse
width. UART_LOWPULSE_MIN_CNT stores minimum low-pulse width, UART_HIGHPULSE_MIN_CNT stores
minimum high-pulse width. By reading these two registers, software can calculate the baud rate of the
transmitter.

13.3.5 UART Data Frame

Figure 80 shows the basic data frame structure. A data frame starts with a START condition and ends with a
STOP condition. The START condition requires 1 bit and the STOP condition can be realized using
1/1.5/2/3/4-bit widths (as set by UART_BIT_NUM, UART_DL1_EN, and UAR_DLO_EN). The START is low level,
while the STOP is high level.

t
START | BITO | BIT1 | BIT2 | BITn | Parity | STOP |gTagr
Gate0 | datal | date2 | .. | datan | O 0 Gata0 | datal | date2 | .. | datan | O 0
-
brk_num UART_TX_IDLE_NUM brk_num

Figure 80: UART Data Frame Structure

The length of a character (BITO to BITn) can comprise 5 to 8 bits and can be configured by UART_BIT_NUM.
When UART_PARITY_EN is set, the UART controller hardware will add the appropriate parity bit after the data.
UART_PARITY is used to select odd parity or even parity. If the receiver detects an error in the input character,
interrupt UART_PARITY_ERR_INT will be generated. If the receiver detects an error in the frame format, interrupt
UART_FRM_ERR_INT will be generated.

Interrupt UART_TX_DONE_INT will be generated when all data in Tx_FIFO have been transmitted. When
UART_TXD_BRK is set, the transmitter sends several NULL characters after the process of sending data is
completed. The number of NULL characters can be configured by UART_TX_BRK_NUM. After the transmitter
finishes sending all NULL characters, interrupt UART_TX_BRK_DONE_INT will be generated. The minimum
interval between data frames can be configured with UART_TX_IDLE_NUM. If the idle time of a data frame is
equal to, or larger than, the configured value of register UART_TX_IDLE_NUM, interrupt
UART_TX_BRK_IDLE_DONE_INT will be generated.

UART_PRE_IDLE_NUM UART_RX_GAP_TOUT UART_POST_IDLE_NUM
-
- > AT_CMD AT_CMD AT_CMD | .
data _CHAR _CHAR CHAR | 7| data

UART_CHAR_NUM

Figure 81: AT_CMD Character Format

Figure 81 shows a special AT_CMD character format. If the receiver constantly receives UART_AT_CMD_CHAR
characters and these characters satisfy the following conditions, interrupt UART_AT_CMD_CHAR_DET_INT will
be generated.

e Between the first UART_AT_CMD_CHAR and the last non-UART_AT_CMD_CHAR, there are at least
UART_PER_IDLE_NUM APB clock cycles.

e Between every UART_AT_CMD_CHAR character there are at least UART_RX_GAP_TOUT APB clock
cycles.

Espressif Systems 333 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

e The number of received UART_AT_CMD_CHAR characters must be equal to, or greater than,
UART_CHAR_NUM.

e Between the last UART_AT_CMD_CHAR character received and the next non-UART_AT_CMD_CHAR,
there are at least UART_POST_IDLE_NUM APB clock cycles.

13.3.6 Flow Control

UART controller supports both hardware and software flow control. Hardware flow control regulates data flow
through input signal dsrn_in and output signal rtsn_out. Software flow control regulates data flow by inserting
special characters in the flow of sent data and by detecting special characters in the flow of received data.

13.3.6.1 Hardware Flow Control

Hardware Flow Control

UART_RX_FLOW_EN

UART_SW_RTS

rtsn_out

\

rx_fifo_cnt | Comparator

UART_RTS_INV Q%
=

UART_LOOPBACK

ctsn_in
s> !

UART_CTS_INV

UART_SW_DTR
AR e o dtrn_out

UART_DTR_INV @
—==

-

UART_LOOPBACK

et
Bl

1 dsrn_in
¥ g

N TR e Y T VA
0 UART_DSR_INV

Figure 82: Hardware Flow Control

Figure 82 illustrates how the UART hardware flow control works. In hardware flow control, a high state of the
output signal rtsn_out signifies that a data transmission is requested, while a low state of the same signal notifies
the counterpart to stop data transmission until rtsn_out is pulled high again. There are two ways for a transmitter
to realize hardware flow control:

e UART_RX_FLOW_ENis 0: The level of rtsn_out can be changed by configuring UART_SW_RTS.

e UART_RX_FLOW_ENis 1: If data in Rx_FIFO is greater than UART_RXFIFO_FULL_THRHD, the level of
rtsn_out will be lowered.

If the UART controller detects an edge on ctsn_in, it will generate interrupt UART_CTS_CHG_INT and will stop
transmitting data, once the current data transmission is completed.

The high level of the output signal dtrn_out signifies that the transmitter has finished data preparation. UART
controller will generate interrupt UART_DSR_CHG_INT, after it detects an edge on the input signal dsrn_in. After

Espressif Systems 334 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

the software detects the above-mentioned interrupt, the input signal level of dsrn_in can be figured out by
reading UART_DSRN. The software then decides whether it is able to receive data at that time or not.

Setting UART_LOOPBACK will enable the UART loopback detection function. In this mode, the output signal
txd_out of UART is connected to its input signal rxd_in, rtsn_out is connected to ctsn_in, and dtrn_out is
connected to dsrn_out. If the data transmitted corresponds to the data received, UART is able to transmit and
receive data normally.

13.3.6.2 Software Flow Control

Software can force the transmitter to stop transmitting data by setting UART_FORCE_XOFF, as well as force the
transmitter to continue sending data by setting UART_FORCE_XON.

UART can also control the software flow by transmitting special characters. Setting UART_SW_FLOW_CON_EN
will enable the software flow control function. If the number of data bytes that UART has received exceeds that of
the UART_XOFF threshold, the UART controller can send UART_XOFF_CHAR to instruct its counterpart to stop
data transmission.

When UART_SW_FLOW_CON_EN is 1, software can send flow control characters at any time. When
UART_SEND_XOFF is set, the transmitter will insert a UART_XOFF_CHAR and send it after the current data
transmission is completed. When UART_SEND_XON is set, the transmitter will insert a UART_XON_CHAR and
send it after the current data transmission is completed.

13.3.7 UART DMA

For information on the UART DMA, please refer to Chapter DMA Controller.

13.3.8 UART Interrupts
e UART_AT_CMD_CHAR_DET_INT: Triggered when the receiver detects the configured at_cmd char.

e UART_RS485_CLASH_INT: Triggered when a collision is detected between transmitter and receiver in
RS-485 mode.

e UART_RS485_FRM_ERR_INT: Triggered when a data frame error is detected in RS-485.
e UART_RS485_PARITY_ERR_INT: Triggered when a parity error is detected in RS-485 mode.
e UART_TX_DONE_INT: Triggered when the transmitter has sent out all FIFO data.

e UART_TX_BRK_IDLE_DONE_INT: Triggered when the transmitter’s idle state has been kept to a minimum
after sending the last data.

e UART_TX_BRK_DONE_INT: Triggered when the transmitter completes sending NULL characters, after all
data in transmit-FIFO are sent.

e UART_GLITCH_DET_INT: Triggered when the receiver detects a START bit.
e UART_SW_XOFF_INT: Triggered, if the receiver gets an Xon char when uart_sw_flow_con_en is set to 1.
e UART_SW_XON_INT: Triggered, if the receiver gets an Xoff char when uart_sw_flow_con_en is set to 1.

e UART_RXFIFO_TOUT_INT: Triggered when the receiver takes more time than rx_tout_thrhd to receive a
byte.

Espressif Systems 335 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

UART_BRK_DET_INT: Triggered when the receiver detects a O level after the STOP bit.

e UART_CTS_CHG_INT: Triggered when the receiver detects an edge change of the CTSn signal.
e UART_DSR_CHG_INT: Triggered when the receiver detects an edge change of the DSRn signal.
e UART_RXFIFO_OVF_INT: Triggered when the receiver gets more data than the FIFO can store.

e UART_FRM_ERR_INT: Triggered when the receiver detects a data frame error .

e UART_PARITY_ERR_INT: Triggered when the receiver detects a parity error in the data.

e UART_TXFIFO_EMPTY_INT: Triggered when the amount of data in the transmit-FIFO is less than what
tx_mem_cnttxfifo_cnt specifies.

e UART_RXFIFO_FULL_INT: Triggered when the receiver gets more data than what (rx_flow_thrhd_h3,
rx_flow_thrhd) specifies.

13.3.9 UCHI Interrupts

e UHCI_SEND_A_REG_Q_INT: When using the always_send registers to send a series of short packets, this
is triggered when DMA has sent a short packet.

e UHCI_SEND_S_REG_Q_INT: When using the single_send registers to send a series of short packets, this is
triggered when DMA has sent a short packet.

e UHCI_OUT_TOTAL_EOF_INT: Triggered when all data have been sent.

e UHCI_OUTLINK_EOF_ERR_INT: Triggered when there are some errors in EOF in the outlink descriptor.
e UHCI_IN_DSCR_EMPTY_INT: Triggered when there are not enough inlinks for DMA.

e UHCI_OUT_DSCR_ERR_INT: Triggered when there are some errors in the inlink descriptor.

e UHCI_IN_DSCR_ERR_INT: Triggered when there are some errors in the outlink descriptor.

e UHCI_OUT_EOF_INT: Triggered when the current descriptor’s EOF bit is 1.

e UHCI_OUT_DONE_INT: Triggered when an outlink descriptor is completed.

e UHCI_IN_ERR_EOF_INT: Triggered when there are some errors in EOF in the inlink descriptor.
e UHCI_IN_SUC_EOF_INT: Triggered when a data packet has been received.

e UHCI_IN_DONE_INT: Triggered when an inlink descriptor has been completed.

e UHCI_TX_HUNG_INT: Triggered when DMA takes much time to read data from RAM.

e UHCI_RX_HUNG_INT: Triggered when DMA takes much time to receive data .

e UHCI_TX_START_INT: Triggered when DMA detects a separator char.

e UHCI_RX_START_INT: Triggered when a separator char has been sent.

13.4 Register Summary

Name | Description | UARTO | UARTT | UART2 | Acc
Configuration registers
UART_CONFO_REG | Configuration register 0 | Ox3FF40020 | Ox3FF50020 | OX3FFBE020 | R/W

Espressif Systems 336 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

UART_CONF1_REG Configuration register 1 | Ox3FF40024 | Ox3FF50024 | Ox3FFBE024 | R/W
Clock divider configu-

UART_CLKDIV_REG i Ox3FF40014 | Ox3FF50014 | Ox3FFBEO14 | R/W
ration
Software flow-control

UART_FLOW_CONF_REG) . Ox3FF40034 | Ox3FF50034 | Ox3FF6EO034 | R/W
configuration
Software flow-control

UART_SWFC_CONF_REG)) Ox3FF4003C | 0x3FF5003C | Ox3FF6EO3C | R/W
character configuration
Sleep-mode configura-

UART_SLEEP_CONF_REG tion Ox3FF40038 | Ox3FF50038 | Ox3FFGEO38 | R/W
Frame-end idle config-

UART_IDLE_CONF_REG ation Ox3FF40040 | Ox3FF50040 | Ox3FF6E040 | R/W
urati
RS485 mode configu-

UART_RS485_CONF_REG i Ox3FF40044 | Ox3FF50044 | Ox3FFBEO44 | R/W
ration

Status registers

UART_STATUS_REG UART status register Ox3FF4001C | Ox3FF5001C | Ox3FF6EO1C | RO

Autobaud registers
Autobaud configura-

UART_AUTOBAUD_REG i , Ox3FF40018 | Ox3FF50018 | Ox3FF6EO18 | R/W
tion register
Autobaud minimum

UART_LOWPULSE_REG low pulse duration | Ox3FF40028 | Ox3FF50028 | Ox3FFBE028 | RO
register
Autobaud minimum

UART_HIGHPULSE_REG high pulse duration | Ox8FF4002C | Ox3FF5002C | Ox3FFBE02C | RO
register
Autobaud high pulse

UART_POSPULSE_REG egiste Ox3FF40068 | 0x3FF50068 | Ox3FF6E0B8 | RO
register
Autobaud low pulse

UART_NEGPULSE_REG register Ox3FF4006C | 0x3FF5006C | Ox3FF6EOBC | RO
Autobaud edge change

UART_RXD_CNT_REG , Ox3FF40030 | 0x3FF50030 | Ox3FF6EO30 | RO
count register

AT escape seqence detection configuration
Pre-sequence timing

UART_AT_CMD_PRECNT_REG)) Ox3FF40048 | Ox3FF50048 | Ox3FF6E048 | R/W
configuration
Post-sequence timing

UART_AT_CMD_POSTCNT_REG) . Ox3FF4004C | 0x3FF5004C | Ox3FF6E04C | R/W
configuration

UART_AT_CMD_GAPTOUT_REG | Timeout configuration Ox3FF40050 | 0x3FF50050 | Ox3FF6EO50 | R/W
AT escape sequence

UART_AT_CMD_CHAR_REG i i) Ox3FF40054 | Ox3FF50054 | Ox3FF6E054 | R/W
detection configuration

FIFO configuration

UART_FIFO_REG FIFO data register Ox3FF40000 | Ox3FF50000 | Ox3FFGEOOO | RO
UART threshold and al-

UART_MEM_CONF_REG , , , Ox3FF40058 | Ox3FF50058 | Ox3FFGEOS8 | R/W
location configuration
Receive and transmit

UART_MEM_CNT_STATUS_REG Ox3FF40064 | Ox3FF50064 | Ox3FF6E0B4 | RO

memory configuration

Interrupt registers

Espressif Systems

337

ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

UART_INT_RAW_REG Raw interrupt status Ox3FF40004 | 0x3FF50004 | Ox3FF6E004 | RO
Masked interrupt sta-
UART_INT_ST_REG ; Ox3FF40008 | 0x3FF50008 | Ox3FF6E008 | RO
us
UART_INT_ENA_REG Interrupt enable bits Ox3FF4000C | 0x3FF5000C | Ox3FF6EOOC | R/W
UART_INT_CLR_REG Interrupt clear bits Ox3FF40010 | Ox3FF50010 | Ox3FF6EO10 | WO
Name Description UDMAO UDMA1 Acc
Configuration registers
UART and frame separa-
UHCI_CONFO_REG ,) Ox3FF54000 | Ox3FF4C000| R/W
tion config
UHCI_CONF1_REG UHCI config register Ox3FF5402C | Ox3FF4C02C| R/W
Escape characters configu-
UHCI_ESCAPE_CONF_REG i Ox3FF54064 | Ox3FF4C064 | R/W
ration
UHCI_HUNG_CONF_REG Timeout configuration Ox3FF54068 | Ox3FF4C068| R/W
Escape sequence configu-
UHCI_ESC_CONFO_REG)) Ox3FF540B0 | Ox3FF4C0BO| R/W
ration register O
Escape sequence configu-
UHCI_ESC_CONF1_REG) : Ox3FF540B4 | Ox3FF4C0B4| R/W
ration register 1
Escape sequence configu-
UHCI_ESC_CONF2_REG)) Ox3FF540B8 | Ox3FF4C0B8| R/W
ration register 2
Escape sequence configu-
UHCI_ESC_CONF3_REG) . Ox3FF540BC| Ox3FF4COBC| R/W
ration register 3
DMA configuration
Link descriptor address
UHCI_DMA_OUT_LINK_REG Ox3FF54024 | Ox3FF4C024 | R/W
and control
Link descriptor address
UHCI_DMA_IN_LINK_REG Ox3FF54028 | Ox3FF4C028| R/W
and control
UHCI_DMA_OUT_PUSH_REG FIFO data push register Ox3FF54018 | OX3FF4C018| R/W
UHCI_DMA_IN_POP_REG FIFO data pop register Ox3FF54020 | Ox3FF4C020| RO
DMA status
UHCI_DMA_OUT_STATUS_REG DMA FIFO status Ox3FF54014 | Ox3FF4C014| RO
Out EOF link descriptor ad-
UHCI_DMA_OUT_EOF_DES_ADDR_REG Ox3FF54038 | Ox3FF4C038| RO
dress on success
Out EOF link descriptor ad-
UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG Ox3FF54044 | Ox3FF4C044 | RO
dress on error
In EOF link descriptor ad-
UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG Ox3FF5403C | 0x3FF4C03C| RO
dress on success
In EOF link descriptor ad-
UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG Ox3FF54040 | Ox3FF4C040| RO
dress on error
Current inlink descriptor,
UHCI_DMA_IN_DSCR_REG) Ox3FF5404C| Ox3FF4C04C| RO
first word
Current inlink descriptor,
UHCI_DMA_IN_DSCR_BFO_REG Ox3FF54050 | Ox3FF4C050| RO
second word
Current inlink descriptor,
UHCI_DMA_IN_DSCR_BF1_REG , Ox3FF54054 | Ox3FF4C054 | RO
third word
Espressif Systems 338 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Current outlink descriptor,
UHCI_DMA_OUT_DSCR_REG] 0x3FF54058 | Ox3FF4C058| RO
first word
Current outlink descriptor,
UHCI_DMA_OUT_DSCR_BFO_REG 0x3FF5405C | Ox3FF4C05C| RO
second word
Current outlink descriptor,
UHCI_DMA_OUT_DSCR_BF1_REG , 0x3FF54060 | 0x3FF4C060| RO
third word
Interrupt registers
UHCLINT_RAW_REG Raw interrupt status Ox3FF54004 | Ox3FF4C004 | RO
UHCI_INT_ST_REG Masked interrupt status Ox3FF54008 | 0x3FF4C008| RO
UHCL_INT_ENA_REG Interrupt enable bits Ox3FF5400C | Ox3FF4C00C| R/W
UHCI_INT_CLR_REG Interrupt clear bits 0x3FF54010 | Ox3FF4C010| WO
Espressif Systems 339 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

13.5 Registers

Register 13.1: UART_FIFO_REG (0x0)

5 &
Q
Q?’Q)é
¢

]oooooooooooooooooooooooo|000ooooo‘Reset

UART_RXFIFO_RD_BYTE This register stores one byte of data, as read from the Rx FIFO. (RO)

Espressif Systems 340 ESP32 Technical Reference Manual V3.1

13. UART CONTROLLERS

Register 13.2: UART_INT_RAW_REG (0x4)

«f: W s /\2§ S
TIES S S D P
SELE X P S E TP ¥ ¥ F ¥ &7 T &
VQ\/Q‘/ 'd/’\/((// %Q// DR R K7 L&7 \e’\/ \ezd/ >
%O\y%Q\ /?{2\%\%\0\/ o é\%\% \%\éc,)}é@}eoq %@&é@q S5
O 05 6o SRS (S0, ' X R 07 E A 50500
@/@/@/OQ\Q\O +<<O (<O <</<\<<O/O
NtV 2. N 7
S o I A TS i o GO LR IR N
5° & \%\%Q/\\g\é%é\ S /Q/\%/%é ?Q/\ L& /Q/\?é & /Qi\gé &7
\@% XXX F X OO O OO OF O O8O

E

[o]w]efs]ufs]e]ulo]ofofr]efs][e][s]o]s]0]
]o 00000 OO0U OGO OGO 0O o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|o‘Reset

UART_AT_CMD_CHAR_DET_INT_RAW The raw interrupt status bit for the UART_AT_CMD_CHAR_DET_INT

interrupt. (RO)

UART _RS485_CLASH_INT_RAW The raw interrupt status bit for the UART_RS485_CLASH_INT interrupt. (RO)

UART_RS485_FRM_ERR_INT_RAW The raw interrupt status bit for the UART_RS485_FRM_ERR_INT interrupt.

(RO)

UART_RS485_PARITY_ERR_INT_RAW The raw interrupt status bit for the UART_RS485_PARITY_ERR_INT in-

terrupt. (RO)

UART_TX_DONE_INT_RAW The raw interrupt status bit for the UART_TX_DONE_INT interrupt. (RO)

UART_TX _BRK_IDLE_DONE_INT_RAW The raw interrupt status bit for the UART_TX_BRK_IDLE_DONE_INT

interrupt. (RO)

UART_TX_BRK_DONE_INT_RAW The raw interrupt status bit for the UART_TX_BRK_DONE_INT interrupt. (RO)

UART_GLITCH_DET_INT_RAW The raw interrupt status bit for the UART_GLITCH_DET_INT interrupt. (RO)

UART_SW_XOFF_INT_RAW The raw interrupt status bit for the UART_SW_XOFF_INT interrupt. (RO)

UART_SW_XON_INT_RAW The raw interrupt status bit for the UART_SW_XON_INT interrupt. (RO)

UART_RXFIFO_TOUT_INT_RAW The raw interrupt status bit for the UART_RXFIFO_TOUT_INT interrupt. (RO)

UART_BRK_DET_INT_RAW The raw interrupt status bit for the UART_BRK_DET_INT interrupt. (RO)

UART_CTS_CHG_INT_RAW The raw interrupt status bit for the UART_CTS_CHG_INT interrupt. (RO)

UART_DSR_CHG_INT_RAW The raw interrupt status bit for the UART_DSR_CHG_INT interrupt. (RO)

UART_RXFIFO_OVF_INT_RAW The raw interrupt status bit for the UART_RXFIFO_OVF_INT interrupt. (RO)

UART_FRM_ERR_INT_RAW The raw interrupt status bit for the UART_FRM_ERR_INT interrupt. (RO)

UART_PARITY_ERR_INT_RAW The raw interrupt status bit for the UART_PARITY_ERR_INT interrupt. (RO)

UART_TXFIFO_EMPTY_INT_RAW The raw interrupt status bit for the UART_TXFIFO_EMPTY_INT interrupt. (RO)

UART_RXFIFO_FULL_INT_RAW The raw interrupt status bit for the UART_RXFIFO_FULL_INT interrupt. (RO)

Espressif Systems

341 ESP32 Technical Reference Manual V3.1

13. UART CONTROLLERS

Register 13.3: UART_INT_ST_REG (0x8)

O N N S AR
%Q)é Q/\&/Q@/Q'S/Q/\&/Q/S/Q/\\ Y

&
’31 19|1s 17I16 15 14I13 12 11I10 9 8I7 6 5I4 3 2I1 0}

]ooooooooooooo|oo

UART_AT_CMD_CHAR_DET_INT_ST The masked interrupt status bit for the UART_AT_CMD_CHAR_DET_INT
interrupt. (RO)

UART_RS485_CLASH_INT_ST The masked interrupt status bit for the UART_RS485_CLASH_INT interrupt. (RO)

UART_RS485_FRM_ERR_INT_ST The masked interrupt status bit for the UART_RS485_FRM_ERR_INT inter-
rupt. (RO)

UART_RS485_PARITY_ERR_INT_ST The masked interrupt status bit for the UART_RS485_PARITY_ERR_INT
interrupt. (RO)

UART_TX_DONE_INT_ST The masked interrupt status bit for the UART_TX_DONE_INT interrupt. (RO)

UART_TX_BRK_IDLE_DONE_INT_ST The masked interrupt status bit for the UART_TX_BRK_IDLE_DONE_INT
interrupt. (RO)

UART_TX_BRK_DONE_INT_ST The masked interrupt status bit for the UART_TX_BRK_DONE_INT interrupt.
(RO)

UART_GLITCH_DET_INT_ST The masked interrupt status bit for the UART_GLITCH_DET_INT interrupt. (RO)
UART_SW_XOFF_INT_ST The masked interrupt status bit for the UART_SW_XOFF_INT interrupt. (RO)
UART_SW_XON_INT_ST The masked interrupt status bit for the UART_SW_XON_INT interrupt. (RO)
UART_RXFIFO_TOUT_INT_ST The masked interrupt status bit for the UART_RXFIFO_TOUT_INT interrupt. (RO)
UART_BRK_DET_INT_ST The masked interrupt status bit for the UART_BRK_DET_INT interrupt. (RO)
UART_CTS_CHG_INT_ST The masked interrupt status bit for the UART_CTS_CHG_INT interrupt. (RO)
UART_DSR_CHG_INT_ST The masked interrupt status bit for the UART_DSR_CHG_INT interrupt. (RO)
UART_RXFIFO_OVF_INT_ST The masked interrupt status bit for the UART_RXFIFO_OVF_INT interrupt. (RO)
UART_FRM_ERR_INT_ST The masked interrupt status bit for the UART_FRM_ERR_INT interrupt. (RO)
UART_PARITY_ERR_INT_ST The masked interrupt status bit for the UART_PARITY_ERR_INT interrupt. (RO)

UART_TXFIFO_EMPTY_INT_ST The masked interrupt status bit for the UART_TXFIFO_EMPTY_INT interrupt.
(RO)

UART_RXFIFO_FULL_INT_ST The masked interrupt status bit for UART_RXFIFO_FULL_INT. (RO)

Espressif Systems 342 ESP32 Technical Reference Manual V3.1

13. UART CONTROLLERS

Register 13.4: UART_INT_ENA_REG (0xC)

\g \g
>$ S K \% >$ Q/eev‘ %v\ e? e?‘

’ 31 19

[o]w]efs]ufs]e]ulo]ofofrefs][e][s]o]s]0]
]o 00000 OO O0U OGO OO 0O o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|o‘Reset

UART_AT_CMD_CHAR_DET_INT_ENA The interrupt enable bit for the UART_AT_CMD_CHAR_DET_INT inter-
rupt. (R/W)

UART_RS485_CLASH_INT_ENA The interrupt enable bit for the UART_RS485_CLASH_INT interrupt. (R/W)

UART_RS485_FRM_ERR_INT_ENA The interrupt enable bit for the UART_RS485_FRM_ERR_INT interrupt.
(R'W)

UART_RS485_PARITY_ERR_INT_ENA The interrupt enable bit for the UART_RS485_PARITY_ERR_INT inter-
rupt. (R/W)

UART_TX_DONE_INT_ENA The interrupt enable bit for the UART_TX_DONE_INT interrupt. (R/W)

UART_TX_BRK_IDLE_DONE_INT_ENA The interrupt enable bit for the UART_TX_BRK_IDLE_DONE_INT inter-
rupt. (R/W)

UART_TX_BRK_DONE_INT_ENA The interrupt enable bit for the UART_TX_BRK_DONE_INT interrupt. (R/W)
UART_GLITCH_DET_INT_ENA The interrupt enable bit for the UART_GLITCH_DET_INT interrupt. (R/W)
UART_SW_XOFF_INT_ENA The interrupt enable bit for the UART_SW_XOFF_INT interrupt. (R/W)
UART_SW_XON_INT_ENA The interrupt enable bit for the UART_SW_XON_INT interrupt. (R/W)
UART_RXFIFO_TOUT_INT_ENA The interrupt enable bit for the UART_RXFIFO_TOUT_INT interrupt. (R/W)
UART_BRK_DET_INT_ENA The interrupt enable bit for the UART_BRK_DET_INT interrupt. (R/W)
UART_CTS_CHG_INT_ENA The interrupt enable bit for the UART_CTS_CHG_INT interrupt. (R/W)
UART_DSR_CHG_INT_ENA The interrupt enable bit for the UART_DSR_CHG_INT interrupt. (R/W)
UART_RXFIFO_OVF_INT_ENA The interrupt enable bit for the UART_RXFIFO_OVF_INT interrupt. (R/W)
UART_FRM_ERR_INT_ENA The interrupt enable bit for the UART_FRM_ERR_INT interrupt. (R/W)
UART_PARITY_ERR_INT_ENA The interrupt enable bit for the UART_PARITY_ERR_INT interrupt. (R/W)
UART_TXFIFO_EMPTY_INT_ENA The interrupt enable bit for the UART_TXFIFO_EMPTY_INT interrupt. (R/W)

UART_RXFIFO_FULL_INT_ENA The interrupt enable bit for the UART_RXFIFO_FULL_INT interrupt. (R/W)

Espressif Systems 343 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.5: UART_INT_CLR_REG (0x10)

’ 31 19

[]e]efufn]u]u]o]ofofr]efs][s][s]o]s]0]
]o 00000 OO0U OGO OO 0O o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|o‘Reset

UART_AT_CMD_CHAR_DET_INT_CLR Set this bit to clear the UART_AT_CMD_CHAR_DET_INT in-
terrupt. (WO)

UART_RS485_CLASH_INT_CLR Set this bit to clear the UART_RS485_CLASH_INT interrupt. (WO)

UART_RS485_FRM_ERR_INT_CLR Set this bit to clear the UART_RS485_FRM_ERR_INT interrupt.
(WO)

UART_RS485_PARITY_ERR_INT_CLR Set this bit to clear the UART_RS485_PARITY_ERR_INT in-
terrupt. (WO)

UART_TX_DONE_INT_CLR Set this bit to clear the UART_TX_DONE_INT interrupt. (WO)

UART_TX_BRK_IDLE_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_IDLE_DONE_INT
interrupt. (WO)

UART_TX_BRK_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_DONE_INT interrupt. (WO)
UART_GLITCH_DET_INT_CLR Set this bit to clear the UART_GLITCH_DET_INT interrupt. (WO)
UART_SW_XOFF_INT_CLR Set this bit to clear the UART_SW_XOFF_INT interrupt. (WO)
UART_SW_XON_INT_CLR Set this bit to clear the UART_SW_XON_INT interrupt. (WO)
UART_RXFIFO_TOUT_INT_CLR Set this bit to clear the UART_RXFIFO_TOUT_INT interrupt. (WO)
UART_BRK_DET_INT_CLR Set this bit to clear the UART_BRK_DET_INT interrupt. (WO)
UART_CTS_CHG_INT_CLR Set this bit to clear the UART_CTS_CHG_INT interrupt. (WO)
UART_DSR_CHG_INT_CLR Set this bit to clear the UART_DSR_CHG_INT interrupt. (WO)
UART_RXFIFO_OVF_INT_CLR Set this bit to clear the UART_RXFIFO_OVF_INT interrupt. (WO)
UART_FRM_ERR_INT_CLR Set this bit to clear the UART_FRM_ERR_INT interrupt. (WO)
UART_PARITY_ERR_INT_CLR Set this bit to clear the UART_PARITY_ERR_INT interrupt. (WO)

UART_TXFIFO_EMPTY_INT_CLR Set this bit to clear the UART_TXFIFO_EMPTY_INT interrupt.
(WO)

UART_RXFIFO_FULL_INT_CLR Set this bit to clear the UART_RXFIFO_FULL_INT interrupt. (WO)

Espressif Systems 344 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.6: UART_CLKDIV_REG (0x14)

&
SK O
O
& 5 5
A 7 A 7
@%Q’ \)VQ\ QVQ\
’31 24|23 20|19 0‘
’o 00 00 0 0 o| 0x00 | 0x0002B6 ‘Reset
UART_CLKDIV_FRAG The decimal part of the frequency divider factor. (R/W)
UART_CLKDIV The integral part of the frequency divider factor. (R/W)
Register 13.7: UART_AUTOBAUD_REG (0x18)
%
<
<<\\/> \§)/
0\2\/ OQ)V
S &
& cg D XN
& Q’S/ & Q’S/
§®6 0?‘ {@6 0?‘
’31 16|15 8|7 1|0‘

]oooooooooooooooo| 0x010 |ooooooo|o‘Reset

UART_GLITCH_FILT When the input pulse width is lower than this value, the pulse is ignored. This
register is used in the autobauding process. (R/W)

UART_AUTOBAUD_EN This is the enable bit for autobaud. (R/W)

Espressif Systems 345 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.8: UART_STATUS_REG (0x1C)

/\+O\§\ & +/o$ &

s O/ Q‘ O/

L & S P @Q
Q'S/Q'\\/Q/S/Q)é Q/S/ Q/S/ Q/\&/Q/S/Q/\\/Q)Q\ Q'\\/ Q/\&/

Raia\s \@% X X XXX \\\Q)% X X

’31|30|29|28|27 24|23 16|15|14|13|12|11 817 O‘

c?xoo|)0|0|o|0 0 o o|o 00 0 0 0 0 o|0|o|o|0|o 0 o 0|0 0 0 00 0 0 o‘Reset

UART_TXD This bit represents the level of the internal UART RxD signal. (RO)
UART_RTSN This bit corresponds to the level of the internal UART CTS signal. (RO)
UART_DTRN This bit corresponds to the level of the internal UAR DSR signal. (RO)

UART_ST_UTX_OUT This register stores the state of the transmitter’s finite state machine. O:
TX_IDLE; 1: TX_STRT, 2. TX_DATO; 3: TX_DAT1; 4. TX_DAT2; 5: TX_DATS3; 6: TX_DAT4; 7:
TX_DAT5; 8: TX_DAT6; 9: TX_DAT7; 10: TX_PRTY; 11: TX_STP1; 12: TX_STP2; 13: TX_DLO;
14: TX_DL1. (RO)

UART_TXFIFO_CNT (tx_mem_cnt, txfifo_cnt) stores the number of bytes of valid data in transmit-
FIFO. tx_mem_cnt stores the three most significant bits, txfifo_cnt stores the eight least significant
bits. (RO)

UART_RXD This bit corresponds to the level of the internal UART RxD signal. (RO)
UART_CTSN This bit corresponds to the level of the internal UART CTS signal. (RO)
UART_DSRN This bit corresponds to the level of the internal UAR DSR signal. (RO)

UART_ST_URX_OUT This register stores the value of the receiver’s finite state machine. 0: RX_IDLE;
1: RX_STRT; 2: RX_DATO; 3: RX_DAT1; 4. RX_DAT2; 5: RX_DATS3; 6: RX_DAT4; 7: RX_DATS5; 8:
RX_DAT6; 9: RX_DAT7; 10: RX_PRTY; 11: RX_STP1; 12:RX_STP2; 13: RX_DL1. (RO)

UART_RXFIFO_CNT (rx_mem_cnt, rxfifo_cnt) stores the number of bytes of valid data in the receive-
FIFO. rx_mem_cnt register stores the three most significant bits, rxfifo_cnt stores the eight least
significant bits. (RO)

Espressif Systems 346 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.9: UART_CONFO0_REG (0x20)

>
i
N S
» SN R, >
& 28880 00550 MRS e e & & (&
F 5 @00 86O S TS S TeT TGO A% & & (&L
GQ& & GQ’& < Q\/\d/\&/\ /\@\&/\Q‘\\;\Q <\-/\/\/O/\<<\ SRS \Q/\d;\% /\é\ R «Qv v
& S E T EE R EE T O &
’31 28|27|26 25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5 413 2|1|0‘
]o 0 o o|1|o o|o|o|o|o|o|o|0|o|o|0|o|o|0|o|o|0|o|o|o| 1 3 |o|o‘Reset

UART_TICK_REF_ALWAYS_ON Thisregister is used to select the clock; 1: APB clock; 0: REF_TICK.
(R/W)

UART_DTR_INV Set this bit to invert the level of the UART DTR signal. (R/W)
UART_RTS_INV Set this bit to invert the level of the UART RTS signal. (R/W)
UART_TXD_INV Set this bit to invert the level of the UART TxD signal. (R/W)
UART_DSR_INV Set this bit to invert the level of the UART DSR signal. (R/W)
UART_CTS_INV Set this bit to invert the level of the UART CTS signal. (R/W)
UART_RXD_INV Set this bit to invert the level of the UART Rxd signal. (R/W)

UART_TXFIFO_RST Set this bit to reset the UART transmit-FIFO. NOTICE: UART2 doesn’t have any
register to reset Tx_FIFO or Rx_FIFO, and the UART1_TXFIFO_RST and UART1_RXFIFO_RST in
UART1 may impact the functioning of UART2. Therefore, these two registers in UART1 should
only be used when the Tx_FIFO and Rx_FIFO in UART2 do not have any data. (R/W)

UART_RXFIFO_RST Set this bit to reset the UART receive-FIFO. NOTICE: UART2 doesn’t have any
register to reset Tx_FIFO or Rx_FIFO, and the UART1_TXFIFO_RST and UART1_RXFIFO_RST in
UART1 may impact the functioning of UART2. Therefore, these two registers in UART1 should
only be used when the Tx_FIFO and Rx_FIFO in UART2 do not have any data. (R/W)

UART_IRDA_EN Set this bit to enable the IrDA protocol. (R/W)

UART_TX_FLOW_EN Set this bit to enable the flow control function for the transmitter. (R/W)
UART_LOOPBACK Set this bit to enable the UART loopback test mode. (R/W)
UART_IRDA_RX_INV Set this bit to invert the level of the IrDA receiver. (R/W)
UART_IRDA_TX_INV Set this bit to invert the level of the IrDA transmitter. (R/W)

UART _IRDA_WCTL 1: The IrDA transmitter’s 11th bit is the same as its 10th bit; O: set IrDA trans-
mitter’s 11th bit to 0. (R/W)

UART_IRDA_TX_EN This is the start enable bit of the IrDA transmitter. (R/W)
UART_IRDA_DPLX Set this bit to enable the IrDA loopback mode. (R/W)

UART_TXD_BRK Set this bit to enable the transmitter to send NULL, when the process of sending
data is completed. (R/W)

UART_SW_DTR This register is used to configure the software DTR signal used in software flow
control. (R/W)

Espressif Systems 347 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

UART_SW_RTS This register is used to configure the software RTS signal used in software flow
control. (R/W)

UART_STOP_BIT_NUM This register is used to set the length of the stop bit; 1: 1 bit, 2: 1.5 bits.
(R/W)

UART_BIT_NUM This register is used to set the length of data; 0: 5 bits, 1: 6 bits, 2: 7 bits, 3: 8
bits. (R/W)

UART_PARITY_EN Set this bit to enable the UART parity check. (R/W)

UART_PARITY This register is used to configure the parity check mode; 0: even, 1: odd. (R/W)

Register 13.10: UART_CONF1_REG (0x24)

3 L
Q\g\O Q Q\gQ /}\2\ ,SZ\Q\
S < S & < NG
&7 &7 Y% & N ~
9 Q 9O N &7 &7
/\ér/ /\@P /\&/ /\®L/ & /\é & A 3
\5??\ QV‘Q\ \)??\ QVQ\ @?Q) \)??\ @(’QJ \5??\
’31|30 24|23|22 16|15|14 8|7|6 O‘
] 0 |0 00 0 0 O o| 0 | 0x00 | 0 | 0x60 | 0 | 0x60 ‘Reset

UART_RX_TOUT_EN This is the enable bit for the UART receive-timeout function. (R/W)

UART_RX_TOUT_THRHD This register is used to configure the UART receiver’s timeout value when
receiving a byte. (R/W)

UART_RX_FLOW_EN Thisis the flow enable bit of the UART receiver; 1: choose software flow control
by configuring the sw_rts signal; O: disable software flow control. (R/W)

UART_RX_FLOW_THRHD When the receiver gets more data than its threshold value, the receiver
produces a signal that tells the transmitter to stop transferring data. The threshold value is
(rx_flow_thrhd_h3, rx_flow_thrhd). (R/W)

UART_TXFIFO_EMPTY_THRHD When the data amount in transmit-FIFO is less than its thresh-
old value, it will produce a TXFIFO_EMPTY_INT_RAW interrupt. The threshold value is
(tx_mem_empty_thrhd, txfifo_empty_thrhd). (R/W)

UART_RXFIFO_FULL_THRHD When the receiver gets more data than its threshold value, the re-
ceiver will produce an RXFIFO_FULL_INT_RAW interrupt. The threshold value is (rx_flow_thrhd_h3,
rxfifo_full_thrhd). (R/W)

Espressif Systems 348 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.11: UART_LOWPULSE_REG (0x28)

&
N
N
<
N4
&
5 &7
\@o" X
’31 20|19 O‘
[0 0o o000 o0 o0 00 0 0 OXOFFFFF |Reset

UART_LOWPULSE_MIN_CNT This register stores the value of the minimum duration of the low-level
pulse. It is used in the baud rate detection process. (RO)

Register 13.12: UART_HIGHPULSE_REG (0x2C)

&
&
W
%ﬁ\
\)\/
X
) Y
&° &7
\@% X
’31 2o|19 O‘
]o 0000 OO0 OU OO OO 0| OXOFFFFF ‘Reset

UART_HIGHPULSE_MIN_CNT This register stores the value of the minimum duration of the high
level pulse. It is used in baud rate detection process. (RO)

Register 13.13: UART_RXD_CNT_REG (0x30)

C)é&
(<//
((9(9
& &
& Q'§’
§®% X
’31 10|9 O‘
’oooooooooooooooooooooo| 0x000 ‘Reset

UART_RXD_EDGE_CNT This register stores the count of the RxD edge change. It is used in the
baud rate detection process. (RO)

Espressif Systems 349 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.14: UART_FLOW_CONF_REG (0x34)

(A
@%Q

[of]e]2]]0]
]oooooooooooooooooooooooooo|o|o|0|o|o|o‘Reset

UART_SEND_XOFF Hardware auto-clear; set to 1 to send Xoff char. (R/W)
UART_SEND_XON Hardware auto-clear; set to 1 to send Xon char. (R/W)

UART_FORCE_XOFF Set this bit to set the CTSn and enable the transmitter to continue sending
data. (R/W)

UART_FORCE_XON Set this bit to clear the CTSn and stop the transmitter from sending data. (R/W)
UART_XONOFF_DEL Set this bit to remove the flow-control char from the received data. (R/W)

UART_SW_FLOW_CON_EN Set this bit to enable software flow control. It is used with register
sw_xon or sw_xoff. (R/W)

Register 13.15: UART_SLEEP_CONF_REG (0x38)

>
Q/%Q\
NS
&
S
> g
5 &
\gz;% X
’31 10|9 0‘
’OOOOOOOOOOOOOOOOOOOOOO| OxOF0 ‘Reset

UART_ACTIVE_THRESHOLD When the input RxD edge changes more times than what this register
indicates, the system emerges from Light-sleep mode and becomes active. (R/W)

Espressif Systems 350 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.16: UART_SWFC_CONF_REG (0x3C)

S o
5 xS
Q> &> & &
v
o8 ol Q&‘Q\Q\ &
&7 7 &7 s
/\+o /\+O «+O £ ©
Q\ 7 Q\ 7 Q\ 7/ Q\ 7/
N Ns Ns N3
’31 24|23 16|15 S|7 O‘
’ ox013 | ox011 | OXOEO | 0x000 ‘ Reset

UART_XOFF_CHAR This register stores the Xoff flow control char. (R/W)
UART_XON_CHAR This register stores the Xon flow control char. (R/W)

UART_XOFF_THRESHOLD When the data amount in receive-FIFO is less than what this register
indicates, it will send an Xon char, with uart_sw_flow_con_en set to 1. (R/W)

UART_XON_THRESHOLD When the data amount in receive-FIFO is more than what this register
indicates, it will send an Xoff char, with uart_sw_flow_con_en set to 1. (R/W)

Register 13.17: UART_IDLE_CONF_REG (0x40)

X
N N <€
; &7 <
S <F <F i+
ch\ Q's 7/ Q’\\ 7 Q'\& 7
§®% Na Na X
’31 28|27 20|19 10|9 O‘
’ 0 0 0 O | Ox00A | 0x100 | 0x100 ‘Reset

UART_TX_BRK_NUM This register is used to configure the number of zeros (0) sent, after the process
of sending data is completed. It is active when txd_brk is set to 1. (R/W)

UART_TX_IDLE_NUM This register is used to configure the duration between transfers. (R/W)

UART_RX_IDLE_THRHD When the receiver takes more time to receive Byte data than what this
register indicates, it will produce a frame-end signal. (R/W)

Espressif Systems 351 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.18: UART_RS485_CONF_REG (0x44)

I o
%Q’GQ) g\
&

A

UART_RS485_TX_DLY_NUM This register is used to delay the transmitter’s internal data signal.
(R/W)

UART_RS485_RX_DLY_NUM This register is used to delay the receiver’s internal data signal. (R/W)

UART_RS485RXBY_TX_EN 1: enable the RS-485 transmitter to send data, when the RS-485 re-
ceiver line is busy; 0: the RS-485 transmitter should not send data, when its receiver is busy.
(R/W)

UART_RS485TX_RX_EN Set this bit to enable the transmitter’s output signal loop back to the re-
ceiver’s input signal. (R/W)

UART_DL1_EN Set this bit to delay the STOP bit by 1 bit. (R/W)
UART_DLO_EN Set this bit to delay the STOP bit by 1 bit. (R/W)

UART_RS485_EN Set this bit to choose the RS-485 mode. (R/W)

Register 13.19: UART_AT_CMD_PRECNT_REG (0x48)

S
N
</
\Q\/
S Q{(/
o X
9 Q>
\@% X
’31 24|23 O‘
’o 00 00 0 0 o| 0x0186A00 ‘Reset

UART_PRE_IDLE_NUM This register is used to configure the idle-time duration before the first
at_cmd is received by the receiver. When the duration is less than what this register indicates,
it will not take the next data received as an at_cmd char. (R/W)

Espressif Systems 352 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.20: UART_AT_CMD_POSTCNT_REG (0x4c)

\QQ
Q//
O\/
N
%& /
I QO
& %
& ?g\
N N
’ 31 24 | 23 0 ‘
] 0000 0 0 0 O | 0x0186A00 ‘Reset

UART_POST_IDLE_NUM This register is used to configure the duration between the last at_cmd
and the next data. When the duration is less than what this register indicates, it will not take the
previous data as an at_cmd char. (R/W)

Register 13.21: UART_AT_CMD_GAPTOUT_REG (0x50)

N
Q/
?\
&
Q
&2;% X
’31 24|23 0‘
]o 00 0 0 0 0 o| OX0001E00 ‘Reset

UART_RX_GAP_TOUT This register is used to configure the duration between the at_cmd chars.
When the duration is less than what this register indicates, it will not take the data as continuous
at_cmd chars. (R/W)

Register 13.22: UART_AT_CMD_CHAR_REG (0x54)

Q>
S x°

e

& o

I ‘2‘ ?/S/
5 & &
§®% Na Na
’31 16|15 8|7 0‘
’o 0 00 00DO0OOTO OT OGO OTO OO 0O0 O o| 0x003 | 0x02B ‘Reset

UART_CHAR_NUM This register is used to configure the number of continuous at_cmd chars re-
ceived by the receiver. (R/W)

UART_AT_CMD_CHAR This register is used to configure the content of an at_cmd char. (R/W)

Espressif Systems 353 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.23: UART_MEM_CONF_REG (0x58)

NS) v q o
Q\Q\ N >
§ ,Q?‘Q\ 0\9 4 O\’Q 7 97 7
£ &L & &S
% 7 Q\Q\ Qg/ K7 @ 4
T PG e ¥ S i
p & S e & & Sy
PSP SR SV S SR S S & & S
\@G" \)?‘ \)?‘ \)?‘ \5?‘ \5?‘ \5?‘ §®% \\)?‘ \5?‘ QD% \)?‘
’31|30 28|27 25|24 23|22 21|20 18|17 15|l4 ll|10 7|6 3|2 l|0‘
] 0 | 0x0 | 0x0 | 0x0 | 0x0 | 0x0 | 0x0 | 0 0 0 O | 0x01 | ox01 | 0o o | 0 ‘Reset

UART_TX_MEM_EMPTY_THRHD Refer to the description of txfifo_empty_thrhd. (R/W)
UART_RX_MEM_FULL_THRHD Refer to the description of rxfifo_full_thrhd. (R/W)
UART_XOFF_THRESHOLD_H2 Refer to the description of uart_xoff_threshold. (R/W)
UART_XON_THRESHOLD_H2 Refer to the description of uart_xon_threshold. (R/W)
UART_RX_TOUT_THRHD_H3 Refer to the description of rx_tout_thrhd. (R/W)
UART_RX_FLOW_THRHD_H3 Refer to the description of rx_flow_thrhd. (R/W)

UART_TX_SIZE This register is used to configure the amount of memory allocated to the transmit-
FIFO. The default number is 128 bytes. (R/W)

UART_RX_SIZE This register is used to configure the amount of memory allocated to the receive-
FIFO. The default number is 128 bytes. (R/W)

UART_MEM_PD Set this bit to power down the memory. When the reg_mem_pd register is set to 1
for all UART controllers, Memory will enter the low-power mode. (R/W)

Register 13.24: UART_MEM_CNT_STATUS_REG (0x64)

& &
O
5 O
s & &
@ Na Na

UART_TX_MEM_CNT Refer to the description of txfifo_cnt. (RO)

UART_RX_MEM_CNT Refer to the description of rxfifo_cnt. (RO)

Espressif Systems 354 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.25: UART_POSPULSE_REG (0x68)

&
gﬁ
N
»
&
&
)
1) QO
&° &7
\@% 0?‘
‘31 20|19 0‘
‘o 00000 OGO OU OU OO 0| OXOFFFFF ‘Reset

UART_POSEDGE_MIN_CNT This register stores the count of RxD positive edges. It is used in the
autobaud detection process. (RO)

Register 13.26: UART_NEGPULSE_REG (0x6c)

&
&
<7
&
&
O
0 ¥
§ &7
\@% X
‘31 20|19 O‘
[0 o 0o o000 00 00 0f OXOFFFFF |Reset

UART_NEGEDGE_MIN_CNT This register stores the count of RxD negative edges. It is used in the
autobaud detection process. (RO)

Espressif Systems 355 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.27: UHCI_CONFO_REG (0x0)

TS
QQ,%Q /\Q&@Og/% & & & &
OSSN SEE
@6\ Q/% \(5’ SN Qy%@ S NNiaNs Q)&
& o e Yo e e e & MO &
& FFFFTY ¢ T &
’31 22|21|20|19|13|17|16|15 12|11|10|9|17 9‘
]oooooooooo|1|1|o|w|1|1|o 0o o o|o|o|o|ooooooooo‘Reset

UHCI_ENCODE_CRC_EN Reserved. Please initialize it to 0. (R/W)
UHCI_LEN_EOF_EN Reserved. Please initialize it to 0. (R/W)
UHCI_UART_IDLE_EOF_EN Reserved. Please initialize it to 0. (R/W)
UHCI_CRC_REC_EN Reserved. Please initialize it to 0. (R/W)

UHCI_HEAD_EN Reserved. Please initialize it to 0. (R/W)

UHCI_SEPER_EN Set this bit to use a special char and separate the data frame. (R/W)
UHCI_UART2_CE Set this bit to use UART2 and transmit or receive data. (R/W)
UHCI_UART1_CE Set this bit to use UART1 and transmit or receive data. (R/W)

UHCI_UARTO_CE Set this bit to use UART and transmit or receive data. (R/W)

Espressif Systems 356 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.28: UHCI_INT_RAW_REG (0x4)

P)
S SIS
Q)%Q)é OO OO OO
\

UHCI_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the
UHCI_OUT_TOTAL_EOF_INT interrupt. (RO)

UHCI_OUTLINK_EOF_ERR_INT_RAW The raw interrupt status bit for the
UHCI_OUTLINK_EOF_ERR_INT interrupt. (RO)

UHCI_IN_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the
UHCI_IN_DSCR_EMPTY_INT interrupt. (RO)

UHCI_OUT_DSCR_ERR_INT_RAW The raw interrupt status bit for the UHCI_OUT_DSCR_ERR_INT
interrupt. (RO)

UHCI_IN_DSCR_ERR_INT_RAW The raw interrupt status bit for the UHCI_IN_DSCR_ERR_INT in-
terrupt. (RO)

UHCI_OUT_EOF_INT_RAW The raw interrupt status bit for the UHCI_OUT_EOF_INT interrupt. (RO)

UHCI_OUT_DONE_INT_RAW The raw interrupt status bit for the UHCI_OUT_DONE_INT interrupt.
(RO)

UHCI_IN_ERR_EOF_INT_RAW The raw interrupt status bit for the UHCI_IN_ERR_EOF_INT interrupt.
(RO)

UHCI_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the UHCI_IN_SUC_EOF_INT inter-
rupt. (RO)

UHCIL_IN_DONE_INT_RAW The raw interrupt status bit for the UHCI_IN_DONE_INT interrupt. (RO)

UHCI_TX_HUNG_INT_RAW The raw interrupt status bit for the UHCI_TX_HUNG_INT interrupt. (RO)
UHCI_RX_HUNG_INT_RAW The raw interrupt status bit for the UHCI_RX_HUNG_INT interrupt. (RO)
UHCI_TX_START_INT_RAW The raw interrupt status bit for the UHCI_TX_START_INT interrupt. (RO)

UHCI_RX_START_INT_RAW The raw interrupt status bit for the UHCI_RX_START_INT interrupt.
(RO)

Espressif Systems 357 ESP32 Technical Reference Manual V3.1

13. UART CONTROLLERS

Register 13.29: UHCI_INT_ST_REG (0x8)

N\
PO S
5 B LRI ICER

E

17| 16 15 14 | 13 12 11 | 10 9

]oo0oooooooooooo|ooo|ooo|ooo

oJofo]o]0|Reset

UHCI_SEND_A REG_Q_INT_ST The masked interrupt status bit for the UHCI_SEND_A_REG_Q_INT in-

terrupt. (RO)

UHCI_SEND_S_REG_Q_INT_ST The masked interrupt status bit for the UHCI_SEND_S_REG_Q_INT in-

terrupt. (RO)

UHCI_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the UHCI_OUT_TOTAL_EOF_INT in-

terrupt. (RO)

UHCI_OUTLINK_EOF_ERR_INT_ST The masked interrupt status bit for the
UHCI_OUTLINK_EOF_ERR_INT interrupt. (RO)

UHCI_IN_DSCR_EMPTY_INT_ST The masked interrupt status bit for the UHCI_IN_DSCR_EMPTY_INT in-

terrupt. (RO)

UHCI_OUT_DSCR_ERR_INT_ST The masked interrupt status bit for the UHCI_OUT_DSCR_ERR_INT in-

terrupt. (RO)

UHCI_IN_DSCR_ERR_INT_ST The masked interrupt status bit for the UHCI_IN_DSCR_ERR_INT interrupt.

(RO)

UHCI_OUT_EOF_INT_ST The masked interrupt status bit for the UHCI_OUT_EOF_INT interrupt. (RO)

UHCI_OUT_DONE_INT_ST The masked interrupt status bit for the UHCI_OUT_DONE_INT interrupt. (RO)

UHCIL_IN_ERR_EOF_INT_ST The masked interrupt status bit for the UHCI_IN_ERR_EOF_INT interrupt.

(RO)

UHCI_IN_SUC_EOF_INT_ST The masked interrupt status bit for the UHCI_IN_SUC_EOF_INT interrupt.

(RO)

UHCI_IN_DONE_INT_ST The masked interrupt status bit for the UHCI_IN_DONE_INT interrupt. (RO)

UHCIL_TX_HUNG_INT_ST The masked interrupt status bit for the UHCI_TX_HUNG_INT interrupt. (RO)

UHCI_RX_HUNG_INT_ST The masked interrupt status bit for the UHCI_RX_HUNG_INT interrupt. (RO)

UHCI_TX_START_INT_ST The masked interrupt status bit for the UHCI_TX_START_INT interrupt. (RO)

UHCI_RX_START_INT_ST The masked interrupt status bit for the UHCI_RX_START_INT interrupt. (RO)

Espressif Systems

358 ESP32 Technical Reference Manual V3.1

13. UART CONTROLLERS

Register 13.30: UHCI_INT_ENA_REG (0xC)

&
&

0[0]o]0]0] Reset

UHCI_SEND_A_REG_Q_INT_ENA The interrupt enable bit for the UHCI_SEND_A_REG_Q_INT interrupt.

(R/W)

UHCI_SEND_S_REG_Q_INT_ENA The interrupt enable bit for the UHCI_SEND_S_REG_Q_INT interrupt.

(R/W)

UHCI_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the UHCI_OUT_TOTAL_EOF_INT interrupt.

(R/W)

UHCI_OUTLINK_EOF_ERR_INT_ENA The interrupt enable bit for the UHCI_OUTLINK_EOF_ERR_INT in-

terrupt. (R/W)

UHCI_IN_DSCR_EMPTY_INT_ENA The interrupt enable bit for the UHCI_IN_DSCR_EMPTY_INT interrupt.

(R/W)

UHCI_OUT_DSCR_ERR_INT_ENA The interrupt enable bit for the UHCI_OUT_DSCR_ERR_INT interrupt.

(R/W)

UHCI_IN_DSCR_ERR_INT_ENA The interrupt enable bit for the UHCI_IN_DSCR_ERR_INT interrupt. (R/W)

UHCI_OUT_EOF_INT_ENA The interrupt enable bit for the UHCI_OUT_EOF_INT interrupt. (R/W)

UHCI_OUT_DONE_INT_ENA The interrupt enable bit for the UHCI_OUT_DONE_INT interrupt. (R/W)

UHCIL_IN_ERR_EOF_INT_ENA The interrupt enable bit for the UHCI_IN_ERR_EOF_INT interrupt. (R/W)

UHCI_IN_SUC_EOF_INT_ENA The interrupt enable bit for the UHCI_IN_SUC_EOF_INT interrupt. (R/W)

UHCI_IN_DONE_INT_ENA The interrupt enable bit for the UHCI_IN_DONE_INT interrupt. (R/W)

UHCI_TX_HUNG_INT_ENA The interrupt enable bit for the UHCI_TX_HUNG_INT interrupt. (R/W)

UHCI_RX_HUNG_INT_ENA The interrupt enable bit for the UHCI_RX_HUNG_INT interrupt. (R/W)

UHCI_TX_START_INT_ENA The interrupt enable bit for the UHCI_TX_START_INT interrupt. (R/W)

UHCI_RX_START_INT_ENA The interrupt enable bit for the UHCI_RX_START_INT interrupt. (R/W)

Espressif Systems

359 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.31: UHCI_INT_CLR_REG (0x10)

)
%Q‘é@
S

A

’31 l7| 16

]ooooooooooooooo|o

0 ‘ Reset

UHCI_SEND_A_REG_Q_INT_CLR Set this bit to clear the UHCI_SEND_A_REG_Q_INT interrupt.

(WO)

UHCI_SEND_S_REG_Q_INT_CLR Set this bit to clear the UHCI_SEND_S_REG_Q_INT interrupt.

(WO)

UHCI_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the UHCI_OUT_TOTAL_EOF_INT interrupt.

(WO)

UHCI_OUTLINK_EOF_ERR_INT_CLR Set this bit to clear the UHCI_OUTLINK_EOF_ERR_INT inter-

rupt. (WO)

UHCI_IN_DSCR_EMPTY_INT_CLR Set this bit to clear the UHCI_IN_DSCR_EMPTY_INT interrupt.

(WO)

UHCI_OUT_DSCR_ERR_INT_CLR Set this bit to clear the UHCI_OUT_DSCR_ERR_INT interrupt.

(WO)

UHCI_IN_DSCR_ERR_INT_CLR Set this bit to clear the UHCI_IN_DSCR_ERR_INT interrupt. (WO)

UHCI_OUT_EOF_INT_CLR Set this bit to clear the UHCI_OUT_EOF_INT interrupt. (WO)

UHCI_OUT_DONE_INT_CLR Set this bit to clear the UHCI_OUT_DONE_INT interrupt. (WO)

UHCI_IN_ERR_EOF_INT_CLR Set this bit to clear the UHCI_IN_ERR_EOF_INT interrupt. (WO)

UHCI_IN_SUC_EOF_INT_CLR Set this bit to clear the UHCI_IN_SUC_EOF_INT interrupt. (WO)

UHCI_IN_DONE_INT_CLR Set this bit to clear the UHCI_IN_DONE_INT interrupt. (WO)

UHCIL_TX_HUNG_INT_CLR Set this bit to clear the UHCI_TX_HUNG_INT interrupt. (WO)

UHCI_RX_HUNG_INT_CLR Set this bit to clear the UHCI_RX_HUNG_INT interrupt. (WO)

UHCI_TX_START_INT_CLR Set this bit to clear the UHCI_TX_START_INT interrupt. (WO)

UHCI_RX_START_INT_CLR Set this bit to clear the UHCI_RX_START_INT interrupt. (WO)

Espressif Systems

360 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.32: UHCI_DMA_OUT_STATUS_REG (0x14)

S
écz;& 0\3&60/\/
& S
’31 2| 1 | 0 ‘
’oooooooooooooooooooooooooooooo|1|o‘Reset
UHCI_OUT_EMPTY 1: DMA inlink descriptor’s FIFO is empty. (RO)
UHCI_OUT_FULL 1: DMA outlink descriptor’s FIFO is full. (RO)
Register 13.33: UHCI_DMA_OUT_PUSH_REG (0x18)
xS N\
S e
of o
< <
@b\ 004< @6\ OO/\<<
(A C)\/ Q)Q\ C)\/
& X & X
]ooooooooooooooo|o|ooooooo| 0x000 ‘Reset
UHCI_OUTFIFO_PUSH Set this bit to push data into DMA FIFO. (R/W)
UHCI_OUTFIFO_WDATA This is the data that need to be pushed into DMA FIFO. (R/W)
Register 13.34: UHCI_DMA_IN_POP_REG (0x20)
<
& ol
&L’ &L’
Q)GQ)& Q\é\ Q)G@& Q\é\
& X @ X
]ooooooooooooooo|o|oooo| 0x0000 ‘Reset

UHCIL_INFIFO_POP Set this bit to pop data from DMA FIFO. (R/W)

UHCI_INFIFO_RDATA This register stores the data popping from DMA FIFO. (RO)

Espressif Systems 361 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.35: UHCI_DMA_OUT_LINK_REG (0x24)

’31|30 29 28|27 20|19 O‘

[=]
’o|o|0|o|0 00 00 0 O o| 0x000000 ‘Reset

UHCI_OUTLINK_PARK 1: the outlink descriptor's FSMis in idle state; O: the outlink descriptor’'s FSM
is working. (RO)

UHCI_OUTLINK_RESTART Set this bit to restart the outlink descriptor from the last address. (R/W)
UHCI_OUTLINK_START Set this bit to start a new outlink descriptor. (R/W)
UHCI_OUTLINK_STOP Set this bit to stop dealing with the outlink descriptor. (R/W)

UHCI_OUTLINK_ADDR This register stores the least significant 20 bits of the first outlink descriptor’s
address. (R/W)

Register 13.36: UHCI_DMA_IN_LINK_REG (0x28)

’31|30|29|28|27 20|19 O‘

]o|o|0|o|0 0 00 0 0 O 0| 0x000000 ‘Reset

UHCIL_INLINK_PARK 1: the inlink descriptor's FSM is in idle state; O: the inlink descriptor’s FSM is
working. (RO)

UHCIL_INLINK_RESTART Set this bit to mount new inlink descriptors. (R/W)
UHCI_INLINK_START Set this bit to start dealing with the inlink descriptors. (R/W)
UHCI_INLINK_STOP Set this bit to stop dealing with the inlink descriptors. (R/W)

UHCI_INLINK_ADDR This register stores the 20 least significant bits of the first inlink descriptor’s
address. (R/W)

Espressif Systems 362 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.37: UHCI_CONF1_REG (0x2C)

N N/ O\ N N7 O\
@%2) \)\2\0 \2\0 \@@@ @) \2\0

3 2|1|0‘

UHCI_TX_ACK_NUM_RE Reserved. Please initialize to 0. (R/W)
UHCI_TX_CHECK_SUM_RE Reserved. Please initialize to 0. (R/W)
UHCI_CHECK_SEQ_EN Reserved. Please initialize to 0. (R/W)

UHCI_CHECK_SUM_EN Reserved. Please initialize to 0. (R/W)

Register 13.38: UHCI_DMA_OUT_EOF_DES_ADDR_REG (0x38)

‘31 O‘

‘ 0x000000000 \ Reset

UHCI_DMA_OUT_EOF_DES_ADDR_REG This register stores the address of the outlink descriptor
when the EOF bit in this descriptor is 1. (RO)

Register 13.39: UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG (0x3C)

d

‘ 0x000000000 \ Reset

UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG This register stores the address of the inlink descriptor
when the EOF bit in this descriptor is 1. (RO)

Register 13.40: UHCI_DMA _IN_ERR_EOF_DES_ADDR_REG (0x40)

‘31 O‘

‘ 0x000000000 \ Reset

UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG This register stores the address of the inlink descriptor
when there are some errors in this descriptor. (RO)

Espressif Systems 363 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.41: UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG (0x44)

‘31 O‘

‘ 0x000000000 ‘ Reset

UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG This register stores the address of the outlink de-
scriptor when there are some errors in this descriptor. (RO)

Register 13.42: UHCI_DMA_IN_DSCR_REG (0x4C)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

UHCI_DMA_IN_DSCR_REG The address of the current inlink descriptor x. (RO)

Register 13.43: UHCI_DMA_IN_DSCR_BF0_REG (0x50)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

UHCI_DMA_IN_DSCR_BF0_REG The address of the last inlink descriptor x-7. (RO)

Register 13.44: UHCI_DMA_IN_DSCR_BF1_REG (0x54)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

UHCI_DMA_IN_DSCR_BF1_REG The address of the second-to-last inlink descriptor x-2. (RO)

Register 13.45: UHCI_DMA_OUT_DSCR_REG (0x58)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

UHCI_DMA_OUT_DSCR_REG The address of the current outlink descriptor y. (RO)

Register 13.46: UHCI_DMA_OUT_DSCR_BF0_REG (0x5C)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

UHCI_DMA_OUT_DSCR_BFO0_REG The address of the last outlink descriptor y-7. (RO)

Espressif Systems 364 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.47: UHCI_DMA_OUT_DSCR_BF1_REG (0x60)

E]

’OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

UHCI_DMA_OUT_DSCR_BF1_REG The address of the second-to-last outlink descriptor y-2. (RO)

Register 13.48: UHCI_ESCAPE_CONF_REG (0x64)

UHCI_RX_13_ESC_EN Set this bit to enable replacing flow control char Ox13, when DMA sends data.
(R/W)

UHCI_RX_11_ESC_EN Set this bit to enable replacing flow control char 0x11, when DMA sends data.
(R/W)

UHCI_RX_DB_ESC_EN Set this bit to enable replacing Oxdb char, when DMA sends data. (R/W)
UHCI_RX_CO0_ESC_EN Set this bit to enable replacing 0xcO char, when DMA sends data. (R/W)

UHCI_TX_13_ESC_EN Set this bit to enable decoding flow control char 0x13, when DMA receives
data. (R/W)

UHCI_TX_11_ESC_EN Set this bit to enable decoding flow control char 0x11, when DMA receives
data. (R/W)

UHCI_TX_DB_ESC_EN Set this bit to enable decoding Oxdb char, when DMA receives data. (R/W)

UHCI_TX_CO0_ESC_EN Set this bit to enable decoding 0xcO char, when DMA receives data. (R/W)

Espressif Systems 365 ESP32 Technical Reference Manual V3.1

18. UART CONTROLLERS

Register 13.49: UHCI_HUNG_CONF_REG (0x68)

%?‘ Q\é e} Q‘)zg&
&7 " & "% L7 K
((/O\) ((/O\) Q/OO O\) ((/OQ ((/O\)
NN N NP N
O 7/ O/ O/ Ve O/ O 7
N N K NS N N
é{z‘& \\g\ _\g\ Q:\g\ (\(S\ /dg\ (<\
%) C)\/ C)\/ C)\/ C)\/ C)\/ C)\/
& XX X SN
’31 24|23|22 20|19 12|11|10 8|7 O‘
]o 00 00 0 0 o|1 |o 0 0| 0x010 |1 |0 0 0| 0x010 ‘Reset

UHCI_RXFIFO_TIMEOUT_ENA This is the enable bit for DMA send-data timeout. (R/W)

UHCI_RXFIFO_TIMEOUT_SHIFT The tick count is cleared when its value is equal to or greater than
(17°d8000»reg_rxfifo_timeout_shift). (R/W)

UHCI_RXFIFO_TIMEOUT This register stores the timeout value. When DMA takes more time to read
data from RAM than what this register indicates, it will produce the UHCI_RX_HUNG_INT interrupt.
RW)

UHCI_TXFIFO_TIMEOUT_ENA The enable bit for Tx FIFO receive-data timeout (R/W)

UHCI_TXFIFO_TIMEOUT_SHIFT The tick count is cleared when its value is equal to or greater than
(17°d8000»reg_txfifo_timeout_shift). (R/W)

UHCIL_TXFIFO_TIMEOUT This register stores the timeout value. When DMA takes more time to
receive data than what this register indicates, it will produce the UHCI_TX_HUNG_INT interrupt.

(R/W)
Register 13.50: UHCI_ESC_CONF/_REG (n: 0-3) (0xBO+4*1)
N o
& o
ov oV v
S & & &
& O O O
& X X X
]o 0 00 0 0 O o| OXODF | 0x0DB | 0x013 ‘Reset

UHCI_ESC_SEQ2_CHAR1 This register stores the second char used to replace the reg_esc_seqg?2 in
data. (R/W)

UHCI_ESC_SEQ2_CHARO This register stores the first char used to replace the reg_esc_seg? in
data. (R/W)

UHCI_ESC_SEQ2 This register stores the flow_control char to turn off the flow_control. (R/W)

Espressif Systems 366 ESP32 Technical Reference Manual V3.1

14. LED_PWM

14. LED_PWM

14.1 Introduction

The LED_PWM controller is primarily designed to control the intensity of LEDs, although it can be used to
generate PWM signals for other purposes as well. It has 16 channels which can generate independent
waveforms that can be used to drive RGB LED devices. For maximum flexibility, the high-speed as well as the
low-speed channels can be driven from one of four high-speed/low-speed timers. The PWM controller also has
the ability to automatically increase or decrease the duty cycle gradually, allowing for fades without any processor
interference. To increase resolution, the LED_PWM controller is also able to dither between two values, when a
fractional PWM value is configured.

The LED_PWM controller has eight high-speed and eight low-speed PWM generators. In this document, they will
be referred to as hschn and Ischn, respectively. These channels can be driven from four timers which will be
indicated by h_timerx and |_timerx.

14.2 Functional Description

14.2.1 Architecture

Figure 83 shows the architecture of the LED_PWM controller. As can be seen in the figure, the LED_PWM
controller contains eight high-speed and eight low-speed channels. There are four high-speed clock modules for
the high-speed channels, from which one h_timerx can be selected. There are also four low-speed clock
modules for the low-speed channels, from which one |_timerx can be selected.

LED_PWM

High_Speed_Channel Low_Speed_Channel
L hoho | Tl Loho |
T
{2 | I_ch2

G
y y
ux ux
L ho7 | L o |

Figure 83: LED_PWM Architecture

Figure 84 illustrates a PWM channel with its selected timer; in this instance a high-speed channel and associated
high-speed timer.

h_chn LEDC.IDLE_LV_HSCHn
LEDC_HPOINT_HSCHn ﬂ ' S\Q,OLI[
h_timerx LEDGC_CLK_DIV_NUM_HSTIMERx high_level
LEDC_HSTIMERx_PAUSE comparator LEDC_SIG_OUT_EN_HSCHn
LEDC_DUTY_START_HSCHn
LEDC_DUTY_INC_HSCHn
REF_TICK, | LEDC_DUTY_NUM_HSCHn
LEDC_DUTY_HSCHn LEDC_DUTY_CYCLE_HSCHn

Divider (18 bit) LEDC_DUTY_SCALE_HSCHn

APB_CLI ref_pulse l

LEDC_TICK_SEL HSTIMERx ~ LEDC_HSTIMERx_RST low_level
LEDC_HSTIMERx_DUTY_RES comparator

Figure 84: LED_PWM High-speed Channel Diagram

Espressif Systems 367 ESP32 Technical Reference Manual V3.1

14. LED_PWM

14.2.2 Timers

Divider
input clock

EITITIETTOTD - UOTD

Aclock pulses -+« Aclock pulses A+1clock pulses ~ Aclock pulses ... Aclock pulses A+1 clock pulses Aclock pulses A+1 clock pulses

B (A+l) counts

[

256 output clocks

Divider

output clock

—
J—
—
— 1
—

Figure 85: LED_PWM Divider

A high-speed timer consists of a multiplexer to select one of two clock sources: either REF_TICK or APB_CLK.
For more information on the clock sources, please see Chapter Reset And Clock. The input clock is divided
down by a divider first. The division factor is specified by LEDC_CLK_DIV_NUM_HSTIMERx which contains a
fixed point number: the highest 10 bits represent the integer portion A, while the lowest eight bits contain the
fractional portion B. The effective division factor is as follows:

LEDC_CLK_DIV_NUM_HSTIMERx = A%

Figure 85 shows the input/output clock when the fractional portion B is not 0. As shown in the firgure, the 256
output clocks consist of B output clocks as result of division by (A+1) divider and (256-B) output clocks as result
of division by A divider. The B output clocks are evenly distributed in the 256 output clocks.

The output clock of the divider is the base clock for the counter which will count up to the value specified in
LEDC_HSTIMERx_DUTY_RES. An overflow interrupt will be generated once the counting value reaches
QLEDC_HSTIMERz DUTY_RES _ 1 at which point the counter restarts counting from 0. It is also possible to
reset, suspend, and read the values of the counter by software.

The output signal of the timer is the 20-bit value generated by the counter. The cycle period of this signal defines
the frequency of the signals of any PWM channels connected to this timer. This frequency depends on both the
division factor of the divider, as well as the range of the counter:

frer Tiok - (ILEDC_TICK_SEL_HSTIMERX) + faps oLk - LEDC_TICK_SEL_HSTIMERX
Joig_ou = LEDC_CLK_DIV_NUM_HSTIMERx - 2LEDC_HSTIMER: DUTY_RES

The low-speed timers |_timerx on the low-speed channel differ from the high-speed timers h_timerx in two
aspects:

1. Where the high-speed timer clock source can be clocked from REF_TICK or APB_CLK, the low-speed
timers are sourced from either REF_TICK or SLOW_CLOCK. The SLOW_CLOCK source can be either
APB_CLK (80 MHz) or 8 MHz, and can be selected using LEDC_APB_CLK_SEL.

2. The high-speed counter and divider are glitch-free, which means that if the software modifies the maximum
counter or divisor value, the update will come into effect after the next overflow interrupt. In contrast, the
low-speed counter and divider will update these values only when LEDC_LSTIMERx_PARA_UP is set.

14.2.3 Channels

A channel takes the 20-bit value from the counter of the selected high-speed timer and compares it to a set of
two values in order to set the channel output. The first value it is compared to is the content of

Espressif Systems 368 ESP32 Technical Reference Manual V3.1

14. LED_PWM

LEDC_HPOINT_HSCHn; if these two match, the output will be latched high. The second value is the sum of
LEDC_HPOINT_HSCHn and LEDC_DUTY_HSCHn[24..4]. When this value is reached, the output is latched low.
By using these two values, the relative phase and the duty cycle of the PWM output can be set. Figure 86
illustrates this.

overflow

Ipoint

hpoint
0

sig_out

Figure 86: LED PWM Output Signal Diagram

LEDC_DUTY_HSCHn is a fixed-point register with four fractional bits. As mentioned before, when
LEDC_DUTY_HSCHn[24..4] is used in the PWM calculation directly, LEDC_DUTY_HSCHn[3..0] can be used to
dither the output. If this value is non-zero, with a statistical chance of LEDC_DUTY_HSCHn[3..0]/16, the actual
PWM pulse will be one cycle longer. This effectively increases the resolution of the PWM generator to 24 bits, but
at the cost of a slight jitter in the duty cycle.

The channels also have the ability to automatically fade from one duty cycle value to another. This feature is
enabled by setting LEDC_DUTY_START_HSCHn. When this bit is set, the PWM controller will automatically
increment or decrement the value in LEDC_DUTY_HSCHn, depending on whether the bit
LEDC_DUTY_INC_HSCHn is set or cleared, respectively. The speed the duty cycle changes is defined as such:
every time the LEDC_DUTY_CYCLE_HSCHn cycles, the content of LEDC_DUTY_SCALE_HSCHn is added to or
subtracted from LEDC_DUTY_HSCHn[24..4]. The length of the fade can be limited by setting
LEDC_DUTY_NUM_HSCHn: the fade will only last that number of cycles before finishing. A finished fade also
generates an interrupt.

overflow:

Ipoint. {- T
hpoint
0

|b-a|=LEDC_'DUTY_SCALE' HSCHn " |c-b|=LEDG DUTY_SCALE_HSCHn

- |

cycle_ent: 1 2 .. LEDC_DUTY_CYCLE HSCHn 1 2 ... LEDC_DUTY_CYCLE_HSCHn 1 2
num_cnt:1 2 3 ... LEDC_DUTY_NUM_HSCHn

Figure 87: Output Signal Diagram of Gradient Duty Cycle

Figure 87 is an illustration of this. In this configuration, LEDC_DUTY_NUM_HSCHn_R increases by
LEDC_DUTY_SCALE_HSCHn for every LEDC_DUTY_CYCLE_HSCHn clock cycles, which is reflected in the duty
cycle of the output signal.

14.2.4 Interrupts
e | EDC_DUTY_CHNG_END_LSCHn_INT: Triggered when a fade on a low-speed channel has finished.
e | EDC_DUTY_CHNG_END_HSCH_INT: Triggered when a fade on a high-speed channel has finished.
e | EDC_HS_TIMERx_OVF_INT: Triggered when a high-speed timer has reached its maximum counter value.

e | EDC_LS_TIMERx_OVF_INT: Triggered when a low-speed timer has reached its maximum counter value.

Espressif Systems 369 ESP32 Technical Reference Manual V3.1

14. LED_PWM

14.3 Register Summary

Name ‘ Description Address Access
Configuration registers

LEDC_CONF_REG Global ledc configuration register Ox3FF59190 | R/W
LEDC_HSCHO_CONFO_REG Configuration register O for high-speed channel O | Ox3FF59000 | R/W
LEDC_HSCH1_CONFO_REG Configuration register O for high-speed channel 1 | Ox3FF59014 | R/W
LEDC_HSCH2_CONFO_REG Configuration register O for high-speed channel 2 | 0x3FF59028 | R/W
LEDC_HSCH3_CONFO_REG Configuration register O for high-speed channel 3 | Ox3FF5903C | R/W
LEDC_HSCH4_CONFO_REG Configuration register O for high-speed channel 4 | 0x3FF59050 | R/W
LEDC_HSCH5_CONFO_REG Configuration register O for high-speed channel 5 | 0x3FF59064 | R/W
LEDC_HSCH6_CONFO_REG Configuration register O for high-speed channel 6 | 0x3FF59078 | R/W
LEDC_HSCH7_CONFO_REG Configuration register O for high-speed channel 7 | Ox3FF5908C | R/W
LEDC_HSCHO_CONF1_REG Configuration register 1 for high-speed channel O | 0x3FF5900C | R/W
LEDC_HSCH1_CONF1_REG Configuration register 1 for high-speed channel 1 | 0x3FF59020 | R/W
LEDC_HSCH2_CONF1_REG Configuration register 1 for high-speed channel 2 | 0x3FF59034 | R/W
LEDC_HSCH3_CONF1_REG Configuration register 1 for high-speed channel 3 | Ox3FF59048 | R/W
LEDC_HSCH4_CONF1_REG Configuration register 1 for high-speed channel 4 | 0x3FF5905C | R/W
LEDC_HSCH5_CONF1_REG Configuration register 1 for high-speed channel 5 | Ox3FF59070 | R/W
LEDC_HSCH6_CONF1_REG Configuration register 1 for high-speed channel 6 | 0x3FF59084 | R/W
LEDC_HSCH7_CONF1_REG Configuration register 1 for high-speed channel 7 | 0x3FF59098 | R/W
LEDC_LSCHO_CONFO_REG Configuration register O for low-speed channel O | Ox3FF590A0 | R/W
LEDC_LSCH1_CONFO_REG Configuration register O for low-speed channel 1 | Ox3FF590B4 | R/W
LEDC_LSCH2_CONFO_REG Configuration register O for low-speed channel 2 | 0x3FF590C8 | R/W
LEDC_LSCH3_CONFO_REG Configuration register O for low-speed channel 3 | Ox3FF590DC | R/W
LEDC_LSCH4_CONFO_REG Configuration register O for low-speed channel 4 | Ox3FF590F0 | R/W
LEDC_LSCH5_CONFO_REG Configuration register O for low-speed channel 5 | Ox3FF59104 | R/W
LEDC_LSCH6_CONFO_REG Configuration register O for low-speed channel 6 | Ox3FF59118 | R/W
LEDC_LSCH7_CONFO_REG Configuration register O for low-speed channel 7 | Ox3FF5912C | R/W
LEDC_LSCHO_CONF1_REG Configuration register 1 for low-speed channel O | Ox3FF590AC | R/W
LEDC_LSCH1_CONF1_REG Configuration register 1 for low-speed channel 1 | Ox3FF590C0 | R/W
LEDC_LSCH2_CONF1_REG Configuration register 1 for low-speed channel 2 | Ox3FF590D4 | R/W
LEDC_LSCH3_CONF1_REG Configuration register 1 for low-speed channel 3 | Ox3FF590E8 | R/W
LEDC_LSCH4_CONF1_REG Configuration register 1 for low-speed channel 4 | Ox3FF590FC | R/W
LEDC_LSCH5_CONF1_REG Configuration register 1 for low-speed channel 5 | 0x3FF59110 | R/W
LEDC_LSCH6_CONF1_REG Configuration register 1 for low-speed channel 6 | 0x3FF59124 | R/W
LEDC_LSCH7_CONF1_REG Configuration register 1 for low-speed channel 7 | 0x3FF59138 | R/W
Duty-cycle registers

LEDC_HSCHO_DUTY_REG Initial duty cycle for high-speed channel O O0x3FF59008 | R/W
LEDC_HSCH1_DUTY_REG Initial duty cycle for high-speed channel 1 Ox3FF5901C | R/W
LEDC_HSCH2_DUTY_REG Initial duty cycle for high-speed channel 2 0x3FF59030 | R/W
LEDC_HSCH3_DUTY_REG Initial duty cycle for high-speed channel 3 Ox3FF59044 | R/W
LEDC_HSCH4_DUTY_REG Initial duty cycle for high-speed channel 4 Ox3FF59058 | R/W
LEDC_HSCH5_DUTY_REG Initial duty cycle for high-speed channel 5 Ox3FF5906C | R/W
LEDC_HSCH6_DUTY_REG Initial duty cycle for high-speed channel 6 Ox3FF59080 | R/W
LEDC_HSCH7_DUTY_REG Initial duty cycle for high-speed channel 7 Ox3FF59094 | R/W

Espressif Systems

370

ESP32 Technical Reference Manual V3.1

14. LED_PWM

Name Description Address Access
LEDC_HSCHO_DUTY_R_REG | Current duty cycle for high-speed channel 0 0Ox3FF59010 | RO
LEDC_HSCH1_DUTY_R_REG | Current duty cycle for high-speed channel 1 Ox3FF59024 | RO
LEDC_HSCH2_DUTY_R_REG | Current duty cycle for high-speed channel 2 O0x3FF59038 | RO
LEDC_HSCH3_DUTY_R_REG | Current duty cycle for high-speed channel 3 Ox3FF5904C | RO
LEDC_HSCH4_DUTY_R_REG | Current duty cycle for high-speed channel 4 Ox3FF59060 | RO
LEDC_HSCH5_DUTY_R_REG | Current duty cycle for high-speed channel 5 Ox3FF59074 | RO
LEDC_HSCH6_DUTY_R_REG | Current duty cycle for high-speed channel 6 Ox3FF59088 | RO
LEDC_HSCH7_DUTY_R_REG | Current duty cycle for high-speed channel 7 Ox3FF5909C | RO
LEDC _LSCHO_DUTY_REG Initial duty cycle for low-speed channel O Ox3FF590A8 | R/W
LEDC_LSCH1_DUTY_REG Initial duty cycle for low-speed channel 1 Ox3FF590BC | R/W
LEDC_LSCH2_DUTY_REG Initial duty cycle for low-speed channel 2 Ox3FF590D0 | R/W
LEDC_LSCH3_DUTY_REG Initial duty cycle for low-speed channel 3 Ox3FF590E4 | R/W
LEDC_LSCH4_DUTY_REG Initial duty cycle for low-speed channel 4 Ox3FF590F8 | R/W
LEDC_LSCH5_DUTY_REG Initial duty cycle for low-speed channel 5 Ox3FF5910C | R/W
LEDC_LSCH6_DUTY_REG Initial duty cycle for low-speed channel 6 Ox3FF59120 | R/W
LEDC_LSCH7_DUTY_REG Initial duty cycle for low-speed channel 7 Ox3FF59134 | R/W
LEDC_LSCHO_DUTY_R_REG Current duty cycle for low-speed channel 0 Ox3FF590B0 | RO
LEDC_LSCH1_DUTY_R_REG | Current duty cycle for low-speed channel 1 Ox3FF590C4 | RO
LEDC_LSCH2_DUTY_R_REG Current duty cycle for low-speed channel 2 Ox3FF590D8 | RO
LEDC_LSCH3_DUTY_R_REG | Current duty cycle for low-speed channel 3 OxBFF590EC | RO
LEDC_LSCH4_DUTY_R_REG | Current duty cycle for low-speed channel 4 Ox3FF59100 | RO
LEDC_LSCH5_DUTY_R_REG | Current duty cycle for low-speed channel 5 Ox3FF59114 | RO
LEDC_LSCH6_DUTY_R_REG | Current duty cycle for low-speed channel 6 Ox3FF59128 | RO
LEDC_LSCH7_DUTY_R_REG | Current duty cycle for low-speed channel 7 0x3FF5913C | RO
Timer registers
LEDC_HSTIMERO_CONF_REG | High-speed timer O configuration Ox3FF59140 | R/W
LEDC_HSTIMER1_CONF_REG | High-speed timer 1 configuration Ox3FF59148 | R/W
LEDC_HSTIMER2_CONF_REG | High-speed timer 2 configuration Ox3FF59150 | R/W
LEDC_HSTIMER3_CONF_REG | High-speed timer 3 configuration Ox3FF59158 | R/W
LEDC_HSTIMERO_VALUE_REG| High-speed timer O current counter value Ox3FF59144 | RO
LEDC_HSTIMER1_VALUE_REG| High-speed timer 1 current counter value Ox3FF5914C | RO
LEDC_HSTIMER2_VALUE_REG| High-speed timer 2 current counter value Ox3FF59154 | RO
LEDC_HSTIMER3_VALUE_REG| High-speed timer 3 current counter value Ox3FF5915C | RO
LEDC_LSTIMERO_CONF_REG | Low-speed timer O configuration Ox3FF59160 | R/W
LEDC_LSTIMER1_CONF_REG | Low-speed timer 1 configuration Ox3FF59168 | R/W
LEDC_LSTIMER2_CONF_REG | Low-speed timer 2 configuration Ox3FF59170 | R/W
LEDC_LSTIMER3_CONF_REG | Low-speed timer 3 configuration Ox3FF59178 | R/W
LEDC_LSTIMERO_VALUE_REG | Low-speed timer O current counter value Ox3FF59164 | RO
LEDC_LSTIMER1_VALUE_REG | Low-speed timer 1 current counter value Ox3FF5916C | RO
LEDC_LSTIMER2_VALUE_REG | Low-speed timer 2 current counter value Ox3FF59174 | RO
LEDC_LSTIMER3_VALUE_REG | Low-speed timer 3 current counter value Ox3FF5917C | RO
Interrupt registers
LEDC_INT_RAW_REG Raw interrupt status Ox3FF59180 | RO
LEDC_INT_ST_REG Masked interrupt status Ox3FF59184 | RO
Espressif Systems 371 ESP32 Technical Reference Manual V3.1

14. LED_PWM

Name Description Address Access
LEDC_INT_ENA_REG Interrupt enable bits Ox3FF59188 | R/W
LEDC_INT_CLR_REG Interrupt clear bits Ox3FF5918C | WO

Espressif Systems 372 ESP32 Technical Reference Manual V3.1

14. LED_PWM

14.4 Registers

Register 14.1: LEDC_HSCHn_CONFO0_REG (: 0-7) (0x1C+0x10*1)

D

@
@%@

E

0x00000000

LEDC_IDLE_LV_HSCHn This bit is used to control the output value when high-speed channel n is

inactive. (R/W)

LEDC_SIG_OUT_EN_HSCHn This is the output enable control bit for high-speed channel n. (R/W)

LEDC_TIMER_SEL_HSCHn There are four high-speed timers. These two bits are used to select one
of them for high-speed channel n: (R/W)

0O: select hstimer0;
1: select hstimer1;
2: select hstimer2;
3: select hstimer3.

Register 14.2:

LEDC_HSCH/_HPOINT_REG (1: 0-7) (0x20+0x10%)

&
&
\é& 7
5 ©
& &Qi\
@ N
’ 31 20 | 19 0 ‘
’ 0x0000 | 0x000000 ‘ Reset

LEDC_HPOINT_HSCHn The output value changes to high when htimerx(x=[0,3]), selected by high-
speed channel 1, has reached LEDC_HPOINT_HSCHn[19:0]. (R/W)

Espressif Systems

373

ESP32 Technical Reference Manual V3.1

14. LED_PWM

Register 14.3: LEDC_HSCH/_DUTY_REG (/: 0-7) (0x24+0x10*")

\b\"\
¢
\Sdg\%
QJ&)
%Q)G QC) /
@ &
’ 31 25 | 24 0 ‘
’ 0x00 | 0x0000000 \ Reset

LEDC_DUTY_HSCHn The register is used to control output duty. When hstimerx(x=[0,3]), selected
by high-speed channel n, has reached LEDC_LPOINT_HSCHn, the output signal changes to low.
(R/W)

LEDC_LPOINT_HSCHn=LEDC_LPOINT_HSCHn[19:0]+LEDC_DUTY_HSCHn[24:4] (1)
LEDC_LPOINT_HSCHn=LEDC_LPOINT_HSCHnN[19:0]+LEDC_DUTY_HSCHn[24:4] +1) (2)
See the Functional Description for more information on when (1) or (2) is chosen.

Register 14.4: LEDC_HSCH/_CONF1_REG (: 0-7) (0x28+0x10%)

2 . S ¥
S’ %o“\(& &
L7 B8 <7 <
Q\ / C)\/ N/
AR S 5 X
,é 7 /C\ 7 ’Q\ ’ 'Q\ ’ 'Qk 7
090090 090 090 090
Q7O QO Q Q
NN N N N
’31|30|29 20|19 10|9 O‘
] 0 | 1 | 0x000 | 0x000 | 0x000 \Reset

LEDC_DUTY_START_HSCHn When LEDC_DUTY_NUM_HSCHn, LEDC_DUTY_CYCLE_HSCHn
and LEDC_DUTY_SCALE_HSCHn has been configured, these register will not take effect until
LEDC_DUTY_START_HSCHn is set. This bit is automatically cleared by hardware. (R/W)

LEDC_DUTY_INC_HSCHn This register is used to increase or decrease the duty of output signal for
high-speed channel n. (R/W)

LEDC_DUTY_NUM_HSCHn This register is used to control the number of times the duty cycle is
increased or decreased for high-speed channel n. (R/W)

LEDC_DUTY_CYCLE_HSCHn This register is used to increase or decrease the duty cycle every time
LEDC_DUTY_CYCLE_HSCHn cycles for high-speed channel n. (R/W)

LEDC_DUTY_SCALE_HSCHn This register is used to increase or decrease the step scale for high-
speed channel n. (R/W)

Espressif Systems 374 ESP32 Technical Reference Manual V3.1

14. LED_PWM

Register 14.5: LEDC_HSCHn_DUTY_R_REG (n: 0-7) (0x2C+0x10*)

\2\%0\2&\/
S S
G o
& $
A NV
’ 31 25 | 24 0 ‘
’ 0x00 | 0x0000000 \ Reset

LEDC_DUTY_HSCHn_R This register represents the current duty cycle of the output signal for high-
speed channel n. (RO)

Register 14.6: LEDC_LSCHn_CONFO_REG (n: 0-7) (0xBC+0x10%)

; O
S X Q7 %\Q/
Q?Q}\\ S
A\

[+ [s]:]
’ 0x0000000 | 0 | 0 | 0 | 0 ‘Reset

LEDC_PARA_UP_LSCHn This bit is used to update register LEDC_LSCHn_HPOINT and
LEDC_LSCHn_DUTY for low-speed channel n. (R/W)

LEDC_IDLE_LV_LSCHn This bit is used to control the output value, when low-speed channel n is
inactive. (R/W)

LEDC_SIG_OUT_EN_LSCHn This is the output enable control bit for low-speed channel n. (R/W)

LEDC_TIMER_SEL_LSCHn There are four low-speed timers, the two bits are used to select one of
them for low-speed channel . (R/W)
0: select Istimer0;
1: select Istimer1;
2: select Istimer2;
3: select Istimer3.

Espressif Systems 375 ESP32 Technical Reference Manual V3.1

14. LED_PWM

Register 14.7: LEDC_LSCH/_HPOINT_REG (n: 0-7) (0xC0+0x10%)

s
é\ 7
> &£
& &
N N
’ 31 20 | 19 0 ‘
’ 00000 | 0x000000 |Reset

LEDC_HPOINT_LSCHn The output value changes to high when Istimerx(x=[0,3]), selected by low-
speed channel 1, has reached LEDC_HPOINT_LSCHn[19:0]. (R/W)

Register 14.8: LEDC_LSCHn_DUTY_REG (: 0-7) (0xC4+0x10*1)

S
Q)O
N
5 S
< o
9 Q
NS NY
’ 31 25 | 24 0 ‘
] 0x00 | 0x0000000

‘ Reset

LEDC_DUTY_LSCHn The register is used to control output duty. When Istimerx(x=[0,3]), chosen by
low-speed channel n, has reached LEDC_LPOINT_LSCHn,the output signal changes to low. (R/W)
LEDC_LPOINT_LSCHn=(LEDC_HPOINT_LSCHn[19:0]+LEDC_DUTY_LSCHn[24:4]) (1)
LEDC_LPOINT_LSCHn=(LEDC_HPOINT_LSCHn[19:0]+LEDC_DUTY_LSCHn[24:4] +1) (2)

See the Functional Description for more information on when (1) or (2) is chosen.

Espressif Systems 376 ESP32 Technical Reference Manual V3.1

14. LED_PWM

Register 14.9: LEDC_LSCH/_CONF1_REG (1: 0-7) (0xC8+0x10%/)

\2\(\ \2\0 \2&\
L & & S
VO) Y D4
NG S ‘ &
O N o
ST D S
/é 7 ’Q\ ’ ’Q\ / ,Q\ 4
A o >
Q7O QO Q Q
NN N% N N
’31|30|29 20|19 10|9 O‘
] 0 | 1 | 0x000 | 0x000 | 0x000 \Reset

LEDC_DUTY_START_LSCHn When LEDC_DUTY_NUM_HSCHn, LEDC_DUTY_CYCLE_HSCHn
and LEDC_DUTY_SCALE_HSCHn have been configured, these settings will not take effect un-
til set LEDC_DUTY_START_HSCHn. This bit is automatically cleared by hardware. (R/W)

LEDC_DUTY_INC_LSCHn This register is used to increase or decrease the duty of output signal for

low-speed channel n.

RW)

LEDC_DUTY_NUM_LSCHn This register is used to control the number of times the duty cycle is

increased or decreased for low-speed channel . (R/W)

LEDC_DUTY_CYCLE_LSCHn This register is used to increase or decrease the duty every
LEDC_DUTY_CYCLE_LSCHn cycles for low-speed channel n. (R/W)

LEDC_DUTY_SCALE_LSCHn This register is used to increase or decrease the step scale for low-
speed channel n. (R/W)

Register 14.10: LEDC_LSCHn_DUTY_R_REG (: 0-7) (0xCC+0x10%)

N
e»é@
&

A\

’31 25|24

|

] 0x00 |

‘ Reset

LEDC_DUTY_LSCHn_R
channel n. (RO)

Espressif Systems

This register represents the current duty of the output signal for low-speed

377

ESP32 Technical Reference Manual V3.1

14. LED_PWM

Register 14.11: LEDC_HSTIMERx_CONF_REG (x: 0-3) (0x140+8*x)

&
o N &
/\\Q//\ & P &7
oLF S >
>EE Y &
NI + S
/\@6\ ’\\O © *2%) (x4 ©
007207 O O7
& SN & &
’31 26|25|24|23|22 5|4 O‘
’ 0x00 | 0 | 1 | 0 | 0x00000 | 0x00 ‘Reset

LEDC_TICK_SEL_HSTIMERXx This bit is used to select APB_CLK or REF_TICK for high-speed timer
x. (R/W)
1: APB_CLK;
0: REF_TICK.

LEDC_HSTIMERx_RST This bit is used to reset high-speed timer x. The counter value will be "zero’
after reset. (R/W)

LEDC_HSTIMERx_PAUSE This bit is used to suspend the counter in high-speed timer x. (R/W)

LEDC_CLK_DIV_NUM_HSTIMERXx This register is used to configure the division factor for the divider
in high-speed timer x. The least significant eight bits represent the fractional part. (R/W)

LEDC_HSTIMERx_DUTY_RES This register is used to control the range of the counter in high-speed
timer x. The counter range is [0,2**LEDC_HSTIMERx_DUTY_RES], the maximum bit width for
counter is 20. (R/W)

Register 14.12: LEDC_HSTIMERx_VALUE_REG (x: 0-3) (0x144+8*x)

S
&
N
S N
Q}A@ QQ/
& $
’31 2o|19 0‘
’ 0x0000 |o 00 00O 0ODOOG OGO O OO OGO OGO OGO OT OO0 O O‘Reset

LEDC_HSTIMERX_CNT Software can read this register to get the current counter value of high-speed
timer x. (RO)

Espressif Systems 378 ESP32 Technical Reference Manual V3.1

14. LED_PWM

Register 14.13: LEDC_LSTIMERx_CONF_REG (x: 0-3) (0x160+8*x)

‘@)
LN AN > g
oA & .y
K FEE S &
NN IANEN ' Q
(@5\ NN o $
& Ol 0707 % X%
& LY & &
’31 27|26|25|24|23|22 5|4 O‘
] 0x00 | 0 | 0 | 1 | 0 | 0x00000 | 0x00 ‘Reset

LEDC_LSTIMERx_PARA_UP Set this bit to update LEDC_CLK_DIV_NUM_LSTIMEx and
LEDC_LSTIMERx_DUTY_RES. (R/W)

LEDC_TICK_SEL_LSTIMERx This bit is used to select SLOW_CLK or REF_TICK for low-speed timer
x. (R/W)
1: SLOW_CLK;
0: REF_TICK.

LEDC_LSTIMERx_RST This bit is used to reset low-speed timer x. The counter will show O after
reset. (R/W)

LEDC_LSTIMERx_PAUSE This bit is used to suspend the counter in low-speed timer x. (R/W)

LEDC_CLK_DIV_NUM_LSTIMERx This register is used to configure the division factor for the divider
in low-speed timer x. The least significant eight bits represent the fractional part. (R/W)

LEDC_LSTIMERx_DUTY_RES This register is used to control the range of the counter in low-speed
timer x. The counter range is [0,2**LEDC_LSTIMERx_DUTY_RES], the max bit width for counter is
20. (R/W)

Register 14.14: LEDC_LSTIMERx_VALUE_REG (x: 0-3) (0x164+8%x)

K
\C)%
&’
N
S N2
Q)é QQ/
& N%
’31 20|19 O‘
’ 0x0000 |o 0000 0DOO0GOT OO OU OGO OGO OGO OTO0GO0O0 O O‘Reset

LEDC_LSTIMERx_CNT Software can read this register to get the current counter value of low-speed
timer x. (RO)

Espressif Systems 379 ESP32 Technical Reference Manual V3.1

the
the

for
for

bit
bit

LSTIMERX_OVF_INT
HSTIMERx_OVF_INT

status
status

(0x0180)

interrupt
interrupt
(0x0184)

12
raw

raw
pt. (RO)

pt. (RO)

13

pt status bit for the LEDC
pt status bit for the LEDC

14

INT_RAW_REG
INT_ST_REG

15

[

17

LEDC_DUTY_CHNG_END_HSCHn_INT interru

18
LEDC_DUTY_CHNG_END_LSCHn_INT interru

19

21 20

Register 14.16: LEDC

22

Register 14.15: LEDC

]o 00 00 0 0 O o|o|o o|o|0 o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

24| 23

interrupt. (RO)

interrupt. (RO)

LEDC_HSTIMERx_OVF_INT_RAW The raw interru

LEDC_DUTY_CHNG_END_LSCH/_INT_RAW The
LEDC_DUTY_CHNG_END_HSCH _INT_RAW The
LEDC_LSTIMERx_OVF_INT_RAW The raw interru

E

14. LED_PWM

o
A@M\T\/w\
«%m\vxuow
X
&%M\V\/AO/&@@
0, %
,AO \T\/ O~ /vv\V% N
OGS O
,\%/A\\/O//vv X /Q/vvv
< 5%,
3N ,\%/A\\/ OWOV\ 5
NG 7
A@/%\W AOM%\/Q /&/0@&% \ /va
NN ORI
O Qe O

N

NONGY 2.9 N
«%«A\\w\d@%w %\o\/@o 00@ ’
9,5 % oM 1,75
o 00, U0 O 0D
X SN AN
OB UH 1 05
/\%/M\V\/ % 9, 0;\0/ NS
50T S %
%,M \M@@V/\NVV/\X\ " f/v/vvv
SONZNCN Y. @xvo,oo/o&
&, % SO KTy O
SON \MJQ% Q\V @A\ N Q/Q/vvv
@B 0%
P NN AN
,\%/\T\/ O@ QA\ OA\O/OQ/QOVV
&, % 7O KTy O
RON \WCO@ Q\V QA\ N Q/Q/vvv
B o509
R O R AN
1,05
PN T O
Q\V QA\O/ OQ/AvaV
\w\o\/m«oow&
LGN
OQ/AvaV
R
®
&@
1.
@%@

the
the

for
for

bit
bit

LSTIMERX_OVF_INT
HSTIMERx_OVF_INT

status
status

ESP32 Technical Reference Manual V3.1

interrupt
interrupt

12

pt status bit for the LEDC
pt status bit for the LEDC

masked

pt. (RO)
masked

pt. (RO)

13

14

380

15

The

LEDC_DUTY_CHNG_END_LSCHn_INT interru

16

17

LEDC_DUTY_CHNG_END_HSCHn_INT interru

18

19

20

21

22

24| 23

interrupt. (RO)

LEDC_HSTIMERx_OVF_INT_ST The masked interru
interrupt. (RO)

LEDC_DUTY_CHNG_END_HSCH/_INT_ST The
LEDC_LSTIMERx_OVF_INT_ST The masked interru

LEDC_DUTY_CHNG_END_LSCHr_INT_ST

’o 00 00 0 0 O o|o|o o|o|o o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

E

Espressif Systems

the
the

for
for

bit
bit

LSTIMERX_OVF_INT inter-
HSTIMERx_OVF_INT inter-

enable
enable

10

REG (0x018C)

11

A_REG (0x0188)

12

interrupt

pt. (R/W)

interrupt

13

14

INT_EN
pt. (R/W)
INT_CLR

pt enable bit for the LEDC

15
The

pt enable bit for the LEDC

[

17

18

19

21 20

22

Register 14.17: LEDC
Register 14.18: LEDC

]o 00 00 0 0 O o|o|o o|o|0 o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

24| 23

LEDC_DUTY_CHNG_END_LSCHn_INT interru

LEDC_DUTY_CHNG_END_HSCHn_INT interru

rupt. (R/W)
LEDC_HSTIMERx_OVF_INT_ENA The interru

rupt. (R/W)

LEDC_DUTY_CHNG_END_LSCHn_INT_ENA The

LEDC_DUTY_CHNG_END_HSCHn_INT_ENA
LEDC_LSTIMERx_OVF_INT_ENA The interru

E

14. LED_PWM

o

W
W0,
S0 w&v@
S0 m&ww\/\ ON
Sy 103050 %

&%
W0 %R

AN

the
the
pt.

pt. (WO)

clear
clear

to
to

bit

bit
ESP32 Technical Reference Manual V3.1

this
this

pt. (WO)

12

[

14

pt. (WO)

LEDC_LSTIMERx_OVF_INT_CLR Set this bit to clear the LEDC_LSTIMERx_OVF_INT interru

381

15

17|16

18

19

21 20

|22

’o 00 00 0 0 O o|o|o o|o|o o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

24| 23

LEDC_DUTY_CHNG_END_LSCHn_INT interru

LEDC_DUTY_CHNG_END_HSCHn_INT interru

(WO)

LEDC_HSTIMERx_OVF_INT_CLR Set this bit to clear the LEDC_HSTIMERx_OVF_INT interru

LEDC_DUTY_CHNG_END_LSCH_INT_CLR Set
LEDC_DUTY_CHNG_END_HSCH/_INT_CLR Set

E

Espressif Systems

14. LED_PWM

Register 14.19: LEDC_CONF_REG (0x0190)

LEDC_APB_CLK_SEL This bit is used to set the frequency of SLOW_CLK. (R/W)
0: 8 MHz;
1: 80 MHz.

Espressif Systems 382 ESP32 Technical Reference Manual V3.1

15. REMOTE CONTROL PERIPHERAL

15. Remote Control Peripheral

15.1 Introduction

The RMT (Remote Control) module is primarily designed to send and receive infrared remote control signals that
implement on-off keying in a carrier frequency, but due to its design it can be used to generate various types of
signals. An RMT transmitter does this by reading consecutive duration values of an active and inactive output
from the built-in RAM block, optionally modulating it with a carrier wave. A receiver will inspect its input signal,
optionally filtering it, and will place the lengths of time the signal is active and inactive in the RAM block.

The RMT module has eight channels, numbered zero to seven; registers, signals and blocks that are duplicated
in each channel are indicated by an n which is used as a placeholder for the channel number.

15.2 Functional Description

15.2.1 RMT Architecture

H\ CH1 |
RMT_CONTI_MODE_CHn
RMT_TX_LIM_Chn
RMT_TX_WRAP_EN c
Clock RMT_CARRIER_HIGH_CHn AMT GARRIER_EN.CHn Transmitter
RMT_REF_CNT_RST_CHn RMT_GARRIER_LOW. CHn _ EN._
RMT_DIV_GNT_Chn RMT_CARRIER_OUT LV_CHn

REF_TICK

pesLA e

clk_div arrier_Generator|

Divider (8 bit) cK

APB_CLK

MTIDLEOUTENCH n

RMT_REF_ALWAYS_ON_CHn j sig_out
level
D
mem_rdata period Flip_Flop
c EN
RMT_IDLE_OUT_LV_CHn

Receiver
RMT_RX_FILTER_THRES_CHn

RAM

block0

block1

RMT_RX_FILTER_EN_CHn
block? mem_wdata

sig_in

Filter

Detect_Edge

RMT_MEM_PD
§| RMT_MEM_SIZE_CHn

RMT_MEM_RD_RST_CHn
RMT_MEM_WR_RST_CHn
RMT_MEM_OWNER_CHn

Figure 88: RMT Architecture

The RMT module contains eight channels. Each channel has both a transmitter and a receiver, but only one of
them can be active in every channel. The eight channels share a 512x32-bit RAM block which can be read and
written by the processor cores over the APB bus, read by the transmitters, and written by the receivers. The
transmitted signal can optionally be modulated by a carrier wave. Each channel is clocked by a divided-down
signal derived from either the APB bus clock or REF_TICK.

Espressif Systems 383 ESP32 Technical Reference Manual V3.1

15. REMOTE CONTROL PERIPHERAL

15.2.2 RMT RAM

31 [30:16] [15] [14:0]

level period level period
addr0

31 [30:16]) [15] [14:0]

level period level period
addrn

Figure 89: Data Structure

The data structure in RAM is shown in Figure 89. Each 32-bit value contains two 16-bit entries, with two fields in
every entry, "level” and "period”. "Level” indicates whether a high-/low-level value was received or is going to be
sent, while "period” points out the divider-clock cycles for which the level lasts. A zero period is interpreted as an
end-marker: the transmitter will stop transmitting once it has read this, and the receiver will write this, once it has
detected that the signal it received has gone idle.

Normally, only one block of 64x32-bit worth of data can be sent or received. If the data size is larger than this
block size, blocks can be extended or the channel can be configured for the wraparound mode.

The RMT RAM can be accessed via the APB bus. The initial address is the RMT base address + 0x800. The
RAM block is divided into eight 64x32-bit blocks. By default, each channel uses one block (block zero for
channel zero, block one for channel one, and so on). Users can extend the memory to a specific channel by
configuring the RMT_MEM_SIZE_CHn register; setting this to >1 will prompt the channel to use the memory of
subsequent channels as well. The RAM address range of channel 1 is start_addr_CHn to end_addr_CHn, which
is defined by:

start_addr_chn = RMT base address + 0x800 + 64 * 4 x 1, and
end_addr_chn = RMT base address + 0x800 + (64 # 4«1 + 64« 4x RMT_MEM_SIZE_CHn)mod(512%4) — 4

To protect a receiver from overwriting the blocks a transmitter is about to transmit, RMT_MEM_OWNER_CHn
can be configured to designate the owner, be it a transmitter or receiver, of channel n’s RAM block. This way, if
this ownership is violated, the RMT_CHn_ERR interrupt will be generated.

Note: When enabling the continuous transmission mode by setting RMT_REG_TX_CONTI_MODE, the
transmitter will transmit the data on the channel continuously, that is, from the first byte to the last one, then from
the first to the last again, and so on. In this mode, there will be an idle level lasting one clk_div cycle between N
and N+1 transmissions.

15.2.3 Clock

The main clock of a channel is generated by taking either the 80 MHz APB clock or REF_TICK (usually 1MHz),
according to the state of RMT_REF_ALWAYS_ON_CHn. (For more information on clock sources, please see
Chapter Reset And Clock.) Then, the aforementioned state gets scaled down using a configurable 8-bit divider to
create the channel clock which is used by both the carrier wave generator and the counter. The divider value can
be set by configuring RMT_DIV_CNT_CHn.

Espressif Systems 384 ESP32 Technical Reference Manual V3.1

15. REMOTE CONTROL PERIPHERAL

15.2.4 Transmitter

When the RMT_TX_START_CHn register is 1, the transmitter of channel n will start reading and sending data
from RAM. The transmitter will receive a 32-bit value each time it reads from RAM. Of these 32 bits, the low
16-bit entry is sent first and the high entry second.

To transmit more data than can be fitted in the channel's RAM, the wraparound mode can be enabled. In this
mode, when the transmitter has reached the last entry in the channel’s memory, it will loop back to the first byte.
To use this mechanism for sending more data than can be fitted in the channel’s RAM, fill the RAM with the initial
events and set RMT_CHn_TX_LIM_REG to cause an RMT_CHn_TX_THR_EVENT_INT interrupt before the
wraparound happens. Then, when the interrupt happens, the already sent data should be replaced by
subsequent events, so that when the wraparound happens the transmitter will seamlessly continue sending the
new events.

With or without the wraparound mode enabled, transmission ends when an entry with zero length is
encountered. When this happens, the transmitter will generate an RMT_CHn_TX_END_INT interrupt and return
to the idle state. When a transmitter is in the idle state, the output level defaults to end-mark 0. Users can also
configure RMT_IDLE_OUT_EN_CHn and RMT_IDLE_OUT_LV_CHn to control the output level manually.

The output of the transmitter can be modulated using a carrier wave by setting RMT_CARRIER_EN_CHn. The
carrier frequency and duty cycle can be configured by adjusting the carrier’s high and low durations in
channel-clock cycles, in RMT_CARRIER_HIGH_CHn and RMT_CARRIER_HIGH_CHn.

15.2.5 Receiver

When RMT_RX_EN_CHn is set to 1, the receiver in channel n becomes active, measuring the duration between
input signal edges. These will be written as period/level value pairs to the channel RAM in the same fashion as
the transmitter sends them. Receiving ends, when the receiver detects no change in signal level for more than
RMT_IDLE_THRES_CHn channel clock ticks. The receiver will write a final entry with O period, generate an
RMT_CHn_RX_END_INT_RAW interrupt and return to the idle state.

The receiver has an input signal filter which can be configured using RMT_RX_FILTER_EN_CHn: The filter will
remove pulses with a length of less than RMT_RX_FILTER_THRES_CHn in APB clock periods.

When the RMT module is inactive, the RAM can be put into low-power mode by setting the RMT_MEM_PD
register to 1.

15.2.6 Interrupts

e RMT_CHn_TX_THR_EVENT_INT: Triggered when the amount of data the transmitter has sent matches the
value of RMT_CHn_TX_LIM_REG.

e RMT_CHn_TX_END_INT: Triggered when the transmitter has finished transmitting the signal.

e RMT_CHn_RX_END_INT: Triggered when the receiver has finished receiving a signal.

15.3 Register Summary

Name ‘ Description ‘ Address ‘ Access

Configuration registers
RMT_CHOCONFO_REG | Channel 0 config register 0 | Ox3FF56020 | R/W

Espressif Systems 385 ESP32 Technical Reference Manual V3.1

15. REMOTE CONTROL PERIPHERAL

RMT_CHOCONF1_REG Channel O config register 1 Ox3FF56024 R/W
RMT_CH1CONFO_REG Channel 1 config register O Ox3FF56028 R/W
RMT_CH1CONF1_REG Channel 1 config register 1 Ox3FF5602C R/W
RMT_CH2CONFO_REG Channel 2 config register O Ox3FF56030 R/W
RMT_CH2CONF1_REG Channel 2 config register 1 Ox3FF56034 R/W
RMT_CH3CONFO_REG Channel 3 config register O Ox3FF56038 R/W
RMT_CH3CONF1_REG Channel 3 config register 1 Ox3FF5603C R/W
RMT_CH4CONFO_REG Channel 4 config register O 0x3FF56040 R/W
RMT_CH4CONF1_REG Channel 4 config register 1 Ox3FF56044 R/W
RMT_CH5CONFO_REG Channel 5 config register O Ox3FF56048 R/W
RMT_CH5CONF1_REG Channel 5 config register 1 Ox3FF5604C R/W
RMT_CHBCONFO_REG Channel 6 config register O Ox3FF56050 R/W
RMT_CHGB6CONF1_REG Channel 6 config register 1 Ox3FF56054 R/W
RMT_CH7CONFO_REG Channel 7 config register O Ox3FF56058 R/W
RMT_CH7CONF1_REG Channel 7 config register 1 Ox3FF5605C R/W
Interrupt registers

RMT_INT_RAW_REG Raw interrupt status Ox3FF560A0 RO
RMT_INT_ST_REG Masked interrupt status Ox3FF560A4 RO
RMT_INT_ENA_REG Interrupt enable bits Ox3FF560A8 R/W
RMT_INT_CLR_REG Interrupt clear bits Ox3FF560AC | WO
Carrier wave duty cycle registers

RMT_CHOCARRIER_DUTY_REG | Channel O duty cycle configuration register | Ox3FF560B0 R/W
RMT_CH1CARRIER_DUTY_REG | Channel 1 duty cycle configuration register | Ox3FF560B4 R/W
RMT_CH2CARRIER_DUTY_REG | Channel 2 duty cycle configuration register | 0x3FF560B8 R/W
RMT_CH3CARRIER_DUTY_REG | Channel 3 duty cycle configuration register | Ox3FF560BC | R/W
RMT_CH4CARRIER_DUTY_REG | Channel 4 duty cycle configuration register | Ox3FF560C0 R/W
RMT_CH5CARRIER_DUTY_REG | Channel 5 duty cycle configuration register | Ox3FF560C4 R/W
RMT_CHBCARRIER_DUTY_REG | Channel 6 duty cycle configuration register | Ox3FF560C8 R/W
RMT_CH7CARRIER_DUTY_REG | Channel 7 duty cycle configuration register | Ox3FF560CC | R/W
Tx event configuration registers

RMT_CHO_TX_LIM_REG Channel O Tx event configuration register 0x3FF560D0 R/W
RMT_CH1_TX_LIM_REG Channel 1 Tx event configuration register Ox3FF560D4 R/W
RMT_CH2_TX_LIM_REG Channel 2 Tx event configuration register 0x3FF560D8 R/W
RMT_CH3_TX_LIM_REG Channel 3 Tx event configuration register Ox3FF560DC R/W
RMT_CH4_TX_LIM_REG Channel 4 Tx event configuration register Ox3FF560E0 R/W
RMT_CH5_TX_LIM_REG Channel 5 Tx event configuration register Ox3FF560E4 R/W
RMT_CH6_TX_LIM_REG Channel 6 Tx event configuration register Ox3FF560E8 R/W
RMT_CH7_TX_LIM_REG Channel 7 Tx event configuration register Ox3FF560EC R/W
Other registers

RMT_APB_CONF_REG RMT-wide configuration register Ox3FF560F0 R/W

Espressif Systems

386

ESP32 Technical Reference Manual V3.1

15. REMOTE CONTROL PERIPHERAL

15.4 Registers

Register 15.1: RMT_CHNCONFO0_REG (n: 0-7) (0x0058+8*)

001 | 0x01000 | 0x002 |Reset

RMT_MEM_PD This bit is used to power down the entire RMT RAM block. (It only exists in
RMT_CHOCONFOQ). 1: power down memory; 0: power up memory. (R/W)

RMT_CARRIER_OUT_LV_CHn This bit is used for configuration when the carrier wave is being trans-
mitted. Transmit on low output level with 1, and transmit on high output level with 0. (R/W)

RMT_CARRIER_EN_CHn Thisis the carrier modulation enable-control bit for channeln. Carrier mod-
ulation is enabled with 1, while carrier modulation is disabled with 0. (R/W)

RMT_MEM_SIZE_CHn This register is used to configure the amount of memory blocks allocated to
channel n (R/W)

RMT_IDLE_THRES_CHn In receive mode, when no edge is detected on the input signal for longer
than reg_idle_thres_chn channel clock cycles, the receive process is finished. (R/W)

RMT_DIV_CNT_CHn This register is used to set the divider for the channel clock of channel n. (R/W)

Espressif Systems 387 ESP32 Technical Reference Manual V3.1

15. REMOTE CONTROL PERIPHERAL

Register 15.2: RMT_CHNCONF1_REG (n: 0-7) (0x005c+8*)

o o 0
O o0 QIR o SR IROIRS
X (9 & SRS <9 s
NRPAAN S SPLR LB &
OV s 2 7 % & Q\Q
RSN % S Sl
SO AAS O CEN ST
GQ'& NN (<</</(<</</ Q:_/ Q:F/'dh/@((/é@b\@% @Q/ Qj# ;
(%) S/ QK7 K7 K7 '\/’\/'\/%QJ QS QK7 K7

] 0x0000 OX00F

RMT_IDLE_OUT_EN_CHn This is the output enable-control bit for channel n in IDLE state. (R/W)

RMT_IDLE_OUT_LV_CHn This bit configures the level of output signals in channel n when the latter
is in IDLE state. (R/W)

RMT_REF_ALWAYS_ON_CHn This bit is used to select the channel's base clock. 1:clk_apb;
O:clk_ref. (R/W)

RMT_REF_CNT_RST_CHn Setting this bit resets the clock divider of channel n. (R/W)

RMT_RX_FILTER_THRES_CHn Inreceive mode, channel nnignores input pulse when the pulse width
is smaller than this value in APB clock periods. (R/W)

RMT_RX_FILTER_EN_CHn This is the receive filter’'s enable-bit for channel n. (R/W)

RMT_TX_CONTI_MODE_CHn If this bit is set, instead of going to an idle state when transmission
ends, the transmitter will restart transmission. This results in a repeating output signal. (R/W)

RMT_MEM_OWNER_CHn This bit marks channel n's RAM block ownership. Number 1 indicates
that the receiver is using the RAM, while O indicates that the transmitter is using the RAM. (R/W)

RMT_MEM_RD_RST_CHn Set this bit to reset the read-RAM address for channel nn by accessing the
transmitter. (R/W)

RMT_MEM_WR_RST_CHn Set this bit to reset the write-RAM address for channel n by accessing
the receiver. (R/W)

RMT_RX_EN_CHn Set this bit to enable receiving data on channel n. (R/W)

RMT_TX_START_CHn Set this bit to start sending data on channel n. (R/W)

Espressif Systems 388 ESP32 Technical Reference Manual V3.1

15. REMOTE CONTROL PERIPHERAL

Register 15.3: RMT_INT_RAW_REG (0x00a0)

% 8 %%

A«M@/v S ,\M\\./@ S0

NN N
R Avv/\m\\/ &

AN &, 1 30,

GOV %

&% L0k

ONN O ¢

7 \Q/\m\O/@

Y0

+«M /va\

%OM\&\

%

12

[

14

15

[

17

19|18

21 20

22|

25 | 24 | 23

27 | 26

30 [29 | 28

31

|

’o|o 0 o|o o|o|o o|o|o o|o|0 o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

for the

bit

status

interrupt

raw
pt. (RO)

RMT_CHn_TX_THR_EVENT_INT interru

RMT_CHn_TX_THR_EVENT_INT_RAW The

ERR_INT interrupt. (RO)

T_CHn_

pt status bit for the RM

RMT_CHn_ERR_INT_RAW The raw interru

T_CHn_RX_END_INT inter-

pt status bit for the RM

rupt. (RO)

RMT_CHn_RX_END_INT_RAW The raw interru

_INT interrupt.

T_CHn_TX_END

pt status bit for the RM

RMT_CHn_TX_END_INT_RAW The raw interru

(RO)

Register 15.4: RMT_INT_ST_REG (0x00a4)

<, Y 4,

Lo & /\w\ /&\

/V\/\\v&v »A\W«m A

,\%/é\//vv @Wx&\\/%@/@nw\
ROV S

A\\//vv nw\\m\d/\mo/@&\
GV 5

SN
NN %,

% oK

o

25

12

13

14

15

16

17

|19|18

20

22|21

25 | 24 | 23

27 | 26

30 [29 | 28

31

|

]o|o 0 o|o 0|o|o o|o|o o|o|0 o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

for the

bit

status

interrupt

masked

pt. (RO)

RMT_CHn_TX_THR_EVENT_INT interru

RMT_CHn_TX_THR_EVENT_INT_ST The

ERR_INT interrupt. (RO)

T_CHn_

pt status bit for the RM

RMT_CHn_ERR_INT_ST The masked interru

T_CHn_RX_END_INT inter-

pt status bit for the RM

rupt. (RO)

RMT_CHn_RX_END_INT_ST The masked interru

T_CHn_TX_END_INT inter-

pt status bit for the RM

rupt. (RO)

RMT_CHn_TX_END_INT_ST The masked interru

ESP32 Technical Reference Manual V3.1

389

Espressif Systems

15. REMOTE CONTROL PERIPHERAL

(0x00a8)

T_INT_ENA_REG

Register 15.5: RM

by, b SO %z,
M\O&\O (SIS
SO

v&w\é\/m@ w@am@ma\om@nv

et A L %o,
NS ,\A\Avv/ N O«
AAvV/\T\//vv ﬂxd/&@/@@
b B NN
o S, 0%
b NN &8
AAVV/\T\/ /vavv%\\m\ \q /\m\O /@&\
B 8 L %%
GO 3O
T, &+ %60%
Y NONK
OSSN o ¢
Lo
@W\ M@a\
a\o/v\va\
%

12

[

14

15

[

17

19|18

21 20

22|

25 | 24 | 23

27 | 26

30 [29 | 28

31

|

’o|o 0 o|o o|o|o o|o|o o|o|0 o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

for the

bit

enable

interrupt

pt. (R/W)

RMT_CHn_TX_THR_EVENT_INT interru

RMT_CHn_TX_THR_EVENT_INT_ENA The

ERROR_INT interrupt. (R/W)

T_CHn_

pt enable bit for the RM

RMT_CHn_ERR_INT_ENA The interru

INT interrupt.

T_CHn_RX_END

pt enable bit for the RM

RMT_CHn_RX_END_INT_ENA The interru

(R/W)

TX_END_INT interrupt.

T_CHn

pt enable bit for the RM

RMT_CHn_TX_END_INT_ENA The interru

(R/W)

_REG (0x00ac)

INT_CLR

Register 15.6: RMT

OOV
oo 4 b 20%,
S OV &L

VQ/%\/ 2 %% \m!\/\%o /\V&x
&%&%Avvx N mww\ ,\@

K nws\w\ \q/ O\ %

GOV 503

S50

HYOR

.N\\Mw\ /v@a\

%

%

12

13

14

15

16

17

[

20

22|21

25 | 24 | 23

27 | 26

30 [29 | 28

31

|

]o|o 0 o|o 0|o|o o|o|o o|o|0 o|o 0 o|o 0 o|o 0 o|o 0 o|o 0 o|o O‘Reset

RMT_CHn_TX_THR_EVENT_INT_CLR Set this bit to clear the RMT_CHn_TX_THR_EVENT_INT in-

terrupt. (WO)

pt. (WO)

RMT_CHn_RX_END_INT_CLR Set this bit to clear the RMT_CHn_RX_END_INT interru

RMT_CHn_ERR_INT_CLR Set this bit to clear the RMT_CHn_ERRINT interru

pt. (WO)

pt. (WO)

RMT_CHn_TX_END _INT_CLR Set this bit to clear the RMT_CHn_TX_END_INT interru

ESP32 Technical Reference Manual V3.1

390

Espressif Systems

15. REMOTE CONTROL PERIPHERAL

Register 15.7: RMT_CHnCARRIER_DUTY_REG (1: 0-7) (0x00cc+41)

’31 16|15 O‘

’ 0x00040 | 0x00040 ‘ Reset

RMT_CARRIER_HIGH_CHn This field is used to configure the carrier wave’s high-level clock period
for channel n. The clock source can be either REF_TICK or APB_CLK. (R/W)

RMT_CARRIER_LOW_CHn This field is used to configure the carrier wave’s low-level clock period
for channel . The clock source can be either REF_TICK or APB_CLK. (R/W)

Register 15.8: RMT_CHn_TX_LIM_REG (: 0-7) (0x00ec+4*)

o
@/
N 2
%Q;SQ’ /\§P
NS &
’ 3 9 | 8 0 ‘
’ 0x000000 | 0x080 |Reset

RMT_TX_LIM_CHn When channel n sends more entries than specified here, it produces a
TX_THR_EVENT interrupt. (R/W)

Register 15.9: RMT_APB_CONF_REG (0x00f0)

Q)& @Qx
@%@é $ ’
’31 2| 1 ‘

[o]

] 0x00000000

RMT_MEM_TX_WRAP_EN bit enables wraparound mode: when the transmitter of a channel has
reached the end of its memory block, it will resume sending at the start of its memory region.
(R/W)

Espressif Systems 391 ESP32 Technical Reference Manual V3.1

16. MCPWM

16. MCPWM

16.1 Introduction

The Motor Control Pulse Width Modulator (MCPWM) peripheral is intended for motor and power control. It
provides six PWM outputs that can be set up to operate in several topologies. One common topology uses a pair
of PWM outputs driving an H-bridge to control motor rotation speed and rotation direction.

The timing and control resources inside are allocated into two major types of submodules: PWM timers and
PWM operators. Each PWM timer provides timing references that can either run freely or be synced to other
timers or external sources. Each PWM operator has all necessary control resources to generate waveform pairs
for one PWM channel. The MCPWM peripheral also contains a dedicated capture submodule that is used in
systems where accurate timing of external events is important.

ESP32 contains two MCPWM peripherals: MCPWMO0 and MCPWM1. Their control registers are located in 4-KB
memory blocks starting at memory locations Ox3FF5E000 and Ox3FFBCO00 respectively.

16.2 Features

Each MCPWM peripheral has one clock divider (prescaler), three PWM timers, three PWM operators, and a
capture module. Figure 90 shows the submodules inside and the signals on the interface. PWM timers are used
for generating timing references. The PWM operators generate desired waveform based on the timing
references. Any PWM operator can be configured to use the timing references of any PWM timers. Different
PWM operators can use the same PWM timer’s timing references to produce related PWM signals. PWM
operators can also use different PWM timers’ values to produce the PWM signals that work alone. Different PWM
timers can also be synced together.

' 8gay EEH T
L2 22 3533 oo GPIO MATRIX
R gEE 588
INTERRUPTS 4—‘ oo Lkik UE S
YVvY Yvy f
APB BUS FAULT
DETECT CAPTURE
CLK_160M
...... T o B
: : ; > PWMOA
x TIMER 0 ; : OPERATOR 0 : |
m ; : : » PWMOB
3 N] % |
0 TIMER1 | | ' | operaTorR1 | | > PWMIA-
o : : : > PWMIB |
4 H H H |
Q H
o) ; : > PWM2A
3 TIMER 2 : ; OPERATOR 2
, : > PWM2B
MCPWM

Figure 90: MCPWM Module Overview

An overview of the submodules’ function in Figure 90 is shown below:

Espressif Systems 392 ESP32 Technical Reference Manual V3.1

16. MCPWM

e PWM Timers O, 1 and 2
- Every PWM timer has a dedicated 8-bit clock prescaler.

— The 16-bit counter in the PWM timer can work in count-up mode, count-down mode or
count-up-down mode.

- A hardware sync can trigger a reload on the PWM timer with a phase register. It will also trigger the
prescaler’ restart, so that the timer’s clock can also be synced. The source of the sync can come from
any GPIO or any other PWM timer’s sync_out.

e PWM Operators 0, 1 and 2

- Every PWM operator has two PWM outputs: PWMxA and PWMxB. They can work independently, in
symmetric and asymmetric configuration.

- Software, asynchronous override control of PWM signals.
— Configurable dead-time on rising and falling edges; each set up independently.
— All events can trigger CPU interrupts.

- Modulating of PWM output by high-frequency carrier signals, useful when gate drives are insulated
with a transformer.

- Period, time stamps and important control registers have shadow registers with flexible updating
methods.

e Fault Detection Module

- Programmable fault handling allocated on fault condition in both cycle-by-cycle mode and one-shot
mode.

— A fault condition can force the PWM output to either high or low logic levels.
e Capture Module

Speed measurement of rotating machinery (for example, toothed sprockets sensed with Hall sensors)

Measurement of elapsed time between position sensor pulses

Period and duty-cycle measurement of pulse train signals

Decoding current or voltage amplitude derived from duty-cycle-encoded signals from current/voltage

Sensors
- Three individual capture channels, each of which has a time-stamp register (32 bits)
— Selection of edge polarity and prescaling of input capture signal
— The capture timer can sync with a PWM timer or external signals.

- Interrupt on each of the three capture channels

Espressif Systems 393 ESP32 Technical Reference Manual V3.1

16. MCPWM

16.3 Submodules

16.3.1 Overview

This section lists the configuration parameters of key submodules. For information on adjusting a specific
parameter, e.g. synchronization source of PWM timer, please refer to Section 16.3.2 for details.

16.3.1.1 Prescaler Submodule

akiem —» JOXK L pwak

Figure 91: Prescaler Submodule

Configuration parameter:

e Scale the PWM clock according to CLK_160M.

16.3.1.2 Timer Submodule

PWM TIMERX_SYNCSEL
timerOsynco —»{ "\
timer 1synco — :> timer x status
timer 2synco —» syncxin
——» TIMERX
SYNCO —»
SYNC1 —» - timer xsynco
SYNC2 —»

Figure 92: Timer Submodule

Configuration parameters:
e Set the PWM timer frequency or period.
e Configure the working mode for the timer:
— Count-Up Mode: for asymmetric PWM outputs
- Count-Down Mode: for asymmetric PWM outputs
— Count-Up-Down Mode: for symmetric PWM outputs

e Configure the the reloading phase (including the value and the phase) used during software and hardware
synchronization.

Espressif Systems 394 ESP32 Technical Reference Manual V3.1

16. MCPWM

e Synchronize the PWM timers with each other. Either hardware or software synchronization may be used.
e Configure the source of the PWM timer’s the synchronization input to one of the seven sources below:

- The three PWM timer’s synchronization outputs.

— Three synchronization signals from the GPIO matrix: SYNCO, SYNC1, SYNC2.

— No synchronization input signal selected

e Configure the source of the PWM timer’s synchronization output to one of the four sources below:

Synchronization input signal

Event generated when value of the PWM timer is equal to zero

Event generated when value of the PWM timer is equal to period

No synchronization output generated

e Configure the method of period updating.

16.3.1.3 Operator Submodule

PWM_OPERATORX_TIMERSEL

timer 0 status :> > PWMWXA
operator X

timer status > PWMxB

timer 1 status |::>
timer 2 status |::> OPERATOR x

fault event 0 —»
fault event 1 —»»
fault event 2 —m

Figure 93: Operator Submodule

The configuration parameters of the operator submodule are shown in Table 68.

Espressif Systems 395 ESP32 Technical Reference Manual V3.1

16. MCPWM

Table 68: Configuration Parameters of the Operator Submodule

Submodule Configuration Parameter or Option
PWM Generator

e Set up the PWM duty cycle for PWMxA and/or PWMxB out-
put.
e Set up at which time the timing events occur.
¢ Define what action should be taken on timing events:
- Switch high or low PWMxA and/or PWMxB outputs
— Toggle PWMxA and/or PWMXxB outputs
— Take no action on outputs
e Use direct s/w control to force the state of PWM outputs
e Add a dead time to raising and / or failing edge on PWM out-
puts.
e Configure update method for this submodule.

Dead Time Generator e Control of complementary dead time relationship between

upper and lower switches.

e Specify the dead time on rising edge.

e Specify the dead time on falling edge.

e Bypass the dead time generator module. The PWM wave-
form will pass through without inserting dead time.

¢ Allow PWMxB phase shifting with respect to the PWMxA out-
put.

e Configure updating method for this submodule.

PWM Carrier e Enable carrier and set up carrier frequency.

e Configure duration of the first pulse in the carrier waveform.

e Set up the duty cycle of the following pulses.

e Bypass the PWM carrier module. The PWM waveform will be
passed through without modification.

Fault Handler e Configure if and how the PWM module should react the fault

event signals.
e Specify the action taken when a fault event occurs:
- Force PWMXxA and/or PWMxB high.
- Force PWMXxA and/or PWMXxB low.
- Configure PWMxA and/or PWMxB to ignore any fault
event.
e Configure how often the PWM should react to fault events:
- One-shot
— Cycle-by-cycle
e Generate interrupts.
e Bypass the fault handler submodule entirely.
e Set up an option for cycle-by-cycle actions clearing.
e |f desired, independently-configured actions can be taken
when time-base counter is counting down or up.

Espressif Systems 396 ESP32 Technical Reference Manual V3.1

16. MCPWM

16.3.1.4 Fault Detection Submodule

FAULTO —» —» fautevertO
FALLT

FAULT1 —» DETECT —» fautevertO

FAULT2 —» —» falitevertO

Figure 94: Fault Detection Submodule

Configuration parameters:
e Enable fault event generation and configure the polarity of fault event generation for every fault signal

e (Generate fault event interrupts

16.3.1.5 Capture Submodule

CAPO —»
CAP1 —» CAPTURE
CAP2 —»

Figure 95: Capture Submodule

Configuration parameters:
e Select the edge polarity and prescaling of the capture input.
e Set up a software-triggered capture.
e Configure the capture timer’s sync trigger and sync phase.

e Software syncs the capture timer.

16.3.2 PWM Timer Submodule

Each MCPWM module has three PWM timer submodules. Any of them can determine the necessary event
timing for any of the three PWM operator submodules. Built-in synchronization logic allows multiple PWM timer
submodules, in one or more MCPWM modules, to work together as a system, when using synchronization
signals from the GPIO matrix.

16.3.2.1 Configurations of the PWM Timer Submodule

Users can configure the following functions of the PWM timer submodule:

e Control how often events occur by specifying the PWM timer frequency or period.

Espressif Systems 397 ESP32 Technical Reference Manual V3.1

16. MCPWM

e Configure a particular PWM timer to synchronize with other PWM timers or modules.

Get a PWM timer in phase with other PWM timers or modules.

e Set one of the following timer counting modes: count-up, count-down, count-up-down.

Change the rate of the PWM timer clock (PT_clk) with a prescaler. Each timer has its own prescaler
configured with PWM_TIMERx_PRESCALE of register PWM_TIMERO_CFGO_REG. The PWM timer
increments or decrements at a slower pace, depending on the setting of this register.

16.3.2.2 PWM Timer’s Working Modes and Timing Event Generation

The PWM timer has three working modes, selected by the PWMx timer mode register:

e Count-Up Mode:
In this mode, the PWM timer increments from zero until reaching the value configured in the period register.
Once done, the PWM timer returns to zero and starts increasing again. PWM period is equal to the period
value configured in register.

e Count-Down Mode:
The PWM timer decrements to zero, starting from the value configured in the period register. After reaching
zero, it is set back to the period value. Then it starts to decrement again. In this case, the PWM period is
also equal to the value configured in the period register.

e Count-Up-Down Mode:
This is a combination of the two modes mentioned above. The PWM timer starts increasing from zero until
the period value is reached. Then, the timer decreases back to zero. This pattern is then repeated. The
PWM period is the result of the value in the period register multiplied by 2.

Figures 96 to 99 show PWM timer waveforms in different modes, including timer behavior during synchronization
events.

PWM Timer
OXFFFF

period setting

phase setting
| 1
| |
0x0000 |t V. >
! i time
Sync Input T ﬂ ”
time>

Figure 96: Count-Up Mode Waveform

Espressif Systems 398 ESP32 Technical Reference Manual V3.1

16. MCPWM

PWM Timer
OXFFFF

period setting

phase setting

|
! |
|

0x0000 M L : o>
: : time

|

— I I

Figure 97: Count-Down Mode Waveforms

4

Ll
time

PWM Timer
OXFFFF

period setting

phase setting

0x0000

I

I

T N Ll
: time

|

Sync Input T ﬂ ”

time

Figure 98: Count-Up-Down Mode Waveforms, Count-Down at Synchronization Event

PWM Timer
OXFFFF

period setting

phase setting

N Ll
time

Sync Input T ﬂ ”

|
|
|
0X0000 !
|
|

time

Figure 99: Count-Up-Down Mode Waveforms, Count-Up at Synchronization Event

Espressif Systems 399 ESP32 Technical Reference Manual V3.1

16. MCPWM

When the PWM timer is running, it generates the following timing events periodically and automatically:

e UTEP
The timing event generated when the PWM timer’s value equals to the value of the period register
(PWM_TIMERx_PERIOD) and when the PWM timer is increasing.

e UTEZ
The timing event generated when the PWM timer’s value equals to zero and when the PWM timer is
increasing.

e DTEP
The timing event generated when the PWM timer’s value equals to the value of the period register
(PWM_TIMERx_PERIOD) and when the PWM timer is decreasing.

e DTEZ
The timing event generated when the PWM timer’s value equals to zero and when the PWM timer is
decreasing.

Figures 100 to 102 show the timing waveforms of U/DTEP and U/DTEZ.

Period = 6 5

r

PWM timer

UTEP

UTEZ

Figure 100: UTEP and UTEZ Generation in Count-Up Mode

Espressif Systems 400 ESP32 Technical Reference Manual V3.1

16. MCPWM

=6

Period

PWM timer

DTEP

DTEZ

Figure 101: DTEP and DTEZ Generation in Count-Down Mode

Increase

Decrease

=6

Period

PWM timer
Direction

DTEP

UTEZ

Figure 102: DTEP and UTEZ Generation in Count-Up-Down Mode

ESP32 Technical Reference Manual V3.1

401

Espressif Systems

16. MCPWM

16.3.2.3 PWM Timer Shadow Register

The PWM timer’s period register and the PWM timer’s clock prescaler register have shadow registers. The
purpose of a shadow register is to save a copy of the value to be written into the active register at a specific
moment synchronized with the hardware. Both register types are defined as follows:

e Active Register
This register is directly responsible for controlling all actions performed by hardware.

e Shadow Register
It acts as a temporary buffer for a value to be written on the active register. Before this happens, the content
of the shadow register has no direct effect on the controlled hardware. At a specific, user-configured point
in time, the value saved in the shadow register is copied to the active register. This helps to prevent spurious
operation of the hardware, which may happen when a register is asynchronously modified by software.
Both the shadow register and the active register have the same memory address. The software always
writes into, or reads from the shadow register. The moment of updating the active register is determined by
its specific update method register. The update can start when the PWM timer is equal to zero, when the
PWM timer is equal to period,at a synchronization moment, or immediately. Software can trigger a globally
forced update which will prompt all registers in the module to be updated according to shadow registers.

16.3.2.4 PWM Timer Synchronization and Phase Locking

The PWM modules adopt a flexible synchronization method. Each PWM timer has a synchronization input and a
synchronization output. The synchronization input can be selected from three synchronization outputs and three
synchronization signals from the GPIO matrix. The synchronization output can be generated from the
synchronization input signal, or when the PWM timer’s value is equal to period or zero. Thus, the PWM timers
can be chained together with their phase locked. During synchronization, the PWM timer clock prescaler will
reset its counter in order to synchronize the PWM timer clock.

16.3.3 PWM Operator Submodule
The PWM Operator submodule has the following functions:
e Generates a PWM signal pair, based on timing references obtained from the corresponding PWM timer.
e Each signal out of the PWM signal pair includes a specific pattern of dead time.
e Superimposes a carrier on the PWM signal, if configured to do so.
e Handles response under fault conditions.

Figure 103 shows the block diagram of a PWM operator.

Espressif Systems 402 ESP32 Technical Reference Manual V3.1

16. MCPWM

A—p PWMA PWMA > PWMA PWMA |——» PWMxA
B—p
PWM I%enf PWM Fault
Generator Generator Carrier Handler
PWMB PWMB > PWMB PWMB |——» PWMxB
timer value —— |

_ fault event0 ——m
timer status I:> faulteventl ——pt

faultevent2 ——pot

Figure 103: Submodules Inside the PWM Operator

16.3.3.1 PWM Generator Submodule

Purpose of the PWM Generator Submodule

In this submodule, important timing events are generated or imported. The events are then converted into
specific actions to generate the desired waveforms at the PWMxA and PWMxB outputs.

The PWM generator submodule performs the following actions:

e Generation of timing events based on time stamps configured using the A and B registers. Events happen
when the following conditions are satisfied:

UTEA: the PWM timer is counting up and its value is equal to register A.

UTEB: the PWM timer is counting up and its value is equal to register B.

DTEA: the PWM timer is counting down and its value is equal to register A.

DTEB: the PWM timer is counting down and its value is equal to register B.
e Generation of U/DT1, U/DT2 timing events based on fault or synchronization events.

e Management of priority when these timing events occur concurrently.

Qualification and generation of set, clear and toggle actions, based on the timing events.

Controlling of the PWM duty cycle, depending on configuration of the PWM generator submodule.

Handling of new time stamp values, using shadow, registers to prevent glitches in the PWM cycle.

PWM Operator Shadow Registers
The time stamp registers A and B, as well as action configuration registers PWM_GENx_A_REG and

PWM_GENx_B_REG are shadowed. Shadowing provides a way of updating registers in sync with the hardware.
For a description of the shadow registers, please see 16.3.2.3.

Espressif Systems 403 ESP32 Technical Reference Manual V3.1

16. MCPWM

Timing Events

For convenience, all timing signals and events are summarized in Table 69.

Table 69: Timing Events Used in PWM Generator

Signal Event Description PWM Timer Operation
DTEP PWM timer value is equal to the period register value
DTEZ PWM timer value is equal to zero
DTEA PWM timer value is equal to A register .
, - - PWM timer counts down.
DTEB PWM timer value is equal to B register
DTO event Based on fault or synchronization events
DT1 event Based on fault or synchronization events
UTEP PWM timer value is equal to the period register value
UTEZ PWM timer value is equal to zero
UTEA PWM timer value is equal to A register .
- - - PWM timer counts up.
UTEB PWM timer value is equal to B register
UTO event Based on fault or synchronization events
UT1 event Based on fault or synchronization events
Software-force event Software-initiated asynchronous event N/A

The purpose of a software-force event is to impose non-continuous or continuous changes on the PWMXxA and
PWMxB outputs. The change is done asynchronously. Software-force control is handled by the
PWM_PWM_GENx_FORCE_REG registers.

The selection and configuration of TO/T1 in the PWM generator submodule is independent of the configuration of
fault events in the fault handler submodule. A particular trip event may or may not be configured to cause trip
action in the fault handler submodule, but the same event can be used by the PWM generator to trigger TO/T1
for controlling PWM waveforms.

It is important to know that when the PWM timer is in count-up-down mode, it will always decrement after a TEP
event, and will always increment after a TEZ event. So when the PWM timer is in count-up-down mode, DTEP
and UTEZ events will occur, while the events UTEP and DTEZ will never occur.

The PWM generator can handle multiple events at the same time. Events are prioritized by the hardware and
relevant details are provided in Table 70 and Table 71. Priority levels range from 1 (the highest) to 7 (the lowest).
Please note that the priority of TEP and TEZ events depends on the PWM timer’s direction.

If the value of A or B is set to be greater than the period, then U/DTEA and U/DTEB will never occur.

Table 70: Timing Events Priority When PWM Timer Increments

Priority Level Event

1 (highest) Software-force event
2 UTEP

3 uTo

4 UTH

5 UTEB

6 UTEA

7 (lowest) UTEZ

Espressif Systems 404 ESP32 Technical Reference Manual V3.1

16. MCPWM

Table 71: Timing Events Priority when PWM Timer Decrements

Priority level Event

1 (highest) Software-force event
2 DTEZ

3 DTO

4 DTH

5 DTEB

6 DTEA

7 (lowest) DTEP

Notes:

1. UTEP and UTEZ do not happen simultaneously. When the PWM timer is in count-up mode, UTEP wiill
always happen one cycle earlier than UTEZ, as demonstrated in Figure 100, so their action on PWM signals
will not interrupt each other. When the PWM timer is in count-up-down mode, UTEP will not occur.

2. DTEP and DTEZ do not happen simultaneously. When the PWM timer is in count-down mode, DTEZ will
always happen one cycle earlier than DTEP, as demonstrated in Figure 101, so their action on PWM signals
will not interrupt each other. When the PWM timer is in count-up-down mode, DTEZ will not occur.

PWM Signal Generation

The PWM generator submodule controls the behavior of outputs PWMxA and PWMxB when a particular timing
event occurs. The timing events are further qualified by the PWM timer’s counting direction (up or down).
Knowing the counting direction, the submodule may then perform an independent action at each stage of the
PWM timer counting up or down.

The following actions may be configured on outputs PWMXxA and PWMxB:

e Set High:
Set the output of PWMXxA or PWMxB to a high level.

e Clear Low:
Clear the output of PWMxA or PWMXxB by setting it to a low level.

e Toggle:
Change the current output level of PWMXxA or PWMxB to the opposite value. If it is currently pulled high,
pull it low, or vice versa.

¢ Do Nothing:
Keep both outputs PWMXxA and PWMxB unchanged. In this state, interrupts can still be triggered.

The configuration of actions on outputs is done by using registers PWN_GENx_A_REG and PWN_GENx_B_REG.
So, the action to be taken on each output is set independently. Also there is great flexibility in selecting actions to
be taken on a given output based on events. More specifically, any event listed in Table 69 can operate on either
output PWMxA or PWMxB. To check out registers for particular generator 0, 1 or 2, please refer to register
description in Section 16.4.

Espressif Systems 405 ESP32 Technical Reference Manual V3.1

16. MCPWM

Waveforms for Common Configurations

Figure 104 presents the symmetric PWM waveform generated when the PWM timer is counting up and down.
DC 0%-100% modulation can be calculated via the formula below:
Duty = (Period — A) + Period

If A matches the PWM timer value and the PWM timer is incrementing, then the PWM output is pulled up. If A
matches the PWM timer value while the PWM timer is decrementing, then the PWM output is pulled low.

4

Period =4
DTEA = CLEAR s m
UTEA= SET %

H
PWM Timer ﬂ

PWM Timer Direction 4,—_

A=4, og/oastfug PWMXAPWMXB
A=3, 25(;?S|Seut2; | | PWMXA/PWMXB
A=2, 50%/??3%?; | | PWMXA/PWMxB
A=1, 75(0:A)astfu?; | | PWMxA/PWMxB

A=0, 100(;5;“1:5; PWMXAPWMXB

Figure 104: Symmetrical Waveform in Count-Up-Down Mode

The PWM waveforms in Figures 105 to 108 show some common PWM operator configurations. The following
conventions are used in the figures:

¢ Period A and B refer to the values written in the corresponding registers.

e PWMXxA and PWMxB are the output signals of PWM Operator x.

Espressif Systems 406 ESP32 Technical Reference Manual V3.1

16. MCPWM

6

5

Period
A=3
B =
PWM timer

UTEP

UTEZ
UTEA

UTEB

PWMXxA

PWMxB

Figure 105: Count-Up, Single Edge Asymmetric Waveform, with Independent Modulation on PWMxA and

PWMxB — Active High

The duty modulation for PWMXA is set by B, active high and proportional to B.

The duty modulation for PWMXxB is set by A, active high and proportional to A.

X Tpr_cik

+1)

PWM_TIMERx_ PERIOD

(

Period

ESP32 Technical Reference Manual V3.1

407

Espressif Systems

16. MCPWM

6

5

Period
A=3
B=

PWM timer

UTEP

UTEZ

UTEA

UTEB

PWMxA

PWMxB

Figure 106: Count-Up, Pulse Placement Asymmetric Waveform with Independent Modulation on PWMxA

Pulses may be generated anywhere within the PWM cycle (zero — period).

PWMxA'’s high time duty is proportional to (B — A).

X Tpr_cik

+1)

PWM_TIMERx_PERIOD

(

Period

ESP32 Technical Reference Manual V3.1

408

Espressif Systems

16. MCPWM

Period = 6 5
A=3
B=5 4

PWM timer 0

DTEP

UTEZ

UTEA

DTEA

DTEB

|
i
UTEB |

PWMXxA

PWMxB

Figure 107: Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA
and PWMxB — Active High

The duty modulation for PWMXxA is set by A, active high and proportional to A.
The duty modulation for PWMXxB is set by B, active high and proportional to B.
Outputs PWMxA and PWMXxB can drive independent switches.

Period =2 x PWM_TIMERx_PERIOD x Tpr

Espressif Systems 409 ESP32 Technical Reference Manual V3.1

16. MCPWM

Period = 6 5
A=3

B=4 4

up-count mode

PWM timer 0

DTEP

UTEZ

UTEA

DTEA

DTEB

|
i
UTEB |

PWMXxA

PWMxB

Figure 108: Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA
and PWMxB — Complementary

The duty modulation of PWMXxA is set by A, is active high and proportional to A.

The duty modulation of PWMxB is set by B, is active low and proportional to B.

Outputs PWMx can drive upper/lower (complementary) switches.

Dead-time = B — A; Edge placement is fully programmable by software. Use the dead-time generator module if
another edge delay method is required.

Period =2 x PWM_TIMERX_PERIOD x Tpr

Espressif Systems 410 ESP32 Technical Reference Manual V3.1

16. MCPWM

Software-Force Events

There are two types of software-force events inside the PWM generator:

e Non-continuous-immediate (NCI) software-force events
Such types of events are immediately effective on PWM outputs when triggered by software. The forcing is
non-continuous, meaning the next active timing events will be able to alter the PWM outputs.

e Continuous (CNTU) software-force events
Such types of events are continuous. The forced PWM outputs will continue until they are released by
software. The events’ triggers are configurable. They can be timing events or immediate events.

Figure 109 shows a waveform of NCI software-force events. NCI events are used to force PWMxA output low.
Forcing on PWMxB is disabled in this case.

Period = 6
A=3 e >

PWM timer

UTEP

UTEZ

UTEA

\CI force event

PWMXxA

PWMxB

Figure 109: Example of an NCI Software-Force Event on PWMxA

Espressif Systems 411 ESP32 Technical Reference Manual V3.1

16. MCPWM

Figure 110 shows a waveform of CNTU software-force events. UTEZ events are selected as triggers for CNTU

software-force events. CNTU is used to force the PWMxB output low. Forcing on PWMXxA is disabled.

Period = 6
A=3

PWM timer

UTEP

UTEZ
UTEA

CNTU force

event
PWMXxA

disable

force low

CNTU force
mode on
PWMxB
PWMxB

Figure 110: Example of a CNTU Software-Force Event on PWMxB

ESP32 Technical Reference Manual V3.1

412

Espressif Systems

16. MCPWM

16.3.3.2 Dead Time Generator Submodule

Purpose of the Dead Time Generator Submodule

Several options to generate signals on PWMxA and PWMxB outputs, with a specific placement of signal edges,
have been discussed in section 16.3.3.1. The required dead time is obtained by altering the edge placement
between signals and by setting the signal’s duty cycle. Another option is to control the dead time using a
specialized submodule — the Dead Time Generator.

The key functions of the dead time generator submodule are as follows:
e Generating signal pairs (PWMxA and PWMxB) with a dead time from a single PWMxA input
e Creating a dead time by adding delay to signal edges:
- Rising edge delay (RED)
- Falling edge delay (FED)
e Configuring the signal pairs to be:
- Active high complementary (AHC)
— Active low complementary (ALC)
— Active high (AH)
- Active low (AL)

¢ This submodule may also be bypassed, if the dead time is configured directly in the generator submodule.

Dead Time Generator’s Shadow Registers

Delay registers RED and FED are shadowed with registers PWM_DTx_RED_CFG_REG and
PWM_DTx_FED_CFG_REG. For the description of shadow registers, please see section 16.3.2.3.

Espressif Systems 413 ESP32 Technical Reference Manual V3.1

16. MCPWM

Highlights for Operation of the Dead Time Generator

Options for setting up the dead-time submodule are shown in Figure 111.

PWMXxA
Input
Rising Edge Delay 1
0 —\S.l_ 0
0 &, A Pwwa
—L | > {>©_. 0 e Output
—; 1 1
DTRED
Falling Edge Delay
1 2 S3 0
0 s8 N [: N——e 0 0
o o o
N | '1 S PWMXB
o 0 1 L o Output
1 DTFED 1
PWMxB

Input

Figure 111: Options for Setting up the Dead Time Generator Submodule

S0-8 in the figure above are switches controlled by registers PWM_DTx_CFG_REG shown in Table 72.

Table 72: Dead Time Generator Switches Control Registers

Switch Register

SO PWM_DTx_B_OUTBYPASS
S PWM_DTx_A_OUTBYPASS
S2 PWM_DTx_RED_OUTINVERT
S3 PWM_DTx_FED_OUTINVERT
S4 PWM_DTx_RED_INSEL

S5 PWM_DTx_FED_INSEL

S6 PWM_DTx_A_OUTSWAP

S7 PWM_DTx_B_OUTSWAP

S8 PWM_DTx_DEB_MODE

All switch combinations are supported, but not all of them represent the typical modes of use. Table 73
documents some typical dead time configurations. In these configurations the position of S4 and S5 sets
PWMXxA as the common source of both falling-edge and rising-edge delay. The modes presented in table 73 may
be categorized as follows:

e Mode 1: Bypass delays on both falling (FED) as well as raising edge (RED)
In this mode the dead time submodule is disabled. Signals PWMxA and PWMxB pass through without any
modifications.

® Mode 2-5: Classical Dead Time Polarity Settings
These modes represent typical configurations of polarity and should cover the active-high/low modes in
available industry power switch gate drivers. The typical waveforms are shown in Figures 112 to 115.

e Modes 6 and 7: Bypass delay on falling edge (FED) or rising edge (RED)

Espressif Systems 414 ESP32 Technical Reference Manual V3.1

16. MCPWM

In these modes, either RED (Rising Edge Delay) or FED (Falling Edge Delay) is bypassed. As a result, the
corresponding delay is not applied.

Table 73: Typical Dead Time Generator Operating Modes

Mode | Mode Description SO S S2 S

1 PWMxA and PWMxB Pass Through/No Delay 1 1 X X

2 Active High Complementary (AHC), see Figure 112 0 0 0 1

3 Active Low Complementary (ALC), see Figure 113 0 0 1 0

4 Active High (AH), see Figure 114 0 0 0 0

5 Active Low (AL), see Figure 115 0 0 1 1

6 PWMxA Output = PWMXA In (No Delay) 0 1 Oor1 | Oor1
PWMxB Output = PWMXxA Input with Falling Edge Delay

7 PWMxA Output = PWMXA Input with Rising Edge Delay 1 0 OQor1 | Oort
PWMXxB Output = PWMXxB Input with No Delay

Note: For all the modes above, the position of the binary switches S4 to S8 is set to 0.

PWMXxA
Input

DTRED DTFED

\ 4

PWMXxA
Output

PWMxB
Output

Figure 112: Active High Complementary (AHC) Dead Time Waveforms

Rising edge (RED) and falling edge (FED) delays may be set up independently. The delay value is programmed
using the 16-bit registers PWM_DTx_RED and PWM_DTx_FED. The register value represents the number of
clock (DT_clk) periods by which a signal edge is delayed. DT_CLK can be selected from PWM_clk or PT_clk
through register PWM_DTx_CLK_SEL.

To calculate the delay on falling edge (FED) and rising edge (RED), use the following formulas:

FED = PWM_DTx_FED x Tpr ay

RED = PWM_DTx_RED x Tpr ak

Espressif Systems 415 ESP32 Technical Reference Manual V3.1

16. MCPWM

PWMXxA
Input

DTRED _ DTFED

PWMxA
Output

PWMxB
Output

Figure 113: Active Low Complementary (ALC) Dead Time Waveforms

PWMXA
Input

DTRED _ _ DTFED

PWMXxA
Output

PWMxB
Output

Figure 114: Active High (AH) Dead Time Waveforms

PWMxA
Input

DTRED _

DTFED

PWMXxA
Output

PWMxB
Output

Figure 115: Active Low (AL) Dead Time Waveforms

Espressif Systems 416 ESP32 Technical Reference Manual V3.1

16. MCPWM

16.3.3.3 PWM Carrier Submodule

The coupling of PWM output to a motor driver may need isolation with a transformer. Transformers deliver only
AC signals, while the duty cycle of a PWM signal may range anywhere from 0% to 100%. The PWM carrier
submodule passes such a PWM signal through a transformer by using a high frequency carrier to modulate the
signal.

Function Overview

The following key characteristics of this submodule are configurable:
e Carrier frequency
e Pulse width of the first pulse
e Duty cycle of the second and the subsequent pulses

e Enabling/disabling the carrier function

Operational Highlights

The PWM carrier clock (PC_clk) is derived from PWM_clk. The frequency and duty cycle are configured by the
PWM_CARRIERx_PRESCALE and PWM_CARRIERx_DUTY bits in the PWM_CARRIERx_CFG_REG register. The
purpose of one-shot pulses is to provide high-energy impulse to reliably turn on the power switch. Subsequent
pulses sustain the power-on status. The width of a one-shot pulse is configurable with the
PWM_CARRIERx_OSHTWTH bits. Enabling/disabling of the carrier submodule is done with the
PWM_CARRIERX_EN bit.

Waveform Examples

Figure 116 shows an example of waveforms, where a carrier is superimposed on original PWM pulses. This
figure do not show the first one-shot pulse and the duty-cycle control. Related details are covered in the following

two sections.

Espressif Systems 417 ESP32 Technical Reference Manual V3.1

16. MCPWM

PWMxA

PWMxB

Carrier

PWMxA

PWMxB

Figure 116: Example of Waveforms Showing PWM Carrier Action

One-Shot Pulse
The width of the first pulse is configurable. It may assume one of 16 possible values and is described by the
formula below:
Thstpuise = Tpwar ek X 8 x (PWM_CARRIER<_PRESCALE +1) x (PWM_CARRIER<_ OSHTWTH +1)
Where:
* Tpyw ik 1S the period of the PWM clock (PWM_clk).
e (PWM_CARRIERx_ OSHTWTH + 1) is the width of the first pulse (whose value ranges from 1 to 16).
e (PWM_CARRIERX_PRESCALE + 1) is the PWM carrier clock’s (PC_clk) prescaler value.

The first one-shot pulse and subsequent sustaining pulses are shown in Figure 117.

Duty Cycle Control

After issuing the first one-shot pulse, the remaining PWM signal is modulated according to the carrier frequency.
Users can configure the duty cycle of this signal. Tuning of duty may be required, so that the signal passes
through the isolating transformer and can still operate (turn on/off) the motor drive, changing rotation speed and
direction.

The duty cycle may be set to one of seven values, using PWM_CARRIERx_DUTY, or bits [7:5] of register
PWM_CARRIERx_CFG_REG.

Below is the formula for calculating the duty cycle:

Duty = PWM_CARRIERx_DUTY +8

Espressif Systems 418 ESP32 Technical Reference Manual V3.1

16. MCPWM

PWMXxA

Carrier

Ine-Shot

PWMXxA

Figure 117: Example of the First Pulse and the Subsequent Sustaining Pulses of the PWM Carrier Sub-
module

All seven settings of the duty cycle are shown in Figure 118.

L carrier R

. X period G
owyve ;
B
B
Duty5/8§ % % |
oy
o _ B

Figure 118: Possible Duty Cycle Settings for Sustaining Pulses in the PWM Carrier Submodule

16.3.3.4 Fault Handler Submodule
Each MCPWM peripheral is connected to three fault signals (FAULTO, FAULT1 and FAULT2) which are sourced

from the GPIO matrix. These signals are intended to indicate external fault conditions, and may be preprocessed
by the fault detection submodule to generate fault events. Fault events can then execute the user code to control

Espressif Systems 419 ESP32 Technical Reference Manual V3.1

16. MCPWM

MCPWM outputs in response to specific faults.

Function of Fault Handler Submodule

The key actions performed by the fault handler submodule are:
e Forcing outputs PWMxA and PWMxB, upon detected fault, to one of the following states:
- High

- Low

Toggle

No action taken

e Execution of one-shot trip (OST) upon detection of over-current conditions/short circuits.

Cycle-by-cycle tripping (CBC) to provide current-limiting operation.

Allocation of either one-shot or cycle-by-cycle operation for each fault signal.

Generation of interrupts for each fault input.

Support for software-force tripping.

Enabling or disabling of submodule function as required.

Operation and Configuration Tips

This section provides the operational tips and set-up options for the fault handler submodule.

Fault signals coming from pads are sampled and synced in the GPIO matrix. In order to guarantee the successful
sampling of fault pulses, each pulse duration must be at least two APB clock cycles. The fault detection
submodule will then sample fault signals by using PWM_clk. So, the duration of fault pulses coming from GPIO
matrix must be at least one PWM_clk cycle. Differently put, regardless of the period relation between APB clock
and PWM_clk, the width of fault signal pulses on pads must be at least equal to the sum of two APB clock cycles
and one PWM_clk cycle.

Each level of fault signals, FAULTO to FAULT?2, can be used by the fault handler submodule to generate fault
events (fault_eventO to fault_event2). Every fault event can be configured individually to provide CBC action, OST
action, or none.

e Cycle-by-Cycle (CBC) action:
When CBC action is triggered, the state of PWMxA and PWMXxB will be changed immediately according to
the configuration of registers PWM_FHx_A_CBC_U/D and PWM_FHx_B_CBC_U/D. Different actions can
be indicted when the PWM timer is incrementing or decrementing. Different CBC action interrupts can be
triggered for different fault events. Status register PWM_FHx_CBC_ON indicates whether a CBC action is
on or off. When the fault event is no longer present, CBC actions on PWMxA/B will be cleared at a
specified point, which is either a D/UTEP or D/UTEZ event. Register PWM_FHx_CBCPULSE determines at
which event PWMxA and PWMxB will be able to resume normal actions. Therefore, in this mode, the CBC
action is cleared or refreshed upon every PWM cycle.

® One-Shot (OST) action:

Espressif Systems 420 ESP32 Technical Reference Manual V3.1

16. MCPWM

When OST action is triggered, the state of PWMxA and PWMxB will be changed immediately, depending
on the setting of registers PWM_FHx_A_OST_U/D and PWM_FHx_B_OST_U/D. Different actions can be
configured when PWM timer is incrementing or decrementing. Different OST action interrupts can be
triggered form different fault events. Status register PWM_FHx_OST_ON indicates whether an OST action
is on or off. The OST actions on PWMXxA/B are not automatically cleared when the fault event is no longer
present. One-shot actions must be cleared manually by negating the value stored in register
PWM_FHx_CLR_OST.

16.3.4 Capture Submodule
16.3.4.1 Introduction

The capture submodule contains three complete capture channels. Channel inputs CAPO, CAP1 and CAP2 are
sourced from the GPIO matrix. Thanks to the flexibility of the GPIO matrix, CAPO, CAP1 and CAP2 can be
configured from any PAD input. Multiple capture channels can be sourced from the same PAD input, while
prescaling for each channel can be set differently. Also, capture channels are sourced from different PADs. This
provides several options for handling capture signals by hardware in the background, instead of having them
processed directly by the CPU. A capture submodule has the following independent key resources:

e One 32-bit timer (counter) which can be synchronized with the PWM timer, another submodule or software.
e Three capture channels, each equipped with a 32-bit time-stamp and a capture prescaler.

¢ Independent edge polarity (rising/falling edge) selection for any capture channel.

e |nput capture signal prescaling (from 1 to 256).

e [nterrupt capabilities on any of the three capture events.

16.3.4.2 Capture Timer

The capture timer is a 32-bit counter incrementing continuously, once enabled. On the input it has an APB clock
running typically at 80 MHz. At a sync event the counter is loaded with phase stored in register
PWM_CAP_TIMER_PHASE_REG. Sync events can come from PWM timers sync-out, PWM module sync-in or
software. The capture timer provides timing references for all three capture channels.

16.3.4.3 Capture Channel

The capture signal coming to a capture channel will be inverted first, if needed, and then prescaled. Finally,
specified edges of preprocessed capture signal will trigger capture events. When a capture event occurs, the
capture timer’s value is stored in time-stamp register PWM_CAP_CHx_REG. Different interrupts can be
generated for different capture channels at capture events. The edge that triggers a capture event is recorded in
register PWM_CAPx_EDGE. The capture event can be also forced by software.

Espressif Systems 421 ESP32 Technical Reference Manual V3.1

16. MCPWM

16.4 Register Summary

Name ‘ Description ‘ PWMO ‘ PWM1 ‘ Acc

Prescaler configuration

PWM_CLK_CFG_REG | Configuration of the prescaler | OX3FFSE000 | OX3FFEC000 | RW

PWM Timer 0 Configuration and status

PWM_TIMERO_CFGO_REG Timer period and update method Ox3FF5E004 | Ox3FF6C004 | R/W

PWM_TIMERO_CFG1_REG Working mode and start/stop control | OxBFF5E008 | Ox3FF6C008 | R/W

PWM_TIMERO_SYNC_REG Synchronization settings Ox3FF5EO00C | Ox3FF6CO0C | R/W

PWM_TIMERO_STATUS_REG Timer status Ox3FF5E010 | Ox3FFB6C0O10 | RO

PWM Timer 1 Configuration and Status

PWM_TIMER1_CFGO_REG Timer update method and period Ox3FF5E014 | Ox3FFBC0O14 | R/W

PWM_TIMER1_CFG1_REG Working mode and start/stop control | Ox3FF5E018 | Ox3FF6C018 | R/W

PWM_TIMER1_SYNC_REG Synchronization settings Ox3FF5E01C | OxBFFBCO1C | R/W

PWM_TIMER1_STATUS_REG Timer status Ox3FF5E020 | Ox3FFB6C020 | RO

PWM Timer 2 Configuration and status

PWM_TIMER2_CFGO_REG Timer update method and period Ox3FF5E024 | Ox3FF6C024 | R/W

PWM_TIMER2_CFG1_REG Working mode and start/stop control | Ox3FF5E028 | Ox3FF6C028 | R/W

PWM_TIMER2_SYNC_REG Synchronization settings Ox3FF5E02C | Ox3FF6C02C | R/W

PWM_TIMER2_STATUS_REG Timer status Ox3FF5E030 | Ox3FFB6C0O30 | RO

Common configuration for PWM timers

PWM_TIMER_SYNCI_CFG_REG Synchronization input selection for | OxBFF5E034 | Ox3FF6C034 | R/W
timers

PWM_OPERATOR_TIMERSEL_REG | Select specific timer for PWM opera- | Ox3FF5E038 | Ox3FF6C038 | R/W
tors

PWM Operator 0 Configuration and Status

PWM_GENO_STMP_CFG_REG Transfer status and update method for | OxBFF5E03C | Ox3BFF6C0O3C | R/W
time stamp registers A and B

PWM_GENO_TSTMP_A_REG Shadow register for register A Ox3FF5E040 | Ox3FF6C040 | R/W

PWM_GENO_TSTMP_B_REG Shadow register for register B Ox3FF5E044 | Ox3FFBC044 | R/W

PWM_GENO_CFGO_REG Fault event TO and T1 handling Ox3FF5E048 | Ox3FFBC048 | R/W

PWM_GENO_FORCE_REG Permissives to force PWMOA and | Ox3FF5E04C | Ox3FF6C04C | R/W
PWMOB outputs by software

PWM_GENO_A_REG Actions triggered by events on | OxBFF5E050 | OxBFF6C050 | R/W
PWMOA

PWM_GENO_B_REG Actions triggered by events on | Ox3FF5E054 | Ox3FF6C054 | R/W
PWMOB

PWM_DTO_CFG_REG Dead time type selection and configu- | Ox3FF5E058 | Ox3FF6C058 | R/W
ration

PWM_DTO_FED_CFG_REG Shadow register for falling edge delay | Ox3FF5E05C | Ox3FF6CO5C | R/W
(FED)

PWM_DTO_RED_CFG_REG Shadow register for rising edge delay | Ox3FF5E060 | Ox3FF6C060 | R/W
(RED)

PWM_CARRIERO_CFG_REG Carrier enable and configuration Ox3FF5E064 | Ox3FF6C064 | R/W

Espressif Systems

422

ESP32 Technical Reference Manual V3.1

16. MCPWM

Name Description PWMO PWMH1 Acc

PWM_FHO_CFGO_REG Actions on PWMOA and PWMOB on | Ox3FF5E068 | Ox3FF6C068 | R/W
trip events

PWM_FHO_CFG1_REG Software triggers for fault handler ac- | Ox3FF5E06C | Ox3FF6C0O6C | R/W
tions

PWM_FHO_STATUS_REG Status of fault events Ox3FF5E070 | Ox3FF6CO70 | RO

PWM Operator 1 Configuration and Status

PWM_GEN1_STMP_CFG_REG Transfer status and update method for | OxBFF5EQ74 | Ox3FF6C074 | R/W
time stamp registers A and B

PWM_GEN1_TSTMP_A_REG Shadow register for register A Ox3FF5E078 | Ox3FF6C0O78 | R/W

PWM_GEN1_TSTMP_B_REG Shadow register for register B Ox3FF5EQ07C | Ox3FF6CO7C | R/W

PWM_GEN1_CFGO_REG Fault event TO and T1 handling Ox3FF5E080 | Ox3FF6C080 | R/W

PWM_GEN1_FORCE_REG Permissives to force PWM1A and | Ox3FF5E084 | Ox3FF6C084 | R/W
PWM1B outputs by software

PWM_GEN1_A_REG Actions triggered by events on | Ox3FF5E088 | Ox3FF6C088 | R/W
PWM1A

PWM_GEN1_B_REG Actions triggered by events on | OxBFF5E08C | OxBFF6C08C | R/W
PWM1B

PWM_DT1_CFG_REG Dead time type selection and configu- | OxBFF5EQ90 | Ox3FF6C090 | R/W
ration

PWM_DT1_FED_CFG_REG Shadow register for FED Ox3FF5E094 | Ox3FFBC094 | R/W

PWM_DT1_RED_CFG_REG Shadow register for RED Ox3FF5E098 | Ox3FF6C098 | R/W

PWM_CARRIER1_CFG_REG Carrier enable and configuration Ox3FF5E09C | Ox3FF6C09C | R/W

PWM_FH1_CFGO_REG Actions on PWM1A and PWM1B on | Ox3FF5EOAO | Ox3FF6COAO | R/W
fault events

PWM_FH1_CFG1_REG Software triggers for fault handler ac- | Ox3FF5E0A4 | Ox3FFBCOA4 | R/W
tions

PWM_FH1_STATUS_REG Status of fault events Ox3FF5EO0A8 | Ox3FF6COA8 | RO

PWM Operator 2 Configuration and Status

PWM_GEN2_STMP_CFG_REG Transfer status and updating method | OxBFF5EOAC | OxBFF6COAC | R/W
for time stamp registers A and B

PWM_GEN2_TSTMP_A_REG Shadow register for register A Ox3FF5EOBO | Ox3FF6COBO | R/W

PWM_GEN2_TSTMP_B_REG Shadow register for register B Ox3FF5EOB4 | Ox3FFBCOB4 | R/W

PWM_GEN2_CFGO_REG Fault event TO and T1 handling Ox3FF5E080 | Ox3FF6C080 | R/W

PWM_GEN2_FORCE_REG Permissives to force PWM2A and | Ox3FF5EOBC | Ox3FF6COBC | R/W
PWMZ2B outputs by software

PWM_GEN2_A_REG Actions triggered by events on | Ox3FF5EOCO | Ox3FF6COCO | R/W
PWM2A

PWM_GEN2_B_REG Actions triggered by events on | Ox3FF5E0C4 | Ox3FF6C0C4 | R/W
PWM2B

PWM_DT2_CFG_REG Dead time type selection and configu- | Ox3FF5E0C8 | Ox3FF6COCS8 | R/W
ration

PWM_DT2_FED_CFG_REG Shadow register for FED Ox3FF5EO0CC | 0x3FF6COCC | R/W

PWM_DT2_RED_CFG_REG Shadow register for RED Ox3FF5EODO | Ox3FFBCODO | R/W

PWM_CARRIER2_CFG_REG Carrier enable and configuration Ox3FF5EOD4 | Ox3FF6C0OD4 | R/W

Espressif Systems

423

ESP32 Technical Reference Manual V3.1

16. MCPWM

Name Description PWMO PWMH1 Acc
PWM_FH2_CFGO_REG Actions at PWM2A and PWMZ2B on | Ox3FF5EOD8 | Ox3FFBCOD8 | R/W
trip events
PWM_FH2_CFG1_REG Software triggers for fault handler ac- | Ox3FF5EODC | Ox3FF6CODC | R/W
tions
PWM_FH2_STATUS_REG Status of fault events Ox3FF5EOEO | Ox3FF6COEQ | RO
Fault Detection Configuration and Status
PWM_FAULT_DETECT_REG Fault detection configuration and sta- | OxBFF5EOE4 | Ox3FF6COE4 | R/W
tus
Capture Configuration and Status
PWM_CAP_TIMER_CFG_REG Configure capture timer Ox3FF5EOE8 | Ox3FF6COE8 | R/W
PWM_CAP_TIMER_PHASE_REG Phase for capture timer sync Ox3FF5EOEC | Ox3FF6COEC | R/W
PWM_CAP_CHO_CFG_REG Capture channel O configuration and | Ox3FF5EOFO | Ox3FFECOFO | R/W
enable
PWM_CAP_CH1_CFG_REG Capture channel 1 configuration and | Ox3FF5EOF4 | Ox3FFBCOF4 | R/W
enable
PWM_CAP_CH2_CFG_REG Capture channel 2 configuration and | Ox3FF5EOF8 | Ox3FF6COF8 | R/W
enable
PWM_CAP_CHO_REG Value of last capture on channel O Ox3FF5EOFC | Ox3FF6COFC | RO
PWM_CAP_CH1_REG Value of last capture on channel 1 Ox3FF5E100 | Ox3FFBC100 | RO
PWM_CAP_CH2_REG Value of last capture on channel 2 Ox3FF5E104 | Ox3FF6C104 | RO
PWM_CAP_STATUS_REG Edge of last capture trigger Ox3FF5E108 | Ox3FF6C108 | RO
Enable update of active registers
PWM_UPDATE_CFG_REG Enable update Ox3FF5E10C | Ox3FFBC10C | R/W
Manage Interrupts
INT_ENA_PWM_REG Interrupt enable bits Ox3FF5E110 | Ox3FFBC110 | R/W
INT_RAW_PWM_REG Raw interrupt status Ox3FF5E114 | Ox3FF6C114 | RO
INT_ST_PWM_REG Masked interrupt status Ox3FF5E118 | Ox3FF6C118 | RO
INT_CLR_PWM_REG Interrupt clear bits Ox3FF5E11C | Ox3FF6C11C | WO
16.5 Registers
Register 16.1: PWM_CLK_CFG_REG (0x0000)
&
&
@b\ (@ ’
\«‘*”%@é <2\@/

0x000

PWM_CLK_PRESCALE Period of PWM_clk = 6.25ns * (PWM_CLK_PRESCALE + 1). (R/W)

Espressif Systems

424

ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.2: PWM_TIMERO_CFGO_REG (0x0004)

Q
\2\0
©
X <
N
7 & e
& & &
Q‘Q /s Q‘Q 7/ Q\Q s
,\@b\ /\\‘g/ &\@Q/ ’&@Q/
) N N Q7
& & & ™
’31 26|25 24|23 8|7 0‘
’ 00 0 0 0 0 | 0 | OXO00FF | 0x000 ‘Reset

PWM_TIMERO_PERIOD_UPMETHOD Updating method for active register of PWM timerO period.
0: immediately, 1: update at TEZ, 2: update at sync, 3: update at TEZ or sync. TEZ here and

below means that the event that happens when the timer equals to zero. (R/W)

PWM_TIMERO_PERIOD Period shadow register of PWM timer0. (R/W)
PWM_TIMERO_PRESCALE Period of PTO_clk = Period of PWM_clk * (PWM_TIMERO_PRESCALE

+1). RW)
Register 16.3: PWM_TIMERO_CFG1_REG (0x0008)

N
Q Q>
Q/O 0/%/\\?

S &S

& N

& Q\@ <2\@

]ooooooooooooooooooooooooooo|0xo| 0x0 ‘Reset

PWM_TIMERO_MOD PWM timerO working mode. O: freeze, 1: increase mode, 2: decrease mode,
3: up-down mode. (R/W)

PWM_TIMERO_START PWM timerO start and stop control. 0: if PWM timerO starts, then stops at
TEZ; 1: if timerOQ starts, then stops at TEP; 2: PWM timer0 starts and runs on; 3: timerO starts and
stops at the next TEZ; 4: timerO starts and stops at the next TEP. TEP here and below means the

event that happens when the timer equals to period. (R/W)

Espressif Systems 425 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.4: PWM_TIMERO_SYNC_REG (0x000c)

ol
N @C)Oiec’fjc}@
5 o oS
& & S &
0 I T L[]
[0 0o 000000 0 0 0 0 | o Jo]oReset

PWM_TIMERO_PHASE Phase for timer reload at sync event. (R/W)

PWM_TIMER1_SYNCO_SEL PWM timerO sync_out selection. 0: sync_in; 1: TEZ; 2: TEP; other-
wise: sync_out is always 0. (R/W)

PWM_TIMER1_SYNC_SW Toggling this bit will trigger a software sync. (R/W)

PWM_TIMER1_SYNCI_EN When set, timer reloading with phase on sync input event is enabled.
R/W)

Register 16.5: PWM_TIMERO_STATUS_REG (0x0010)

6\\0% ©
© Y
(@6\ @?Q((/ @ﬁ\@@
&
& QY QY
’ 31 17 | 16 | 15 0 ‘
0 | 0 | 0 ‘Reset

PWM_TIMERO_DIRECTION Current direction of the PWM timerO counter. O: increment, 1: decre-
ment. (RO)

PWM_TIMERO_VALUE Current value of the PWM timerO counter. (RO)

Espressif Systems 426 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.6: PWM_TIMER1_CFGO_REG (0x0014)

Q
\2\0
g/‘
X <
N
7 & e
& & &
Q:\ 7/ Q:\ 7 Q:\ Ve
,\@b\ /\\‘g/ &\@Q/ ’&@Q/
) N N Q7
& & & ™
’31 26|25 24|23 8|7 0‘
’ 00 0 0 0 0 | 0 | OXO00FF | 0x000 ‘Reset

PWM_TIMER1_PERIOD_UPMETHOD Updating method for the active register of PWM timer1 pe-
riod. O: immediately, 1: update at TEZ, 2: update at sync, 3: update at TEZ or sync. (R/W)

PWM_TIMER1_PERIOD Period shadow register of the PWM timer1. (R/W)

PWM_TIMER1_PRESCALE Period of PT1_clk = Period of PWM_clk * (PWM_TIMER1_PRESCALE

+1) (R/W)

Register 16.7: PWM_TIMER1_CFG1_REG (0x0018)

S

(A
@b@

E

0x0 ‘ Reset

]ooooooooooooooooooooooooooo|0xo|

PWM_TIMER1_MOD PWM timer1 working mode. O: freeze, 1: increase mode, 2: decrease mode,

3: up-down mode. (R/W)

PWM_TIMER1_START PWM timer1 start and stop control. O: if PWM timer1 starts, then stops at
TEZ; 1: if PWM timer1 starts, then stops at TEP; 2: PWM timer1 starts and runs on; 3: PWM
timer1 starts and stops at the next TEZ; 4: PWM timer1 starts and stops at the next TEP. (R/W)

Espressif Systems 427

ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.8: PWM_TIMER1_SYNC_REG (0x001c)

o
C)O? o?\t}@
\a NS\
\3\2\ \isk \(;Sk\isk
Q& QTR
& N N
& & N
’31 21|20 4|3 2|1|0‘
[0 0o 000000 0 0 0 0 | o [o]o]Reset
PWM_TIMER1_PHASE Phase for timer reload at sync event. (R/W)
PWM_TIMER1_SYNCO_SEL PWM timer1 sync_out selection. 0: sync_in; 1: TEZ; 2: TEP; other-
wise: sync_out is always 0. (R/W)
PWM_TIMER1_SYNC_SW Toggling this bit will trigger a software sync. (R/W)
PWM_TIMER1_SYNCI_EN When set, timer reloading with phase at a sync input event is enabled.
R/W)
Register 16.9: PWM_TIMER1_STATUS_REG (0x0020)
e
S
O %
Q:\/ Q:\/
& N N
& <z§\/ <z§v
’ 31 17 | 16 | 15 0 ‘
]ooooooooooooooo|o| 0 ‘Reset

PWM_TIMER1_DIRECTION Current direction of the PWM timer1 counter. O: increment 1: decre-
ment. (RO)

PWM_TIMER1_VALUE Current value of the PWM timer1 counter. (RO)

Espressif Systems 428 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.10: PWM_TIMER2_CFGO_REG (0x0024)

Q
\2\0
g/‘
X <
N
7 & e
& & &
Qg// Qg’ 7 QQ//
,\@b\ /\\‘g/ &\@Q/ ’&@Q/
) N N Q7
& & & ™
’31 26|25 24|23 8|7 0‘
’ 00 0 0 0 0 | 0 | OXO00FF | 0x000 ‘Reset

PWM_TIMER2_PERIOD_UPMETHOD Updating method for active register of PWM timer2 period.
0: immediately, 1: update at TEZ, 2: update at sync, 3: update at TEZ or sync. (R/W)

PWM_TIMER2_PERIOD Period shadow register of PWM timer2. (R/W)

PWM_TIMER2_PRESCALE Period of PT2_clk = Period of PWM_clk * (PWM_TIMER2_PRESCALE

+1). (R/W)
Register 16.11: PWM_TIMER2_CFG1_REG (0x0028)

<
Q Q>
‘7/0 ‘lx’%«?\

Q Q

(A‘Z’& &\Q(O /\\éo

& &S

]ooooooooooooooooooooooooooo|0xo| 0x0 ‘Reset

PWM_TIMER2_MOD PWM timer2 working mode. O: freeze, 1: increase mode, 2: decrease mode,

3: up-down mode. (R/W)

PWM_TIMER2_START PWM timer2 start and stop control. O: if PWM timer2 starts, then stops at
TEZ; 1: if PWM timer2 starts, then stops at TEP; 2: PWM timer2 starts and runs on; 3: PWM
timer2 starts and stops at the next TEZ; 4: PWM timer2 starts and stops at the next TEP. (R/W)

Espressif Systems 429

ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.12: PWM_TIMER2_SYNC_REG (0x002c)

o
F
& eoo/ec’%@%
%3%\ Q,i';k (1/%*%/4
& Q7T RV
& N NI
& o IONFOE
’31 21|20 4|3 2|1|0‘
[0 0o 000000 0 0 0 0 | o [o]o]Reset
PWM_TIMER2_PHASE Phase for timer reload at sync event. (R/W)
PWM_TIMER2_SYNCO_SEL PWM timer2 sync_out selection. 0: sync_in; 1: TEZ; 2: TEP; other-
waise: sync_out is always 0. (R/W)
PWM_TIMER2_SYNC_SW Toggling this bit will trigger a software sync. (R/W)
PWM_TIMER2_SYNCI_EN When set, timer reloading with phase on sync input event is enabled.
R/W)
Register 16.13: PWM_TIMER2_STATUS_REG (0x0030)
e
S
O %
Qg// Q:}//
& N N
& <z§\/ <z§v
’ 31 17 | 16 | 15 0 ‘
]ooooooooooooooo|o| 0 ‘Reset

PWM_TIMER2_DIRECTION Current direction of the PWM timer2 counter. O: increment, 1: decre-
ment. (RO)

PWM_TIMER2_VALUE Current value of the PWM timer2 counter. (RO)

Espressif Systems 430 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.14: PWM_TIMER_SYNCI_CFG_REG (0x0034)

PWM_EXTERNAL_SYNCI2_INVERT Invert SYNC2 from GPIO matrix. (R/W)
PWM_EXTERNAL_SYNCI1_INVERT Invert SYNC1 from GPIO matrix. (R/W)
PWM_EXTERNAL_SYNCIO_INVERT Invert SYNCO from GPIO matrix. (R/W)

PWM_TIMER2_SYNCISEL Select sync input for PWM timer2. 1: PWM timerO sync_out, 2: PWM
timer1 sync_out, 3: PWM timer2 sync_out, 4: SYNCO from GPIO matrix, 5: SYNC1 from GPIO
matrix, 6: SYNC2 from GPIO matrix, other values: no sync input selected. (R/W)

PWM_TIMER1_SYNCISEL Select sync input for PWM timer1. 1: PWM timerO sync_out, 2: PWM
timer1 sync_out, 3: PWM timer2 sync_out, 4: SYNCO from GPIO matrix, 5: SYNC1 from GPIO
matrix, 6: SYNC2 from GPIO matrix, other values: no sync input selected. (R/W)

PWM_TIMERO_SYNCISEL Select sync input for PWM timer0. 1: PWM timerO sync_out, 2: PWM
timer1 sync_out, 3: PWM timer2 sync_out, 4: SYNCO from GPIO matrix, 5: SYNC1 from GPIO
matrix, 6: SYNC2 from GPIO matrix, other values: no sync input selected. (R/W)

Register 16.15: PWM_OPERATOR_TIMERSEL_REG (0x0038)

PWM_OPERATOR2_TIMERSEL Select the PWM timer for PWM operator2’s timing reference. O:
timer0, 1: timer1, 2: timer2. (R/W)

PWM_OPERATOR1_TIMERSEL Select the PWM timer for PWM operatori’s timing reference. O:
timer0, 1: timer1, 2: timer2. (R/W)

PWM_OPERATORO_TIMERSEL Select the PWM timer for PWM operatorQ’s timing reference. O:
timerQ, 1: timer1, 2: timer2. (R/W)

Espressif Systems 431 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.16: PWM_GENO_STMP_CFG_REG (0x003c)

A Y &
S @ ©
L g S
Qg)/gx/ Qib/ QY\/
» S &S
& Q§:2/§\/ <2$®/ Q*SV
’31 10|9|8|7 4|3 O‘
]oooooooooooooooooooooo|0|o| 0 | 0 ‘Reset

PWM_GENO_B_SHDW_FULL Set and reset by hardware. If set, PWM generator O time stamp B’s
shadow register.ister is filled and to be transferred to time stamp B’s active register. If cleared, time
stamp B’s active register has been updated with Shadow register latest value. (RO)

PWM_GENO_A_SHDW _FULL Set and reset by hardware. If set, PWM generator O time stamp A’s
shadow register.ister is filled and to be transferred to time stamp A's active register. If cleared, time
stamp A's active register has been updated with Shadow register latest value. (RO)

PWM_GENO_B_UPMETHOD Updating method for PWM generator O time stamp B’s active register.
When all bits are set to 0: immediately; when bitO is set to 1: TEZ; when bit1 is set to 1: TEP;
when bit2 is set to 1: sync; when bit3 is set to 1: disable the update. (R/W)

PWM_GENO_A_UPMETHOD Updating method for PWM generator O time stamp A’s active register.
When all bits are set to 0: immediately; when bitO is set to 1: TEZ; when bit1 is set to 1: TEP;
when bit2 is set to 1: sync; when bit3 is set to 1: disable the update. (R/W)

Register 16.17: PWM_GENO_TSTMP_A_REG (0x0040)

?\
s W
& &
’ 31 16 | 15 0 ‘
]oooooooooooooooo| 0 \Reset
PWM_GENO_A PWM generator 0 time stamp A's shadow register. (R/W)
Register 16.18: PWM_GENO_TSTMP_B_REG (0x0044)
2
5 &
s &
& &
’ 31 16 | 15 0 ‘
]oooooooooooooooo| 0 \Reset

PWM_GENO_B PWM generator 0 time stamp B’s shadow register. (R/W)

Espressif Systems 432 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.19: PWM_GENO_CFGO0_REG (0x0048)

Q
\2\0
®6\
v y N
<‘O<</ ‘b<</ Ic%
o o o)
Q7 O/ o7
& g & P
& NG NG N
& & ™ &
’31 10|9 7|6 4|3 0‘
]oooooooooooooooooooooo|o|o| 0 ‘Reset

PWM_GENO_T1_SEL Source selection for PWM generator 0 event_t1, taking effect immediately. O:
fault_eventO, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GENO_TO_SEL Source selection for PWM generator O event_t0, taking effect immediately, O:
fault_eventO, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GENO_CFG_UPMETHOD Updating method for PWM generator O’s active register of config-
uration. When all bits are set to 0: immediately; when bitO is set to 1: TEZ; when bit1 is set to 1:
TEP; when bit2 is set to 1: sync; when bit3 is set to 1: disable the update. (R/W)

Espressif Systems 433 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.20: PWM_GENO_FORCE_REG (0x004c)

¢ & &
< & Q Q
g B RO o ©
N & & N
& FF TS & e
PP & &
%Q/ %Q/ %0/ %Q/ %Q/ %Q/ e 7
& @é’ @0‘0 $\éo @@‘0 $\éo @éo $\c§</
%) 7 7 7 7 7 7 7/
& A N A) N
’31 16|15 14|13|12 11|10|9 8|7 6|5 O‘
]oooooooooooooooo|o|o|o|o|o|o| 0x20 ‘Reset

PWM_GENO_B_NCIFORCE_MODE Non-continuous immediate software-force mode for PWMOB.
0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GENO_B_NCIFORCE Trigger of non-continuous immediate software-force event for PWMOB;
a toggle will trigger a force event. (R/W)

PWM_GENO_A_NCIFORCE_MODE Non-continuous immediate software-force mode for PWMOA,
0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GENO_A_NCIFORCE Trigger of non-continuous immediate software-force event for PWMOA,;
a toggle will trigger a force event. (R/W)

PWM_GENO_B_CNTUFORCE_MODE Continuous software-force mode for PWMOB. 0: disabled,
1: low, 2: high, 3: disabled. (R/W)

PWM_GENO_A_CNTUFORCE_MODE Continuous software-force mode for PWMOA. O: disabled, 1:
low, 2: high, 3: disabled. (R/W)

PWM_GENO_CNTUFORCE_UPMETHOD Updating method for continuous software force of PWM
generator0. When all bits are set to 0: immediately; when bitO is set to 1: TEZ; when bit1 is set
to 1. TEP; when bit2 is set to 1: TEA; when bit3 is set to 1: TEB; when bit4 is set to 1: sync;
when bit5 is set to 1: disable update. (TEA/B here and below means an event generated when
the timer’s value equals to that of register A/B.) (R/W)

Espressif Systems 434 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.21: PWM_GENO_A_REG (0x0050)

Q)& Q/%/ QQ/@/ ®Q§Q/ C/g/eg/ Q/%O/ @0/ OQ/egy\ Q§/ Q/egy OQ/%QY\ &egy @Q'/%Q/

& FOM M G I

’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7 6|5 4|3 2|1 O‘
]oooooooo|o|0|o|o|o|o|o|o|o|o|o|0‘Reset

PWM_GENO_A_DT1 Action on PWMOA triggered by event_t1 when the timer decreases. 0: no
change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GENO_A_DTO Action on PWMOA triggered by event_t0 when the timer decreases. (R/W)
PWM_GENO_A_DTEB Action on PWMOA triggered by event TEB when the timer decreases. (R/W)
PWM_GENO_A_DTEA Action on PWMOA triggered by event TEA when the timer decreases. (R/W)
PWM_GENO_A_DTEP Action on PWMOA triggered by event TEP when the timer decreases. (R/W)
PWM_GENO_A_DTEZ Action on PWMOA triggered by event TEZ when the timer decreases. (R/W)
PWM_GENO_A_UT1 Action on PWMOA triggered by event_t1 when the timer increases. (R/W)
PWM_GENO_A_UTO Action on PWMOA triggered by event_tO when the timer increases. (R/W)
PWM_GENO_A_UTEB Action on PWMOA triggered by event TEB when the timer increases. (R/W)
PWM_GENO_A_UTEA Action on PWMOA triggered by event TEA when the timer increases. (R/W)
PWM_GENO_A_UTEP Action on PWMOA triggered by event TEP when the timer increases. (R/W)

PWM_GENO_A_UTEZ Action on PWMOA triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 435 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.22: PWM_GENO_B_REG (0x0054)

<,)<\ Q«Q ,{(jb Q«Qy Q&(éz 0&6/ \S\’\ SQ && 0,{(? \S&(éz 6{3/
SRS SRS S SN SRS SRS S SIS SRS SRS NS 4
& S I FFFEFFF PSP
& PO M I G
’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7 6|5 4|3 2|1 O‘
]oooooooo|o|o|o|o|o|o|o|o|o|o|o|0‘Reset

PWM_GENO_B_DT1 Action on PWMOB triggered by event_t1 when the timer decreases. 0: no
change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GENO_B_DTO0 Action on PWMOB triggered by event_t0 when the timer decreases. (R/W)

PWM_GENO_B_DTEB Action on PWMOB triggered by event TEB when the timer decreases. (R/W)

PWM_GENO_B_DTEA Action on PWMOB triggered by event TEA when the timer decreases. (R/W)

PWM_GENO_B_DTEP Action on PWMOB triggered by event TEP when the timer decreases. (R/W)

PWM_GENO_B_DTEZ Action on PWMOB triggered by event TEZ when the timer decreases. (R/W)

PWM_GENO_B_UT1 Action on PWMOB triggered by event_t1 when the timer increases. (R/W)

PWM_GENO_B_UTO0 Action on PWMOB triggered by event_tO when the timer increases. (R/W)

PWM_GENO_B_UTEB Action on PWMOB triggered by event TEB when the timer increases. (R/W)

PWM_GENO_B_UTEA Action on PWMOB triggered by event TEA when the timer increases. (R/W)

PWM_GENO_B_UTEP Action on PWMOB triggered by event TEP when the timer increases. (R/W)

PWM_GENO_B_UTEZ Action on PWMOB triggered by event TEZ when the timer increases. (R/W)

Espressif Systems

436 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.23: PWM_DTO0_CFG_REG (0x0058)

(ONEONEY) Q Q
& A T AT ATV VT AT N N

’31 18|17|16|15|14|13|12|11|10|9|8|7 4|3 O‘

’ooo000oooooooo|o|1|1|o|o|0|o|o|0|o| 0 | 0 ‘Reset

PWM_DTO_CLK_SEL Dead time generator O clock selection. 0: PWM_clk, 1: PT_clk. (R/W)
PWM_DT0_B_OUTBYPASS SO in Table 72. (R/W)

PWM_DTO_A OUTBYPASS St in Table 72. (R/W)

PWM_DTO0_FED_OUTINVERT S3in Table 72. (R/W)

PWM_DTO0_RED_OUTINVERT S2 in Table 72. (R/W)

PWM_DTO_FED_INSEL S5 in Table 72. (R/W)

PWM_DTO_RED_INSEL S4 in Table 72. (R/W)

PWM_DT0_B_OUTSWAP S7 in Table 72. (R/W)

PWM_DTO0_A OUTSWAP S6in Table 72. (R/W)

PWM_DTO_DEB_MODE S8 in Table 72, dual-edge B mode. 0: FED/RED take effect on different
paths separately, 1: FED/RED take effect on B path. (R/W)

PWM_DTO_RED_UPMETHOD Updating method for RED (rising edge delay) active register. 0: im-
mediately; when bit0O is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when
bit3 is set to 1: disable the update. (R/W)

PWM_DTO_FED_UPMETHOD Updating method for FED (falling edge delay) active register. O: im-
mediately; when bit0O is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when
bit3 is set to 1: disable the update. (R/W)

Register 16.24: PWM_DTO0_FED_CFG_REG (0x005c)

S ©7
@ Q

Q)%@é
A

’31 16|15 O‘

]oooooooooooooooo| 0 ‘Reset

PWM_DTO_FED Shadow register for FED. (R/W)

Espressif Systems 437 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.25: PWM_DTO0_RED_CFG_REG (0x0060)

Q
&
S 7
i 9
& <2§\
]oooooooooooooooo| 0 \Reset
PWM_DTO_RED Shadow register for RED. (R/W)
Register 16.26: PWM_CARRIERO_CFG_REG (0x0064)
£
L& 2
K & a &
Q\ééoo QO% 000 QQ\ 0<</e
O & & &
K& & & & &
& XK s ¥ F K
& @/@/ @/ @/ @/ @/
& AN N N N o
’31 14|13|12|11 8|7 5|4 1|0‘
’oooooooooooooooooo|o|o| 0 |0| 0 |0‘Reset

PWM_CARRIERO_IN_INVERT When set, invert the input of PWMOA and PWMOB for this submodule.
(R/W)

PWM_CARRIERO_OUT_INVERT When set, invert the output of PWMOA and PWMOB for this sub-
module. (R/W)

PWM_CARRIERO_OSHWTH Width of the first pulse in number of periods of the carrier. (R/W)
PWM_CARRIERO_DUTY Carrier duty selection. Duty = PWM_CARRIERO_DUTY/8. (R/W)

PWM_CARRIERO_PRESCALE PWM carrierO clock (PC_clk) prescale value. Period of PC_clk = pe-
riod of PWM_clk * (PWM_CARRIERO_PRESCALE + 1). (R/W)

PWM_CARRIERO_EN When set, carrierO function is enabled. When cleared, carrierO is bypassed.
(R/W)

Espressif Systems 438 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.27: PWM_FHO_CFGO_REG (0x0068)

N Q N O N Q D A O
O%«/ Oé\/ QQ)O/ C?’Q/ Oé\/ o%/\/ C)@O/ Q®O/ O%& O%/\ Oé; /o% OQ>OO®QOQ7§9@

&7 7R 0w vy LIS QNG

S I R O I i A

ey RN I R G R R RS S
N < < < < < < < AT C SR
’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7|6|5|4|3|2|1|0‘
]oooooooo| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |o|0|o|o|0|o|o|o‘Reset

PWM_FHO_B_OST_U One-shot mode action on PWMOB when a fault event occurs and the timer is
increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_B_OST_D One-shot mode action on PWMOB when a fault event occurs and the timer is
decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_B_CBC_U Cycle-by-cycle mode action on PWMOB when a fault event occurs and the
timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_B_CBC_D Cycle-by-cycle mode action on PWMOB when a fault event occurs and the
timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_A_OST_U One-shot mode action on PWMOA when a fault event occurs and the timer is
increasing. O: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_A_OST_D One-shot mode action on PWMOA when a fault event occurs and the timer is
decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_A_CBC_U Cycle-by-cycle mode action on PWMOA when a fault event occurs and the
timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_A_CBC_D Cycle-by-cycle mode action on PWMOA when a fault event occurs and the
timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FHO_F0_OST event_fO will trigger one-shot mode action. O: disable, 1: enable. (R/W)
PWM_FHO_F1_OST event_f1 will trigger one-shot mode action. O: disable, 1: enable. (R/W)
PWM_FHO_F2_OST event_f2 will trigger one-shot mode action. O: disable, 1: enable. (R/W)

PWM_FHO_SW_OST Enable register for software-forced one-shot mode action. O: disable, 1: en-
able. (R/W)

PWM_FHO_F0_CBC event_fO will trigger cycle-by-cycle mode action. O: disable, 1: enable. (R/W)
PWM_FHO_F1_CBC event_f1 will trigger cycle-by-cycle mode action. O: disable, 1: enable. (R/W)
PWM_FHO_F2_CBC event_f2 will trigger cycle-by-cycle mode action. O: disable, 1: enable. (R/W)

PWM_FHO_SW_CBC Enable register for software-forced cycle-by-cycle mode action. 0: disable, 1:
enable. (R/W)

Espressif Systems 439 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.28: PWM_FHO_CFG1_REG (0x006c)

& Ak
Q
& S & ™

’31 5|4|3|2 1|0‘

]ooooooooooooooooooooooooooo|o|0|o|0‘Reset

PWM_FHO_FORCE_OST A toggle (software negation of this bit’s value) triggers a one-shot mode
action. (R/W)

PWM_FHO_FORCE_CBC A toggle triggers a cycle-by-cycle mode action. (R/W)

PWM_FHO_CBCPULSE The cycle-by-cycle mode action refresh moment selection. When bit0 is set
to 1: TEZ; when bit1 is set to 1: TEP. (R/W)

PWM_FHO_CLR_OST A toggle will clear on-going one-shot mode action. (R/W)

Register 16.29: PWM_FHO_STATUS_REG (0x0070)

o
S
oIsY
S O
Q?Q)é $®/$ ’
§ AR

5 L]

’oooooooooooooooooooooooooooooo|o|o‘Reset

PWM_FHO_OST_ON Set and reset by hardware. If set, a one-shot mode action is on-going. (RO)

PWM_FHO_CBC_ON Set and reset by hardware. If set, a cycle-by-cycle mode action is on-going.
(RO)

Espressif Systems 440 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.30: PWM_GEN1_STMP_CFG_REG (0x0074)

A Y &
S @ ©
L g S
\g)i\// \// \Y\/
& LS & &
& Q§:2/§\/ <2$® Q*SV
’31 10|9|8|7 4|3 O‘
]oooooooooooooooooooooo|0|o| 0 | 0 ‘Reset

PWM_GEN1_B_SHDW_FULL Set and reset by hardware. If set, PIWM generator 1 time stamp B’s
shadow register is filled and to be transferred to time stamp B’s active register. If cleared, time
stamp B’s active register has been updated with shadow register’s latest value. (RO)

PWM_GEN1_A_SHDW _FULL Set and reset by hardware. If set, PWM generator 1 time stamp A’s
shadow register is filled and to be transferred to time stamp A's active register. If cleared, time
stamp A's active register has been updated with shadow register latest value. (RO)

PWM_GEN1_B_UPMETHOD Updating method for PWM generator 1 time stamp B’s active register.
0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;
when bit3 is set to 1: disable the update. (R/W)

PWM_GEN1_A_UPMETHOD Updating method for PWM generator 1 time stamp A’s active register.
0: immediately; when bitO is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;
when bit3 is set to 1: disable the update. (R/W)

Register 16.31: PWM_GEN1_TSTMP_A_REG (0x0078)

N7
& &
& Q$®/
’31 16|15 O‘
]oooooooooooooooo| 0 ‘Reset

PWM_GEN1_A PWM generator 1 time stamp A's shadow register. (R/W)

Register 16.32: PWM_GEN1_TSTMP_B_REG (0x007c)

=
& @éo
Q) 7/
& &

PWM_GEN1_B PWM generator 1 time stamp B’s shadow register. (R/W)

Espressif Systems 441 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.33: PWM_GEN1_CFGO0_REG (0x0080)

Q
\2\0
®6\
v y N
<‘O<</ ‘b<</ Ic%
Q7 N o)
N7 N7 N7
& g & P
J N4 NA N4
& & ™ &
’31 10|9 7|6 4|3 0‘
]oooooooooooooooooooooo|o|o| 0 ‘Reset

PWM_GEN1_T1_SEL Source selection for PWM generatori event_t1, taking effect immediately, O:
fault_eventO, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN1_TO_SEL Source selection for PWM generator1 event_t0, taking effect immediately, O:
fault_eventO, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN1_CFG_UPMETHOD Updating method for PWM generatori’s active register of configu-
ration. O: immediately; when bit0O is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to
1: sync. bit3: disable the update. (R/W)

Espressif Systems 442 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.34: PWM_GEN1_FORCE_REG (0x0084)

¢ & &
< & Q Q
g B RO Q@é\
N & & N
F K K K& S
FFESES & S
SIS IS
& @é’ @0‘0 $\éo @@‘0 $\éo @éo $\c§</
%) 7 7 7 7 7 7 7/
& A N A) N
’31 16|15 14|13|12 11|10|9 8|7 6|5 O‘
]oooooooooooooooo|o|o|o|o|o|o| 0x20 ‘Reset

PWM_GEN1_B_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM1B.
0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN1_B_NCIFORCE Trigger of non-continuous immediate software-force event for PWM1B;
a toggle will trigger a force event. (R/W)

PWM_GEN1_A_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM1A.
0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN1_A_NCIFORCE Trigger of non-continuous immediate software-force event for PWM1A,;
a toggle will trigger a force event. (R/W)

PWM_GEN1_B_CNTUFORCE_MODE Continuous software-force mode for PWM1B. 0: disabled,
1: low, 2: high, 3: disabled. (R/W)

PWM_GEN1_A_CNTUFORCE_MODE Continuous software-force mode for PWM1A. O: disabled, 1:
low, 2: high, 3: disabled. (R/W)

PWM_GEN1_CNTUFORCE_UPMETHOD Updating method for continuous software force of PWM
generator1. When all bits are set to 0: immediately; when bitO is set to 1: TEZ; when bit1 is set
to 1. TEP; when bit2 is set to 1: TEA; when bit3 is set to 1: TEB; when bit4 is set to 1: sync;
when bit5 is set to 1: disable update. (TEA/B here and below means an event generated when
the timer’s value equals to that of register A/B). (R/W)

Espressif Systems 443 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.35: PWM_GEN1_A_REG (0x0088)

ERNCHNCMIC IO ORI G I
Q\@b\ Cﬁ@é\/ @Q/é\/ O@'\/ C/)@é\/ Q/%’\/ QQ/%)\/ O@é\/ é\/ Q§/ O@é\/ Cﬁ@é\/ @é\/
‘QQQJ <2$®/ Q$®/ Q$®/ Q$®/ Q$®/ Q$®/ Q$®/ $® $® <2$®/ $@ Q$®
’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7 6|5 4|3 2|1 O‘
]o 00 00 0 0 o| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ‘Reset

PWM_GEN1_A_DT1 Action on PWM1A triggered by event_t1 when the timer decreases. 0: no
change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN1_A_DTO Action on PWM1A triggered by event_t0 when the timer decreases. (R/W)
PWM_GEN1_A_DTEB Action on PWM1A triggered by event TEB when the timer decreases. (R/W)
PWM_GEN1_A_DTEA Action on PWM1A triggered by event TEA when the timer decreases. (R/W)
PWM_GEN1_A_DTEP Action on PWM1A triggered by event TEP when the timer decreases. (R/W)
PWM_GEN1_A_DTEZ Action on PWM1A triggered by event TEZ when the timer decreases. (R/W)
PWM_GEN1_A_UT1 Action on PWM1A triggered by event_t1 when the timer increases. (R/W)
PWM_GEN1_A_UTO Action on PWM1A triggered by event_tO when the timer increases. (R/W)
PWM_GEN1_A_UTEB Action on PWM1A triggered by event TEB when the timer increases. (R/W)
PWM_GEN1_A_UTEA Action on PWM1A triggered by event TEA when the timer increases. (R/W)
PWM_GEN1_A_UTEP Action on PWM1A triggered by event TEP when the timer increases. (R/W)

PWM_GEN1_A_UTEZ Action on PWM1A triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 444 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.36: PWM_GEN1_B_REG (0x008c)

Qo & & L /\‘& Q& O & & L& &
N) N) N) N N)
SRRSO
@éz; <2$® Q§¥ Q\$® Q$® $® Q$® @& Q$® Q$® Q$® <2$® <2$®
’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7 6|5 4|3 2|1 O‘
]oooooooo|o|o|o|o|o|o|o|o|o|o|o|0‘Reset

PWM_GEN1_B_DT1 Action on PWM1B triggered by event_t1 when the timer decreases. 0: no
change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN1_B_DTO0 Action on PWM1B triggered by event_tO when the timer decreases. (R/W)

PWM_GEN1_B_DTEB Action on PWM1B triggered by event TEB when the timer decreases. (R/W)

PWM_GEN1_B_DTEA Action on PWM1B triggered by event TEA when the timer decreases. (R/W)

PWM_GEN1_B_DTEP Action on PWM1B triggered by event TEP when the timer decreases. (R/W)

PWM_GEN1_B_DTEZ Action on PWM1B triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN1_B_UT1 Action on PWM1B triggered by event_t1 when the timer increases. (R/W)

PWM_GEN1_B_UTO0 Action on PWM1B triggered by event_tO when the timer increases. (R/W)

PWM_GEN1_B_UTEB Action on PWM1B triggered by event TEB when the timer increases. (R/W)

PWM_GEN1_B_UTEA Action on PWM1B triggered by event TEA when the timer increases. (R/W)

PWM_GEN1_B_UTEP Action on PWM1B triggered by event TEP when the timer increases. (R/W)

PWM_GEN1_B_UTEZ Action on PWM1B triggered by event TEZ when the timer increases. (R/W)

Espressif Systems

445 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.37: PWM_DT1_CFG_REG (0x0090)

L A Q Q
S S Q?‘(f,z“ \3\0 O
TS S © &«\
/O 7 Q/O Q)/ Q/ 7/
FR R ELLLF &1 &
e SELLLELLLES & §
& NSSEEE S S S &
@ TR C < <
’31 18|17|16|15|14|13|12|11|10|9|8|7 4|3 0‘
’ooo000oooooooo|o|1|1|o|o|0|o|o|o|o| 0 | 0 ‘Reset

PWM_DT1_CLK_SEL Dead time generator 1 clock selection. 0: PWM_clk, 1: PT_clk. (R/W)
PWM_DT1_B_OUTBYPASS SO in Table 72. (R/W)

PWM_DT1_A OUTBYPASS St in Table 72. (R/W)

PWM_DT1_FED_OUTINVERT S3in Table 72. (R/W)

PWM_DT1_RED_OUTINVERT S2 in Table 72. (R/W)

PWM_DT1_FED_INSEL S5 in Table 72. (R/W)

PWM_DT1_RED_INSEL S4 in Table 72. (R/W)

PWM_DT1_B_OUTSWAP S7 in Table 72. (R/W)

PWM_DT1_A OUTSWAP S6in Table 72. (R/W)

PWM_DT1_DEB_MODE S8 in Table 72; dual-edge B mode. 0: FED/RED take effect on different
paths separately; 1: FED (falling edge delay)/RED (rising edge delay) take effect on B path. (R/W)

PWM_DT1_RED_UPMETHOD Updating method for RED active register. O: immediately; when bitO
is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when bit3 is set to 1:
disable the update. (R/W)

PWM_DT1_FED_UPMETHOD Updating method for FED active register. O: immediately; when bit0
is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when bit3 is set to 1:
disable the update. (R/W)

Register 16.38: PWM_DT1_FED_CFG_REG (0x0094)

Q
<<<</
B &
@%@é Q\$®/
’31 16|15 0‘
]oooooooooooooooo| 0 ‘Reset

PWM_DT1_FED Shadow register for FED. (R/W)

Espressif Systems 446 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.39: PWM_DT1_RED_CFG_REG (0x0098)

I
i Q
o)

@9 <2$

PWM_DT1_RED Shadow register for RED. (R/W)

Register 16.40: PWM_CARRIER1_CFG_REG (0x009c)

A
L& 2
A &
SICEC AR G AR
K& & & & &
KK & & &K
ra XK ke & 5 K
&S @/@/ @/ @/ @/ @/
& AN N N N o
’31 l4|13|12|11 8|7 5|4 1|0‘
’oooooooooooooooooo|o|o| 0 |0| 0 |0‘Reset

PWM_CARRIER1_IN_INVERT When set, invert the input of PWM1A and PWM1B for this submodule.
(R/W)

PWM_CARRIER1_OUT_INVERT When set, invert the output of PWM1A and PWM1B for this sub-
module. (R/W)

PWM_CARRIER1_OSHWTH Width of the first pulse in number of periods of the carrier. (R/W)
PWM_CARRIER1_DUTY Carrier duty selection. Duty = PWM_CARRIER1_DUTY/8. (R/W)

PWM_CARRIER1_PRESCALE PWM carrier1 clock (PC_clk) prescale value. Period of PC_clk = pe-
riod of PWM_clk * (PWM_CARRIER1_PRESCALE + 1). (R/W)

PWM_CARRIER1_EN When set, carrier1 function is enabled. When cleared, carrier1 is bypassed.
(R/W)

Espressif Systems 447 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.41: PWM_FH1_CFGO_REG (0x00a0)

N Q N Q N Q N A O
@«/ %/\/ Q)C)/ Q7C)/ A7 A7 G (GRESEARIEN éo% Q)O @Q Q?OC)@
¥ o oF oF T 7 P T eteianiaals
é@& @q\”\ $\<<<\\ ®<<<\\ ®Q$ $\<<<\\ ®<<<\\ @\”\ sf\\ ®Q§Q§Q§Q§Q§Q§Q§®\
@%@ A AR SR S SR SRS S e S ANy
’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7|6|5|4|3|2|1|0‘
]oooooooo| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |o|0|o|o|0|o|o|o‘Reset

PWM_FH1_B_OST_U One-shot mode action on PWM1B when a fault event occurs and the timer is
increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_B_OST_D One-shot mode action on PWM1B when a fault event occurs and the timer is
decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_B_CBC_U Cycle-by-cycle mode action on PWM1B when a fault event occurs and the
timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_B_CBC_D Cycle-by-cycle mode action on PWM1B when a fault event occurs and the
timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_OST_U One-shot mode action on PWM1A when a fault event occurs and the timer is
increasing. O: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_OST_D One-shot mode action on PWM1A when a fault event occurs and the timer is
decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_CBC_U Cycle-by-cycle mode action on PWM1A when a fault event occurs and the
timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_CBC_D Cycle-by-cycle mode action on PWM1A when a fault event occurs and the
timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_F0_OST Enable event_f0 to trigger one-shot mode action. O: disable, 1: enable. (R/W)
PWM_FH1_F1_OST Enable event_f1 to trigger one-shot mode action. O: disable, 1: enable. (R/W)
PWM_FH1_F2_OST Enable event_f2 to trigger one-shot mode action. O: disable, 1: enable. (R/W)

PWM_FH1_SW_OST Enable the register for software-forced one-shot mode action. 0: disable, 1:
enable. (R/W)

PWM_FH1_F0_CBC Enable event_fO to trigger cycle-by-cycle mode action. 0: disable, 1: enable.
(R/W)

PWM_FH1_F1_CBC Enable event_f1 to trigger cycle-by-cycle mode action. 0: disable, 1: enable.
(R/W)

PWM_FH1_F2_CBC Enable event_f2 to will trigger cycle-by-cycle mode action. 0: disable, 1: en-
able. (R/W)

PWM_FH1_SW_CBC Enable the register for software-forced cycle-by-cycle mode action. O: disable,
1: enable. (R/W)

Espressif Systems 448 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.42: PWM_FH1_CFG1_REG (0x00a4)

A O
FE & «

N
F o L .S
SE & &
S LR LR
& L L
& ORI
N <R R R

’31 5|4|3|2 1|0‘

]ooooooooooooooooooooooooooo|o|0|o|0‘Reset

PWM_FH1_FORCE_OST A toggle (software negation of this bit’s value) triggers a one-shot mode
action. (R/W)

PWM_FH1_FORCE_CBC A toggle triggers a cycle-by-cycle mode action. (R/W)

PWM_FH1_CBCPULSE The cycle-by-cycle mode action refresh moment selection. When bit0 is set
to 1: TEZ; when bit1 is set to 1: TEP. (R/W)

PWM_FH1_CLR_OST A toggle will clear on-going one-shot mode action. (R/W)

Register 16.43: PWM_FH1_STATUS_REG (0x00a8)

o
S
N /o X/
S NS
Q?Q)é $®/$ ’
§ AR

5 L]

’oooooooooooooooooooooooooooooo|o|o‘Reset

PWM_FH1_OST_ON Set and reset by hardware. If set, a one-shot mode action is on-going. (RO)

PWM_FH1_CBC_ON Set and reset by hardware. If set, a cycle-by-cycle mode action is on-going.
(RO)

Espressif Systems 449 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.44: PWM_GEN2_STMP_CFG_REG (0x00ac)

A Y &
S @ ©
CAC NS S
J\\\Q)& é(/éqx (’(/eq/ / ((/eq/ 4 O{(/é?/ /
& Q§:2/§\/ <2$® Q*SV
’31 10|9|8|7 4|3 O‘
]oooooooooooooooooooooo|0|o| 0 | 0 ‘Reset

PWM_GEN2_B_SHDW_FULL Set and reset by hardware. If set, PWM generator 2 time stamp B’s
shadow register is filled and to be transferred to time stamp B’s active register. If cleared, time
stamp B’s active register has been updated with shadow register’s latest value. (RO)

PWM_GEN2_A_SHDW_FULL Set and reset by hardware. If set, PWM generator 2 time stamp A’s
shadow register is filled and to be transferred to time stamp A's active register. If cleared, time
stamp A's active register has been updated with shadow register’s latest value. (RO)

PWM_GEN2_B_UPMETHOD Updating method for PWM generator 2 time stamp B’s active register.
0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;
when bit3 is set to 1: disable the update. (R/W)

PWM_GEN2_A_UPMETHOD Updating method for PWM generator 2 time stamp A’s active register.
0: immediately; when bitO is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;
when bit3 is set to 1: disable the update. (R/W)

Register 16.45: PWM_GEN2_TSTMP_A_REG (0x00b0)

?\
I O{(/eq/
5 7
& <2$®
’31 16|15 O‘
]oooooooooooooooo| 0 ‘Reset

PWM_GEN2_A PWM generator 2 time stamp A's shadow register. (R/W)

Register 16.46: PWM_GEN2_TSTMP_B_REG (0x00b4)
4
Q)& Q((’e

Q\\ @ 7
& &

]oooooooooooooooo| 0 ‘Reset

PWM_GEN2_B PWM generator 2 time stamp B’s shadow register. (R/W)

Espressif Systems 450 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.47: PWM_GEN2_CFGO0_REG (0x00b8)

Q
\2\0
@é\
Q
‘b<<>/ "o<<>/ @9
Q7 N o)
Q7 Q7 Q7
& g £ P
7 7 e
& <z\§ <z\§ <2§\
’31 10|9 7|6 4|3 0‘
]oooooooooooooooooooooo|o|o| 0 ‘Reset

PWM_GEN2_T1_SEL Source selection for PWM generator2 event_t1, take effect immediately, O:
fault_eventO, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN2_TO_SEL Source selection for PWM generator2 event_t0, take effect immediately, O:
fault_eventO, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN2_CFG_UPMETHOD Updating method for PWM generator2’s active register of configu-
ration. O: immediately; when bit0O is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to
1: sync. bit3: disable the update. (R/W)

Espressif Systems 451 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.48: PWM_GEN2_FORCE_REG (0x00bc)

¢ & &
& <) Q
5 S Q,?@ @/O Sﬁ\é\
F K K K& S
LFELELES S ¢
/% § ?\ﬁ ?\/é 9 s Qé&
SV S S i
& @é’ @0‘0 $\éo @@‘0 $\éo @éo $\c§</
%) 7 7 7 7 7 7 7/
& A N A) N
’31 16|15 14|13|12 11|10|9 8|7 6|5 O‘
]oooooooooooooooo|o|o|o|o|o|o| 0x20 ‘Reset

PWM_GEN2_B_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM2B,
0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN2_B_NCIFORCE Trigger of non-continuous immediate software-force event for PWM2B,
a toggle will trigger a force event. (R/W)

PWM_GEN2_A_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM2A,
0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN2_A_NCIFORCE Trigger of non-continuous immediate software-force event for PWM2A,
a toggle will trigger a force event. (R/W)

PWM_GEN2_B_CNTUFORCE_MODE Continuous software-force mode for PWM2B. 0: disabled,
1: low, 2: high, 3: disabled. (R/W)

PWM_GEN2_A_CNTUFORCE_MODE Continuous software-force mode for PWM2A. O: disabled, 1:
low, 2: high, 3: disabled. (R/W)

PWM_GEN2_CNTUFORCE_UPMETHOD Updating method for continuous software force of PWM
generator2. O: immediately; when bitO is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is
set to 1: TEA; when bit3 is set to 1: TEB; when bit4 is set to 1: sync; when bit5 is set to 1: disable
update. (TEA/B here and below means an event generated when the timer value equals that of
register A/B.) (R/W)

Espressif Systems 452 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.49: PWM_GEN2_A_REG (0x00c0)

o o & €@ @ E e
7/ 7/ ?\/ ?\/ ?\/ 7/ 7 7/ 7/ ?\/ ?\/ v/
Q)& é(/é]/ ((/éb’ O{(/é?// ((/%q// é(/é?// Q((/é?// O{(/eq/ ((/eq// QQ/%Q/ O{(/eq// é(/é]/ ((/éq//
& FOM M G I
’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7 6|5 4|3 2|1 O‘
]oooooooo|o|0|o|o|o|o|o|o|o|o|o|0‘Reset

PWM_GEN2_A_DT1 Action on PWM2A triggered by event_t1 when the timer decreases. 0: no
change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN2_A_DTO Action on PWM2A triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN2_A_DTEB Action on PWM2A triggered by event TEB when the timer decreases. (R/W)

PWM_GEN2_A_DTEA Action on PWM2A triggered by event TEA when the timer decreases. (R/W)

PWM_GEN2_A_DTEP Action on PWM2A triggered by event TEP when the timer decreases. (R/W)

PWM_GEN2_A_DTEZ Action on PWM2A triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN2_A_UT1 Action on PWM2A triggered by event_t1 when the timer increases. (R/W)

PWM_GEN2_A_UTO Action on PWM2A triggered by event_t0 when the timer increases. (R/W)

PWM_GEN2_A_UTEB Action on PWMZ2A triggered by event TEB when the timer increases. (R/W)

PWM_GEN2_A_UTEA Action on PWM2A triggered by event TEA when the timer increases. (R/W)

PWM_GEN2_A_UTEP Action on PWM2A triggered by event TEP when the timer increases. (R/W)

PWM_GEN2_A_UTEZ Action on PWM2A triggered by event TEZ when the timer increases. (R/W)

Espressif Systems

453 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.50: PWM_GEN2_B_REG (0x00c4)

$ o T LT
& é&w é&q/ 2 Cg/&/ é&q/ éﬁw 0‘0&/ é§/ éo&/ 0‘0&/ éo&/ éﬁw
& PO G I R
’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7 6|5 4|3 2|1 O‘
]oooooooo|o|o|o|o|o|o|o|o|o|o|o|0‘Reset

PWM_GEN2_B_DT1 Action on PWM2B triggered by event_t1 when the timer decreases. 0: no
change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN2_B_DTO0 Action on PWM2B triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN2_B_DTEB Action on PWMZ2B triggered by event TEB when the timer decreases. (R/W)

PWM_GEN2_B_DTEA Action on PWMZ2B triggered by event TEA when the timer decreases. (R/W)

PWM_GEN2_B_DTEP Action on PWM2B triggered by event TEP when the timer decreases. (R/W)

PWM_GEN2_B_DTEZ Action on PWM2B triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN2_B_UT1 Action on PWM2B triggered by event_t1 when the timer increases. (R/W)

PWM_GEN2_B_UTO0 Action on PWM2B triggered by event_tO when the timer increases. (R/W)

PWM_GEN2_B_UTEB Action on PWMZ2B triggered by event TEB when the timer increases. (R/W)

PWM_GEN2_B_UTEA Action on PWMZ2B triggered by event TEA when the timer increases. (R/W)

PWM_GEN2_B_UTEP Action on PWM2B triggered by event TEP when the timer increases. (R/W)

PWM_GEN2_B_UTEZ Action on PWM2B triggered by event TEZ when the timer increases. (R/W)

Espressif Systems

454 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.51: PWM_DT2_CFG_REG (0x00c8)

L A Q
& %%4(8\4(8\ QR R L
RIS R <
LELS ST ¢ $
7 97979797 O P ’ o
Y Q7 (OGO 7 v S © <&
S OO v
N @/ @/ @/@/ @/ Q7 @/ @/ Q7 @/ @/ @/
%)
@’% Q$ <2$ Q$ Q$ <2\$ Q$ Q$ <2\$ Q$ <2$ Q$ <2$
’31 18|17|16|15|14|13|12|11|10|9|8|7 4|3 O‘
’ooo000oooooooo|o|1|1|o|o|0|o|o|o|o| 0 | 0 ‘Reset

PWM_DT2_CLK_SEL Dead time generator 1 clock selection. 0: PWM_clk; 1: PT_clk. (R/W)

PWM_DT2_B_OUTBYPASS SO0 in Table 72. (R/W)

PWM_DT2_A_OUTBYPASS S1in Table 72. (R/W)

PWM_DT2_FED_OUTINVERT S3in Table 72. (R/W)

PWM_DT2_RED_OUTINVERT S2 in Table 72. (R/W)

PWM_DT2_FED_INSEL S5 in Table 72. (R/W)

PWM_DT2_RED_INSEL S4 in Table 72. (R/W)

PWM_DT2_B_OUTSWAP S7 in Table 72. (R/W)

PWM_DT2_A_OUTSWAP S6 in Table 72. (R/W)

PWM_DT2_DEB_MODE S8in Table 72, dual-edge B mode, 0: FED/RED take effect on different path
separately, 1: FED/RED take effect on B path. (R/W)

PWM_DT2_RED_UPMETHOD Updating method for RED (rising edge delay) active register. 0: im-
mediately; when bit0O is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when
bit3 is set to 1: disable the update. (R/W)

PWM_DT2_FED_UPMETHOD Updating method for FED (falling edge delay) active register. O: im-
mediately; when bit0O is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when
bit3 is set to 1: disable the update. (R/W)

Register 16.52: PWM_DT2_FED_CFG_REG (0x00cc)
%&Q
) Nl
S o
@%@ Q\$®
]oooooooooooooooo| 0 ‘Reset

PWM_DT2_FED Shadow register for FED. (R/W)

Espressif Systems 455 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.53: PWM_DT2_RED_CFG_REG (0x00d0)

Q
%&
S Nt
i 9
& <2§\
]oooooooooooooooo| 0 \Reset
PWM_DT2_RED Shadow register for RED. (R/W)
Register 16.54: PWM_CARRIER2_CFG_REG (0x00d4)
£
L& 2
T &« 5
S F > & s
Q// 7 q// q// q// q//
I G
K& & & & &
/\@b\ Q?‘ Q?‘ X O?‘ C)?\ O?‘
& @/@/ @/ @/ @/ @/
& AN N N N o
’31 14|13|12|11 8|7 5|4 1|0‘
’oooooooooooooooooo|o|o| 0 |0| 0 |0‘Reset

PWM_CARRIER2_IN_INVERT When set, invert the input of PWM2A and PWM2B for this submodule.
(R/W)

PWM_CARRIER2_OUT_INVERT When set, invert the output of PWM2A and PWM2B for this sub-
module. (R/W)

PWM_CARRIER2_OSHWTH Width of the first pulse in number of periods of the carrier. (R/W)
PWM_CARRIER2_DUTY Carrier duty selection. Duty = PWM_CARRIER2_DUTY / 8. (R/W)

PWM_CARRIER2_PRESCALE PWM carrier2 clock (PC_clk) prescale value. Period of PC_clk = pe-
riod of PWM_clk * (PWM_CARRIER2_PRESCALE + 1). (R/W)

PWM_CARRIER2_EN When set, carrier2 function is enabled. When cleared, carrier2 is bypassed.
(R/W)

Espressif Systems 456 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.55: PWM_FH2_CFGO0_REG (0x00d8)

N} O < O O
£ O@/\S) & £ 005\9 & &S ,OO‘G\QQ’OQ@OQ@O 9Q)O
Q7 7 7 7 7 v 0 0 (<0/<<)\/<<q//%$ <<0/<<’\/(<q//(‘<)$
ra QT QTR LQRRQLLLY
P @ Y & @ @@ e

QQ’%QJ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$ Q$

’31 24|23 22|21 20|19 18|17 16|15 14|13 12|11 10|9 8|7|6|5|4|3|2|1|0‘
]oooooooo| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |o|0|o|o|0|o|o|o‘Reset

PWM_FH2_B_OST_U One-shot mode action on PWM2B when a fault event occurs and the timer is
increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_B_OST_D One-shot mode action on PWM2B when a fault event occurs and the timer is
decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_B_CBC_U Cycle-by-cycle mode action on PWM2B when a fault event occurs and the
timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_B_CBC_D Cycle-by-cycle mode action on PWM2B when a fault event occurs and the
timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_OST_U One-shot mode action on PWM2A when a fault event occurs and the timer is
increasing. O: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_OST_D One-shot mode action on PWM2A when a fault event occurs and the timer is
decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_CBC_U Cycle-by-cycle mode action on PWM2A when a fault event occurs and the
timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_CBC_D Cycle-by-cycle mode action on PWM2A when a fault event occurs and the
timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_F0_OST event_fO will trigger one-shot mode action. O: disable, 1: enable. (R/W)
PWM_FH2_F1_OST event_f1 will trigger one-shot mode action. O: disable, 1: enable. (R/W)
PWM_FH2_F2_OST event_f2 will trigger one-shot mode action. O: disable, 1: enable. (R/W)

PWM_FH2_SW_OST Enable register for software-forced one-shot mode action. O: disable, 1: en-
able. (R/W)

PWM_FH2_F0_CBC event_fO will trigger cycle-by-cycle mode action. O: disable, 1: enable. (R/W)
PWM_FH2_F1_CBC event_f1 will trigger cycle-by-cycle mode action. 0: disable, 1: enable. (R/W)
PWM_FH2_F2_CBC event_f2 will trigger cycle-by-cycle mode action. O: disable, 1: enable. (R/W)

PWM_FH2_SW_CBC Enable register for software-forced cycle-by-cycle mode action. 0: disable, 1:
enable. (R/W)

Espressif Systems 457 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.56: PWM_FH2_CFG1_REG (0x00dc)

(%) e 7/
& S & ™

’31 5|4|3|2 1|0‘

]ooooooooooooooooooooooooooo|o|0|o|0‘Reset

PWM_FH2_FORCE_OST A toggle (software negation of this bit’s value) triggers a one-shot mode
action. (R/W)

PWM_FH2_FORCE_CBC A toggle triggers a cycle-by-cycle mode action. (R/W)

PWM_FH2_CBCPULSE The cycle-by-cycle mode action refresh moment selection. When bit0 is set
to 1: TEZ; when bit1 is set to 1:TEP. (R/W)

PWM_FH2_CLR_OST A toggle will clear on-going one-shot mode action. (R/W)

Register 16.57: PWM_FH2_STATUS_REG (0x00e0)

55
F X
D g
Q?Q)é $®/$ ’
\§ <SR

5 L]

’oooooooooooooooooooooooooooooo|o|o‘Reset

PWM_FH2_OST_ON Set and reset by hardware. If set, a one-shot mode action is on-going. (RO)

PWM_FH2_CBC_ON Set and reset by hardware. If set, a cycle-by-cycle mode action is on-going.
(RO)

Espressif Systems 458 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.58: PWM_FAULT_DETECT_REG (0x00e4)
SIS
N FSEXLLLE & o
& RS SRS
& O O a
E o[o=+]:]2]:]]

&
]o 0000 0OOGOTG OGO OGO OT O OO OO OGO OTOT OO0 O O|O|O|O|O|O|0|O|O|O‘Reset

PWM_EVENT_F2 Set and reset by hardware. If set, event_f2 is on-going. (RO)
PWM_EVENT_F1 Set and reset by hardware. If set, event_f1 is on-going. (RO)
PWM_EVENT_FO0 Set and reset by hardware. If set, event_fO is on-going. (RO)

PWM_F2_POLE Set event_f2 trigger polarity on FAULT2 source from GPIO matrix. O: level low, 1:
level high. (R/W)

PWM_F1_POLE Set event_f1 trigger polarity on FAULT2 source from GPIO matrix. O: level low, 1:
level high. (R/W)

PWM_FO0_POLE Set event_fO trigger polarity on FAULT2 source from GPIO matrix. O: level low, 1:
level high. (R/W)

PWM_F2_EN Set to enable the generation of event_f2. (R/W)
PWM_F1_EN Set to enable the generation of event_f1. (R/W)

PWM_FO0_EN Set to enable the generation of event_f0. (R/W)

Register 16.59: PWM_CAP_TIMER_CFG_REG (0x00e8)

PN 2y
J \/ \/ 7
4%0 é$0 %4%0\@(‘9
@6\ ?\/ O??/ ??/??/
QJ(A @/ @/ @/@/
& & O
B o] e[+ [e]
]oooooooooooooooooooooooooo|o|0|o|o‘Reset

PWM_CAP_SYNC_SW Set this bit to force a capture timer sync; the capture timer is loaded with the
value in the phase register. (WO)

PWM_CAP_SYNCI_SEL Capture module sync input selection. 0: none, 1: timerO sync_out, 2:
timer1 sync_out, 3: timer2 sync_out, 4: SYNCO from GPIO matrix, 5: SYNC1 from GPIO ma-
trix, 6: SYNC2 from GPIO matrix. (R/W)

PWM_CAP_SYNCI_EN When set, the capture timer sync is enabled. (R/W)

PWM_CAP_TIMER_EN When set, the capture timer incrementing under APB_clk is enabled. (R/W)

Espressif Systems 459 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.60: PWM_CAP_TIMER_PHASE_REG (0x00ec)

’ 0 ‘ Reset

PWM_CAP_TIMER_PHASE_REG Phase value for the capture timer sync operation. (R/W)

Register 16.61: PWM_CAP_CHO_CFG_REG (0x00f0)

A <
e %
R @AQ/ ({/%Q?‘ OQ((/
Q?Q>é/ Q/Q\ Q§ Q@
& o o & F
& RO & N
’31 13|12|11|10 3|2 1|0‘
’ooooooooooooooooooo|o|o| 0 |o|o‘Reset
PWM_CAPO_SW When set, a software-forced capture on channel O is triggered. (WO)
PWM_CAPO_IN_INVERT When set, CAPO form GPIO matrix is inverted before prescaling. (R/W)
PWM_CAPO_PRESCALE Prescaling value on the positive edge of CAPQ. Prescaling value =
PWM_CAPO_PRESCALE + 1. (R/W)
PWM_CAPO_MODE Edge of capture on channel O after prescaling. When bitO is set to 1: enable
capture on the negative edge; When bit1 is set to 1: enable capture on the positive edge. (R/W)
PWM_CAPO_EN When set, capture on channel O is enabled. (R/W)
Register 16.62: PWM_CAP_CH1_CFG_REG (0x00f4)
A <
& N
NG & ¥
\? \>$/ \/Q\ \§ \3/%
& <2*$tz/*A i <2§N Q$®/Q$®/
]ooooooooooooooooooo|0|o| 0 |o|o‘Rese»c

PWM_CAP1_SW Write 1 will trigger a software-forced capture on channel 1. (WO)
PWM_CAP1_IN_INVERT When set, CAP1 form GPIO matrix is inverted before prescaling. (R/W)

PWM_CAP1_PRESCALE Value of prescale on the positive edge of CAP1. Prescale value =
PWM_CAP1_PRESCALE + 1. (R/W)

PWM_CAP1_MODE Edge of capture on channel 1 after prescaling. When bitO is set to 1: enable
capture on the negative edge; When bit1 is set to 1: enable capture on the positive edge. (R/W)

PWM_CAP1_EN When set, capture on channel 1 is enabled. (R/W)

Espressif Systems 460 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.63: PWM_CAP_CH2_CFG_REG (0x00f8)

A 2
o N
< @AQ/ ({/%O?‘ OQ((/
q,c;o >e/ q/Q\ q,?y q/%/e
N i ¥ & F
N @/ @/ @/ s @/
& A N A
‘31 13|12|11|10 3|2 1|0‘
‘ooooooooooooooooooo|o|o| 0 |o|o‘Reset
PWM_CAP2_SW When set, a software-forced capture on channel 2 is triggered. (WO)
PWM_CAP2_IN_INVERT When set, CAP2 form GPIO matrix is inverted before prescaling. (R/W)
PWM_CAP2_PRESCALE Prescaling value on the positive edge of CAP2. Prescaling value =
PWM_CAP2_PRESCALE + 1. (R/W)
PWM_CAP2_MODE Edge of capture on channel 2 after prescaling. When bitO is set to 1: enable
capture on the negative edge; when bit1 is set to 1: enable capture on the positive edge. (R/W)
PWM_CAP2_EN When set, capture on channel 2 is enabled. (R/W)
Register 16.64: PWM_CAP_CHO_REG (0x00fc)
0 ‘Reset
PWM_CAP_CHO_REG Value of the last capture on channel 0. (RO)
Register 16.65: PWM_CAP_CH1_REG (0x0100)
0 ‘Reset
PWM_CAP_CH1_REG Value of the last capture on channel 1. (RO)
Register 16.66: PWM_CAP_CH2_REG (0x0104)
‘ 0 ‘Reset

PWM_CAP_CH2_REG Value of the last capture on channel 2. (RO)

Espressif Systems 461 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.67: PWM_CAP_STATUS_REG (0x0108)

o Ko
(OFEORG
&Y
<2()// \/QQ/
& T I
) NS

PWM_CAP2_EDGE Edge of the last capture trigger on channel 2. 0: posedge; 1: negedge. (RO)
PWM_CAP1_EDGE Edge of the last capture trigger on channel 1. O: posedge; 1: negedge. (RO)

PWM_CAPO_EDGE Edge of the last capture trigger on channel 0. O: posedge; 1: negedge. (RO)

Register 16.68: PWM_UPDATE_CFG_REG (0x010c)

N}
¢ & 8 >
SERN RS
7 7/ Q\ 7
S FSFS O
RN ICREICSRN A S o

6‘2’& Q/OQ;:OQ@:OQ;:OQ;;:OQSQOQ;%Q/O

%)

& AN E XN
E s[7 [s[s]«]s]2] 0]
]oooooooooooooooooooooooo|o|1|o|1|0|1|o|1‘Reset

PWM_OP2_FORCE_UP A toggle (software negation of this bit’s value) will trigger a forced update of
active registers in PWM operator 2. (R/W)

PWM_OP2_UP_EN When set and PWM_GLOBAL_UP_EN is set, update of active registers in PWM
operator 2 are enabled (R/W)

PWM_OP1_FORCE_UP A toggle (software negation of this bit’s value) will trigger a forced update of
active registers in PWM operator 1. (R/W)

PWM_OP1_UP_EN When set and PWM_GLOBAL_UP_EN is set, update of active registers in PWM
operator 1 are enabled. (R/W)

PWM_OPO_FORCE_UP A toggle (software negation of this bit’s value) will trigger a forced update of
active registers in PWM operator 0. (R/W)

PWM_OPO_UP_EN When set and PWM_GLOBAL_UP_EN is set, update of active registers in PWM
operator O are enabled. (R/W)

PWM_GLOBAL_FORCE_UP Atoggle (software negation of this bit’s value) will trigger a forced update
of all active registers in the MCPWM module. (R/W)

PWM_GLOBAL_UP_EN The global enable of update of all active registers in the MCPWM module.
(R/W)

Espressif Systems 462 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.69: INT_ENA_PWM_REG (0x0110)

RS

S T FFSIF S, S
%V@V@V@V@V@V@V@V@V@V@V@V ’\(5/’\3/’\(5/? o SIKAK7K7 &3/&(5/\6&/ ’

X O O S I e e S oSS 0. 0. € o S o So T S S S 18

PZSZS 70 V0 P00 I I I J TSI I S R SRRV Y R A

s AL O E GH CRELRT L0 LY IO U OGN D (0
EICCERAR RGN RN XK DO DO

NN SN N N N N S S N O N N N SRS

’31 30|29 28 | 27 | 26 | 25 | 24 23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0‘

Y,
\/st

Y,
\4/)

N

&

~S

]o o|0|o|o|0|o|o|o|o|o|o|o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|o‘Reset

INT_CAP2_INT_ENA The enable bit for the interrupt triggered by capture on channel 2. (R/W)

INT_CAP1_INT_ENA The enable bit for the interrupt triggered by capture on channel 1. (R/W)

INT_CAPO_INT_ENA The enable bit for the interrupt triggered by capture on channel 0. (R/W)
INT_FH2_OST_INT_ENA The enable bit for the interrupt triggered by a one-shot mode action on PWM2. (R/W)
INT_FH1_OST_INT_ENA The enable bit for the interrupt triggered by a one-shot mode action on PWMO. (R/W)
INT_FHO_OST_INT_ENA The enable bit for the interrupt triggered by a one-shot mode action on PWMO. (R/W)
INT_FH2_CBC_INT_ENA The enable bit for the interrupt triggered by a cycle-by-cycle mode action on PWM2. (R/W)
INT_FH1_CBC_INT_ENA The enable bit for the interrupt triggered by a cycle-by-cycle mode action on PWM1. (R/W)
INT_FHO_CBC_INT_ENA The enable bit for the interrupt triggered by a cycle-by-cycle mode action on PWMO. (R/W)
INT_OP2_TEB_INT_ENA The enable bit for the interrupt triggered by a PWM operator 2 TEB event (R/W)
INT_OP1_TEB_INT_ENA The enable bit for the interrupt triggered by a PWM operator 1 TEB event (R/W)
INT_OPO_TEB_INT_ENA The enable bit for the interrupt triggered by a PWM operator O TEB event (R/W)
INT_OP2_TEA_INT_ENA The enable bit for the interrupt triggered by a PWM operator 2 TEA event (R/W
INT_OP1_TEA_INT_ENA The enable bit for the interrupt triggered by a PWM operator 1 TEA event (R/W
INT_OPO_TEA_INT_ENA The enable bit for the interrupt triggered by a PWM operator O TEA event (R/W)
INT_FAULT2_CLR_INT_ENA The enable bit for the interrupt triggered when event_f2 ends. (R/W)
INT_FAULT1_CLR_INT_ENA The enable bit for the interrupt triggered when event_f1 ends. (R/W)
INT_FAULTO_CLR_INT_ENA The enable bit for the interrupt triggered when event_fO ends. (R/W)
INT_FAULT2_INT_ENA The enable bit for the interrupt triggered when event_f2 starts. (R/W)
INT_FAULT1_INT_ENA The enable bit for the interrupt triggered when event_f1 starts. (R/W)
INT_FAULTO_INT_ENA The enable bit for the interrupt triggered when event_f0 starts. (R/W)
INT_TIMER2_TEP_INT_ENA The enable bit for the interrupt triggered by a PWM timer 2 TEP event.
INT_TIMER1_TEP_INT_ENA The enable bit for the interrupt triggered by a PWM timer 1 TEP event.
INT_TIMERO_TEP_INT_ENA The enable bit for the interrupt triggered by a PWM timer O TEP event. (R
INT_TIMER2_TEZ_INT_ENA The enable bit for the interrupt triggered by a PWM timer 2 TEZ event. (R
INT_TIMER1_TEZ_INT_ENA The enable bit for the interrupt triggered by a PWM timer 1 TEZ event. (R
INT_TIMERO_TEZ_INT_ENA The enable bit for the interrupt triggered by a PWM timer 0 TEZ event. (R
INT_TIMER2_STOP_INT_ENA The enable bit for the interrupt triggered when the timer 2 stops. (R/W)
INT_TIMER1_STOP_INT_ENA The enable bit for the interrupt triggered when the timer 1 stops. (R/W)
INT_TIMERO_STOP_INT_ENA The enable bit for the interrupt triggered when the timer 0 stops. (R/W)

—_ e~ e~ o —
= =

R
(
(

ERER

ERE

Espressif Systems 463 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.70: INT_RAW_PWM_REG (0x0114)

S DS N
¥ o PP oF oF oF oF &, <
B Y K P I S o S S X XV SUS S, S S SRR 4R 7
NS T ET YT ST TR LILIL L& vy QO O
SIS TS TATA T AT 10077 % ¥ ¥ ¥ O O7 O § §F § AV AV AL S S S
T T TP PP LKL /\Qy&@,{(x@/&\/&Q/&q//«»\/&Q/Q\Q,/Q:\/Q\Q/Q\Q,/Q:\/Q\Q/Q\Q/Q:\/Q\Q/
Q)& Q(L/Q\/QQ/Q/ N7 Q7 L7 N Q/QFL/Q\/QQ/QQ,/Q\/QO/\)\/ NV ING QVQQ/@@@Q/Q@@Q/ Q/@Qx < &
F FTFFIXAITXRXIITF SIS KRR R EE AN N QAN QN QY

Q
E SIPIIIIIIIIIIIIIISIIIISOIIISS IS

’31 30|29|28|27|26|25|24|23|22 21|20|19 18|17 16 15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0‘

]o o|0|o|o|0|o|o|o|o|o|o|o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|0|o|o|o‘Reset

INT_CAP2_INT_RAW The raw status bit for the interrupt triggered by capture on channel 2. (RO)
INT_CAP1_INT_RAW The raw status bit for the interrupt triggered by capture on channel 1. (RO)
INT_CAPO_INT_RAW The raw status bit for the interrupt triggered by capture on channel 0. (RO)

INT_FH2_OST_INT_RAW
INT_FH1_OST_INT_RAW
INT_FHO_OST_INT_RAW

INT_FH2_CBC_INT_RAW
(RO)

INT_FH1_CBC_INT_RAW
(RO)

INT_FHO_CBC_INT_RAW
(RO)

INT_OP2_TEB_INT_RAW
INT_OP1_TEB_INT_RAW
INT_OPO_TEB_INT_RAW
INT_OP2_TEA_INT_RAW
INT_OP1_TEA_INT_RAW
INT_OPO_TEA_INT_RAW

The raw status bit for the interrupt triggered by a one-shot mode action on PWM2. (RO)

The raw status bit for the interrupt triggered by a one-shot mode action on PWMO. (RO)

The raw status bit for the interrupt triggered by a one-shot mode action on PWMO. (RO)

The raw status bit for the interrupt triggered by a cycle-by-cycle mode action on PWM2.

The raw status bit for the interrupt triggered by a cycle-by-cycle mode action on PWM1.

The raw status bit for the interrupt triggered by a cycle-by-cycle mode action on PWMO.

The raw status bit for the interrupt triggered by a PWM operator 2 TEB event.
The raw status bit for the interrupt triggered by a PWM operator 1 TEB event.
The raw status bit for the interrupt triggered by a PWM operator O TEB event.
The raw status bit for the interrupt triggered by a PWM operator 2 TEA event.
The raw status bit for the interrupt triggered by a PWM operator 1 TEA event.
The raw status bit for the interrupt triggered by a PWM operator O TEA event.

INT_FAULT2_CLR_INT_RAW The raw status bit for the interrupt triggered when event_f2 ends. (RO)
INT_FAULT1_CLR_INT_RAW The raw status bit for the interrupt triggered when event_f1 ends. (RO)
INT_FAULTO_CLR_INT_RAW The raw status bit for the interrupt triggered when event_f0 ends. (RO)
INT_FAULT2_INT_RAW The raw status bit for the interrupt triggered when event_f2 starts. (RO)
INT_FAULT1_INT_RAW The raw status bit for the interrupt triggered when event_f1 starts. (RO)
INT_FAULTO_INT_RAW The raw status bit for the interrupt triggered when event_fO starts. (RO)
INT_TIMER2_TEP_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 2 TEP event.
INT_TIMER1_TEP_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 1 TEP event.
INT_TIMERO_TEP_INT_RAW The raw status bit for the interrupt triggered by a PWM timer O TEP event.
INT_TIMER2_TEZ_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 2 TEZ event.
INT_TIMER1_TEZ_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 1 TEZ event.
INT_TIMERO_TEZ_INT_RAW The raw status bit for the interrupt triggered by a PWM timer O TEZ event.

INT_TIMER1_STOP_INT_RAW The raw status bit for the interrupt triggered when the timer 1 stops. (RO

(
(
(
INT_TIMER2_STOP_INT_RAW The raw status bit for the interrupt triggered when the timer 2 stops. (RO)
)
)

INT_TIMERO_STOP_INT_RAW The raw status bit for the interrupt triggered when the timer O stops. (RO

Espressif Systems

464 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.71: INT_ST_PWM_REG (0x0118)

A A &
A A & A& &S ALK D DS
ARCAes ARSI LY
& & « 7/ 7/ 7 Ve 7/
$.6.6.9.9.9 5.5 5 8 8 S SILA & & SESELLEISY
& &6 & SESISILELIELLE797906 226282878 2020 ik S K
2 ST ST e oS e S oS S O o8 o S S LG L LD PO
D2 D7 DI NSO
ST \éo% PP R LKL LK ,{(X\% VTN 4D TAY N T 7S TN 70 TS TN 7o T U 7N 7o 7
O L AIRT0TAIN RTINSO Y D N EFE E FEFEE EEE
& FFFIRXXRXRXRXSTE R R R ERERTETETRE QT QT QT QE QF QT QY Q

%)
9 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 ‘

olofofofofo]o]reset

INT_CAP2_INT_ST The masked status bit for the interrupt triggered by capture on channel 2. (RO)
INT_CAP1_INT_ST The masked status bit for the interrupt triggered by capture on channel 1. (RO)
INT_CAPO_INT_ST The masked status bit for the interrupt triggered by capture on channel 0. (RO)
INT_FH2_OST_INT_ST The masked status bit for the interrupt triggered by a one-shot mode action on PWM2. (RO)
INT_FH1_OST_INT_ST The masked status bit for the interrupt triggered by a one-shot mode action on PWM1. (RO)
INT_FHO_OST_INT_ST The masked status bit for the interrupt triggered by a one-shot mode action on PWMO. (RO)

INT_FH2_CBC_INT_ST The masked status bit for the interrupt triggered by a cycle-by-cycle mode action on PWM2.
(RO)

INT_FH1_CBC_INT_ST The masked status bit for the interrupt triggered by a cycle-by-cycle mode action on PWM1.
(RO)

INT_FHO_CBC_INT_ST The masked status bit for the interrupt triggered by a cycle-by-cycle mode action on PWMO.
(RO)

INT_OP2_TEB_INT_ST The masked status bit for the interrupt triggered by a PWM operator 2 TEB event. (RO)
INT_OP1_TEB_INT_ST The masked status bit for the interrupt triggered by a PWM operator 1 TEB event. (
INT_OPO_TEB_INT_ST The masked status bit for the interrupt triggered by a PWM operator O TEB event. (
INT_OP2_TEA_INT_ST The masked status bit for the interrupt triggered by a PWM operator 2 TEA event. (RO
INT_OP1_TEA_INT_ST The masked status bit for the interrupt triggered by a PWM operator 1 TEA event. (
INT_OPO_TEA_INT_ST The masked status bit for the interrupt triggered by a PWM operator O TEA event. (
INT_FAULT2_CLR_INT_ST The masked status bit for the interrupt triggered when event_f2 ends. (RO)
INT_FAULT1_CLR_INT_ST The masked status bit for the interrupt triggered when event_f1 ends. (RO)
INT_FAULTO_CLR_INT_ST The masked status bit for the interrupt triggered when event_fO ends. (RO)
INT_FAULT2_INT_ST The masked status bit for the interrupt triggered when event_f2 starts. (RO)
INT_FAULT1_INT_ST The masked status bit for the interrupt triggered when event_f1 starts. (RO)
INT_FAULTO_INT_ST The masked status bit for the interrupt triggered when event_fO starts. (RO)
INT_TIMER2_TEP_INT_ST The masked status bit for the interrupt triggered by a PWM timer 2 TEP event. (
INT_TIMER1_TEP_INT_ST The masked status bit for the interrupt triggered by a PWM timer 1 TEP event. (RO)
INT_TIMERO_TEP_INT_ST The masked status bit for the interrupt triggered by a PWM timer O TEP event. (
INT_TIMER2_TEZ_INT_ST The masked status bit for the interrupt triggered by a PWM timer 2 TEZ event.
INT_TIMER1_TEZ_INT_ST The masked status bit for the interrupt triggered by a PWM timer 1 TEZ event.
INT_TIMERO_TEZ_INT_ST The masked status bit for the interrupt triggered by a PWM timer 0 TEZ event.
INT_TIMER2_STOP_INT_ST The masked status bit for the interrupt triggered when the timer 2 stops. (RO
INT_TIMER1_STOP_INT_ST The masked status bit for the interrupt triggered when the timer 1 stops. (RO
INT_TIMERO_STOP_INT_ST The masked status bit for the interrupt triggered when the timer 0 stops. (RO

_ = = =~ =~ —

Espressif Systems 465 ESP32 Technical Reference Manual V3.1

16. MCPWM

Register 16.72: INT_CLR_PWM_REG (0x011c)

& 3 2« T T P P P P P P P e G S
A0 0 P 2 5 O SO N NS TR
ST oS P P PP A AT L AN T TN S (TR AT 2
QR LRI QIR Q7N SN AL DY DY N FEFE F FEFEE EEFE
& XXX RQRXLXPRXLEE R KK KRR R RO QLT QY

’31 30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0‘

e}
4

o o[o[o[o]o[o]oo o]e o]0 o o o o o o]0 o]0 o oo o e o]0 o oo reme

INT_CAP2_INT_CLR Set this bit to clear interrupt triggered by capture on channel 2. (WO)

INT_CAP1_INT_CLR Set this bit to clear interrupt triggered by capture on channel 1. (WO)

INT_CAPO_INT_CLR Set this bit to clear interrupt triggered by capture on channel 0. (WO)
INT_FH2_OST_INT_CLR Set this bit to clear interrupt triggered by a one-shot mode action on PWM2. (WO)
INT_FH1_OST_INT_CLR Set this bit to clear interrupt triggered by a one-shot mode action on PWM1. (WO)
INT_FHO_OST_INT_CLR Set this bit to clear interrupt triggered by a one-shot mode action on PWMO. (WO)
INT_FH2_CBC_INT_CLR Set this bit to clear interrupt triggered by a cycle-by-cycle mode action on PWM2. (WO)
INT_FH1_CBC_INT_CLR Set this bit to clear interrupt triggered by a cycle-by-cycle mode action on PWM1. (WO)
INT_FHO_CBC_INT_CLR Set this bit to clear interrupt triggered by a cycle-by-cycle mode action on PWMO. (WO)
INT_OP2_TEB_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 2 TEB event. (
INT_OP1_TEB_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 1 TEB event. (WO)
INT_OPO_TEB_INT_CLR Set this bit to clear interrupt triggered by a PWM operator O TEB event. (
INT_OP2_TEA_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 2 TEA event. (WO)
INT_OP1_TEA_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 1 TEA event. (WO)
INT_OPO_TEA_INT_CLR Set this bit to clear interrupt triggered by a PWM operator O TEA event. (WO)
INT_FAULT2_CLR_INT_CLR Set this bit to clear interrupt triggered when event_f2 ends. (WO)
INT_FAULT1_CLR_INT_CLR Set this bit to clear interrupt triggered when event_f1 ends. (WO)
INT_FAULTO_CLR_INT_CLR Set this bit to clear interrupt triggered when event_fO ends. (WO)
INT_FAULT2_INT_CLR Set this bit to clear interrupt triggered when event_f2 starts. (WO)
INT_FAULT1_INT_CLR Set this bit to clear interrupt triggered when event_f1 starts. (WO)
INT_FAULTO_INT_CLR Set this bit to clear interrupt triggered when event_fO starts. (WO)

INT_TIMER2_TEP_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 2 TEP event. (WO)
INT_TIMER1_TEP_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 1 TEP event. (WO)
INT_TIMERO_TEP_INT_CLR Set this bit to clear interrupt triggered by a PWM timer O TEP event. (WO)
INT_TIMER2_TEZ_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 2 TEZ event. (WO)
INT_TIMER1_TEZ_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 1 TEZ event. (WO)
INT_TIMERO_TEZ_INT_CLR Set this bit to clear interrupt triggered by a PWM timer O TEZ event. (WO)

INT_TIMER2_STOP_INT_CLR Set this bit to clear interrupt triggered when the timer 2 stops. (WO)
INT_TIMER1_STOP_INT_CLR Set this bit to clear interrupt triggered when the timer 1 stops. (WO)
INT_TIMERO_STOP_INT_CLR Set this bit to clear interrupt triggered when the timer O stops. (WO)

Espressif Systems 466 ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

17. PULSE_CNT

17.1 Introduction

The pulse counter module is designed to count the number of rising and/or falling edges of an input signal. Each
pulse counter unit has a 16-bit signed counter register and two channels that can be configured to either
increment or decrement the counter. Each channel has a signal input that accepts signal edges to be detected,
as well as a control input that can be used to enable or disable the signal input. The inputs have optional filters
that can be used to discard unwanted glitches in the signal.

The pulse counter has eight independent units, referred to as PULSE_CNT_Un.

17.2 Functional Description

17.2.1 Architecture

unitn

PCNT_CHO_LCTRL_MODE_Un pGNT FILTER EN Un Cho

PCNT_THR_L_LIM_EN_Un |EN PCNT_CHO_HCTRL_MODE_Un - -

[PCNT_CHO_POS_MODE_Un PCNT_FILTER_THRES_Un

PCNT_CNT_L_LIM_Un comparator PCNT,CHD,NiG,MODE,UH
_CNT_L_LIM_

g
otrl_ch0_un

PCNT_THR_H_LIM_EN_Un ([EN 0

—_————»f

PCNT_CNT_H_LIM_Un__ | cOmparator inc_dec
PCNTCNT_HLIM.Un |
ig_ch
o fiter [2i9-Ch0_Un

ctrl_ch1_un
PCNT_THR_THRESO_EN_Un |EN T
B [] .
PCNT_CNT_PAUSE_Un inc_dec
PCNT_PLUS_CNT_RST_Un

pulse_cnt]
-—

filter

PCNT_CNT_THRES0_Un_| COmparator
e

sig_ch1_un

filter

oY e

PCNT_THR_THRES0_EN_Un |EN
— PCNT_CH1_LCTRL_MODE_Un
PCNT_CH1_HCTRL_MODE _Un
PCNT_CH1_POS_MODE Un
PCNT_CH1_NEG_MODE_Un

PCNT_CNT_THRES0_Un_| Gomparator
MBS N

PCNT_THR_ZERO_EN_Un EN
B —

0 comparator

- " 4 thr_event

Figure 119: PULSE_CNT Architecture

The architecture of a pulse counter unit is illustrated in Figure 119. Each unit has two channels: chO and ch1,
which are functionally equivalent. Each channel has a signal input, as well as a control input, which can both be
connected to I/O pads. The counting behavior on both the positive and negative edge can be configured
separately to increase, decrease, or do nothing to the counter value. Separately, for both control signal levels, the
hardware can be configured to modify the edge action: invert it, disable it, or do nothing. The counter itself is a
16-bit signed up/down counter. Its value can be read by software directly, but is also monitored by a set of
comparators which can trigger an interrupt.

17.2.2 Counter Channel Inputs

As stated before, the two inputs of a channel can affect the pulse counter in various ways. The specifics of this
behaviour are set by LCTRL_MODE and HCTRL_MODE in this case when the control signal is low or high,
respectively, and POS_MODE and NEG_MODE for positive and negative edges of the input signal. Setting
POS_MODE and NEG_MODE to 1 will increase the counter when an edge is detected, setting them to 2 will
decrease the counter and setting at any other value will neutralize the effect of the edge on the counter.
LCTR_MODE and HCTR_MODE modify this behaviour, when the control input has the corresponding low or high

Espressif Systems 467 ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

value: 0 does not modify the NEG_MODE and POS_MODE behaviour, 1 inverts it (setting
POS_MODE/NEG_MODE to increase the counter should now decrease the counter and vice versa) and any

other value disables counter effects for that signal level.

To summarize, a few examples have been considered. In this table, the effect on the counter for a rising edge is

shown for both a low and a high control signal, as well as various other configuration options. For clarity, a short

description in brackets is added after the values. Note: x denotes 'do not care’.

POS_ MODE LCTRL_ MODE HCTRL_ MODE sig I—h when ctrl=0 | sig I—h when ctrl=1
1 (inc) 0() 0 () Inc ctr Inc ctr

2 (dec) 0() 0 (-) Dec ctr Dec ctr

0(-) X X No action No action

1 (inc) 0() 1 (inv) Inc ctr Dec ctr

1 (inc) 1 (inv) 0 () Dec ctr Inc ctr

2 (dec) 0() 1 (inv) Dec ctr Inc ctr

1 (inc) 0() 2 (dis) Inc ctr No action

1 (inc) 2 (dis) 0 (-) No action Inc ctr

This table is also valid for negative edges (sig h—l) on substituting NEG_MODE for POS_MODE.

Each pulse counter unit also features a filter on each of the four inputs, adding the option to ignore short glitches
in the signals. If a PCNT_FILTER_EN_Un can be set to filter the four input signals of the unit. If this filter is
enabled, any pulses shorter than REG_FILTER_THRES_Un number of APB_CLK clock cycles will be filtered out
and will have no effect on the counter. With the filter disabled, in theory infinitely small glitches could possibly
trigger pulse counter action. However, in practice the signal inputs are sampled on APB_CLK edges and even
with the filter disabled, pulse widths lasting shorter than one APB_CLK cycle may be missed.

Apart from the input channels, software also has some control over the counter. In particular, the counter value
can be frozen to the current value by configuring PCNT_CNT_PAUSE_Un. It can also be reset to 0 by configuring
PCNT_PULSE_CNT_RST_Un.

17.2.3 Watchpoints

The pulse counters have five watchpoints that share one interrupt. Interrupt generation can be enabled or
disabled for each individual watchpoint. The watchpoints are:

e Maximum count value: Triggered when PULSE_CNT >= PCNT_THR_H_LIM_Un. Additionally, this will reset
the counter to 0.

e Minimum count value: Triggered when PULSE_CNT <= PCNT_THR_L_LIM_Un. Additionally, this will reset
the counter to 0. This is most useful when PCNT_THR_L_LIM_Un is set to a negative number.

e Two threshold values: Triggered when PULSE_CNT = PCNT_THR_THRESO_Un or
PCNT_THR_THRES1_Un.

e Zero: Triggered when PULSE_CNT = 0.

Espressif Systems 468 ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

17.2.4 Examples

= UL TUTIUL U OO v [

PCNT_THR_H_LIM_Un

Figure 120: PULSE_CNT Upcounting Diagram

Figure 120 shows channel O being used as an up-counter. The configuration of channel O is shown below.

e CNT_CHO_POS_MODE_Un = 1: increase counter on the rising edge of sig_ch0_un.

PCNT_CHO_NEG_MODE_Un = 0: no counting on the falling edge of sig_chO_un.

PCNT_CHO_LCTRL_MODE_Un = 0: Do not modify counter mode when sig_chO_un is low.

PCNT_CHO_HCTRL_MODE_Un = 2: Do not allow counter increments/decrements when sig_chO_un is
high.

PCNT_THR_H_LIM_Un = 5: PULSE_CNT resets to O when the count value increases to 5.

= UL TUL UL U oo sbud L

bbb LS

[
“ PCNT_THR_L_LIM_Un

Figure 121: PULSE_CNT Downcounting Diagram

Figure 121 shows channel O decrementing the counter. The configuration of channel O differs from that in Figure
120 in the following two aspects:

e PCNT_CHO_LCTRL_MODE_Un = 1: invert counter mode when ctrl_chO_un is at low level, so it will
decrease, rather than increase, the counter.

e PCNT_THR_H_LIM_Un = -5: PULSE_CNT resets to O when the count value decreases to -5.

17.2.5 |Interrupts

PCNT_CNT_THR_EVENT_Un_INT: This interrupt gets triggered when one of the five channel comparators
detects a match.

17.3 Register Summary

Name ‘ Description Address Access

Configuration registers

Espressif Systems 469 ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

Name Description Address Access
PCNT_UO_CONFO_REG Configuration register O for unit O Ox3FF57000 | R/W
PCNT_U1_CONFO_REG Configuration register O for unit 1 Ox3FF5700C | R/W
PCNT_U2_CONFO_REG Configuration register O for unit 2 Ox3FF57018 | R/W
PCNT_U3_CONFO_REG Configuration register O for unit 3 Ox3FF57024 | R/W
PCNT_U4_CONFO_REG Configuration register O for unit 4 Ox3FF57030 | R/W
PCNT_U5_CONFO_REG Configuration register O for unit 5 Ox3FF5703C | R/W
PCNT_U6_CONFO_REG Configuration register O for unit 6 Ox3FF57048 | R/W
PCNT_U7_CONFO_REG Configuration register O for unit 7 Ox3FF57054 | R/W
PCNT_UO_CONF1_REG Configuration register 1 for unit O Ox3FF57004 | R/W
PCNT_U1_CONF1_REG Configuration register 1 for unit 1 Ox3FF57010 | R/W
PCNT_U2_CONF1_REG Configuration register 1 for unit 2 Ox3FF5701C | R/W
PCNT_U3_CONF1_REG Configuration register 1 for unit 3 Ox3FF57028 | R/W
PCNT_U4_CONF1_REG Configuration register 1 for unit 4 Ox3FF57034 | R/W
PCNT_U5_CONF1_REG Configuration register 1 for unit 5 Ox3FF57040 | R/W
PCNT_U6_CONF1_REG Configuration register 1 for unit 6 Ox3FF5704C | R/W
PCNT_U7_CONF1_REG Configuration register 1 for unit 7 Ox3FF57058 | R/W
PCNT_UO_CONF2_REG Configuration register 2 for unit O Ox3FF57008 | R/W
PCNT_U1_CONF2_REG Configuration register 2 for unit 1 Ox3FF57014 | R/W
PCNT_U2_CONF2_REG Configuration register 2 for unit 2 Ox3FF57020 | R/W
PCNT_U3_CONF2_REG Configuration register 2 for unit 3 Ox3FF5702C | R/W
PCNT_U4_CONF2_REG Configuration register 2 for unit 4 Ox3FF57038 | R/W
PCNT_U5_CONF2_REG Configuration register 2 for unit 5 Ox3FF57044 | R/W
PCNT_U6_CONF2_REG Configuration register 2 for unit 6 Ox3FF57050 | R/W
PCNT_U7_CONF2_REG Configuration register 2 for unit 7 Ox3FF5705C | R/W
Counter values

PCNT_UO_CNT_REG Counter value for unit O O0x3FF57060 | RO
PCNT_U1_CNT_REG Counter value for unit 1 Ox3FF57064 | RO
PCNT_U2_CNT_REG Counter value for unit 2 Ox3FF57068 | RO
PCNT_U3_CNT_REG Counter value for unit 3 Ox3FF5706C | RO
PCNT_U4_CNT_REG Counter value for unit 4 O0x3FF57070 | RO
PCNT_U5_CNT_REG Counter value for unit 5 Ox3FF57074 | RO
PCNT_U6_CNT_REG Counter value for unit 6 Ox3FF57078 | RO
PCNT_U7_CNT_REG Counter value for unit 7 Ox3FF5707C | RO
Control registers

PCNT_CTRL_REG Control register for all counters Ox3FF570B0 | R/W
Interrupt registers

PCNT_INT_RAW_REG Raw interrupt status Ox3FF57080 | RO
PCNT_INT_ST_REG Masked interrupt status Ox3FF57084 | RO
PCNT_INT_ENA_REG Interrupt enable bits Ox3FF57088 | R/W
PCNT_INT_CLR_REG Interrupt clear bits Ox3FF5708C | WO

Espressif Systems

470

ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

17.4 Registers

Register 17.1: PCNT_Un_CONFO0_REG (: 0-7) (0x0+0x0C*n)

Q/\PQ Q/?Q 3 N (</>>\\ & /O S S OO N
&g ¢ & SEIIOD N
W @ QO @) @ O NSO Q/%/Q,é 7 O 57
& @& NN & N N SN &
S &P O FEELEIIELS &
’\C)\zi\/ '\0\2:\/ '\0\2:\/ ’\0\2:\/ & \2\0/ '\0\2\0/ ’\0\2@/ 0\2\0’/\ \z\i\éf{\z\i{ié\z\j/é ’\Q\\//&
I P AN &7
QO QO QO QO QQ QC) QC) QQ QC) QO QO QO QO QO QQ

’31 30|29 28|27 26|25 24|23 22|21 20|19 18|17 16|15 14|13|12|11|10|9 O‘
’o| o| 0 |o|o| 0 |o |o|0|o|1|1|1|1| 0x010 ‘Reset

PCNT_CH1_LCTRL_MODE_Un This register configures how the CH1_POS_MODE/CH1_NEG_MODE
settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour
(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CH1_HCTRL_MODE_Un This register configures how the CH1_POS_MODE/CH1_NEG_MODE
settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour
(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CH1_POS_MODE_Un This register sets the behaviour when the signal input of channel 1 detects a
positive edge. (R/W) 1: Increment the counter; 2: Decrement the counter; 0, 3: No effect on counter

PCNT_CH1_NEG_MODE_Un This register sets the behaviour when the signal input of channel 1 detects a
negative edge. (R/W) 1: Increment the counter; 2: Decrement the counter; 0, 3: No effect on counter

PCNT_CHO_LCTRL_MODE_Un This register configures how the CHO_POS_MODE/CHO_NEG_MODE
settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour
(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CHO_HCTRL_MODE_Un This register configures how the CHO_POS_MODE/CHO_NEG_MODE
settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour
(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CHO_POS_MODE_Un This register sets the behaviour when the signal input of channel O detects a
positive edge. (R/W) 1: Increase the counter; 2: Decrease the counter; 0, 3: No effect on counter

PCNT_CHO_NEG_MODE_Un This register sets the behaviour when the signal input of channel O detects a
negative edge. (R/W) 1: Increase the counter; 2: Decrease the counter; 0, 3: No effect on counter

PCNT_THR_THRES1_EN_Un This is the enable bit for unit n’s thres1 comparator. (R/W)
PCNT_THR_THRESO_EN_Un This is the enable bit for unit n’s thresO comparator. (R/W)
PCNT_THR_L_LIM_EN_Un This is the enable bit for unit n’s thr_|_lim comparator. (R/W)
PCNT_THR_H_LIM_EN_Un This is the enable bit for unit n’s thr_h_lim comparator. (R/W)
PCNT_THR_ZERO_EN_Un This is the enable bit for unit n’s zero comparator. (R/W)
PCNT_FILTER_EN_Un This is the enable bit for unit n’s input filter. (R/W)

PCNT_FILTER_THRES_Un This sets the maximum threshold, in APB_CLK cycles, for the filter. Any pulses
lasting shorter than this will be ignored when the filter is enabled. (R/W)

Espressif Systems 471 ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

Register 17.2: PCNT_Un_CONF1_REG (n: 0-7) (0x4+0x0C*n)

\)0 \
Q/%\ Va ((/%Q 7
& N
K7 %
S x
N N
&L &L
‘ 31 16 | 15 0 ‘
‘ 0x000 | 0x000 \ Reset

PCNT_CNT_THRES1_Un This register is used to configure the thres1 value for unit n. (R/W)

PCNT_CNT_THRESO_Un This register is used to configure the thresO value for unit n. (R/W)

Register 17.3: PCNT_Un_CONF2_REG (n: 0-7) (0x8+0x0C*n)

N NN
S il
N Ve
K7 %
> >
K7 <
N <
&L &L
‘ 31 16 | 15 0 ‘
‘ 0x000 | 0x000 \ Reset

PCNT_CNT_L_LIM_Un This register is used to configure the thr_I_lim value for unit n. (R/W)

PCNT_CNT_H_LIM_Un This register is used to configure the thr_h_lim value for unit n. (R/W)

Register 17.4: PCNT_Un_CNT_REG (n: 0-7) (0x28+0x0C*n)

o
O
O%
%/
S PN
© K7

& C)e

N <
‘31 16|15 O‘
‘o 0 0000 O0OOGOTU OG OGO OO 0O 0O o| 0x00000 ‘Reset

PCNT_PLUS_CNT_Un This register stores the current pulse count value for unit n. (RO)

Espressif Systems 472 ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

Register 17.5: PCNT_INT_RAW_REG (0x0080)

K/ QA QKK K7 K7 K7
S SELEEE S
Q)é é\/é&/é&/é\/é&/é&/é\/é&/
& LCLLELELELE

E T o[- [[]

[7]
’ 0x0000000 [o]ofofofo]o]o]0|Reset

PCNT_CNT_THR_EVENT_Un_INT_RAW The raw interrupt status bit for the
PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Register 17.6: PCNT_INT_ST_REG (0x0084)

A Q7 & KKl
& ALK
) NJASASAASAN
& LEPLEPLEL

E sl [s[s[e]3]2]1]0]

’ 0x0000000 |0|0|0|0|0|0|0|0‘Reset

PCNT_CNT_THR_EVENT_Ur_INT_ST The masked interrupt status bit for the
PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Register 17.7: PCNT_INT_ENA_REG (0x0088)

SNSRI RS
SARRAAXXS
DIOPONOPOIONO IS

SO
%Q)é é\/é&/é&/é\/é&/é&/é\/é&/
@ LLELLELLLE

E T o[- [[]

[7]
’ 0x0000000 [o]ofofofo]o]o]o0 |Reset

PCNT_CNT_THR_EVENT_Un_INT_ENA The interrupt enable bit for the
PCNT_CNT_THR_EVENT_Un_INT interrupt. (R/W)

Espressif Systems 473 ESP32 Technical Reference Manual V3.1

17. PULSE_CNT

Register 17.8: PCNT_INT_CLR_REG (0x008c)

> R
& SOYE SO Ne O

\ QTRITRKTTRIRITKRR

’31 SI 7 I 6 | 5 | 4 | 3 | 2 | 1 | 0 ‘

’ 0x0000000 ofoJofofJoJo]o]o0|Reset

I

PCNT_CNT_THR_EVENT_Un_INT_CLR Set this bit to clear the PCNT_CNT_THR_EVENT_Un_INT
interrupt. (WO)

Register 17.9: PCNT_CTRL_REG (0x00b0)

A © H X ¢} Q R
NS IAR SNSRI SN NI
K > & Ko o > ;
5 5 S o ST T S SIS S S
i o O S T S T S e 8 O T P 8 P 8 Ok 8
@’9 @?@QCﬁzc)%QC;%QQ%ZQ%QQé cizc)ch)é ereroéQoeqer@Qoe
’31 17|16|15|14|13|12|11|10|9|S|7|6|5|4|3|2|1|0‘
] 0x0000 |o|o|1|o|1|o|1|0|1|o|1|o|1|0|1|o|1‘Reset

PCNT_CNT_PAUSE_Un Set this bit to freeze unit n’s counter. (R/W)

PCNT_PLUS_CNT_RST_Un Set this bit to clear unit n’s counter. (R/W)

Espressif Systems 474 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

18. 64-bit Timers

18.1 Introduction

There are four general-purpose timers embedded in the ESP32. They are all 64-bit generic timers based on
16-bit prescalers and 64-bit auto-reload-capable up/downcounters.

The ESP32 contains two timer modules, each containing two timers. The two timers in a block are indicated by
an x in TIMGn_Tx; the blocks themselves are indicated by an .

The timers feature:

e A 16-bit clock prescaler, from 2 to 65536

A 64-bit time-base counter

Configurable up/down time-base counter: incrementing or decrementing

Halt and resume of time-base counter

Auto-reload at alarm

Software-controlled instant reload

Level and edge interrupt generation

18.2 Functional Description

18.2.1 16-bit Prescaler

Each timer uses the APB clock (APB_CLK, normally 80 MHz) as the basic clock. This clock is then divided down
by a 16-bit precaler which generates the time-base counter clock (TB_clk). Every cycle of TB_clk causes the
time-base counter to increment or decrement by one. The timer must be disabled (TIMGrn_Tx_EN is cleared)
before changing the prescaler divisor which is configured by TIMGn_Tx_DIVIDER register; changing it on an
enabled timer can lead to unpredictable results. The prescaler can divide the APB clock by a factor from 2 to
65536. Specifically, when TIMGn_Tx_DIVIDER is either 1 or 2, the clock divisor is 2; when TIMGn_Tx_DIVIDER is
0, the clock divisor is 65536. Any other value will cause the clock to be divided by exactly that value.

18.2.2 64-bit Time-base Counter

The 64-bit time-base counter can be configured to count either up or down, depending on whether
TIMGn_Tx_INCREASE s set or cleared, respectively. It supports both auto-reload and software instant reload.
An alarm event can be set when the counter reaches a value specified by the software.

Counting can be enabled and disabled by setting and clearing TIMGn_Tx_EN. Clearing this bit essentially freezes
the counter, causing it to neither count up nor count down; instead, it retains its value until TIMGn_Tx_EN is set
again. Reloading the counter when TIMGn_Tx_EN is cleared will change its value, but counting will not be
resumed until TIMGn_Tx_EN is set.

Software can set a new counter value by setting registers TIMGn_Tx_LOAD_LO and TIMGn_Tx_LOAD_HI to the
intended new value. The hardware will ignore these register settings until a reload; a reload will cause the
contents of these registers to be copied to the counter itself. A reload event can be triggered by an alarm
(auto-reload at alarm) or by software (software instant reload). To enable auto-reload at alarm, the register

Espressif Systems 475 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

TIMGn_Tx_AUTORELOAD should be set. If auto-reload at alarm is not enabled, the time-base counter will
continue incrementing or decrementing after the alarm. To trigger a software instant reload, any value can be
written to the register TIMGn_Tx_LOAD_REG; this will cause the counter value to change instantly. Software can
also change the direction of the time-base counter instantly by changing the value of

TIMGn_Tx_INCREASE.

The time-base counter can also be read by software, but because the counter is 64-bit, the CPU can only get the
value as two 32-bit values, the counter value needs to be latched onto TIMGn_TxLO_REG and TIMGn_TxHI_REG
first. This is done by writing any value to TIMGn_TxUPDATE_REG; this will instantly latch the 64-bit timer value
onto the two registers. Software can then read them at any point in time. This approach stops the timer value
being read erroneously when a carry-over happens between reading the low and high word of the timer

value.

18.2.3 Alarm Generation

The timer can trigger an alarm, which can cause a reload and/or an interrupt to occur. The alarm is triggered
when the alarm registers TIMGn_Tx_ALARMLO_REG and TIMGn_Tx_ALARMHI_REG match the current timer
value. In order to simplify the scenario where these registers are set 'too late’ and the counter has already passed
these values, the alarm also triggers when the current timer value is higher (for an up-counting timer) or lower (for
a down-counting timer) than the current alarm value: if this is the case, the alarm will be triggered immediately
upon loading the alarm registers.

18.2.4 MWDT

Each timer module also contains a Main System Watchdog Timer and its associated registers. While these
registers are described here, their functional description can be found in the chapter entitled Watchdog
Timer.

18.2.5 Interrupts
e TIMGr_Tx_INT_WDT_INT: Generated when a watchdog timer interrupt stage times out.
e TIMGn_Tx_INT_T1_INT: An alarm event on timer 1 generates this interrupt.

e TIMGn_Tx_INT_TO_INT: An alarm event on timer O generates this interrupt.

18.3 Register Summary

Name ‘ Description TIMGO TIMGH Acc

Timer 0 configuration and control registers

TIMGn_TOCONFIG_REG Timer O configuration register Ox3FF5F000 | Ox3FFB0000| R/W

TIMGn_TOLO_REG Timer O current value, low 32 bits Ox3FF5F004 | Ox3FF60004 | RO

TIMGn_TOHI_REG Timer O current value, high 32 bits Ox3FF5F008 | Ox3FFB0008 | RO
Write to copy current timer value to

TIMGn_TOUPDATE_REG Ox3FF5F00C| 0x3FF6000C| WO
TIMGn_TO_(LO/HI)_REG

TIMGn_TOALARMLO_REG Timer O alarm value, low 32 bits Ox3FF5F010 | Ox3FFB0010| R/W

TIMGn_TOALARMHI_REG Timer O alarm value, high bits Ox3FF5F014 | OX3FFB0014 | R/W

TIMGn_TOLOADLO_REG Timer O reload value, low 32 bits Ox3FF5F018 | Ox3FFB0018| R/W

Espressif Systems

476

ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

Name Description TIMGO TIMG1 Acc

TIMGn_TOLOAD_REG Wite o reload timer from Ox3FF5F020 | OXx3FF60020| WO
TIMGn_TO_(LOADLOLOADHI)_REG

Timer 1 configuration and control registers

TIMGn_T1CONFIG_REG Timer 1 configuration register Ox3FF5F024 | Ox3FFB60024 | R/W

TIMGn_T1LO_REG Timer 1 current value, low 32 bits Ox3FF5F028 | Ox3FF60028| RO

TIMGn_T1HI_REG Timer 1 current value, high 32 bits Ox3FF5F02C| 0x3FF6002C| RO
Write to copy current timer value to

TIMGn_T1UPDATE_REG Ox3FF5F030 | Ox3FF60030| WO
TIMGn_T1_(LO/HI)_REG

TIMGn_T1ALARMLO_REG Timer 1 alarm value, low 32 bits Ox3FF5F034 | Ox3FFB60034 | R/W

TIMGn_T1ALARMHI_REG Timer 1 alarm value, high 32 bits Ox3FF5F038 | Ox3FF60038| R/W

TIMGn_T1LOADLO_REG Timer 1 reload value, low 32 bits Ox3FF5F03C| Ox3FFB003C| R/W

TIMGn_T1LOAD_REG Wite o reload — timer - from Ox3FF5F044 | Ox3FF60044 | WO
TIMGn_T1_(LOADLOLOADHI)_REG

System watchdog timer configuration and control registers

TIMGn_Tx_WDTCONFIGO_REG | Watchdog timer configuration register | Ox3FF5F048 | Ox3FF60048| R/W

TIMGn_Tx_WDTCONFIG1_REG | Watchdog timer prescaler register Ox3FF5F04C| Ox3FFB004C| R/W

TIMGn_Tx_WDTCONFIG2_REG | Watchdog timer stage O timeout value | Ox3FF5F050 | Ox3FFE0050| R/W

TIMGn_Tx_WDTCONFIG3_REG | Watchdog timer stage 1 timeout value | Ox3FF5F054 | Ox3FF60054 | R/W

TIMGn_Tx_WDTCONFIG4_REG | Watchdog timer stage 2 timeout value | Ox3FF5F058 | Ox3FF60058 | R/W

TIMGn_Tx_WDTCONFIG5_REG | Watchdog timer stage 3 timeout value | Ox3FF5F05C| Ox3FF6005C| R/W

TIMGn_Tx_WDTFEED_REG Write to feed the watchdog timer Ox3FF5F060 | Ox3FF60060| WO

TIMGn_Tx_WDTWPROTECT_REG Watchdog write protect register Ox3FF5F064 | Ox3FF60064 | R/W

Interrupt registers

TIMGN_Tx_INT_RAW_REG Raw interrupt status OxBFF5F09C| 0x3FF6009C| RO

TIMGn_Tx_INT_ST_REG Masked interrupt status Ox3FF5F0A0| Ox3FFB00A0| RO

TIMGN_Tx_INT_ENA_REG Interrupt enable bits Ox3FF5F098 | OX3FFB0098 | R/W

TIMGn_Tx_INT_CLR_REG Interrupt clear bits Ox3FF5F0A4 | Ox3FF600A4| WO

Espressif Systems

477

ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

18.4 Registers

Register 18.1: TIMG/_TxCONFIG_REG (x: 0-1) (0x0+0x24*x)

Q S S
R RO
vl NS
LGS §$ 0“29 @V\}Q@/
> OO O
N e N
O < SRR
Q700 o7 070 S
RO Y PO
’ 31 | 30 | 29 |28 13| 12 | 11 | 10 ‘
]0|1|1| 0x00001 |o|0|o‘Reset

TIMGr_Tx_EN When set, the timer x time-base counter is enabled. (R/W)

TIMGr_Tx_INCREASE When set, the timer x time-base counter will increment every clock tick. When
cleared, the timer x time-base counter will decrement. (R/W)

TIMGn_Tx_AUTORELOAD When set, timer x auto-reload at alarm is enabled. (R/W)
TIMGn_Tx_DIVIDER Timer x clock (Tx_clk) prescale value. (R/W)
TIMGn_Tx_EDGE_INT_EN When set, an alarm will generate an edge type interrupt. (R/W)
TIMGn_Tx_LEVEL_INT_EN When set, an alarm will generate a level type interrupt. (R/W)

TIMGn_Tx_ALARM_EN When set, the alarm is enabled. (R/W)

Register 18.2: TIMG/_TxLO_REG (x: 0-1) (0x4+0x24*%)

£]

’ 0x000000000 ‘ Reset

TIMGn_TxLO_REG After writing to TIMGn_TxUPDATE_REG, the low 32 bits of the time-base counter
of timer x can be read here. (RO)

Register 18.3: TIMGr_TxHI_REG (x: 0-1) (0x8+0x24*)

E]

’ 0x000000000 \ Reset

TIMGn_TxHI_REG After writing to TIMGn_TxUPDATE_REG, the high 32 bits of the time-base counter
of timer x can be read here. (RO)

Espressif Systems 478 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

Register 18.4: TIMGr_T<UPDATE_REG (x: 0-1) (0XC+0x24*)

‘31 O‘

‘ 0x000000000 ‘ Reset

TIMGn_TxUPDATE_REG Write any value to trigger a timer x time-base counter value update (timer x
current value will be stored in registers above). (WO)

Register 18.5: TIMG/_TxALARMLO_REG (x: 0-1) (0x10+0x24*)

‘31 O‘

‘ 0x000000000 \ Reset

TIMG_TxALARMLO_REG Timer x alarm trigger time-base counter value, low 32 bits. (R/W)

Register 18.6: TIMG/_TxALARMHI_REG (x: 0-1) (0x14+0x24%)

‘ 0x000000000 ‘ Reset

TIMG_TxALARMHI_REG Timer x alarm trigger time-base counter value, high 32 bits. (R/W)

Register 18.7: TIMG/_TxLOADLO_REG (x: 0-1) (0x18+0x24%)

‘31 O‘

‘ 0x000000000 \ Reset

TIMGH_TxLOADLO_REG Low 32 bits of the value that a reload will load onto timer x time-base
counter. (R/W)

Register 18.8: TIMG/_TxLOADHI_REG (: 0-1) (0x1C+0x24*)

‘31 O‘

‘ 0x000000000 \ Reset

TIMGn_TxLOADHI_REG High 32 bits of the value that a reload will load onto timer x time-base
counter. (R/W)

Espressif Systems 479 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

Register 18.9: TIMG/_TxLOAD_REG (x: 0-1) (0x20+0x24*)

’ 0x000000000 ‘ Reset

TIMGn_TxLOAD_REG Write any value to trigger a timer x time-base counter reload. (WO)

Register 18.10: TIMGn_Tx_WDTCONFIGO_REG (0x0048)

% >
& O
&> o P
Q/e&% Q}y Q}\’/ o/\/
S & & &
P & D FT S
¢ & & & LY & & &
L7 K7 K7 K7 K7 K7K7 &7 J L7
@ P OO ® & $
AN N N RN RN e NN SN

07 O/ 7/

CQ\'\/ (.9\"\/ @ CQ\/\ QQ/G\/ 0(\/ ®<\/ C9\'\/
NI I P P\ PO P\ NN

’31|30 29|28 27|26 25|24 23|22|21|20 18|17 15|14‘

]o| 0 | 0 | 0 | 0 |o|o| ox1 | o1 |1‘Reset

TIMGn_Tx_ WDT_EN When set, MWDT is enabled. (R/W)

TIMG_Tx_WDT_STGO Stage O configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.
(R/W)

TIMG_Tx_WDT_STG1 Stage 1 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.
(R/W)

TIMGn_Tx_WDT_STG2 Stage 2 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.
(R/W)

TIMG_Tx_WDT_STG3 Stage 3 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.
RW)

TIMGn_Tx_WDT_EDGE_INT_EN When set, an edge type interrupt will occur at the timeout of a stage
configured to generate an interrupt. (R/W)

TIMGn_Tx_WDT_LEVEL_INT_EN When set, a level type interrupt will occur at the timeout of a stage
configured to generate an interrupt. (R/W)

TIMGn_Tx_WDT_CPU_RESET_LENGTH CPU reset signal length selection. 0: 100 ns, 1: 200 ns,
2: 300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 us, 7: 3.2 us. (R/W)

TIMGr_Tx_WDT_SYS_RESET_LENGTH System reset signal length selection. 0: 100 ns, 1: 200 ns,
2: 300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 us, 7: 3.2 us. (R/W)

TIMGn_Tx_WDT_FLASHBOOT_MOD_EN When set, Flash boot protection is enabled. (R/W)

Espressif Systems 480 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

Register 18.11: TIMGn_Tx_WDTCONFIG1_REG (0x004c)

‘31 16‘

‘ 0x00001 \ Reset

TIMGn_Tx_WDT_CLK_PRESCALE MWODT clock prescale value. MWDT clock period = 12.5 ns *
TIMGN_Tx_WDT_CLK_PRESCALE. (R/W)

Register 18.12: TIMGn_Tx_WDTCONFIG2_REG (0x0050)

‘ 26000000 \ Reset

TIMG_Tx_WDTCONFIG2_REG Stage 0 timeout value, in MWDT clock cycles. (R/W)

Register 18.13: TIMGn_Tx_WDTCONFIG3_REG (0x0054)

‘ Ox007FFFFFF \ Reset

TIMGn_Tx_WDTCONFIG3_REG Stage 1 timeout value, in MWDT clock cycles. (R/W)

Register 18.14: TIMGn_Tx_WDTCONFIG4_REG (0x0058)

‘31 O‘

‘ OXO00OFFFFF \ Reset

TIMG_Tx_WDTCONFIG4_REG Stage 2 timeout value, in MWDT clock cycles. (R/W)

Register 18.15: TIMG_Tx_WDTCONFIG5_REG (0x005c)

‘ OXO000FFFFF \ Reset

TIMGn_Tx_WDTCONFIG5_REG Stage 3 timeout value, in MWDT clock cycles. (R/W)

Espressif Systems 481 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

Register 18.16: TIMGn_Tx_WDTFEED_REG (0x0060)

’ 0x000000000 ‘ Reset

TIMGn_Tx_ WDTFEED_REG Write any value to feed the MWDT. (WO)

Register 18.17: TIMG/_Tx_WDTWPROTECT_REG (0x0064)

’ 31 0 ‘
’ 0x050D83AAT

‘ Reset

TIMGn_Tx_WDTWPROTECT_REG If the register contains a different value than its reset value, write
protection is enabled. (R/W)

Register 18.18: TIMG_Tx_INT_ENA_REG (0x0098)

e?‘
é&@@?‘ e?
S
Q&\/&Q/
S RN
6 O A0 N
Q) O OO
& &\Q'\\Q&\Q

JEIENEN

o[0] 00 |Reset

TIMG_Tx_INT_WDT_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_WDT_INT interrupt.
(R/W) (R/W)

TIMG_Tx_INT_T1_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_T1_INT interrupt. (R/W)
(R/W)

TIMG_Tx_INT_TO_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_TO_INT interrupt. (R/W)
(R/W)

Espressif Systems 482 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

Register 18.19: TIMG_Tx_INT_RAW_REG (0x009c)

N
AN
L
O
$Q &\/ Q7
éQ’& NN
Q/ (\/ {\/
B][]
]ooooooooooooooooooooooooooooo|o|o|o‘Reset
TIMG_Tx_INT_WDT_INT_RAW The raw interrupt status bit for the TIMGr_Tx_INT_WDT_INT inter-
rupt. (RO)
TIMG_Tx_INT_T1_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_T1_INT interrupt.
(RO)
TIMG_Tx_INT_TO_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_TO_INT interrupt.
(RO)
Register 18.20: TIMG/_Tx_INT_ST_REG (0x00a0)
A
EENIEN
A=K
$Q NQ
D «+</\/\‘>’/\+/
7 <\/

S 07
& @
& NS

’31 3|2|1|0‘

]ooooooooooooooooooooooooooooo|o|o|o‘Reset

TIMG_Tx_INT_WDT_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_WDT_INT in-
terrupt. (RO)

TIMG_Tx_INT_T1_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_T1_INT interrupt.
(RO)

TIMGr_Tx_INT_TO_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_TO_INT interrupt.
(RO)

Espressif Systems 483 ESP32 Technical Reference Manual V3.1

18. 64-BIT TIMERS

Register 18.21: TIMG_Tx_INT_CLR_REG (0x00a4)

(A
@%Q)

D

@9
S
P
«+/«$/&+/
O\'\ /®<\/®<\/
AR

e[]e]

’OOOOOOOOOOOOOOOOOOOOO

0 0000 0 0 0[0[0[0]Reset

TIMG_Tx_INT_WDT_INT_CLR Set this bit to clear the TIMGn_Tx_INT_WDT_INT interrupt. (WO)

TIMG_Tx_INT_T1_INT_CLR Set this bit to clear the TIMGn_Tx_INT_T1_INT interrupt. (WO)

TIMGO_Tx_INT_TO_INT_CLR Set this bit to clear the TIMGn_Tx_INT_TO_INT interrupt. (WO)

Espressif Systems

484

ESP32 Technical Reference Manual V3.1

19. WATCHDOG TIMERS

19. Watchdog Timers

19.1 Introduction

The ESP32 has three watchdog timers: one in each of the two timer modules (called Main System Watchdog
Timer, or MWDT) and one in the RTC module (which is called the RTC Watchdog Timer, or RWDT). These
watchdog timers are intended to recover from an unforeseen fault, causing the application program to abandon
its normal sequence. A watchdog timer has four stages. Each stage may take one out of three or four actions
upon the expiry of a programmed period of time for this stage, unless the watchdog is fed or disabled. The
actions are: interrupt, CPU reset, core reset and system reset. Only the RWDT can trigger the system reset, and
is able to reset the entire chip and the main system including the RTC itself. A timeout value can be set for each
stage individually.

During flash boot, the RWDT and the first MWDT start automatically in order to detect and recover from booting
problems.

19.2 Features
e Four stages, each of which can be configured or disabled separately
® Programmable time period for each stage

e One out of three or four possible actions (interrupt, CPU reset, core reset and system reset) upon the expiry
of each stage

e 32-bit expiry counter
¢ Write protection, to prevent the RWDT and MWDT configuration from being inadvertently altered.

e Flash boot protection
If the boot process from an SPI flash does not complete within a predetermined period of time, the
watchdog will reboot the entire main system.

19.3 Functional Description

19.3.1 Clock

The RWDT is clocked from the RTC slow clock, which usually will be 32 KHz. The MWDT clock source is derived
from the APB clock via a pre-MWDT 16-bit configurable prescaler. For either watchdog, the clock source is fed
into the 32-bit expiry counter. When this counter reaches the timeout value of the current stage, the action
configured for the stage will execute, the expiry counter will be reset and the next stage will become active.

Espressif Systems 485 ESP32 Technical Reference Manual V3.1

19. WATCHDOG TIMERS

19.3.1.1 Operating Procedure

When a watchdog timer is enabled, it will proceed in loops from stage O to stage 3, then back to stage 0 and
start again. The expiry action and time period for each stage can be configured individually.

Every stage can be configured for one of the following actions when the expiry timer reaches the stage’s timeout
value:

e Trigger an interrupt
When the stage expires an interrupt is triggered.

¢ Reset a CPU core
When the stage expires the designated CPU core will be reset. MWDTO CPU reset only resets the PRO
CPU. MWDT1 CPU reset only resets the APP CPU. The RWDT CPU reset can reset either of them, or both,
or none, depending on configuration.

e Reset the main system
When the stage expires, the main system, including the MWDTs, will be reset. In this article, the main
system includes the CPU and all peripherals. The RTC is an exception to this, and it will not be reset.

e Reset the main system and RTC
When the stage expires the main system and the RTC will both be reset. This action is only available in the
RWDT.

e Disabled
This stage will have no effects on the system.

When software feeds the watchdog timer, it returns to stage O and its expiry counter restarts from O.

19.3.1.2 Write Protection

Both the MWDTs, as well as the RWDT, can be protected from accidental writing. To accomplish this, they have
a write-key register (TIMERS_WDT_WKEY for the MWDT, RTC_CNTL_WDT_WKEY for the RWDT.) On reset,
these registers are initialized to the value Ox50D83AA1. When the value in this register is changed from
Ox50D83AA1, write protection is enabled. Writes to any WDT register, including the feeding register (but
excluding the write-key register itself), are ignored. The recommended procedure for accessing a WDT is:

1. Disable the write protection
2. Make the required modification or feed the watchdog

3. Re-enable the write protection

19.3.1.3 Flash Boot Protection

During flash booting, the MWDT in timer group 0 (TIMGO), as well as the RWDT, are automatically enabled. Stage
0 for the enabled MWDT is automatically configured to reset the system upon expiry; stage 0 for the RWDT resets
the RTC when it expires. After booting, the register TIMERS_WDT_FLASHBOOT_MOD_EN should be cleared to
stop the flash boot protection procedure for the MWDT, and RTC_CNTL_WDT_FLASHBOOT_MOD_EN should
be cleared to do the same for the RWDT. After this, the MWDT and RWDT can be configured by software.

Espressif Systems 486 ESP32 Technical Reference Manual V3.1

19. WATCHDOG TIMERS

19.3.1.4 Registers

The MWDT registers are part of the timer submodule and are described in the Timer Registers section. The
RWDT registers are part of the RTC submodule and are described in the RTC Registers section.

Espressif Systems 487 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

20. eFuse Controller

20.1 Introduction

The ESP32 has a number of eFuses which store system parameters. Fundamentally, an eFuse is a single bit of
non-volatile memory with the restriction that once an eFuse bit is programmed to 1, it can never be reverted to O.
Software can instruct the eFuse Controller to program each bit for each system parameter as needed.

Some of these system parameters can be read by software using the eFuse Controller. Some of the system
parameters are also directly used by hardware modules.

20.2 Features

e Configuration of 27 system parameters
e Optional write-protection

e Optional software-read-protection

20.3 Functional Description

20.3.1 Structure

Twenty-seven system parameters with different bit width are stored in the eFuses. The name of each system
parameter and the corresponding bit width are shown in Table 78. Among those parameters, efuse_wr_disable,
efuse_rd_disable, BLK3_part_reserve and coding_scheme are directly used by the eFuse Controller.

Table 78: System Parameter

Program Software-Read
Name Bit width -Protection by -Protection by Description
efuse_wr_disable | efuse_rd_disable

efuse_wr_disable 16 1 - controls the eFuse Controller
efuse_rd_disable 4 0 - controls the eFuse Controller
flash_crypt_ont 8 5 i govern§ the flash encryption/

decryption
WIFI_MAC_Address 56 3 - Wi-Fi MAC address and CRC

i configures the SPI1/O to a cer-

SPI_pad_config_hd 5 3 -)

tain pad
chip_version 4 3 - chip version
XPD_SDIO_REG 1 5 - powers up the flash regulator

configures the flash regulator
SDIO_TIEH 1 5 - voltage: set to 1 for 3.3V

and setto O for 1.8V

determines whether
sdio_force 1 5 - XPD_SDIO_REG

and SDIO_TIEH can

control the flash regulator

Espressif Systems 488 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Program Software-Read
Name Bit width -Protection by -Protection by Description
efuse_wr_disable | efuse_rd_disable
BLKS3_part_reseve 2 10 3 controls the eFuse controller
) configures the SPI1/O to a cer-
SPI_pad_config_clk 5 6 -)
tain pad
) configures the SPI1/0 to a cer-
SPI_pad_config_q 5 6 - i
tain pad
) configures the SPI1/O to a cer-
SPI_pad_config_d 5 6 - i
tain pad
) configures the SPI1/0 to a cer-
SPI_pad_config_cs0 5 6 - .
tain pad
i governs flash encryption/
flash_crypt_config 4 10 3 i
decryption
coding_scheme* 2 10 3 controls the eFuse Controller
Disables the ROM BASIC
console_debug_disable | 1 15 - debug console fallback
mode when set to 1
t i the stat f
abstract_done_0 1 12 - determines the status o
Secure Boot
abstract_done. 1 ’ 13 i determines the status of
Secure Boot
disables access to the
JTAG. disable 1 14 i JTAG controllers so as to
effectively disable external
use of JTAG
overns flash encryption/
download_dis_encrypt | 1 15 - gover i vt
decryption
flash tion/
download_dis_decrypt | 1 15 - govern§ ash encryption
decryption
isabl he wh t
download_dis_cache 1 15 - disab Gfs cache when boo
mode is the Download Mode
determi hether BLOCKS3
key_status 1 10 3) elermines whetner
is deployed for user purposes
BLOCK1* 056/192/128 | 7 0 governs flash encryption/
decryption
BLOCK2* 256/192/128 | 8 1 key for Secure Boot
BLOCKS3* 256/192/128 | 9 2 key for user purposes
20.3.1.1 System Parameter efuse_wr_disable

The system parameter efuse_wr_disable determines whether all of the system parameters are write-protected.

Since efuse_wr_disable is a system parameter as well, it also determines whether it itself is

write-protected.

If a system parameter is not write-protected, its unprogrammed bits can be programmed from 0 to 1. The bits

Espressif Systems

489

ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

previously programmed to 1 will remain 1. When a system parameter is write-protected, none of its bits can be
programmed: The unprogrammed bits will always remain O and the programmed bits will always remain 1.

The write-protection status of each system parameter corresponds to a bit in efuse_wr_disable. When the
corresponding bit is set to 0, the system parameter is not write-protected. When the corresponding bit is set to
1, the system parameter is write-protected. If a system parameter is already write-protected, it will remain
write-protected. The column entitled "Program-Protection by efuse_wr_disable” in Table 78 lists the
corresponding bits that determine the write-protection status of each system parameter.

20.3.1.2 System Parameter efuse_rd_disable

Of the 26 system parameters, 20 are not constrained by software-read-protection. These are marked by ”-” in
the column entitled "Software-Read-Protection by efuse_rd_disable” in Table 78. Those system parameters,
some of which are used by software and hardware modules at the same time, can be read by software via the
eFuse Controller at any time.

When not software-read-protected, the other six system parameters can both be read by software and used by
hardware modules. When they are software-read-protected, they can only be used by the hardware
modules.

The column "Software-Read-Protection by efuse_rd_disable” in Table 78 lists the corresponding bits in
efuse_rd_disable that determine the software read-protection status of the six system parameters. If a bit in the
system parameter efuse_rd_disable is O, the system parameter controlled by the bit is not
software-read-protected. If a bit in the system parameter efuse_rd_disable is 1, the system parameter controlled
by the bit is software-read-protected. If a system parameter is software-read-protected, it will remain in this
state.

20.3.1.3 System Parameter coding_scheme

As Table 78 shows, only three system parameters, BLOCK1, BLOCK2, and BLOCKS, have variable bit width.
Their bit width is controlled by another system parameter, coding_scheme. Despite their variable bit width,
BLOCK1, BLOCK2, and BLOCKS are assigned a fixed number of bits in eFuse. There is an encoding mapping
between these three system parameters and their corresponding stored values in eFuse. For details please see
Table 79.

Table 79: BLOCK1/2/3 Encoding

coding_schemel[1:0] Width of BLOCK1/2/3 | Coding scheme Number of bits in eFuse
00/11 256 None 256
01 192 3/4 256
10 128 Repeat 256

The three coding schemes are explained as follows:
e BLOCK N represents any of the following three system parameters: BLOCK1, BLOCK2 or BLOCKS.

e BLOCKN|[255:0], BLOCKN]I[191 : 0], and BLOCK N[127 : 0] represent each bit of the three system
parameters in the three encoding schemes.

Espressif Systems 490 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

e “BLOCKN|[255 : 0] represents each corresponding bit of those system parameters in eFuse after being

encoded.
None
*BLOCKNI[255 : 0] = BLOCK N|[255 : 0]
3/4
BLOCKN/[7:0] = BLOCKN[48i + 8j + 7 : 48i + 8j] i€{0,1,2,3} j€{0,1,2,3,4,5}
*BLOCKNI[7:0] = “BLOCK N[64i + 8j + 7 : 64i + 8] i€{0,1,2,3% j€{0,1,2,3,4,5,6,7}
BLOCKN/[7: (] j€{0,1,2,3,4,5}
BLOCKN[7:0] @ BLOCKN}7:0]
, ® BLOCKN?[7:0] @ BLOCKN}[7: 0] j e {6}
*BLOCKNI[7:0] = i€{0,1,2,3}
@© BLOCKN}7:0] @ BLOCKN?[7: 0]
5 7
> (1+1)> BLOCKN!|k] je{r}
=0 k=0
& means bitwise XOR
) and + mean summation
Repeat

“BLOCKNI255 :128] = “BLOCKN|127 : 0] = BLOCKNI127 : (]

20.3.1.4 BLK3_part_reserve

System parameters coding_scheme, BLOCK1, BLOCK2, and BLOCKS are controlled by the parameter
BLK3_part_reserve.

When the value of BLK3_part_reserve is 0, coding_scheme, BLOCK1, BLOCK2, and BLOCKS3 can be set to any
value.

When the value of BLK3_part_reserve is 1, coding_scheme BLOCK1 BLOCK2 and BLOCKS are controlled by
3/4 coding scheme. Meanwhile, BLOC K 3[143 : 96], namely, * BLOC K 3[191 : 128] is unavailable.

20.3.2 Programming of System Parameters

The programming of variable-length system parameters BLOCK1, BLOCK2, and BLOCKS is different from that of
the fixed-length system parameters. We program the * BLOC K N[255 : 0] value of encoded system
parameters BLOCK1, BLOCK2, and BLOCKS instead of directly programming the system parameters.
The bit width of “ BLOCK N [255 : 0] is always 256. Fixed-length system parameters, in contrast, are
programmed without encoding them first.

Each bit of the 24 fixed-length system parameters and the three encoded variable-length system parameters
corresponds to a program register bit, as shown in Table 80. The register bits will be used when programming
system parameters.

Espressif Systems 491 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Table 80: Program Register

System parameter Register
Name Width Bit Name Bit
efuse_wr_disable 16 [15:0] [15:0]
efuse_rd_disable 4 [3:0] EFUSE_BLKO_WDATAO_REG | [19:16]
flash_crypt_cnt 8 [7:0] [27:20]
[31:0] EFUSE_BLKO_WDATA1_REG | [31:0]
WIFI_MAC_Address 56
[65:32] EFUSE_BLKO_WDATA2_REG | [23:0]
SPI_pad_config_hd 5 [4:0] [8:4]
chip_version 4 [3:0] EFUSE_BLKO_WDATA3_REG | [12:9]
BLK3_part_reserve 1 [Q] [14]
XPD_SDIO_REG 1 [0] [14]
SDIO_TIEH 1 [Q] EFUSE_BLKO_WDATA4_REG | [15]
sdio_force 1 [Q] [16]
SPI_pad_config_clk 5 [4:0] [4:0]
SPI_pad_config_q 5 [4:0] [9:5]
SPI_pad_config_d 5 [4:0] EFUSE_BLKO_WDATA5_REG | [14:10]
SPI_pad_config_cs0 5 [4:0] [19:15]
flash_crypt_config 4 [3:0] [31:28]
coding_scheme 2 [1:0] [1:0]
console_debug_disable | 1 [Q] 2]
abstract_done_0 1 [Q] [4]
abstract_done_1 1 [Q] (5]
JTAG_disable 1 Q] EFUSE_BLKO_WDATAB_REG | [6]
download_dis_encrypt | 1 [Q] [7]
download_dis_decrypt | 1 [Q] [8]
download_dis_cache 1 [Q] 9]
key_status 1 [Q] [10]
[31:0] EFUSE_BLK1_WDATAO_REG | [31:0]
[63:32] EFUSE_BLK1_WDATA1_REG | [31:0]
[95:64] EFUSE_BLK1_WDATA2_REG | [31:0]
[127:96] EFUSE_BLK1_WDATA3_REG | [31:0]
BLOCK1 256/192/128
[159:128] EFUSE_BLK1_WDATA4_REG | [31:0]
[191:160] EFUSE_BLK1_WDATA5_REG | [31:0]
[223:192] EFUSE_BLK1_WDATAB_REG | [31:0]
[255:224] EFUSE_BLK1_WDATA7_REG | [31:0]
[31:0] EFUSE_BLK2_WDATAO_REG | [31:0]
[63:32] EFUSE_BLK2_WDATA1_REG | [31:0]
[95:64] EFUSE_BLK2_WDATA2_REG | [31:0]
[127:96] EFUSE_BLK2_WDATA3_REG | [31:0]
BLOCK2 256/192/128
[159:128] EFUSE_BLK2_WDATA4_REG | [31:0]
[191:160] EFUSE_BLK2_WDATA5_REG | [31:0]
[223:192] EFUSE_BLK2_WDATAB_REG | [31:0]
[255:224] EFUSE_BLK2_WDATA7_REG | [31:0]
Espressif Systems 492 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

System parameter Register

Name Width Bit Name Bit
[31:0] EFUSE_BLK3_WDATAO_REG | [31:0]
[63:32] EFUSE_BLK3_WDATA1_REG | [31:0]
[95:64] EFUSE_BLK3_WDATA2_REG | [31:0]
[127:96] EFUSE_BLK3_WDATA3_REG | [31:0]

BLOCK3 256/192/128
[159:128] EFUSE_BLK3_WDATA4_REG | [31:0]
[191:160] EFUSE_BLK3_WDATA5_REG | [31:0]
[223:192] EFUSE_BLK3_WDATAB_REG | [31:0]
[255:224] EFUSE_BLK3_WDATA7_REG | [31:0]

The process of programming system parameters is as follows:

1. Configure EFUSE_CLK_SELO bit, EFUSE_CLK_SEL1 bit of register EFUSE_CLK, and
EFUSE_DAC_CLK_DIV bit of register EFUSE_DAC_CONF.

2. Set the corresponding register bit of the system parameter bit to be programmed to 1.
3. Write OX5A5A into register EFUSE_CONF.

4. Write Ox2 into register EFUSE_CMD.

5. Poll register EFUSE_CMD until it is Ox0, or wait for a program-done interrupt.

6. Write Ox5AA5 into register EFUSE_CONF.

7. Write Ox1 into register EFUSE_CMD.

8. Poll register EFUSE_CMD until it is Ox0, or wait for a read-done interrupt.

9. Set the corresponding register bit of the programmed bit to O.

The configuration values of the EFUSE_CLK_SELO bit, EFUSE_CLK_SEL1 bit of register EFUSE_CLK, and the
EFUSE_DAC_CLK_DIV bit of register EFUSE_DAC_CONF are based on the current APB_CLK frequency, as is
shown in Table 81.

Table 81: Timing Configuration

Configuration Value APB_CLK Frequency
26 MHz 40 MHz 80 MHz
Register
EFUSE_CLK_SELO[7:0] 8'd250 8'd160 8’d80
EFUSE_CLK
EFUSE_CLK_SEL1[7:0] 8'd255 8'd255 8'd128
EFUSE_DAC_CONF EFUSE_DAC_CLK_DIV[7:0] 8'd52 8’d80 8’d160

The two methods to identify the generation of program/read-done interrupts are as follows:
Method One:

1. Poll bit 1/0 in register EFUSE_INT_RAW until bit 1/0 is 1, which represents the generation of an
program/read-done interrupt.

2. Set the bit 1/0 in register EFUSE_INT_CLR to 1 to clear the program/read-done interrupts.

Method Two:

Espressif Systems 493 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

1. Set bit 1/0 in register EFUSE_INT_ENA to 1 to enable eFuse Controller to post a program/read-done
interrupt.

2. Configure Interrupt Matrix to enable the CPU to respond to an EFUSE_INT interrupt.

3. A program/read-done interrupt is generated.

4. Read bit 1/0 in register EFUSE_INT_ST to identify the generation of the program/read-done interrupt.
5. Set bit 1/0 in register EFUSE_INT_CLR to 1 to clear the program/read-done interrupt.

The programming of different system parameters and even the programming of different bits of the same system
parameter can be completed separately in multiple programmings. It is, however, recommended that users
minimize programming cycles, and program all the bits that need to be programmed in a system parameter in
one programming action. In addition, after all system parameters controlled by a certain bit of efuse_wr_disable
are programmed, that bit should be immediately programmed. The programming of system parameters
controlled by a certain bit of efuse_wr_disable, and the programming of that bit can even be completed at the
same time. Repeated programming of programmed bits is strictly forbidden.

20.3.3 Software Reading of System Parameters

Each bit of the 24 fixed-length system parameters and the three variable-length system parameters corresponds
to a software-read register bit, as shown in Table 82. Software can use the value of each system parameter by
reading the value in the corresponding register.

The bit width of system parameters BLOCK1, BLOCK2, and BLOCKS is variable. Although 256 register bits have
been assigned to each of the three parameters, as shown in Table 82, some of the 256 register bits are useless in
the 3/4 coding and the Repeat coding scheme. In the None coding scheme, the corresponding register bit of
each bit of BLOC K N[255 : 0] is used. In the 3/4 coding scheme, only the corresponding register bits of
BLOCKNJ[191 : 0] are useful. In Repeat coding scheme, only the corresponding bits of BLOCK N[127 : 0] are
useful. In different coding schemes, the values of useless register bits read by software are invalid. The values of
useful register bits read by software are the system parameters BLOCK1, BLOCK2, and BLOCK3
themselves instead of their values after being encoded.

Table 82: Software Read Register

System parameter Register

Name Bit Width Bit Name Bit
efuse_wr_disable 16 [15:0] [15:0]
efuse_rd_disable 4 [3:0] EFUSE_BLKO_RDATAO_REG [19:16]
flash_crypt_cnt 8 [7:Q] [27:20]

[31:0] EFUSE_BLKO_RDATA1_REG [31:0]
WIFI_MAC_Address 56

[65:32] EFUSE_BLKO_RDATA2_REG [23:0]
SPI_pad_config_hd 5 [4:0] [8:4]
chip_version 4 [3:0] EFUSE_BLKO_WDATA3_REG [12:9]
BLK3_part_reserve 1 Q] [14]
XPD_SDIO_REG 1 [0] [14]
SDIO_TIEH 1 [0] EFUSE_BLKO_RDATA4_REG [15]
sdio_force 1 [0] (16]
SPI_pad_config_clk 5 [4:0] [4:Q]
SPI_pad_config_q 5 [4:0] [9:5]

EFUSE_BLKO_RDATAS5_REG

Espressif Systems 494 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

System parameter Register
Name Bit Width Bit Name Bit
SPI_pad_config_d 5 [4:0] [14:10]
SPI_pad_config_cs0 5 [4:0] [19:15]
flash_crypt_config 4 [3:0] [31:28]
coding_scheme 2 [1:0] [1:0]
console_debug_disable 1 0] [2]
abstract_done_0 1 0] [4]
abstract_done_1 1 0] 5]
JTAG_disable 1 [0] EFUSE_BLKO_RDATA6_REG [6]
download_dis_encrypt 1 0] [7]
download_dis_decrypt 1 0] [8]
download_dis_cache 1 Q] 9]
key_status 1 0] [10]
[31:0] EFUSE_BLK1_RDATAO_REG [31:0]
[63:32] EFUSE_BLK1_RDATA1_REG [31:0]
[95:64] EFUSE_BLK1_RDATA2_REG [31:0]
[127:96] EFUSE_BLK1_RDATA3_REG [31:0]
BLOCK1 256/192/128
[159:128] | EFUSE_BLK1_RDATA4_REG [31:0]
[191:160] | EFUSE_BLK1_RDATA5_REG [31:0]
[223:192] | EFUSE_BLK1_RDATA6_REG [31:0]
[255:224] | EFUSE_BLK1_RDATA7_REG [31:0]
[31:0] EFUSE_BLK2_RDATAO_REG [31:0]
[63:32] EFUSE_BLK2_RDATA1_REG [31:0]
[95:64] EFUSE_BLK2_RDATA2_REG [31:0]
[127:96] EFUSE_BLK2_RDATA3_REG [31:0]
BLOCK2 256/192/128
[159:128] | EFUSE_BLK2_RDATA4_REG [31:0]
[191:160] | EFUSE_BLK2_RDATA5_REG [31:0]
[223:192] | EFUSE_BLK2_RDATAB_REG [31:0]
[255:224] | EFUSE_BLK2_RDATA7_REG [31:0]
[31:0] EFUSE_BLK3_RDATAO_REG [31:0]
[63:32] EFUSE_BLK3_RDATA1_REG [31:0]
[95:64] EFUSE_BLK3_RDATA2_REG [31:0]
[127:96] EFUSE_BLK3_RDATA3_REG [31:0]
BLOCK3 256/192/128
[159:128] | EFUSE_BLK3_RDATA4_REG [31:0]
[191:160] | EFUSE_BLK3_RDATA5_REG [31:0]
[223:192] | EFUSE_BLK3_RDATA6_REG [31:0]
[255:224] | EFUSE_BLK3_RDATA7_REG [31:0]

20.3.4 The Use of System Parameters by Hardware Modules

Hardware modules are directly hardwired to the ESP32 in order to use the system parameters. Software cannot
change this behaviour. Hardware modules use the decoded values of system parameters BLOCK1,
BLOCK2, and BLOCKS3, not their encoded values.

Espressif Systems 495 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

20.3.5 Interrupts

e EFUSE_PGM_DONE_INT: Triggered when eFuse programming has finished.

e EFUSE_READ_DONE_INT: Triggered when eFuse reading has finished.

20.4 Register Summary

Name ‘ Description Address Access
eFuse data read registers
EFUSE_BLKO_RDATAO_REG Returns data word 0O in eFuse BLOCK 0O OxBFF5A000 | RO
EFUSE_BLKO_RDATA1_REG Returns data word 1 in eFuse BLOCK O Ox3FF5A004 | RO
EFUSE_BLKO_RDATA2_REG Returns data word 2 in eFuse BLOCK 0 Ox3FF5A008 | RO
EFUSE_BLKO_RDATA3_REG Returns data word 3 in eFuse BLOCK 0O Ox3FF5A00C | RO
EFUSE_BLKO_RDATA4_REG Returns data word 4 in eFuse BLOCK O Ox3FF5A010 | RO
EFUSE_BLKO_RDATA5_REG Returns data word 5 in eFuse BLOCK 0O Ox3FF5A014 | RO
EFUSE_BLKO_RDATAG_REG Returns data word 6 in eFuse BLOCK 0 Ox3FF5A018 | RO
EFUSE_BLK1_RDATAO_REG Returns data word 0 in eFuse BLOCK 1 Ox3FF5A038 | RO
EFUSE_BLK1_RDATA1_REG Returns data word 1 in eFuse BLOCK 1 OxBFF5A03C | RO
EFUSE_BLK1_RDATA2_REG Returns data word 2 in eFuse BLOCK 1 Ox3FF5A040 | RO
EFUSE_BLK1_RDATA3_REG Returns data word 3 in eFuse BLOCK 1 Ox3FF5A044 | RO
EFUSE_BLK1_RDATA4_REG Returns data word 4 in eFuse BLOCK 1 Ox3FF5A048 | RO
EFUSE_BLK1_RDATA5_REG Returns data word 5 in eFuse BLOCK 1 O0x3FF5A04C | RO
EFUSE_BLK1_RDATA6_REG Returns data word 6 in eFuse BLOCK 1 Ox3FF5A050 | RO
EFUSE_BLK1_RDATA7_REG Returns data word 7 in eFuse BLOCK 1 Ox3FF5A054 | RO
EFUSE_BLK2_RDATAO_REG Returns data word 0O in eFuse BLOCK 2 Ox3FF5A058 | RO
EFUSE_BLK2_RDATA1_REG Returns data word 1 in eFuse BLOCK 2 Ox3FF5A05C | RO
EFUSE_BLK2_RDATA2_REG Returns data word 2 in eFuse BLOCK 2 Ox3FF5A060 | RO
EFUSE_BLK2_RDATA3_REG Returns data word 3 in eFuse BLOCK 2 Ox3FF5A064 | RO
EFUSE_BLK2_RDATA4_REG Returns data word 4 in eFuse BLOCK 2 Ox3FF5A068 | RO
EFUSE_BLK2_RDATA5_REG Returns data word 5 in eFuse BLOCK 2 Ox3FF5A06C | RO
EFUSE_BLK2_RDATA6_REG Returns data word 6 in eFuse BLOCK 2 Ox3FF5A070 | RO
EFUSE_BLK2_RDATA7_REG Returns data word 7 in eFuse BLOCK 2 O0x3FF5A074 | RO
EFUSE_BLK3_RDATAO_REG Returns data word O in eFuse BLOCK 3 Ox3FF5A078 | RO
EFUSE_BLK3_RDATA1_REG Returns data word 1 in eFuse BLOCK 3 0x3FF5A07C | RO
EFUSE_BLK3_RDATA2_REG Returns data word 2 in eFuse BLOCK 3 Ox3FF5A080 | RO
EFUSE_BLK3_RDATA3_REG Returns data word 3 in eFuse BLOCK 3 Ox3FF5A084 | RO
EFUSE_BLK3_RDATA4_REG Returns data word 4 in eFuse BLOCK 3 Ox3FF5A088 | RO
EFUSE_BLK3_RDATA5 REG Returns data word 5 in eFuse BLOCK 3 Ox3FF5A08C | RO
EFUSE_BLK3_RDATA6_REG Returns data word 6 in eFuse BLOCK 3 Ox3FF5A090 | RO
EFUSE_BLK3_RDATA7_REG Returns data word 7 in eFuse BLOCK 3 Ox3FF5A094 | RO
eFuse data write registers
EFUSE_BLKO_WDATAO_REG Writes data to word O in eFuse BLOCK O Ox3FF5A01c | R/W
EFUSE_BLKO_WDATA1_REG Writes data to word 1 in eFuse BLOCK 0 Ox3FF5A020 | R/W
EFUSE_BLKO_WDATA2_REG Writes data to word 2 in eFuse BLOCK O Ox3FF5A024 | R/W
EFUSE_BLKO_WDATAS_REG Writes data to word 3 in eFuse BLOCK 0 Ox3FF5A028 | R/W
Espressif Systems 496 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Name Description Address Access
EFUSE_BLKO_WDATA4_REG Writes data to word 4 in eFuse BLOCK 0 Ox3FF5A02¢c | R/W
EFUSE_BLKO_WDATA5_REG Writes data to word 5 in eFuse BLOCK 0O Ox3FF5A030 | R/W
EFUSE_BLKO_WDATAG_REG Writes data to word 6 in eFuse BLOCK 0 Ox3FF5A034 | R/W
EFUSE_BLK1_WDATAO_REG Writes data to word 0O in eFuse BLOCK 1 Ox3FF5A098 | R/W
EFUSE_BLK1_WDATA1_REG Writes data to word 1 in eFuse BLOCK 1 Ox3FF5A09c | R/W
EFUSE_BLK1_WDATA2_REG Writes data to word 2 in eFuse BLOCK 1 Ox3FF5A0a0 | R/W
EFUSE_BLK1_WDATA3_REG Writes data to word 3 in eFuse BLOCK 1 Ox3FF5A0a4 | R/W
EFUSE_BLK1_WDATA4_REG Writes data to word 4 in eFuse BLOCK 1 Ox3FF5A0a8 | R/W
EFUSE_BLK1_WDATA5 REG Writes data to word 5 in eFuse BLOCK 1 Ox3FF5A0ac | R/W
EFUSE_BLK1_WDATA6_REG Writes data to word 6 in eFuse BLOCK 1 Ox3FF5A0b0 | R/W
EFUSE_BLK1_WDATA7_REG Writes data to word 7 in eFuse BLOCK 1 Ox3FF5A0b4 | R/W
EFUSE_BLK2_WDATAO_REG Writes data to word 0O in eFuse BLOCK 2 Ox3FF5A0b8 | R/W
EFUSE_BLK2_WDATA1_REG Writes data to word 1 in eFuse BLOCK 2 Ox3FF5A0bc | R/W
EFUSE_BLK2_WDATA2_REG Writes data to word 2 in eFuse BLOCK 2 Ox3FF5A0c0 | R/W
EFUSE_BLK2_WDATA3_REG Writes data to word 3 in eFuse BLOCK 2 Ox3FF5A0c4 | R/W
EFUSE_BLK2_WDATA4_REG Writes data to word 4 in eFuse BLOCK 2 Ox3FF5A0c8 | R/W
EFUSE_BLK2_WDATA5_REG Writes data to word 5 in eFuse BLOCK 2 Ox3FF5A0cc | R/W
EFUSE_BLK2_WDATA6_REG Writes data to word 6 in eFuse BLOCK 2 Ox3FF5A0d0 | R/W
EFUSE_BLK2_WDATA7_REG Writes data to word 7 in eFuse BLOCK 2 Ox3FF5A0d4 | R/W
EFUSE_BLK3_WDATAO_REG Writes data to word 0 in eFuse BLOCK 3 Ox3FF5A0d8 | R/W
EFUSE_BLK3_WDATA1_REG Writes data to word 1 in eFuse BLOCK 3 Ox3FF5A0dc | R/W
EFUSE_BLK3_WDATA2_REG Writes data to word 2 in eFuse BLOCK 3 Ox3FF5A0e0 | R/W
EFUSE_BLK3_WDATA3_REG Writes data to word 3 in eFuse BLOCK 3 Ox3FF5A0e4 | R/W
EFUSE_BLK3_WDATA4_REG Writes data to word 4 in eFuse BLOCK 3 Ox3FF5A0e8 | R/W
EFUSE_BLK3_WDATA5_REG Writes data to word 5 in eFuse BLOCK 3 Ox3FF5A0ec | R/W
EFUSE_BLK3_WDATAG6_REG Writes data to word 6 in eFuse BLOCK 3 Ox3FF5A0f0 | R/W
EFUSE_BLK3_WDATA7_REG Writes data to word 7 in eFuse BLOCK 3 Ox3FF5A0f4 | R/W
Control registers
EFUSE_CLK_REG Timing configuration register Ox3FF5A0F8 | R/W
EFUSE_CONF_REG Opcode register Ox3FF5A0FC | R/W
EFUSE_CMD_REG Read/write command register Ox3FF5A104 | R/W
Interrupt registers
EFUSE_INT_RAW_REG Raw interrupt status Ox3FF5A108 | RO
EFUSE_INT_ST_REG Masked interrupt status Ox3FF5A10C | RO
EFUSE_INT_ENA_REG Interrupt enable bits Ox3FF5A110 | R/W
EFUSE_INT_CLR_REG Interrupt clear bits Ox3FF5A114 | WO
Misc registers
EFUSE_DAC_CONF_REG Efuse timing configuration Ox3FF5A118 | R/W
EFUSE_DEC_STATUS_REG Status of 3/4 coding scheme Ox3FF5A11C | RO
Espressif Systems 497 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

20.5 Registers

Register 20.1: EFUSE_BLKO_RDATAO_REG (0x000)

&
S
S
& » 9\%
& &7 &
\2\ s (<// (<//
S N 5
7 & $
S L ® ®
& & Nl &
@ & & &

’31 28|27 20|19 16|15 O‘

]oooo|00000000|oooo|oooooooooooooooo‘Reset

EFUSE_RD_FLASH_CRYPT_CNT This field returns the value of flash_crypt_cnt. (RO)
EFUSE_RD_EFUSE_RD_DIS This field returns the value of efuse_rd_disable. (RO)

EFUSE_RD_EFUSE_WR_DIS This field returns the value of efuse_wr_disable. (RO)

Register 20.2: EFUSE_BLKO_RDATA1_REG (0x004)

E

|

’OOOO0OOO00OOOOOOOOOOOOOOOOOOOOOO‘Reset

EFUSE_BLKO_RDATA1_REG This field returns the value of the lower 32 bits of WIFI_MAC_Address.

(RO)
Register 20.3: EFUSE_BLKO_RDATA2_REG (0x008)
&
Q/
=
?\
K
N
D &
é”c\ 5
NS &

’31 24|23

’oooooooo|oooooooooooooooo

d

oooooooo‘Reset

EFUSE_RD_WIFI_MAC_CRC_HIGH This field

returns the value of the higher 24 bits of
WIFI_MAC_Address. (RO)

Espressif Systems 498 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.4: EFUSE_BLKO_RDATA3_REG (0x00c)

(A
@%@

D

P
&
90
?Q
Q\ 7
Q 7/
S o
Y K
& @

E

]ooooooooooooooooooooooo|ooooo|oooo‘Reset

EFUSE_RD_SPI_PAD_CONFIG_HD This field returns the value of SPI_pad_config_hd. (RO)

Register 20.5:

EFUSE_BLKO_RDATA4_REG (0x010)

E

17|16|15|14|

3

’oooooooooooooo0|o|0|o|0ooooooooooooo‘Reset

EFUSE_RD_SDIO_FORCE This field returns the value of sdio_force. (RO)

EFUSE_RD_SDIO_TIEH This field returns the value of SDIO_TIEH. (RO)

EFUSE_RD_XPD_SDIO This field returns the value of XPD_SDIO_REG. (RO)

Espressif Systems

499

ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.6: EFUSE_BLKO_RDATA5_REG (0x014)

0 o +
s* & S o o’
& & & & &
57 w i v v
\y Q\ 7 Q\ 7 Q\ / Q\ 7/
Q/g\o/ Q)b\ Q/8\0/ Q/g@/ %8\0/ @g@/
i e’v@é i i i i
& ¢ & & & &

]oooo|00000000|o0ooo|ooooo|ooooo|ooooo‘Reset

EFUSE_RD_FLASH_CRYPT_CONFIG This field returns the value of flash_crypt_config. (RO)
EFUSE_RD_SPI_PAD_CONFIG_CSO0 This field returns the value of SPI_pad_config_cs0. (RO)
EFUSE_RD_SPI_PAD_CONFIG_D This field returns the value of SPI_pad_config_d. (RO)
EFUSE_RD_SPI_PAD_CONFIG_Q This field returns the value of SPI_pad_config_g. (RO)

EFUSE_RD_SPI_PAD_CONFIG_CLK This field returns the value of SPI_pad_config_clk. (RO)

Register 20.7: EFUSE_BLKO_RDATA6_REG (0x018)

O R 7O O R’ R s ©
) <8 S
& R ARG
Q@

EFUSE_RD_KEY_STATUS This field returns the value of key_status. (RO)
EFUSE_RD_DISABLE_DL_CACHE This field returns the value of download_dis_cache. (RO)
EFUSE_RD_DISABLE_DL_DECRYPT This field returns the value of download_dis_decrypt. (RO)
EFUSE_RD_DISABLE_DL_ENCRYPT This field returns the value of download_dis_encrypt. (RO)
EFUSE_RD_DISABLE_JTAG This field returns the value of JTAG_disable. (RO)
EFUSE_RD_ABS_DONE_1 This field returns the value of abstract_done_1. (RO)
EFUSE_RD_ABS_DONE_0 This field returns the value of abstract_done_0. (RO)

EFUSE_RD_CONSOLE_DEBUG_DISABLE This field returns the value of console_debug_disable.
(RO)

EFUSE_RD_CODING_SCHEME This field returns the value of coding_scheme. (RO)

Espressif Systems 500 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.8: EFUSE_BLKO_WDATAO_REG (0x01c)

EFUSE_FLASH_CRYPT_CNT This field programs the value of flash_crypt_cnt. (R/W)
EFUSE_RD_DIS This field programs the value of efuse_rd_disable. (R/W)

EFUSE_WR_DIS This field programs the value of efuse_wr_disable. (R/W)

Register 20.9: EFUSE_BLKO_WDATA1_REG (0x020)

E]

]oooooooooooooooooooooooooooooooo\Reset

EFUSE_BLKO_WDATA1_REG This field programs the value of lower 32 bits of WIFI_MAC_Address.

(R/W)
Register 20.10: EFUSE_BLKO_WDATA2_REG (0x024)
Y\\@Y\
O/
9Q\
S
G‘Zv& (<//<<\/
S
& &

’31 24|23 O‘

]oooooooo|oooooooooooooooooooooooo‘Reset

EFUSE_WIFI_MAC_CRC_HIGH This field programs the value of higher 24 bits of
WIFI_MAC_Address. (R/W)

Espressif Systems 501 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.11: EFUSE_BLKO_WDATA3_REG (0x028)

X
&
oF
?\
Q\g
S S S
(AQJ & J P GQ)
& & &

’31 9|s 4|7 4‘

]ooooooooooooooooooooooo|ooooo|oooo‘Reset

EFUSE_SPI_PAD_CONFIG_HD This field programs the value of SPI_pad_config_hd. (R/W)

Register 20.12: EFUSE_BLKO_WDATA4_REG (0x02c)

<
O
OQ\«\Q/?\Q\O
02070~
> I >
5 KIS i
":IQ' (<\> <<\) <<0 %Q)
N ST N

’31 l7|16|15|14|27 14‘

’oooooooo0ooooo0|o|0|o|0ooooooooooooo‘Reset

EFUSE_SDIO_FORCE This field programs the value of SDIO_TIEH. (R/W)
EFUSE_SDIO_TIEH This field programs the value of SDIO_TIEH. (R/W)

EFUSE_XPD_SDIO This field programs the value of XPD_SDIO_REG. (R/W)

Register 20.13: EFUSE_BLKO_WDATA5_REG (0x030)

@
O@ @O%Q % o7 @9*
& o $<<\ $<<\ §<\ %Q\
C)é Q 90 Q 90 Q 90 Q 90
& X Xa X X
((\y‘ Q)& . Q\/ ((/ Q\/ Q/ Q\/ Q/ Q\/
<7 7 7 / 7
& & & & & &

’oooo|oooooooo|ooooo|ooooo|ooooo|ooooo‘Reset

EFUSE_FLASH_CRYPT_CONFIG This field programs the value of flash_crypt_config. (R/W)
EFUSE_SPI_PAD_CONFIG_CS0 This field programs the value of SPI_pad_config_cs0. (R/W)
EFUSE_SPI_PAD_CONFIG_D This field programs the value of SPI_pad_config_d. (R/W)
EFUSE_SPI_PAD_CONFIG_Q This field programs the value of SPI_pad_config_qg. (R/W)

EFUSE_SPI_PAD_CONFIG_CLK This field programs the value of SPI_pad_config_clk. (R/W)

Espressif Systems 502 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.14: EFUSE_BLKO_WDATA6_REG (0x034)

<
\@ /O\%?‘ @@V‘ 0\@?‘ ()\%?\ @%;Q)%/ O%
Q\Q) 7 K K KK K {\\Q) R
S \)‘b\)‘b\)‘b\)‘b\)‘b‘b%é@ <) 2
FEEEEEEEE

’31 11|10|9|8|7|6|5|4|3|2|1 O‘

]o 0O 0000 ODOOGOU OGO OTU OTU OGO OGO OTO0TO 00 O o|o|0|o|o|o|o|o|o|o|o O‘Reset

EFUSE_KEY_STATUS This field programs the value of key_status. (R/W)
EFUSE_DISABLE_DL_CACHE This field programs the value of download_dis_cache. (R/W)
EFUSE_DISABLE_DL_DECRYPT This field programs the value of download_dis_decrypt. (R/W)
EFUSE_DISABLE_DL_ENCRYPT This field programs the value of download_dis_encrypt. (R/W)
EFUSE_DISABLE_JTAG This field programs the value of JTAG_disable. (R/W)
EFUSE_ABS_DONE_1 This field programs the value of abstract_done_1. (R/W)
EFUSE_ABS_DONE_0 This field programs the value of abstract_done_0. (R/W)

EFUSE_CONSOLE_DEBUG_DISABLE This field programs the value of console_debug_disable.
(R/W)

EFUSE_CODING_SCHEME This field programs the value of coding_scheme. (R/W)

Register 20.15: EFUSE_BLK1_RDATAn_REG (1: 0-7) (0x38+4*)

’ 0000000000 \ Reset

EFUSE_BLK1_RDATAn_REG This field returns the value of word rn in BLOCK1. (RO)

Register 20.16: EFUSE_BLK2_RDATA/n_REG (1: 0-7) (0x58+4*)

E]

’ 0000000000 \ Reset

EFUSE_BLK2_RDATAn_REG This field returns the value of word rn in BLOCK2. (RO)

Espressif Systems 503 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.17: EFUSE_BLK3_RDATA"_REG (: 0-7) (0x78+4*)

‘ 0x000000000 ‘ Reset

EFUSE_BLK3_RDATAn_REG This field returns the value of word n in BLOCKS. (RO)

Register 20.18: EFUSE_BLK1_WDATA"_REG (1: 0-7) (0x98+4")

‘31 O‘

‘ 0x000000000 ‘ Reset

EFUSE_BLK1_WDATAn_REG This field programs the value of word r1 in of BLOCK1. (R/W)

Register 20.19: EFUSE_BLK2_WDATA/_REG (n: 0-7) (0xB8+4*n)

‘ 0x000000000 \ Reset

EFUSE_BLK2_WDATAn_REG This field programs the value of word n in of BLOCK2. (R/W)

Register 20.20: EFUSE_BLK3_WDATA_REG (1: 0-7) (0xD8+4*)

‘ 0x000000000 \ Reset

EFUSE_BLK3_WDATAn_REG This field programs the value of word 1 in of BLOCK3. (R/W)

Register 20.21: EFUSE_CLK_REG (0x0f8)

N S
& &
NS4 \E-/
I o o
<\\Q) %((// %((//
& ~ ~
N <& <&
‘31 16|15 8|7 O‘
‘o 0 00 0O0OO0OOO OTU OGO 0OTO OO 00 O o| 0x040 | 0x052 ‘Reset

EFUSE_CLK_SEL1 eFuse clock configuration field. (R/W)

EFUSE_CLK_SELO eFuse clock configuration field. (R/W)

Espressif Systems 504 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.22: EFUSE_CONF_REG (0x0fc)

<&
Q
&
I @)
G_,Q)é@ 0%((//
@ &
]oooooooooooooooo| 0x00000 \Reset
EFUSE_OP_CODE eFuse operation code register. (R/W)
Register 20.23: EFUSE_CMD_REG (0x104)
O@o@@
N
S X
Q ((// (<//
& 55
\@% <<§< <<</<

EFUSE_PGM_CMD Set this to 1 to start a program operation. Reverts to O when the program op-
eration is done. (R/W)

EFUSE_READ_CMD Set this to 1 to start a read operation. Reverts to O when the read operation is
done. (R/W)

Register 20.24: EFUSE_INT_RAW_REG (0x108)

K77
@) QO
Q)é@b Q(éos% 7
\@% &K

EFUSE_PGM_DONE_INT_RAW The raw interrupt status bit for the EFUSE_PGM_DONE_INT inter-
rupt. (RO)

EFUSE_READ_DONE_INT_RAW The raw interrupt status bit for the EFUSE_READ_DONE_INT in-
terrupt. (RO)

Espressif Systems 505 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.25: EFUSE_INT_ST_REG (0x10c)

A
% 7
Oéooé
Y Q7
é‘b& @/Cj{g
)
& &
’31 2| 1 | 0 ‘
’oooooooooooooooooooooooooooooo|o|o‘Reset
EFUSE_PGM_DONE_INT_ST The masked interrupt status bit for the EFUSE_PGM_DONE_INT in-
terrupt. (RO)
EFUSE_READ_DONE_INT_ST The masked interrupt status bit for the EFUSE_READ_DONE_INT in-
terrupt. (RO)
Register 20.26: EFUSE_INT_ENA_REG (0x110)
Ny
/\@/\’é
@\e@e
OQQOe
R S
& &I
B [1]]
]oooooooooooooooooooooooooooooo|o|o‘Reset
EFUSE_PGM_DONE_INT_ENA The interrupt enable bit for the EFUSE_PGM_DONE_INT interrupt.
(R/W)
EFUSE_READ_DONE_INT_ENA The interrupt enable bit for the EFUSE_READ_DONE_INT interrupt.
(R/W)
Register 20.27: EFUSE_INT_CLR_REG (0x114)
o\%\o&
Oéooé
N
S X
5° i
\@% é(‘<</<

E [T

’OOOOOOOOOOOOOOOOOOOOOOO

o
o
o
o
o
o
o
o
o
Y
)
[
o]
~+

EFUSE_PGM_DONE_INT_CLR Set this bit to clear the EFUSE_PGM_DONE_INT interrupt. (WO)

EFUSE_READ_DONE_INT_CLR Set this bit to clear the EFUSE_READ_DONE_INT interrupt. (WO)

Espressif Systems 506 ESP32 Technical Reference Manual V3.1

20. EFUSE CONTROLLER

Register 20.28: EFUSE_DAC_CONF_REG (0x118)

Q
N
9
O
O/
> X
i &
9 N
@ &
]oooooooooooooooooooooooo| 40 ‘Reset
EFUSE_DAC_CLK_DIV eFuse timing configuration register. (R/W)
Register 20.29: EFUSE_DEC_STATUS_REG (0x11c)
S
&
VQ\
Q/
D &
S &7
o N
@ &

’31 12|11 O‘

]oooooooooooooooooooo|oooooooooooo‘Reset

EFUSE_DEC_WARNINGS If a bit is set in this register, it means some errors were corrected while
decoding the 3/4 encoding scheme. (RO)

Espressif Systems 507 ESP32 Technical Reference Manual V3.1

21. AES ACCELERATOR

21. AES Accelerator

21.1 Introduction

The AES Accelerator speeds up AES operations significantly, compared to AES algorithms implemented solely in
software. The AES Accelerator supports six algorithms of FIPS PUB 197, specifically AES-128, AES-192 and
AES-256 encryption and decryption.

21.2 Features
e Supports AES-128 encryption and decryption
e Supports AES-192 encryption and decryption
e Supports AES-256 encryption and decryption

e Supports four variations of key endianness and four variations of text endianness

21.3 Functional Description

21.3.1 AES Algorithm Operations

The AES Accelerator supports six algorithms of FIPS PUB 197, specifically AES-128, AES-192 and AES-256
encryption and decryption. The AES_MODE_REG register can be configured to different values to enable
different algorithm operations, as shown in Table 84.

Table 84: Operation Mode

AES_MODE_REG[2:0] Operation

0 AES-128 Encryption
1 AES-192 Encryption
2 AES-256 Encryption
4 AES-128 Decryption
5 AES-192 Decryption
6 AES-256 Decryption

21.3.2 Key, Plaintext and Ciphertext

The encryption or decryption key is stored in AES_KEY_n_REG, which is a set of eight 32-bit registers. For
AES-128 encryption/decryption, the 128-bit key is stored in AES_KEY_0_REG ~ AES_KEY_3_REG. For
AES-192 encryption/decryption, the 192-bit key is stored in AES_KEY_0_REG ~ AES_KEY_5_REG. For
AES-256 encryption/decryption, the 256-bit key is stored in AES_KEY_0_REG ~ AES_KEY_7_REG.

Plaintext and ciphertext is stored in the AES_TEXT_m1_REG registers. There are four 32-bit registers. To enable
AES-128/192/256 encryption, initialize the AES_TEXT_m_REG registers with plaintext before encryption. When
encryption is finished, the AES Accelerator will store back the resulting ciphertext in the AES_TEXT_m_REG
registers. To enable AES-128/192/256 decryption, initialize the AES_TEXT_m_REG registers with ciphertext
before decryption. When decryption is finished, the AES Accelerator will store back the resulting plaintext in the
AES_TEXT_m_REG registers.

Espressif Systems 508 ESP32 Technical Reference Manual V3.1

21. AES ACCELERATOR

21.3.3 Endianness

Key Endianness

Bit 0 and bit 1 in AES_ENDIAN_REG define the key endianness. For detailed information, please see Table 86,
Table 87 and Table 88. w[0] ~ w[3] in Table 86, w[0] ~ w[5] in Table 87 and w[0] ~ w[7] in Table 88 are “the first Nk
words of the expanded key” as specified in “5.2: Key Expansion” of FIPS PUB 197. “Column Bit” specifies the
bytes in the word from w[0] to w[7]. The bytes of AES_KEY_n_REG comprise “the first Nk words of the expanded

key”.
Text Endianness

Bit 2 and bit 3 in AES_ENDIAN_REG define the endianness of input text, while Bit 4 and Bit 5 define the
endianness of output text. The input text refers to the plaintext in AES-128/192/256 encryption and the
ciphertext in decryption. The output text refers to the ciphertext in AES-128/192/256 encryption and the plaintext
in decryption. For details, please see Table 85. “State” in Table 85 is defined as that in “3.4: The State” of FIPS
PUB 197: “The AES algorithm operations are performed on a two-dimensional array of bytes called the State”.
The ciphertext or plaintexts stored in each byte of AES_TEXT_/m_REG comprise the State.

Table 85: AES Text Endianness

AES_ENDIAN_REG[3)/[5] AES_ENDIAN_REG[2)/[4] Plaintext/Ciphertext
State
0 1 2 3
o 0 0 AES_TEXT_3_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_O_REG[31:24]
1 AES_TEXT_3_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_0_REG[23:16]
2 AES_TEXT_3_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_0_REG[15:8]
3 AES_TEXT_3_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_0_REG[7:0]
State
0 1 2 3
o ; 0 AES_TEXT_3_REG[7:0] AES_TEXT_2_REG(7:0] AES_TEXT_1_REG[7:0] AES_TEXT_0_REG[7:0]
1 AES_TEXT_3_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_0_REG[15:8]
2 AES_TEXT_3_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_0_REG[23:16]
3 AES_TEXT_3_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_0_REG[31:24]
State
0 1 2 3
f 0 0 AES_TEXT_0_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_3_REG[31:24]
1 AES_TEXT_O_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_3_REG[23:16]
2 AES_TEXT_0_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_3_REG[15:8]
3 AES_TEXT_O_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_3_REG[7:0]
State
0 1 2 3
; ; 0 AES_TEXT_0_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_3_REG[7:0]
1 AES_TEXT_0_REG([15:8] AES_TEXT_1_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_3_REG[15:8]
2 AES_TEXT_0_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_3_REG[23:16]
3 AES_TEXT_0_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_3_REG[31:24]

Espressif Systems

509

ESP32 Technical Reference Manual V3.1

AES ACCELERATOR

21.

[v2:1€]o39 2 AIM 3V | [v21€lo3d 9 A s3IV | (P2 1eload g A STV | [vei1elo3d v A STV | [vei1elo3d e A SV | [v21elo3y g AN Sav | [v2:1elo3y L A Sav | [v2:1E]934 0 A0 S3v [0:2]
[91:621934 2 A 53V | [01:621934 9 AIM SIV | [91:€2]034 S A STV | [91:eg]oay v A STV | [91eg]o3d € AN STV | [91'egloay g AIM SAv | [9+:62lo3y L AIM SAV | (91621934 0" AIM s3IV [8:51] .
[8:511934 2" A s3V [8:511934"9 A3 3V [8:511934°6" A3 s3V [8:511934 ¥ A s3IV [8:511939"€"A3M s3V [8:511934 2 A3 s3V [8:511934” L A S3V [8:5119347 0" A3 s3V lor:ez]
[0:21934™ 2" A3% " s3v [0:2193479"A3% " S3v [0:2193476" A% s3v [0:21934 v"AIN S3V [0:21934”€" A3 s3v [0:21934 2" A% s3v [0:21934”L"AIM " S3V [0:2193570" A% S3v vz el
[0:21934" 2" A3% s3v [0:21934”9"A3% " s3v [0:2193476" A S3v [0:21934 v"AIN S3V [0:21934"€"A3x s3v [0:21934 2" A% s3v [0:21934”L"A3% " S3v [0:21935"0" A% S3v [0:2]
[8:511934 2" A s3V [8:511934" 9 A3x 3V [8:511934" 6" AN s3V [8:511934 ¥ A s3IV [8:51]934"€" AN s3V [8:511934 2 A3 s3V [8:511934” 1AM 3V [8:5119347 0" A s3IV [8:51] .
[91:621934 2 AIM STV | [91:e2Ioad 9 AT STV | [91:e21oad GAIM SAV | [91e2]oa v AN SAV | [91e2]oay € AN SAV | [01:e2]o3y ¢ AN SAV | [01Egloqy L AIM STV | [91:62lD34 0 AN STV lo:ee]
[v2:1€1930 2 A 3V | [v21€]03d 9 AN S3V | [p2r1e]oad g A S3V | [vei1elo3d v A STV | [vei1eo3d € A SV | [vei1elo3d g AN SV | [v2i1eloay LAY S3av | (b2 hE]D3d 0 AN s3IV lvz: 1€l
[v2:1€]934 07 AIM SV | [v2:1€lo3d L AN s3IV | [p2r1eload g A s3IV | [vei1elo3d e A STV | [veiielo3d v AN SV | [v21elo3d S AN SAv | [v2:1elo3d 9 AN Sav | [v2ihelo3y 2 A sav [0:2]
[91:62)935 0 AIM S3V_ | (01621930 L A STV | [01:€2]93d 2 AIM STV | (0162039 € AN 3V | (9162930 ¥ A STV | [91:62]93d 6 AIM STV | (0162039 9 AN 3V | [91:62)93 L AIM STV l8:51] o
[8:511934 0" A3 s3V [8:511934 1L A s3IV [8:511934 2 A3 s3v [8:511934 € A s3v [8:511934 v AN s3V [8:511934 G A s3IV [8:511934 9 A 3V [8:511934 2 A3 s3V l9r:ez]
[0:219357 0 A3 s3v [0:21939” 1" A3X"s3v [0:21939 2 A3 s3v [0:21939" € A3¥ 53V [0:2193d 7" A3X"s3v [0:21935 6 A3 sav 193479" A S3Y (0939 LA sav | [vziel
[0:21935 0 A3 s3v [0:21939” 1 A3X sV [0:21935 2 A3 s3v [0:21939 € A3¥ sav [0:2193d v A3X S3v [0:21935 6 A3M s3v [0:21939”9 A3¥"s3v [0:21934 L A3 s3v [0:2]
[8:511934 0" A3M s3V [8:511934 1L A s3IV [8:511934 2 A3x s3v [8:511934 € A s3IV [8:511934 v AN S3V [8:511934 G A s3V [8:511934 9 A s3IV [8:511934 2" A3x s3v [8:51] o
[91:€21035 0 A SAV_ | [o1:e2load L A SIV | (91621930 g AIN SV | [91:62]030 € A SAV | [01:621030 v A SIV | [91:€21D38 S AIN STV | (0162030 9 A Sav | [okegload LA sav | [orez]
[p2:1€1D34 07 AIM AV | [v2i1€lo3d LA STV | [per1eload ¢ A S3V | [rei1elo3d e A STV | (e telo3d v AN SV | [veielo3d S TAIN SV | (b2 1eloay 9 AIM Sav | [beiheloay 2 A sav 5
[2Im [olm [glm [rIm m [elm [1Im lojm 19 JO3H NVIONT 3V | [1]934 NVIANT S3v
ssauuelpu3 Aoy 962-S3V :88 @lqeL
[v2:1 €034 G A S3V | [v2r1eload v A STV | [rer1elo3d e A STV | [veitelo3d g A SV | [veielo3y LAY SV | [v2iLelD3y 0" AN sav
[91:62]939 G A S3V | [91:€2]035 ¥ A SIV | (9162034 €A STV | (9162930 2 A S3V | [91:62)938 1AM SV | (941621939 0" AN S3V i .
[8:511934" ¢ A s3IV 'SLDIY v AIM s3IV [8:511934"€ A 3V [8:511934 2" AN s3v [8:511934 1AM s3IV [8:511934 0" A3 s3IV
[0:2193476" A% S3V [0:2]934 v AM S3V [0:21934"€"A3% " S3V [0:21934 2" A3x s3v [0:21934™ 1AM S3V [0:2193470"A3% S3V
[0:21934” 6" A% S3V [0:2]939 v AH S3V [0:21934"€"A3% " S3V [0:21934 2" A3x s3v [0:21934” 1A% S3V [0:21934"0"A3% " s3v
[8:511934" 6 A s3IV [8:511934 v AN s3IV [8:511934"€ A s3IV [8:511934 2" AN s3v [8:511934 1L AIM s3IV [8:511934 0" A3 s3IV [8:g1] o .
[91:62]934 G A S3V | [91:62)030 ¥ A S3V | [91:62)034 €A STV | (9162930 2 A SV | (9162934 1AM SV | [94:62)934 0" AN SV [91:¢2]
[v2:1€1030 G A STV | [vei1eload v A STV | e teload e A STV | [veielo3d g AN STV | [veielo3y L AN SV | [veiHElD3Y 0" AN SV lvz:1el
[v2:1€1034 0 AT STV | [vei1elo3d L A STV | [vei1elo3d g A STV | [veitelo3d € AN STV | [veielo3y v AIM SV | [v2iLelD3y ¢ AN Sav 2]
[91:62]934 0 A s3V_ | [91:62)030 L A S3V | [91:e2)o3d 2 A STV | [91:62)93d €AY SV | (916293 v A SV | [9+:62)934 G AIM SV [8:51] . o
(8511939 0 AN S3V | [8:GHO3Y L AP SIV | [BSHOIH 2 A SV | [BSHDIF € AIN STV | [8GHO3Y ¥ AP SIV | [BSHOIY G A S | [okied]
[0:2193470"A3% " S3V [0:2)934™ 1A% S3V [0:21934 2"A3% S3av [0:21934"€"A3x s3v [0:21934 v"A3¥ S3V [0:2193476" A3 S3v [vz:1el
[0:21934"0"A3% S3V [0:2)934™1 A S3V [0:21934 2" A% s3v [0:21934"€"A3x s3v [0:21934 v~ A3¥ S3V. [0:21934"6"A3% s3v 2]
8511939 0 AN S3V_ | [8:GHO3Y L ARSIV | [8SHOIH 2 A SV | [B'SHDIJ € AN SV | [8GHO3H ¥ AP SIV | [8:SHOIY ¢ A STV [8:61] 0 o
[91:62]034 07 AIM s3v_ | [91:€2]03d L A S3V | [91eg]oay g A STV | [91eg]o3d € A SV | (91623 v AIM SV | [9+:62]934 G AN SV [91:62]
[v2:1El0aH 0 ADI SAV | [p2iteload LA SV | e 1eloau 2 AT SV | [vEieload € A SAV | [beileload v AN SV | beileload s A sav | eilel
[sIm [rIm [em Im [Hm [ojm ug |[0]o3y NVIONTTS3V | [HO3H NVIANT Sav

ssauuelpug A8y g6 1-S3V /8 dI9eL

[v2:1ElD3y € AN 83V

A e R E NI =L

[v2:1elo3y 1AM s3IV

[v2:1ElD3H 0" A s3IV

(91621934 €A sV [91:621934 ¢ A sV [91:621934” L AIM s3IV [91:62]934 0" AN s3IV [8:51]
[8:51]935 € A SV :SHOIH 2 A SV [8:5HO3H™ L A SV [8:5HO34 0" A SV lor:ez]
[0:21934”€"A3M s3av [0:21934 2" A% s3v [0:21934”1"AIN S3V [0:2193470"A3% " S3v [vz: 1€l

[0:21934"€"A3x s3v

[0:21934 2" A3 s3v

[0:21934 1AM S3V

[0:21934 0"A3® s3v

[8:511939"€"A3M s3V

11934 2 A s3IV

[8:511934” 1AM s3IV

[8:511934” 0" A3 S3V

(91621934 €A sV 2lo3d ¢ A s3IV [91:621934” L AIM s3IV [91:62]934 0" A s3IV © f
[v2: 11939 € AN S3V £1934 ¢ A S3V [v2:1€1934™ 1AM 3V [v2:1€]9347 0" A s3IV
[vZ: 11934 0" AN s3IV €934 1AM S3V [v2:1€]934 2 A 3V [v2:1€l039" € A s3IV
(91621934 0" AN SV 2lo3d” LA s3IV [91:621934 ¢ A s3v [91:62]934 € A s3IV . o
[8:5119347 0" A3 s3V O34 1AM s3IV [8:511934 2 A3 s3v [8:511934" € A s3V
[0:2193470"A3M s3v [0:21934” 1AM S3v [0:21934 2" AN S3v [0:21934"€"A3% S3v
[0:21934” 0" A3 s3v [0:21934” LAY S3v [0:21934 2" A3% s3v [0:21934"€" A% S3V
[8:511934" 0" A3 s3V 'G1O3Y 1AM s3IV [8:511934 2 A s3v [8:511934" € A s3IV o o
[91:62)93570" A S3V [91:e2)939 ™+ A S3v [91:e2)o39 2 A sav [91:e2)o39 € AN s3v lorez)
[v2: 11934 0" AN SV [v2: 1193 1L AN 3V [v2:1€1934 ¢ AN s3IV [v2:1€]034 € A S3V [vz: 1€l
[elm lelm [Hm [o}m 19 [0]934™ NVION STV (1934 NVIONT S3v

ssauuelpu3 AsY 8Z1-S3V :98 d|qeL

ESP32 Technical Reference Manual V3.1

510

Espressif Systems

21. AES ACCELERATOR

21.3.4 Encryption and Decryption Operations

Single Operation

1. Initialize AES_MODE_REG, AES_KEY_n_REG, AES_TEXT_m_REG and AES_ENDIAN_REG.

2. Write 1 to AES_START_REG.

3. Wait until AES_IDLE_REG reads 1.

4. Read results from AES_TEXT_m_REG.

Consecutive Operations

Every time an operation is completed, only AES_TEXT_m_REG is modified by the AES Accelerator. Initialization

can, therefore, be simplified in a series of consecutive operations.

1. Update contents of AES_MODE_REG, AES_KEY_n_REG and AES_ENDIAN_REG, if required.

2. Load AES_TEXT_m_REG.
3. Write 1 to AES_START_REG.
4

. Wait until AES_IDLE_REG reads 1.

5. Read results from AES_TEXT_m_REG.

21.3.5 Speed

The AES Accelerator requires 11 to 15 clock cycles to encrypt a message block, and 21 or 22 clock cycles to

decrypt a message block.

21.4 Register Summary

Name ‘ Description Address Access
Configuration registers
AES_MODE_REG Mode of operation of the AES Accelerator Ox3FF01008 | R/W
AES _ENDIAN_REG Endianness configuration register Ox3FFO1040 | R/W
Key registers
AES _KEY_O_REG AES key material register O Ox3FFO1010 | R/W
AES_KEY_1_REG AES key material register 1 Ox3FFO1014 | R/W
AES_KEY_2_REG AES key material register 2 Ox3FFO1018 | R/W
AES_KEY_3_REG AES key material register 3 Ox3FFO101C | R/W
AES KEY_4 REG AES key material register 4 Ox3FF01020 | R/W
AES_KEY_5_REG AES key material register 5 Ox3FF01024 | R/W
AES_KEY_6_REG AES key material register 6 Ox3FF01028 | R/W
AES_KEY_7_REG AES key material register 7 Ox3FFO0102C | R/W
Encrypted/decrypted data registers
AES_TEXT_0_REG AES encrypted/decrypted data register O Ox3FF01030 | R/W
AES_TEXT_1_REG AES encrypted/decrypted data register 1 Ox3FF01034 | R/W
AES_TEXT_2_REG AES encrypted/decrypted data register 2 Ox3FF01038 | R/W
AES_TEXT_3_REG AES encrypted/decrypted data register 3 O0x3FF0103C | R/W
Control/status registers

Espressif Systems 511 ESP32 Technical Reference Manual V3.1

21. AES ACCELERATOR

Name Description Address Access

AES_START_REG AES operation start control register Ox3FFO1000 | WO

AES_IDLE_REG AES idle status register Ox3FF01004 | RO
Espressif Systems 512 ESP32 Technical Reference Manual V3.1

21. AES ACCELERATOR

21.5 Registers

Register 21.1: AES_START_REG (0x000)

/\
&& é\@
& &
E o]
‘ 0x00000000 | X ‘Reset

AES_START Write 1 to start the AES operation. (WO)

Register 21.2: AES_IDLE_REG (0x004)

) &
© ¥
@%@ ééo ’
E o]
‘ 0x00000000 | 1 ‘Reset

AES_IDLE AES Idle register. Reads "zero’ while the AES Accelerator is busy processing; reads 'one’
otherwise. (RO)

Register 21.3: AES_MODE_REG (0x008)

I O
Q
Q)%Q)é N
\§

‘31 3|2 O‘

‘ 0x00000000 | 0 ‘ Reset

AES_MODE Selects the AES accelerator mode of operation. See Table 84 for details. (R/W)

Register 21.4: AES_KEY_/_REG (n: 0-7) (0x10+4*)

‘ 0x000000000 ‘ Reset

AES_KEY_/_REG (n: 0-7) AES key material register. (R/W)

Register 21.5: AES_TEXT_/m_REG (m: 0-3) (0x30+4*m)

[|

‘ 0x000000000 \ Reset

AES_TEXT_m_REG (m: 0-3) Plaintext and ciphertext register. (R/W)

Espressif Systems 513 ESP32 Technical Reference Manual V3.1

21. AES ACCELERATOR

Register 21.6: AES_ENDIAN_REG (0x040)

%
S ¥
%Q) {\\Q) %%é
N N
’ 31 6 | 5 0 ‘
’ 0x0000000 | 111111 ‘Reset

AES_ENDIAN Endianness selection register. See Table 85 for details. (R/W)

Espressif Systems 514 ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

22. SHA Accelerator

22.1 Introduction

The SHA Accelerator is included to speed up SHA hashing operations significantly, compared to SHA hashing
algorithms implemented solely in software. The SHA Accelerator supports four algorithms of FIPS PUB 180-4,
specifically SHA-1, SHA-256, SHA-384 and SHA-512.

22.2 Features

Hardware support for popular secure hashing algorithms:
e SHA-1
e SHA-256
e SHA-384

e SHA-512

22.3 Functional Description

22.3.1 Padding and Parsing the Message

The SHA Accelerator can only accept one message block at a time. Software divides the message into blocks
according to “5.2 Parsing the Message” in FIPS PUB 180-4 and writes one block to the SHA_TEXT_n_REG
registers each time. For SHA-1 and SHA-256, software writes a 512-bit message block to SHA_TEXT_0_REG

~ SHA_TEXT_15_REG each time. For SHA-384 and SHA-512, software writes a 1024-bit message block to
SHA_TEXT_O_REG ~ SHA_TEXT_31_REG each time.

The SHA Accelerator is unable to perform the padding operation of “5.1 Padding the Message” in FIPS PUB
180-4; Note that the user software is expected to pad the message before feeding it into the accelerator.

As described in “2.2.1: Parameters” in FIPS PUB 180-4, “Méi) is the leftmost word of message block i”. Méi) is
stored in SHA_TEXT_O_REG. In the same fashion, the SHA_TEXT_1_REG register stores the second left-most

(V)
1

word of a message blockH," "/, etc.

22.3.2 Message Digest

When the hashing operation is finished, the message digest will be refreshed by SHA Accelerator and will be
stored in SHA_TEXT_n_REG. SHA-1 produces a 160-bit message digest and stores it in SHA_TEXT_O_REG ~
SHA_TEXT_4_REG. SHA-256 produces a 256-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_7_REG. SHA-384 produces a 384-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_11_REG. SHA-512 produces a 512-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_15_REG.

As described in “2.2.1 Parameters” in FIPS PUB 180-4, “H) is the final hash value, and is used to determine
the message digest”, while “Héi) is the leftmost word of hash value i”, so the leftmost word H(()N) in the message
digest is stored in SHA_TEXT_O_REG. In the same fashion, the second leftmost word Hl(N) in the message
digest is stored in SHA_TEXT_1_REG, etc.

Espressif Systems 515 ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

22.3.3 Hash Operation

There is a set of control registers for SHA-1, SHA-256, SHA-384 and SHA-512, respectively; different hashing
algorithms use different control registers.

SHA-1 uses SHA_SHA1_START_REG, SHA_SHA1_CONTINUE_REG, SHA_SHA1_LOAD_REG and
SHA_SHA1_BUSY_REG.

SHA-256 uses SHA_SHA256_START_REG, SHA_SHA256_CONTINUE_REG,

SHA_SHA256_LOAD_REG and SHA_SHA256_BUSY_REG. SHA-384 uses SHA_SHA384_START_REG,
SHA_SHA384_CONTINUE_REG, SHA_SHA384_|L OAD_REG and SHA_SHA384_BUSY_REG.

SHA-512 uses SHA_SHA512_START_REG, SHA_SHA512_CONTINUE_REG, SHA_SHA512_LOAD_REG
and SHA_SHA512_BUSY_REG. The following steps describe the operation in a detailed manner.

1. Feed the accelerator with the first message block:

(@) Use the first message block to initialize SHA_TEXT_n_REG.

(b) Write 1 to SHA_X_START_REG.

(c) Wait for SHA_X_BUSY_REG to read O, indicating that the operation is completed.
2. Similarly, feed the accelerator with subsequent message blocks:

(@) Initialize SHA_TEXT_n_REG using the subsequent message block.

(b) Write 1 to SHA_X_CONTINUE_REG.

(c) Wait for SHA_X_BUSY_REG to read 0, indicating that the operation is completed.
3. Get message digest:

(@) Write 1 to SHA_X_LOAD_REG.

(b) Wait for SHA_X_BUSY_REG to read 0, indicating that operation is completed.

(c) Read message digest from SHA_TEXT_n_REG.

22.3.4 Speed

The SHA Accelerator requires 60 to 100 clock cycles to process a message block and 8 to 20 clock cycles to
calculate the final digest.

22.4 Register Summary

Name ‘ Description Address Access
Encrypted/decrypted data registers

SHA_TEXT_O_REG SHA encrypted/decrypted data register O Ox3FFO3000 | R/W
SHA_TEXT_1_REG SHA encrypted/decrypted data register 1 Ox3FF03004 | R/W
SHA_TEXT_2_REG SHA encrypted/decrypted data register 2 Ox3FF03008 | R/W
SHA_TEXT_3_REG SHA encrypted/decrypted data register 3 Ox3FFO300C | R/W
SHA_TEXT_4_REG SHA encrypted/decrypted data register 4 O0x3FF03010 | R/W
SHA_TEXT_5_REG SHA encrypted/decrypted data register 5 Ox3FF03014 | R/W
SHA_TEXT_6_REG SHA encrypted/decrypted data register 6 0x3FF03018 | R/W
SHA_TEXT_7_REG SHA encrypted/decrypted data register 7 Ox3FF0301C | R/W

Espressif Systems 516 ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

Name Description Address Access
SHA_TEXT_8_REG SHA encrypted/decrypted data register 8 0x3FF03020 | R/W
SHA_TEXT_9_REG SHA encrypted/decrypted data register 9 Ox3FF03024 | R/W
SHA_TEXT_10_REG SHA encrypted/decrypted data register 10 0x3FF03028 | R/W
SHA_TEXT_11_REG SHA encrypted/decrypted data register 11 Ox3FF0302C | R/W
SHA_TEXT_12_REG SHA encrypted/decrypted data register 12 Ox3FF03030 | R/W
SHA_TEXT_13_REG SHA encrypted/decrypted data register 13 Ox3FF03034 | R/W
SHA_TEXT_14_REG SHA encrypted/decrypted data register 14 Ox3FF03038 | R/W
SHA_TEXT_15_REG SHA encrypted/decrypted data register 15 Ox3FF0O303C | R/W
SHA_TEXT_16_REG SHA encrypted/decrypted data register 16 Ox3FF03040 | R/W
SHA_TEXT_17_REG SHA encrypted/decrypted data register 17 Ox3FF03044 | R/W
SHA_TEXT_18_REG SHA encrypted/decrypted data register 18 Ox3FF03048 | R/W
SHA_TEXT_19_REG SHA encrypted/decrypted data register 19 Ox3FF0304C | R/W
SHA_TEXT_20_REG SHA encrypted/decrypted data register 20 Ox3FF03050 | R/W
SHA_TEXT_21_REG SHA encrypted/decrypted data register 21 Ox3FF03054 | R/W
SHA_TEXT_22_REG SHA encrypted/decrypted data register 22 Ox3FF03058 | R/W
SHA_TEXT_23_REG SHA encrypted/decrypted data register 23 Ox3FF0305C | R/W
SHA_TEXT_24_REG SHA encrypted/decrypted data register 24 Ox3FF03060 | R/W
SHA_TEXT_25_REG SHA encrypted/decrypted data register 25 Ox3FF03064 | R/W
SHA_TEXT_26_REG SHA encrypted/decrypted data register 26 Ox3FF03068 | R/W
SHA_TEXT_27_REG SHA encrypted/decrypted data register 27 Ox3FF0306C | R/W
SHA_TEXT_28_REG SHA encrypted/decrypted data register 28 Ox3FF03070 | R/W
SHA_TEXT_29_REG SHA encrypted/decrypted data register 29 Ox3FF03074 | R/W
SHA_TEXT_30_REG SHA encrypted/decrypted data register 30 Ox3FF03078 | R/W
SHA_TEXT_31_REG SHA encrypted/decrypted data register 31 0x3FF0307C | R/W
Control/status registers
SHA_SHA1_START_REG Control register to initiate SHA1 operation Ox3FF03080 | WO
SHA_SHA1_CONTINUE_REG Control register to continue SHA1 operation Ox3FF03084 | WO
SHA_SHA1_LOAD_REG Control register to calculate the final SHA1 hash | Ox3FF03088 | WO
SHA_SHA1_BUSY_REG Status register for SHA1 operation Ox3FF0308C | RO
SHA_SHA256_START_REG Control register to initiate SHA256 operation Ox3FF03090 | WO
SHA_SHA256_CONTINUE_REG | Control register to continue SHA256 operation | 0x3FF03094 | WO
Control register to calculate the final SHA256
SHA_SHA256_LOAD_REG hash Ox3FF03098 | WO
SHA_SHA256_BUSY_REG Status register for SHA256 operation Ox3FF0309C | RO
SHA_SHA384_START_REG Control register to initiate SHA384 operation Ox3FFO30A0 | WO
SHA_SHA384_CONTINUE_REG | Control register to continue SHA384 operation | Ox3FFO30A4 | WO
Control register to calculate the final SHA384
SHA_SHA384_LOAD_REG hash Ox3FFO30A8 | WO
SHA_SHA384_BUSY_REG Status register for SHA384 operation OxBFFO30AC | RO
SHA_SHA512_START_REG Control register to initiate SHA512 operation Ox3FFO30BO | WO
SHA_SHA512_CONTINUE_REG | Control register to continue SHA512 operation | Ox3FFO30B4 | WO
Control register to calculate the final SHA512
SHA_SHA512_| OAD_REG hash Ox3FFO30B8 | WO
SHA_SHA512_BUSY_REG Status register for SHA512 operation Ox3FFO30BC | RO

Espressif Systems

517

ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

22.5 Registers

Register 22.1: SHA_TEXT_n_REG (n: 0-31) (0x0+4*n)

‘ 0x000000000 \ Reset

SHA_TEXT_n_REG (n: 0-31) SHA Message block and hash result register. (R/W)

Register 22.2: SHA_SHA1_START_REG (0x080)

<
Q\
?«‘?
o s
<ZJ(A X~
@e’ N
‘ 0x00000000 | 0 ‘Reset
SHA_SHA1_START Write 1 to start an SHA-1 operation on the first message block. (WO)
Register 22.3: SHA_SHA1_CONTINUE_REG (0x084)
%
O
é\\é
5
S \e
QJ(A@ ?\/%\2\
& 2y
‘ 0x00000000 | 0 ‘Reset
SHA_SHA1_CONTINUE Write 1 to continue the SHA-1 operation with subsequent blocks. (WO)
Register 22.4: SHA_SHA1_LOAD_REG (0x088)
QO
yov
S X3
é’}\\ \od
N 9‘2‘
0

‘31 1|

‘ 0x00000000

SHA_SHA1_LOAD Write 1 to finish the SHA-1 operation to calculate the final message hash. (WO)

Espressif Systems 518 ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

Register 22.5: SHA_SHA1_BUSY_REG (0x08C)

A
=~
N4
@Q’& X
& &
[o]
‘ 0x00000000 | 0 ‘Reset
SHA_SHA1_BUSY SHA-1 operation status: 1 if the SHA accelerator is processing data, O if it is idle.
(RO)
Register 22.6: SHA_SHA256_START_REG (0x090)
A
3
&7
&
& -
@?QJ ¥
‘ 0x00000000 | 0 ‘Reset
SHA_SHA256_START Write 1 to start an SHA-256 operation on the first message block. (WO)
Register 22.7: SHA_SHA256_CONTINUE_REG (0x094)
%
&
S
bOO
(0 7/
%
é"’& 5°
& &
E o]
‘ 0x00000000 | 0 ‘Reset
SHA_SHA256_CONTINUE Write 1 to continue the SHA-256 operation with subsequent blocks. (WO)
Register 22.8: SHA_SHA256_LOAD_REG (0x098)
QO
?\
o
3
&
GQ’& -
& &
‘31 1| 0 ‘
‘ 0x00000000 | 0 ‘Reset

SHA_SHA256_LOAD Write 1 to finish the SHA-256 operation to calculate the final message hash.
(WO)

Espressif Systems 519 ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

Register 22.9: SHA_SHA256_BUSY_REG (0x09C)

&
o
> ~<\V®
%Q’Q\ \od
N %\2‘
E o]
‘ 0x00000000 | 0 ‘Reset
SHA_SHA256_BUSY SHA-256 operation status: 1 if the SHA accelerator is processing data, O if it
is idle. (RO)
Register 22.10: SHA_SHA384_START_REG (0x0A0)
A
v<2\
o’
o s
%Q‘Q\ \ad
N 23
‘31 1| 0 ‘
‘ 0x00000000 | 0 ‘Reset
SHA_SHA384_START Write 1 to start an SHA-384 operation on the first message block. (WO)
Register 22.11: SHA_SHA384_CONTINUE_REG (0x0A4)
%
N
é\\%
53
P
> N
%Q’GQ) ?‘/%
@ 23
‘ 0x00000000 | 0 ‘Reset
SHA_SHA384_CONTINUE Write 1 to continue the SHA-384 operation with subsequent blocks. (WO)
Register 22.12: SHA_SHA384_LOAD_REG (0x0AS8)
QO
5
%
S g
Q)%@Q\ \Z\?‘/
N &
E o]
‘ 0x00000000 | 0 ‘Reset

SHA_SHA384_LOAD Write 1 to finish the SHA-384 operation to calculate the final message hash.
(WO)

Espressif Systems 520 ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

Register 22.13: SHA_SHA384_BUSY_REG (0x0AC)

&
W/
o
S \el
%Q’Q\% ?‘?\2\
N %\2‘
E o]
‘ 0x00000000 | 0 ‘Reset
SHA_SHA384_BUSY SHA-384 operation status: 1 if the SHA accelerator is processing data, O if it
is idle. (RO)
Register 22.14: SHA_SHA512_START_REG (0x0B0)
A
Q>
(O’\
S \a
%Q’Q\@ /%\2\
N 23
‘31 1| 0 ‘
‘ 0x00000000 | 0 ‘Reset
SHA_SHA512_START Write 1 to start an SHA-512 operation on the first message block. (WO)
Register 22.15: SHA_SHA512_CONTINUE_REG (0x0B4)
%
§°
oS
(o’\
> N
%Q’GQ) ?‘/%
@ 23
‘ 0x00000000 | 0 ‘Reset
SHA_SHA512_CONTINUE Write 1 to continue the SHA-512 operation with subsequent blocks. (WO)
Register 22.16: SHA_SHA512_LOAD_REG (0x0B8)
QO
&
N
S Qg)
Q)%@Q\ \Z\?‘/
N &
E o]
‘ 0x00000000 | 0 ‘Reset

SHA_SHA512_LOAD Write 1 to finish the SHA-512 operation to calculate the final message hash.
(WO)

Espressif Systems 521 ESP32 Technical Reference Manual V3.1

22. SHA ACCELERATOR

Register 22.17: SHA_SHA512_BUSY_REG (0x0BC)

$
> #
Q\Q)
& S
E o]
’ 0x00000000 | 0 ‘Reset

SHA_SHA512_BUSY SHA-512 operation status: 1 if the SHA accelerator is processing data, O if it
is idle. (RO)

Espressif Systems 522 ESP32 Technical Reference Manual V3.1

23. RSA ACCELERATOR

23. RSA Accelerator

23.1 Introduction

The RSA Accelerator provides hardware support for multiple precision arithmetic operations used in RSA
asymmetric cipher algorithms.

Sometimes, multiple precision arithmetic is also called "bignum arithmetic”, "bigint arithmetic” or "arbitrary
precision arithmetic”.

23.2 Features
e Support for large-number modular exponentiation
e Support for large-number modular multiplication
e Support for large-number multiplication

e Support for various lengths of operands

23.3 Functional Description

23.3.1 Initialization

The RSA Accelerator is activated by enabling the corresponding peripheral clock, and by clearing the
DPORT_RSA_PD bit in the DPORT_RSA_PD_CTRL_REG register. This releases the RSA Accelerator from
reset.

When the RSA Accelerator is released from reset, the register RSA_CLEAN_REG reads 0 and an initialization
process begins. Hardware initializes the four memory blocks by setting them to 0. After initialization is complete,
RSA_CLEAN_REG reads 1. For this reason, software should query RSA_CLEAN_REG after being released from
reset, and before writing to any RSA Accelerator memory blocks or registers for the first time.

23.3.2 Large Number Modular Exponentiation

Large-number modular exponentiation performs Z = XY mod M. The operation is based on Montgomery
multiplication. Aside from the arguments X, Y, and M, two additional ones are needed — 7 and M’. These
arguments are calculated in advance by software.

The RSA Accelerator supports operand lengths of N € {512,1024, 1536, 2048, 2560, 3072, 3584, 4096} bits. The
bit length of arguments Z, X, Y, M, and 7 can be any one from the N set, but all numbers in a calculation must
be of the same length. The bit length of M’ is always 32.

To represent the numbers used as operands, define a base-b positional notation, as follows:

b= 2%

Espressif Systems 523 ESP32 Technical Reference Manual V3.1

23. RSA ACCELERATOR

In this notation, each number is represented by a sequence of base-b digits, where each base-b digit is a 32-bit
word. Representing an N-bit number requires n base-b digits (all of the possible N lengths are multiples of
32).

_N
T 32
Z = (Zpn-1Zn—2--Zo)s

X = (XTL—IX’IL—Q o XO)b
Y= 1Yo 2---Yoh
M = (My 1My M),

n

T = (The1Tn—2-"-To)p
Each of the n valuesin Z,,_1 ~ Zy, X1~ Xo, Y1 ~ Yy, M,,_1 ~ My, 7,,_1 ~ T represents one base-b digit (a
32-bit word).

Zn-1, Xn_1, Yn_1, M, 1 and 7,,_1 are the most significant bits of Z, X, Y, M, while Zy, Xy, Yy, My and 7y are
the least significant bits.

If we define

R=1b"

then, we can calculate the additional arguments, as follows:

7= R?> mod M (1)

M'xM+1=RxR™!
M' = M" modb

(Equation 2 is written in a form suitable for calculations using the extended binary GCD algorithm.)
Software can implement large-number modular exponentiations in the following order:
1. Write (&5 — 1) to RSA_MODEXP_MODE_REG.

512
2. Write X;, Y;, M; and 7; (i € [0,n) N N) to memory blocks RSA_X_MEM, RSA_Y_MEM, RSA_M_MEM and
RSA_Z_MEM. The capacity of each memory block is 128 words. Each word of each memory block can
store one base-b digit. The memory blocks use the little endian format for storage, i.e. the least significant
digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond
this length are ignored.

3. Write M’ to RSA_M_PRIME_REG.
4. Write 1 to RSA_MODEXP_START_REG.

5. Wait for the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or until the RSA_INTR
interrupt is generated.

6. Read the result Z; (i € [0,n) N N) from RSA_Z_MEM.
7. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, the RSA_MODEXP_MODE_REG register, memory blocks RSA_Y_MEM and RSA_M_MEM,
as well as the RSA_M_PRIME_REG will not have changed. However, X; in RSA_X_MEM and 7; in RSA_Z_MEM

Espressif Systems 524 ESP32 Technical Reference Manual V3.1

23. RSA ACCELERATOR

will have been overwritten. In order to perform another operation, refresh the registers and memory blocks, as
required.

23.3.3 Large Number Modular Multiplication

Large-number modular multiplication performs Z = X x Y mod M. This operation is based on Montgomery
multiplication. The same values 7 and M’ are derived by software using the formulas 1 and 2 shown
above.

The RSA Accelerator supports large-number modular multiplication with eight different operand lengths, which
are the same as in the large-number modular exponentiation. The operation is performed by a combination of
software and hardware. The software performs two hardware operations in sequence.

The software process is as follows:
1. Write (% — 1) to RSA_MULT_MODE_REG.

2. Write X;, M; and 7; (i € [0,n) N N) to registers RSA_X_MEM, RSA_M_MEM and RSA_Z_MEM. Write data
to each memory block only according to the length of the number. Data beyond this length are ignored.

3. Write M’ to RSA_M_PRIME_REG.
4. Write 1 to RSA_MULT_START_REG.

5. Wait for the first round of the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or
until the RSA_INTR interrupt is generated.

6. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.
7. Write Y; (i € [0,n) N N) to RSA_X_MEM.

Users need to write to the memory block only according to the length of the number. Data beyond this
length are ignored.

8. Write 1 to RSA_MULT_START_REG.

9. Wait for the second round of the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or
until the RSA_INTR interrupt is generated.

10. Read the result Z; (i € [0,n) N N) from RSA_Z_MEM.
11. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, the RSA_MULT_MODE_REG register, and memory blocks RSA_M_MEM and
RSA_M_PRIME_REG remain unchanged. Users do not need to refresh these registers or memory blocks if the
values remain the same.

23.3.4 Large Number Multiplication

Large-number multiplication performs Z = X x Y. The length of Z is twice that of X and Y. Therefore, the RSA
Accelerator supports large-number multiplication with only four operand lengths of N € {512, 1024, 1536, 2048}
bits. The length N of the result Z is 2 x N bits.

Operands X and Y need to be extended to form arguments X and Y which have the same length (V bits) as

Espressif Systems 525 ESP32 Technical Reference Manual V3.1

23. RSA ACCELERATOR

the result Z. X is left-extended and Y is right-extended, and defined as follows:

N
n=_-
32
N=2xN
N)
n=—=2mn
32

n

X =Xa1XioXo)p=(00---0X), = (00---0 X, 1 X2 Xo)p

n

Y = (yﬁflyﬁi2 e Yo)b = (Y 00 - ..())b = (Yn71Yn72 -~ Y500 “0)17

n

Software performs the operation in the following order:

1. Write (£ — 1+ 8) to RSA_MULT_MODE_REG.

n

2. Write X; and V; (i € [0,72) NN) to RSA_X_MEM and RSA_Z_MEM, respectively.

Write the valid data into each number’s memory block, according to their lengths. Values beyond this

length are ignored. Half of the base-b positional notations written to the memory are zero (using the
derivations shown above). These zero values are indispensable.

3. Write 1 to RSA_MULT_START_REG.

4. Wait for the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or until the RSA_INTR

interrupt is generated.
5. Read the result Z; (i € [0,7) NN) from RSA_Z_MEM.

6. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, only the RSA_MULT_MODE_REG register remains unmodified.

23.4 Register Summary

Name ‘ Description ‘ Address ‘ Access
Configuration registers

RSA_M_PRIME_REG | Register to store M | Ox3FF02800 | R/W
Modular exponentiation registers

RSA_MODEXP_MODE_REG Modular exponentiation mode Ox3FF02804 | R/W
RSA_MODEXP_START_REG Start bit Ox3FF02808 | WO
Modular multiplication registers

RSA_MULT_MODE_REG Modular multiplication mode Ox3FF0280C | R/W
RSA_MULT_START_REG Start bit Ox3FF02810 | WO
Misc registers

RSA_INTERRUPT_REG RSA interrupt register Ox3FF02814 | R/W
RSA_CLEAN_REG RSA clean register Ox3FF02818 | RO

Espressif Systems 526

ESP32 Technical Reference Manual V3.1

23. RSA ACCELERATOR

23.5 Registers

Register 23.1: RSA_M_PRIME_REG (0x800)

‘ 0x000000000 \ Reset

RSA_M_PRIME_REG This register contains M’. (R/W)

Register 23.2: RSA_MODEXP_MODE_REG (0x804)

<&
&
Q /s
&

)
Qzéq} ?§¥o
®

‘31 3|2 O‘

‘ooooooooooooooooooooooooooooo|ooo‘Reset

RSA_MODEXP_MODE This register contains the mode of modular exponentiation. (R/W)

Register 23.3: RSA_MODEXP_START_REG (0x808)

E 1]

‘ooooooooooooooooooooooooooooooo|o‘Reset

RSA_MODEXP_START Write 1 to start modular exponentiation. (WO)

Register 23.4: RSA_MULT_MODE_REG (0x80C)

I 0\/
@

Q@e A\
&

RSA_MULT_MODE This register contains the mode of modular multiplication and multiplication.
(R/W)

Espressif Systems 527 ESP32 Technical Reference Manual V3.1

23. RSA ACCELERATOR

Register 23.5: RSA_MULT_START_REG (0x810)

RSA_MULT_START Write 1 to start modular multiplication or multiplication. (WO)

Register 23.6: RSA_INTERRUPT_REG (0x814)

‘31 1|0‘

‘ooooooooooooooooooooooooooooooo|o‘Reset

RSA_INTERRUPT RSA interrupt status register. Will read 1 once an operation has completed. (R/W)

Register 23.7: RSA_CLEAN_REG (0x818)

Q
> &

Q%QJQ\ /
\

RSA_CLEAN This bit will read 1 once the memory initialization is completed. (RO)

Espressif Systems 528 ESP32 Technical Reference Manual V3.1

24. RANDOM NUMBER GENERATOR

24. Random Number Generator

24.1 Introduction

The ESP32 contains a true random number generator, whose values can be used as a basis for cryptographical
operations, among other things.

24.2 Feature

It can generate true random numbers.

24.3 Functional Description

When used correctly, every 32-bit value the system reads from the RNG_DATA_REG register of the random
number generator is a true random number. These true random numbers are generated based on the noise in
the Wi-Fi/BT RF system. When Wi-Fi and BT are disabled, the random number generator will give out
pseudo-random numbers.

When Wi-Fi or BT is enabled, the random number generator is fed two bits of entropy every APB clock cycle
(normally 80 MHz). Thus, for the maximum amount of entropy, it is advisable to read the random register at a
maximum rate of 5 MHz.

A data sample of 2 GB, read from the random number generator with Wi-Fi enabled and the random register
read at 5 MHz, has been tested using the Dieharder Random Number Testsuite (version 3.31.1). The sample
passed all tests.

24.4 Register Summary

Name Description Address Access
RNG_DATA_REG Random number data Ox3FF75144 RO

24.5 Register

Register 24.1: RNG_DATA_REG (0x144)

’ 0x000000000 ‘ Reset

RNG_DATA_REG Random number source. (RO)

Espressif Systems 529 ESP32 Technical Reference Manual V3.1

25. FLASH ENCRYPTION/DECRYPTION

25. Flash Encryption/Decryption

25.1 Overview

Many variants of the ESP32 must store programs and data in external flash memory. The external flash memory
chip is likely to contain proprietary firmware and sensitive user data, such as credentials for gaining access to a
private network. The Flash Encryption block can encrypt code and write encrypted code to off-chip flash
memory for enhanced hardware security. When the CPU reads off-chip flash through the cache, the Flash
Decryption block can automatically decrypt instructions and data read from the off-chip flash, thus providing

hardware-based security for application code.

25.2 Features
e Various key generation methods
e Software-based encryption
e High-speed, hardware decryption

e Register configuration, system parameters and boot mode jointly determine the flash encryption/decryption

function.

25.3 Functional Description

Flash
Encryption/Decryption
DPORT_SPI_DECRYPT_ENABLE >
FIash_
Encryption
download_dis_encrypt
[]
[%]
5
3 X
<<
coding_scheme
i _ Booting Mode |
DPort Register Booting Mode Key BLOCK - Efuse Controller
Generator flash_crypt_config
[]
3 =
=)
3 X
<
flash_crypt_cnt
Flash
Decryption
DPORT_SPI_DECRYPT_ENABLE download_dis_decrypt

Figure 122: Flash Encryption/Decryption Module Architecture

The Flash Encryption/Decryption module consists of three parts, namely the Key Generator, Flash Encryption
block and Flash Decryption block. The structure of these parts is shown in Figure 122. The Key Generator is

Espressif Systems 530 ESP32 Technical Reference Manual V3.1

25. FLASH ENCRYPTION/DECRYPTION

shared by both the Flash Encryption block and the Flash Decryption block, which can function
simultaneously.

In the peripheral DPort Register, the register relevant to Flash Encryption/Decryption is
DPORT_SPI_ENCRYPT_ENABLE bit and DPORT_SPI_DECRYPT_ENABLE bit in
DPORT_SLAVE_SPI_CONFIG_REG. The Flash Encryption/Decryption module will fetch six system parameters
from the peripheral eFuse Controller. These parameters are: coding_scheme, BLOCK1, flash_crypt_config,
download_dis_encrypt, flash_crypt_cnt, and download_dis_decrypt.

25.3.1 Key Generator

According to system parameters coding_scheme and BLOCK1, the Key Generator will first generate
Key, = f(coding_scheme, BLOCK]1).

Then, according to system parameter flash_crypt_config, and off-chip flash physical addresses Addr. and Addr
accessed by the Flash Encryption block and the Flash Decryption block, the Key Generator will respectively figure
out that:

Key. = g(Key,, flash_crypt_con fig, Addr.),

Keyq = g(Key,, flash_crypt_config, Addrg).

When all values of system parameter flash_crypt_config are 0, Key. and Keyy are not relevant to the physical
address of the off-chip flash. When all values of system parameter flash_crypt_config are not O, every 8-word
block on the off-chip flash has a dedicated Key. and Keyg.

25.3.2 Flash Encryption Block

The Flash Encryption block is equipped with registers that can be accessed by the CPU directly. Registers
embedded in the Flash Encryption block, registers in the peripheral DPort Register, system parameters and Boot
Mode jointly configure and control this block.

The Flash Encryption block requires software intervention during operation. The steps are as follows:
1. Set the DPORT_SPI_ENCRYPT_ENABLE bit of register DPORT_SLAVE_SPI_CONFIG_REG.

2. Write the physical address prepared for the off-chip flash on register FLASH_ENCRYPT_ADDRESS_REG.
The address must be 8-word boundary aligned.

3. The Flash Encryption block must encrypt 8-word long code segments. Write the lowest word to register
FLASH_ENCRYPT_BUFFER_O_REG, the second-lowest word into FLASH_ENCRYPT_BUFFER_1_REG,
and so on, up to FLASH_ENCRYPT_BUFFER_7_REG.

4. Set the FLASH_START bit in FLASH_ENCRYPT_START_REG.
5. Wait for the FLASH_DONE bit to be set in FLASH_ENCRYPT_DONE_REG.

6. Use this function and write any 8-word code to the 8-word aligned address on the off-chip flash via the
peripheral SPIO.

In Steps 1 to 5, the Flash Encryption block encrypts 8-word long codes. The key encryption algorithm uses
Key.. The encryption result will also be 8-word long. In Step 6, the peripheral SPIO writes encrypted results of
the Flash Encryption block to the off-chip flash. One parameter of the function used in Step 6 will be the physical
address of the off-chip flash. The physical address must be 8-word boundary aligned. Also, the value must be
the same as the value written into register FLASH_ENCRYPT_ADDRESS_REG during Step 2. Even though the
function used in Step 6 still has a parameter with an 8-word long code, the parameter will be meaningless if

Espressif Systems 531 ESP32 Technical Reference Manual V3.1

25. FLASH ENCRYPTION/DECRYPTION

Steps 1 to 5 are executed. The Peripheral SPIO will use the encrypted result instead. If the Flash Encryption
block is not operating, or has not executed Steps 1 to 5, Step 6 will not use the encrypted result. Instead, the
function parameter will be used.

Flash Encryption Operating Conditions:
e During SPI Flash Boot

If the DPORT_SPI_ENCRYPT_ENABLE bit of register DPORT_SLAVE_SPI_CONFIG_REG is 1, the Flash
Encryption block is operational. Otherwise, it is not.

e During Download Boot

If the DPORT_SPI_ENCRYPT_ENABLE bit of register DPORT_SLAVE_SPI_CONFIG_REG is 1, and system
parameter download_dis_encrypt is 0, the Flash Encryption block is operational. Otherwise, it is not.

Even though software participates in the whole process, it cannot directly read the encrypted codes. Instead, the
encrypted codes are integrated into the off-chip flash. Even though the CPU can skip the cache and get the
encrypted code directly by reading the off-chip flash, the software can by no means access Key,.

25.3.3 Flash Decryption Block

Flash Decryption is not a conventional peripheral, and is not equipped with registers. Therefore, the CPU cannot
directly access the Flash Decryption block. The Peripheral DPort Register, system parameters and Booting Mode
jointly control and configure the Flash Decryption block.

When the Flash Decryption block is operating, the CPU will read instructions and data from the off-chip flash via
the cache. The Flash Decryption block automatically decrypts the instructions and data in the cache. The entire
decryption process does not need software intervention and is transparent to the cache. The decryption
algorithm can decrypt the code that has been encrypted by the Flash Encryption block. Software cannot access
the key algorithm Keyy used.

When the Flash Encryption block is not operating, it does not have any effect on the contents stored in the
off-chip flash, be they encrypted or unencrypted. What the CPU reads via the cache is the original information
stored in the off-chip flash.

Flash Encryption Operating Conditions:
e During SPI Flash Boot

In the low 7 bits of flash_crypt_cnt, if the number of value 1 is odd, the Flash Decryption block is
operational. Otherwise, it is not.

e During Download Boot

If the DPORT_SPI_DECRYPT_ENABLE bit in DPORT_SLAVE_SPI_CONFIG_REG is 1, and system
parameter download_dis_decrypt is 0, the Flash Decryption block is operational. Otherwise, it is not.

25.4 Register Summary

Name Description Address Access
FLASH_ENCRYPTION_BUFFER_O_REG Flash encryption buffer register 0 | Ox3FF5B000 | WO
FLASH_ENCRYPTION_BUFFER_1_REG Flash encryption buffer register 1 | Ox8FF5B004 | WO
FLASH_ENCRYPTION_BUFFER_2_REG Flash encryption buffer register 2 | 0x3FF5B008 | WO

Espressif Systems 532 ESP32 Technical Reference Manual V3.1

25. FLASH ENCRYPTION/DECRYPTION

Name Description Address Access
FLASH_ENCRYPTION_BUFFER_3_REG Flash encryption buffer register 3 | Ox8FF5BO0C | WO
FLASH_ENCRYPTION_BUFFER_4_REG Flash encryption buffer register 4 | Ox3FF5B010 | WO
FLASH_ENCRYPTION_BUFFER_5_REG Flash encryption buffer register 5 | Ox8FF5B014 | WO
FLASH_ENCRYPTION_BUFFER_6_REG Flash encryption buffer register 6 | Ox3FF5B018 | WO
FLASH_ENCRYPTION_BUFFER_7_REG Flash encryption buffer register 7 | Ox8FF5B01C | WO
FLASH_ENCRYPTION_START_REG Encrypt operation control register | Ox3FF5B020 | WO
FLASH_ENCRYPTION_ADDRESS_REG External flash address register Ox3FF5B024 | WO
FLASH_ENCRYPTION_DONE_REG Encrypt operation status register | Ox8FF5B028 | RO

Espressif Systems 533 ESP32 Technical Reference Manual V3.1

25. FLASH ENCRYPTION/DECRYPTION

25.5 Register

Register 25.1: FLASH_ENCRYPTION_BUFFER__REG (1: 0-7) (0x0+4*n)

‘ 0x000000000 \ Reset

FLASH_ENCRYPTION_BUFFER_n_REG Data buffers for encryption. (WO)

Register 25.2: FLASH_ENCRYPTION_START_REG (0x020)

Q@é\ %\2\ 7
& Q\y
\§

FLASH_START Set this bit to start encryption operation on data buffer. (WO)

Register 25.3: FLASH_ENCRYPTION_ADDRESS_REG (0x024)

‘31 O‘

‘ 0x000000000 ‘ Reset

FLASH_ENCRYPTION_ADDRESS_REG The physical address on the off-chip flash must be 8-word
boundary aligned. (WO)

Register 25.4: FLASH_ENCRYPTION_DONE_REG (0x028)

&

Q)& Oe

eQ’é =
N &

[o]

‘ooooooooooooooooooooooooooooooo|o‘Reset

FLASH_DONE Set this bit when encryption operation is complete. (RO)

Espressif Systems 534 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

26. PID/MPU/MMU

26.1 Introduction

Every peripheral and memory section in the ESP32 is accessed through either an MMU (Memory Management
Unit) or an MPU (Memory Protection Unit). An MPU can allow or disallow the access of an application to a
memory range or peripheral, depending on what kind of permission the OS has given to that particular
application. An MMU can perform the same operation, as well as a virtual-to-physical memory address
translation. This can be used to map an internal or external memory range to a certain virtual memory area.
These mappings can be application-specific. Therefore, each application can be adjusted and have the memory
configuration that is necessary for it to run properly. To differentiate between the OS and applications, there are
eight Process Identifiers (or PIDs) that each application, or OS, can run. Furthermore, each application, or OS, is
equipped with their own sets of mappings and rights.

26.2 Features
e Eight processes in each of the PRO_CPU and APP_CPU

MPU/MMU management of on-chip memories, off-chip memories, and peripherals, based on process ID

On-chip memory management by MPU/MMU

Off-chip memory management by MMU

e Peripheral management by MPU

26.3 Functional Description

26.3.1 PID Controller

In the ESP32, a PID controller acts as an indicator that signals the MMU/MPU the owner PID of the code that is
currently running. The intention is that the OS updates the PID in the PID controller every time it switches context
to another application. The PID controller can detect interrupts and automatically switch PIDs to that of the OS, if
so configured.

There are two peripheral PID controllers in the system, one for each of the two CPUs in the ESP32. Having a PID
controller per CPU allows running different processes on different CPUSs, if so desired.

Espressif Systems 535 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

26.3.2 MPU/MMU

The MPU and MMU manage on-chip memories, off-chip memories, and peripherals. To do this they are based
on the process of accessing the peripheral or memory region. More specifically, when a code tries to access a
MMU/MPU-protected memory region or peripheral, the MMU or MPU will receive the PID from the PID generator
that is associated with the CPU on which the process is running.

For on-chip memory and peripherals, the decisions the MMU and MPU make are only based on this PID,
whereas the specific CPU the code is running on is not taken into account. Subsequently, the MMU/MPU
configuration for the internal memory and peripherals allows entries only for the eight different PIDs. In contrast,
the MMU moderating access to the external memory takes not only the PID into account, but also the CPU the
request is coming from. This means that MMUs have configuration options for every PID when running on the
APP_CPU, as well as every PID when running on the PRO_CPU. While, in practice, accesses from both CPUs
will be configured to have the same result for a specific process, doing so is not a hardware requirement.

The decision an MPU can make, based on this information, is to allow or deny a process to access the memory
region or peripheral. An MMU has the same function, but additionally it redirects the virtual memory access, which
the process acquired, into a physical memory access that can possibly reach out an entirely different physical
memory region. This way, MMU-governed memory can be remapped on a process-by-process basis.

26.3.2.1 Embedded Memory

The on-chip memory is governed by fixed-function MPUs, configurable MPUs, and MMUs:

Table 94: MPU and MMU Structure for Internal Memory

: Address range
Name Size Governed by
From To

ROMO 384 KB 0x4000_0000 0x4005_FFFF Static MPU
ROMH1 64 KB Ox3FF9_0000 Ox3FF9_FFFF Static MPU

64 KB 0x4007_0000 0x4007_FFFF Static MPU
SRAMO 128 KB 0x4008_0000 0x4009_FFFF SRAMO MMU

128 KB Ox3FFE_0000 Ox3FFF_FFFF Static MPU
SRAM1 (aliases) 128 KB 0x400A_0000 Ox400B_FFFF Static MPU

32 KB 0x4000_0000 0x4000_7FFF Static MPU
SRAM2 72 KB Ox3FFA_EO0O Ox3FFB_FFFF Static MPU

128 KB O0x3FFC_0000 Ox3FFD_FFFF SRAM2 MMU

, 8 KB Ox3FF8_0000 Ox3FF8_1FFF RTC FAST MPU

RTC FAST (aliases)

8 KB 0x400C_0000 Ox400C_1FFF RTC FAST MPU
RTC SLOW 8 KB 0x5000_0000 0x5000_1FFF RTC SLOW MPU

Static MPUs

ROMO, ROMA1, the lower 64 KB of SRAMO, SRAM1 and the lower 72 KB of SRAM2 are governed by a static
MPU. The behaviour of these MPUs are hardwired and cannot be configured by software. They moderate access

to the memory region solely through the PID of the current process. When the PID of the process is O or 1, the

memory can be read (and written when it is RAM) using the addresses specified in Table 94. When itis 2 ~ 7, the

memory cannot be accessed.

Espressif Systems

536

ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

RTC FAST & RTC SLOW MPU

The 8 KB RTC FAST Memory as well as the 8 KB of RTC SLOW Memory are governed by two configurable
MPUs. The MPUs can be configured to allow or deny access to each individual PID, using the
RTC_CNTL_RTC_PID_CONFIG_REG and DPORT_AHBLITE_MPU_TABLE_RTC_REG registers. Setting a bit in
these registers will allow the corresponding PID to read or write from the memory; clearing the bit disallows
access. Access for PID 0 and 1 to RTC SLOW memory cannot be configured and is always enabled. Table 95
and 96 define the bit-to-PID mappings of the registers.

Table 95: MPU for RTC FAST Memory

Boundary address Authority
Size PID
Low High
RTC_CNTL_RTC_PID_CONFIG bit
8 KB Ox3FF8_0000 Ox3FF8_1FFF 01234567
8 KB 0x400C_0000 O0x400C_1FFF 01234567

Table 96: MPU for RTC SLOW Memory

Boundary address Authority
Size PID
Low High PID = 0/1 ;
DPORT_AHBLITE_MPU_TABLE_RTC_REG bit
8 KB 0x5000_0000 | 0x5000_1FFF | Read/Write 284567
012345

Register RTC_CNTL_RTC_PID_CONFIG_REG is part of the RTC peripheral and can only be modified by
processes with a PID of 0; register DPORT_AHBLITE_MPU_TABLE_RTC_REG is a Dport register and can be
changed by processes with a PID of 0 or 1.

SRAMO and SRAM2 upper 128 KB MMUs

Both the upper 128 KB of SRAMO and the upper 128 KB of SRAM2 are governed by an MMU. Not only can
these MMUs allow or deny access to the memory they govern (just like the MPUs do), but they are also capable
of translating the address a CPU reads from or writes to (which is a virtual address) to a possibly different address
in memory (the physical address).

In order to accomplish this, the internal RAM MMUs divide the memory range they govern into 16 pages. The
page size is configurable as 8 KB, 4 KB and 2 KB. When the page size is 8 KB, the 16 pages span the entire 128
KB memory region; when the page size is 4 KB or 2 KB, a non-MMU-covered region of 64 or 96 KB,
respectively, will exist at the end of the memory space. Similar to the virtual and physical addresses, it is also
possible to imagine the pages as having a virtual and physical component. The MMU can convert an address
within a virtual page to an address within a physical page.

For PID 0 and 1, this mapping is 1-to-1, meaning that a read from or write to a certain virtual page will always be
converted to a read from or write to the exact same physical page. This allows an operating system, running
under PID 0 and/or 1, to always have access to the entire physical memory range.

For PID 2 to 7, however, every virtual page can be reconfigured, on a per-PID basis, to map to a different physical
page. This way, reads and writes to an offset within a virtual page get translated into reads and writes to the

Espressif Systems 537 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

same offset within a different physical page. This is illustrated in Figure 123: the CPU (running a process with a
PID between 2 to 7) tries to access memory address Ox3FFC_2345. This address is within the virtual Page 1
memory region, at offset 0x0345. The MMU is instructed that for this particular PID, it should translate an access
to virtual page 1 into physical Page 2. This causes the memory access to be redirected to the same offset as the
virtual memory access, yet in Page 2, which results in the effective access of physical memory address
Ox3FFC_4345. The page size in this example is 8 KB.

CPU VIRTUAL MMU PHYSICAL
3FFC_0000 3FFC_0000

PAGE 0 PAGE 0
3FFC_2000 3FFC_2000

3FFC_2345 | pAGE-1---------------frmooemeeeo oo ' PAGE 1
3FFC_4000 5 3FFC 4345 3FFC_4000

PAGE2 | | Rt E »{ PAGE 2
FFC_6000 FFC_6000
FFD_E000 FFD_E000

PAGE 15 PAGE 15

FFE_0000 FFE_0000

Figure 123: MMU Access Example

Table 97: Page Mode of MMU for the Remaining 128 KB of Internal SRAMO0 and SRAM2

DPORT_IMMU_PAGE_MODE DPORT_DMMU_PAGE_MODE Page size
0 0 8 KB
1 1 4 KB
2 2 2 KB

Non-MMU Governed Memory

For the MMU-managed region of SRAMO and SRAM2, the page size is configurable as 8 KB, 4 KB and 2 KB.
The configuration is done by setting the DPORT_IMMU_PAGE_MODE (for SRAMO) and
DPORT_DMMU_PAGE_MODE (for SRAM2) bits in registers DPORT_IMMU_PAGE_MODE_REG and
DPORT_DMMU_PAGE_MODE_REG, as detailed in Table 97. Because the number of pages for either region is
fixed at 16, the total amount of memory covered by these pages is 128 KB when 8 KB pages are selected, 64
KB when 4 KB pages are selected, and 32 KB when 2 KB pages are selected. This implies that for 8 KB pages,
the entire MMU-managed range is used, but for the other page sizes there will be a part of the 128 KB memory
that will not be governed by the MMU settings. Concretely, for a page size of 4 KB, these regions are
0x4009_0000 to 0x4009_FFFF and Ox3FFD_0000 to Ox3FFD_FFFF; for a page size of 2 KB, the regions are
0x4008_8000 to 0x4009_FFFF and 0x3FFC_8000 to Ox3FFD_FFFF. These ranges are readable and writable by
processes with a PID of O or 1; processes with other PIDs cannot access this memory.

The layout of the pages in memory space is linear, namely, an SRAMO MMU page n covers address space
0240080000 + (pagesize) to 0240080000 + (pagesize * (N + 1) — 1); similarily, an SRAM2 MMU page n covers
023F FC0000 + (pagesize * n) to 023 F FC0000 + (pagesize % (N + 1) — 1). Tables 98 and 99 show the resulting
addresses in full.

Espressif Systems 538 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

Table 98: Page Boundaries for SRAM0 MMU

Page 8 KB Pages 4 KB Pages 2 KB Pages
Bottom Top Bottom Top Bottom Top
0 40080000 40081FFF 40080000 40080FFF 40080000 400807FF
1 40082000 40083FFF 40081000 40081FFF 40080800 40080FFF
2 40084000 40085FFF 40082000 40082FFF 40081000 400817FF
3 40086000 40087FFF 40083000 40083FFF 40081800 40081FFF
4 40088000 40089FFF 40084000 40084FFF 40082000 400827FF
5 4008A000 4008BFFF 40085000 40085FFF 40082800 40082FFF
6 4008C000 4008DFFF 40086000 40086FFF 40083000 400837FF
7 4008E000 4008FFFF 40087000 40087FFF 40083800 40083FFF
8 40090000 40091FFF 40088000 40088FFF 40084000 400847FF
9 40092000 40093FFF 40089000 40089FFF 40084800 40084FFF
10 40094000 40095FFF 4008A000 4008AFFF 40085000 400857FF
11 40096000 40097FFF 4008B000 4008BFFF 40085800 40085FFF
12 40098000 40099FFF 4008C000 4008CFFF 40086000 400867FF
13 4009A000 4009BFFF 4008D000 4008DFFF 40086800 40086FFF
14 4009C000 4009DFFF 4008E000 4008EFFF 40087000 400877FF
15 4009E000 4009FFFF 4008F000 4008FFFF 40087800 40087FFF
Rest - - 40090000 4009FFFF 4008800 4009FFFF
Table 99: Page Boundaries for SRAM2 MMU
Page 8 KB Pages 4 KB Pages 2 KB Pages
Bottom Top Bottom Top Bottom Top
0 3FFCO0000 3FFC1FFF 3FFC0000 3FFCOFFF 3FFC0000 3FFCO7FF
1 3FFC2000 3FFC3FFF 3FFC1000 3FFC1FFF 3FFC0800 3FFCOFFF
2 3FFC4000 3FFC5FFF 3FFC2000 3FFC2FFF 3FFC1000 3FFC17FF
3 3FFC6000 3FFC7FFF 3FFC3000 3FFC3FFF 3FFC1800 3FFC1FFF
4 3FFC8000 3FFCOFFF 3FFC4000 3FFCAFFF 3FFC2000 3FFC27FF
5 3FFCAQ00 3FFCBFFF 3FFC5000 3FFC5FFF 3FFC2800 3FFC2FFF
6 3FFCCO000 3FFCDFFF 3FFC6000 3FFC6FFF 3FFC3000 3FFC37FF
7 3FFCEO00 3FFCFFFF 3FFC7000 3FFC7FFF 3FFC3800 3FFC3FFF
8 3FFD0000 3FFD1FFF 3FFC8000 3FFC8FFF 3FFC4000 3FFC47FF
9 3FFD2000 3FFD3FFF 3FFC9000 3FFCOFFF 3FFC4800 3FFC4FFF
10 3FFD4000 3FFD5FFF 3FFCA000 3FFCAFFF 3FFC5000 3FFC57FF
11 3FFD6000 3FFD7FFF 3FFCBO000 3FFCBFFF 3FFC5800 3FFC5FFF
12 3FFD8000 3FFD9FFF 3FFCC000 3FFCCFFF 3FFC6000 3FFCB7FF
13 3FFDAOOO 3FFDBFFF 3FFCDO000 3FFCDFFF 3FFC6800 3FFC6FFF
14 3FFDC000 3FFDDFFF 3FFCEO00 3FFCEFFF 3FFC7000 3FFC77FF
15 3FFDEOOO 3FFDFFFF 3FFCFO00 3FFCFFFF 3FFC7800 3FFC7FFF
Rest - - 3FFD0O000 3FFDFFFF 3FFC8000 3FFDFFFF
Espressif Systems 539 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

MMU Mapping

For each of the SRAMO and SRAM2 MMUs, access rights and virtual to physical page mapping are done by a
set of 16 registers. In contrast to most of the other MMUs, each register controls a physical page, not a virtual
one. These registers control which of the PIDs have access to the physical memory, as well as which virtual page
maps to this physical page. The bits in the register are described in Table 100. Keep in mind that these registers
only govern accesses from processes with PID 2 to 7; PID O and 1 always have full read and write access to all
pages and no virtual-to-physical mapping is done. In other words, if a process with a PID of 0 or 1 accesses
virtual page x, the access will always go to physical page x, regardless of these register settings. These registers,
as well as the page size selection registers DPORT_IMMU_PAGE_MODE_REG and
DPORT_DMMU_PAGE_MODE_REG, are only writable from a process with PID O or 1.

Table 100: DPORT_DMMU_TABLEn_REG & DPORT_IMMU_TABLE"_REG

[6:4] | Access rights for PID 2 ~ 7 [3:0] | Address authority

0 None of PIDs 2 ~ 7 have access. || 0x00 Virtual page 0 accesses this physical page.
1 All of PIDs 2 ~ 7 have access. 0x01 Virtual page 1 accesses this physical page.
2 Only PID 2 has access. 0x02 Virtual page 2 accesses this physical page.
3 Only PID 3 has access. 0x03 Virtual page 3 accesses this physical page.
4 Only PID 4 has access. 0x04 Virtual page 4 accesses this physical page.
5 Only PID 5 has access. 0x05 Virtual page 5 accesses this physical page.
6 Only PID 6 has access. 0x06 Virtual page 6 accesses this physical page.
7 Only PID 7 has access. 0x07 Virtual page 7 accesses this physical page.

0x08 Virtual page 8 accesses this physical page.
0x09 Virtual page 9 accesses this physical page.
0x10 Virtual page 10 accesses this physical page.

Ox11 Virtual page 11 accesses this physical page.

Ox12 Virtual page 12 accesses this physical page.

0x13 Virtual page 13 accesses this physical page.

Ox14 Virtual page 14 accesses this physical page.

Ox15 Virtual page 15 accesses this physical page.

Differences Between SRAMO and SRAM2 MMU

The memory governed by the SRAMO MMU is accessed through the processors I-bus, while the processor
accesses the memory governed by the SRAM2 MMU through the D-bus. Thus, the normal envisioned use is for
the code to be stored in the SRAMO MMU pages and data in the MMU pages of SRAM2. In general, applications
running under a PID of 2 to 7 are not expected to modify their own code, because for these PIDs access to the
MMU pages of SRAMO is read-only. These applications must, however, be able to modify their data section, so
that they are allowed to read as well as write MMU pages located in SRAM2. As stated before, processes
running under PID O or 1 always have full read-and-write access to both memory ranges.

DMA MPU

Applications may want to configure the DMA to send data straight from or to the peripherals they can control.
With access to DMA, a malicious process may also be able to copy data from or to a region it cannot normally

Espressif Systems 540 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

access. In order to be secure against that scenario, there is a DMA MPU which can be used to disallow DMA
transfers from memory regions with sensitive data in them.

For each 8 KB region in the SRAM1 and SRAM2 regions, there is a bit in the DPORT_AHB_MPU_TABLE_n_REG
registers which tells the MPU to either allow or disallow DMA access to this region. The DMA MPU uses only
these bits to decide if a DMA transfer can be started; the PID of the process is not a factor. This means that
when the OS wants to restrict its processes in a heterogenous fashion, it will need to re-load these registers with
the values applicable to the process to be run on every context switch.

The register bits that govern access to the 8 KB regions are detailed in Table 101. When a register bit is set, DMA
can read/write the corresponding 8 KB memory range. When the bit is cleared, access to that memory range is

denied.

Table 101: MPU for DMA

Size Boundary address Authority

Low High Register Bit

Internal SRAM 2
8 KB Ox3FFA_EO00 OX3FFA_FFFF DPORT_AHB_MPU_TABLE_O_REG 0
8 KB Ox3FFB_0000 OX3FFB_1FFF DPORT_AHB_MPU_TABLE_O_REG 1
8 KB Ox3FFB_2000 Ox3FFB_3FFF DPORT_AHB_MPU_TABLE_O_REG 2
8 KB Ox3FFB_4000 Ox3FFB_5FFF DPORT_AHB_MPU_TABLE_O_REG 3
8 KB Ox3FFB_6000 OX3FFB_7FFF DPORT_AHB_MPU_TABLE_O_REG 4
8 KB Ox3FFB_8000 OX3FFB_9FFF DPORT_AHB_MPU_TABLE_O_REG 5
8 KB Ox3FFB_A000 Ox3FFB_BFFF DPORT_AHB_MPU_TABLE_O_REG 6
8 KB Ox3FFB_C000 Ox3FFB_DFFF DPORT_AHB_MPU_TABLE_O_REG 7
8 KB Ox3FFB_E000 Ox3FFB_FFFF DPORT_AHB_MPU_TABLE_O_REG 8
8 KB Ox3FFC_0000 OXBFFC_1FFF DPORT_AHB_MPU_TABLE_O_REG 9
8 KB Ox3FFC_2000 OX3FFC_3FFF DPORT_AHB_MPU_TABLE_O_REG 10
8 KB Ox3FFC_4000 OX3FFC_5FFF DPORT_AHB_MPU_TABLE_O_REG 11
8 KB Ox3FFC_6000 OX3FFC_7FFF DPORT_AHB_MPU_TABLE_O_REG 12
8 KB Ox3FFC_8000 OX3FFC_9FFF DPORT_AHB_MPU_TABLE_O_REG 13
8 KB Ox3FFC_A000 Ox3FFC_BFFF DPORT_AHB_MPU_TABLE_O_REG 14
8 KB Ox3FFC_C000 Ox3FFC_DFFF DPORT_AHB_MPU_TABLE_O_REG 15
8 KB Ox3FFC_EO0O OX3FFC_FFFF DPORT_AHB_MPU_TABLE_O_REG 16
8 KB Ox3FFD_0000 OX3FFD_1FFF DPORT_AHB_MPU_TABLE_O_REG 17
8 KB Ox3FFD_2000 Ox3FFD_3FFF DPORT_AHB_MPU_TABLE_O_REG 18
8 KB Ox3FFD_4000 OX3FFD_5FFF DPORT_AHB_MPU_TABLE_O_REG 19
8 KB Ox3FFD_6000 OX3FFD_7FFF DPORT_AHB_MPU_TABLE_O_REG 20
8 KB Ox3FFD_8000 OX3FFD_9FFF DPORT_AHB_MPU_TABLE_O_REG 21
8 KB Ox3FFD_A000 Ox3FFD_BFFF DPORT_AHB_MPU_TABLE_O_REG 22
8 KB Ox3FFD_C000 Ox3FFD_DFFF DPORT_AHB_MPU_TABLE_O_REG 23
8 KB Ox3FFD_EO00 Ox3FFD_FFFF DPORT_AHB_MPU_TABLE_O_REG 24
Internal SRAM 1

8 KB Ox3FFE_0000 OX3FFE_1FFF DPORT_AHB_MPU_TABLE_O_REG 25
8 KB OX3FFE_2000 OX3FFE_3FFF DPORT_AHB_MPU_TABLE_O_REG 26
8 KB OX3FFE_4000 OX3FFE_5FFF DPORT_AHB_MPU_TABLE_O_REG 27
8 KB OX3FFE_6000 OX3FFE_7FFF DPORT_AHB_MPU_TABLE_O_REG 28

Espressif Systems

541

ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

Size Boundary address Authority

Low High Register Bit
8 KB Ox3FFE_8000 OX3FFE_9FFF DPORT_AHB_MPU_TABLE_O_REG 29
8 KB OX3FFE_A00O OX3FFE_BFFF DPORT_AHB_MPU_TABLE_O_REG 30
8 KB Ox3FFE_C000 Ox3FFE_DFFF DPORT_AHB_MPU_TABLE_0O_REG 31
8 KB Ox3FFE_EOOO OX3FFE_FFFF DPORT_AHB_MPU_TABLE_1_REG 0
8 KB Ox3FFF_0000 Ox3FFF_1FFF DPORT_AHB_MPU_TABLE_1_REG 1
8 KB Ox3FFF_2000 Ox3FFF_3FFF DPORT_AHB_MPU_TABLE_1_REG 2
8 KB Ox3FFF_4000 Ox3FFF_5FFF DPORT_AHB_MPU_TABLE_1_REG 3
8 KB Ox3FFF_6000 OX3FFF_7FFF DPORT_AHB_MPU_TABLE_1_REG 4
8 KB Ox3FFF_8000 OX3FFF_9FFF DPORT_AHB_MPU_TABLE_1_REG 5
8 KB Ox3FFF_A000 Ox3FFF_BFFF DPORT_AHB_MPU_TABLE_1_REG 6
8 KB Ox3FFF_C000 OX3FFF_DFFF DPORT_AHB_MPU_TABLE_1_REG 7
8 KB Ox3FFF_EO00O OX3FFF_FFFF DPORT_AHB_MPU_TABLE_1_REG 8

Registers DPROT_AHB_MPU_TABLE_0_REG DPROT_AHB_MPU_TABLE_1_REG are located in the DPort
address space. Only processes with a PID of 0 or 1 can modify these two registers.

26.3.2.2 External Memory

Accesses to the external flash and external SPI RAM are done through a cache and are also handled by an
MMU. This Cache MMU can apply different mappings, depending on the PID of the process as well as the CPU
the process is running on. The MMU does this in a way that is similar to the internal memory MMU, that is, for
every page of virtual memory, it has a register detailing which physical page this virtual page should map to.
There are differences between the MMUs governing the internal memory and the Cache MMU, though. First of
all, the Cache MMU has a fixed page size (which is 64 KB for external flash and 32 KB for external RAM) and
secondly, instead of specifying access rights in the MMU entries, the Cache MMU has explicit mapping tables for
each PID and processor core. The MMU mapping configuration registers will be referred to as ’entries’ in the rest
of this chapter. These registers are only accessible from processes with a PID of O or 1; processes with a PID of 2
to 7 will have to delegate to one of the above-mentioned processes to change their MMU settings.

The MMU entries, as stated before, are used for mapping a virtual memory page access to a physical memory
page access. The MMU controls five regions of virtual address space, detailed in Table 102. V Addr, to V Addr,
are used for accessing external flash, whereas V Addr g ans is used for accessing external RAM. Note that

V Addr, is a subset of V Addry.

Espressif Systems 542 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

Table 102: Virtual Address for External Memory

. Boundary address ,
Name Size , Page quantity
Low High

V Addr 4 MB 0x3F40_0000 Ox3F7F_FFFF 64

V Addry 4MB 0x4000_0000 Ox403F_FFFF 64*

V Addrs 4 MB 0x4040_0000 Ox407F_FFFF 64

V Addrs 4MB 0x4080_0000 Ox40BF_FFFF 64

V Addr, 1 MB 0x3F40_0000 Ox3F4F_FFFF 16

V Addr g an 4 MB 0x3F80_0000 Ox3FBF_FFFF 128

*

The configuration entries for address range 0x4000_0000 ~ Ox403F_FFFF are implemented and docu-
mented as if it were a full 4 MB address range, but it is not accessible as such. Instead, the address range
0x4000_0000 ~ 0x400C_1FFF accesses on-chip memory. This means that some of the configuration entries for
V Addrq will not be used.

External Flash

For flash, the relationships among entry numbers, virtual memory ranges, and PIDs are detailed in Tables 103 and
104, which for every memory region and PID combination specify the first MMU entry governing the mapping.
This number refers to the MMU entry governing the very first page; the entire region is described by the amount
of pages specified in the 'count’ column.

These two tables are essentially the same, with the sole difference being that the APP_CPU entry numbers are
2048 higher than the corresponding PRO_CPU numbers. Note that memory regions V Addry, and V Addr, are
only accessible using PID 0 and 1, while V' Addr, can only be accessed by PID 2 ~ 7.

Table 103: MMU Entry Numbers for PRO_CPU

First MMU entry for PID
VAddr Count
0/1 2 3 4 S 6 7
V Addrg 64 0 - - - - - -
V Addry 64 64 - - - - - -
V Addrq 64 128 256 384 512 640 768 896
V Addrs 64 192 320 448 576 704 832 960
V Addr, 16 - 1056 1072 1088 1104 1120 1136
Table 104: MMU Entry Numbers for APP_CPU
First MMU entry for PID
VAddr Count
0/1 2 3 4 © 6 7
V Addrg 64 2048 - - - - - -
V Addry 64 2112 - - - - - -
V Addrq 64 2176 2304 2432 2560 2688 2816 2944
V Addrs 64 2240 2368 2496 2624 2752 2880 3008
V Addr, 16 - 3104 3120 3136 3152 3168 3184

As these tables show, virtual address V Addr, can only be used by processes with a PID of O or 1. There is a

Espressif Systems 543 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

special mode to allow processes with a PID of 2 to 7 to read the External Flash via address V Addr,. When the
DPORT_PRO_SINGLE_IRAM_ENA bit of register DPORT_PRO_CACHE_CTRL_REG is 1, the MMU enters this
special mode for PRO_CPU memory accesses. Similarily, when the DPORT_APP_SINGLE_IRAM_ENA bit of
register DPORT_APP_CACHE_CTRL_REG is 1, the APP_CPU accesses memory using this special mode. In this
mode, the process and virtual address page supported by each configuration entry of MMU are different. For
details please see Table 105 and 106. As shown in these tables, in this special mode V Addr, and V Addrs
cannot be used to access External Flash.

Table 105: MMU Entry Numbers for PRO_CPU (Special Mode)

First MMU entry for PID

VAddr Count

0/1 2 3 4 5 6 7
V Addr 64 0 - - - - - -
V Addr, 64 64 256 384 512 640 768 896
V Addrs 64 - - - - - - -
V Addrs 64 - - - - - - -
V Addr, 16 - 1056 1072 1088 1104 1120 1136

Table 106: MMU Entry Numbers for APP_CPU (Special Mode)

First MMU entry for PID

VAddr Count

0/1 2 3 4 & 6 7
V Addr 64 2048 - - - . - _
V Addrq 64 2112 2304 2432 2560 2688 2816 2944
V Addrs 64 - - - - - - -
V Addrs 64 - - - - - - -
V Addr, 16 - 3104 3120 3136 31562 3168 3184

Every configuration entry of MMU maps a virtual address page of a CPU process to a physical address page. An
entry is 32 bits wide. Of these, bits O~7 indicate the physical page the virtual page is mapped to. Bit 8 should be
cleared to indicate that the MMU entry is valid; entries with this bit set will not map any physical address to the
virtual address. Bits 10 to 32 are unused and should be written as zero. Because there are eight address bits in
an MMU entry, and the page size for external flash is 64 KB, a maximum of 256 * 64 KB = 16 MB of external flash
is supported.

Examples

Example 1. A PRO_CPU process, with a PID of 1, needs to read external flash address Ox07_2375 via virtual
address Ox3F70_2375. The MMU is not in the special mode.

e According to Table 102, virtual address Ox3F70_2375 resides in the 0x30’th page of V Addr.

e According to Table 103, the MMU entry for V Addr for PID 0/1 for the PRO_CPU starts at 0.

The modified MMU entry is O + 0x30 = 0x30.

Address 0x07_2375 resides in the 7°th 64 KB-sized page.

MMU entry 0x30 needs to be set to 7 and marked as valid by setting the 8’th bit to 0. Thus, 0x007 is
written to MMU entry 0x30.

Espressif Systems 544 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

Example 2. An APP_CPU process, with a PID of 4, needs to read external flash address 0x44_048C via virtual
address 0x4044_048C. The MMU is not in special mode.

e According to Table 102, virtual address 0x4044_048C resides in the 0x4’th page of V Addr,.

e According to Table 104, the MMU entry for V Addrs for PID 4 for the APP_CPU starts at 2560.

The modified MMU entry is 2560 + 0x4 = 2564.

Address 0x44_048C resides in the 0x44’th 64 KB-sized page.

MMU entry 2564 needs to be set to 0x44 and marked as valid by setting the 8’th bit to 0. Thus, 0x044 is
written to MMU entry 2564.

External RAM

Processes running on PRO_CPU and APP_CPU can read and write External SRAM via the Cache at virtual
address range V Addr g an, which is 0x3F80_0000 ~ Ox3FBF_FFFF. As with the flash MMU, the address space
and the physical memory are divided into pages. For the External RAM MMU, the page size is 32 KB and the
MMU is able to map 256 physical pages into the virtual address space, allowing for 32 KB * 256 = 8 MB of
physical external RAM to be mapped.

The mapping of virtual pages into this memory range depends on the mode this MMU is in: Low-High mode,
Even-Odd mode, or Normal mode. In all cases, the DPORT_PRO_DRAM_HL bit and
DPORT_PRO_DRAM_SPLIT bit in register DPORT_PRO_CACHE_CTRL_REG, the DPORT_APP_DRAM_HL bit
and DPORT_APP_DRAM_SPLIT bit in register DPORT_APP_CACHE_CTRL_REG determine the virtual address
mode for External SRAM. For details, please see Table 107. If a different mapping for the PRO_CPU and
APP_CPU is required, the Normal Mode should be selected, as it is the only mode that can provide this. If it is
allowable for the PRO_CPU and the APP_CPU to share the same mapping, using either High-Low or Even-Odd
mode can give a speed gain when both CPUs access memory frequently.

In case the APP_CPU cache is disabled, which renders the region of 0x4007_8000 to 0x4007_FFFF usable as
normal internal RAM, the usability of the various cache modes changes. Normal mode will allow PRO_CPU
access to external RAM to keep functioning, but the APP_CPU will be unable to access the external RAM.
High-Low mode allows both CPUs to use external RAM, but only for the 2 MB virtual memory addresses from
Ox3F80_0000 to OXx3F9F_FFFF. It is not advised to use Even-Odd mode with the APP_CPU cache region
disabled.

Table 107: Virtual Address Mode for External SRAM

Mode DPORT_PRO_DRAM_HL DPORT_PRO_DRAM_SPLIT
DPORT_APP_DRAM_HL DPORT_APP_DRAM_SPLIT

Low-High 1 0

Even-Odd 0

Normal 0 0

In normal mode, the virtual-to-physical page mapping can be different for both CPUs. Page mappings for
PRO_CPU are set using the MMU entries for LVAddrRAM, and page mappings for the APP_CPU can be
configured using the MMU entries for #V Addr g In this mode, all 128 pages of both L'V Addr and £V Addr
are fully used, allowing a maximum of 8 MB of memory to be mapped; 4 MB into PRO_CPU address space and
a possibly different 4 MB into the APP_CPU address space, as can be seen in Table 108.

Espressif Systems 545 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

Table 108: Virtual Address for External SRAM (Normal Mode)

. . PRO_CPU address
Virtual address Size .
Low High
"V Addrpam 4 VB 0x3F80_0000 OX3FBF_FFFF
. . APP_CPU address
Virtual address Size :
Low High
"V Addrpam 4 MB 0x3F80_0000 Ox3FBF_FFFF

In Low-High mode, both the PRO_CPU and the APP_CPU use the same mapping entries. In this mode
LVAddrRAM is used for the lower 2 MB of the virtual address space, while RVAddrRAM is used for the upper 2
MB. This also means that the upper 64 MMU entries for LVAddrRA]\,{, as well as the lower 64 entries for

Ry Addr RrRAM, are unused. Table 109 details these address ranges.

Table 109: Virtual Address for External SRAM (Low-High Mode)

, , PRO_CPU/APP_CPU address
Virtual address Size :
Low High
Lv Addrga 2 MB 0x3F80_0000 Ox3F9F_FFFF
BV Addr pam 2 MB 0x3FAO_0000 Ox3FBF_FFFF

In Even-Odd memory, the VRAM is split into 32-byte chunks. The even chunks are resolved through the MMU
entries for “V Addr pans, the odd chunks through the entries for Ry Addr pa. Generally, the MMU entries for

LV Addr gane and BV Addr g4 are set to the same values, so that the virtual pages map to a contiguous region
of physical memory. Table 110 details this mode.

Table 110: Virtual Address for External SRAM (Even-Odd Mode)

Virtual address Size PRO_CPU/APP_CF’U address
Low High
LV Addr g 32 Bytes Ox3F80_0000 Ox3F80_001F
RV Addr g an 32 Bytes Ox3F80_0020 Ox3F80_003F
LV Addr g 32 Bytes Ox3F80_0040 Ox3F80_005F
RV Addr g an 32 Bytes Ox3F80_0060 Ox3F80_007F
LV Addrgan 32 Bytes Ox3FBF_FFCO Ox3FBF_FFDF
RV Addr g an 32 Bytes Ox3FBF_FFEO Ox3FBF_FFFF

The bit configuration of the External RAM MMU entries is the same as for the flash memory: the entries are 32-bit
registers, with the lower nine bits being used. Bits O~7 contain the physical page the entry should map its
associate virtual page address to, while bit 8 is cleared when the entry is valid and set when it is not. Table 111
details the first MMU entry number for 2V Addr paas and BV Addr gap for all PIDs.

Espressif Systems 546 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

Table 111: MMU Entry Numbers for External RAM

First MMU entry for PID
VAddr Count
0/1 2 8 4 &) 6 7
Ly Addr gan 128 1152 1280 1408 1536 1664 1792 1920
Ry Addr gam 128 3200 3328 3456 3584 3712 3840 3968
Examples

Example 1. A PRO_CPU process, with a PID of 7, needs to read or write external RAM address Ox7F_A375 via
virtual address Ox3FA7_2375. The MMU is in Low-High mode.

According to Table 102, virtual address Ox3FA7_2375 resides in the Ox4E’th 32-KB-page of V Addrgaa.
According to Table 109, virtual address Ox3FA7_2375 is governed by By Addr RAM -

According to Table 111, the MMU entry for RVAddrRAM for PID 7 for the PRO_CPU starts at 3968.

The modified MMU entry is 3968 + Ox4E = 4046.

Address 0x7F_A375 resides in the 255’th 32 KB-sized page.

MMU entry 4046 needs to be set to 255 and marked as valid by clearing the 8’th bit. Thus, OXOFF is written
to MMU entry 4046.

Example 2. An APP_CPU process, with a PID of 5, needs to read or write external RAM address 0x55_5805 up
to 0x55_5823 starting at virtual address 0x3F85_5805. The MMU is in Even-Odd mode.

According to Table 102, virtual address Ox3F85_5805 resides in the Ox0A'th 32-KB-page of V Addr g ans -
According to Table 110, the range to be read/written spans both a 32-byte region in £V Addr g 4 and

LV Addrganr.

According to Table 111, the MMU entry for LY Addr gan for PID 5 starts at 1664.

According to Table 111, the MMU entry for RV Addr g an for PID 5 starts at 3712.

The modified MMU entries are 1664 + OxOA = 1674 and 3712 + Ox0A = 3722.

The addresses 0x55_5805 to 0x55_5823 reside in the OxAA'th 32 KB-sized page.

MMU entries 1674 and 3722 need to be set to OxAA and marked as valid by setting the 8’th bit to 0. Thus,
Ox0AA is written to MMU entries 1674 and 3722. This mapping applies to both the PRO_CPU and the
APP_CPU.

Example 3. A PRO_CPU process, with a PID of 1, and an APP_CPU process whose PID is also 1, need to read

or write external RAM using virtual address 0x3F80_0876. The PRO_CPU needs this region to access physical
address 0x10_0876, while the APP_CPU wants to access physical address 0x20_0876 through this virtual
address. The MMU is in Normal mode.

According to Table 102, virtual address Ox3F80_0876 resides in the 0'th 32-KB-page of V Addrgas.
According to Table 111, the MMU entry for PID 1 for the PRO_CPU starts at 1152.

According to Table 111, the MMU entry for PID 1 for the APP_CPU starts at 3200.

The MMU entries that are modified are 1152 + 0 = 1152 for the PRO_CPU and 3200 + 0 = 3200 for the
APP_CPU.

Address 0x10_0876 resides in the 0x20’th 32 KB-sized page.

Address 0x20_0876 resides in the 0x40’th 32 KB-sized page.

For the PRO_CPU, MMU entry 1152 needs to be set to 0x20 and marked as valid by clearing the 8'th bit.
Thus, 0x020 is written to MMU entry 1152.

Espressif Systems 547 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

e For the APP_CPU, MMU entry 3200 needs to be set to 0x40 and marked as valid by clearing the 8'th bit.

Thus, 0x040 is written to MMU entry 3200.

¢ Now, the PRO_CPU and the APP_CPU can access different physical memory regions through the same

virtual address.

26.3.2.3 Peripheral

The Peripheral MPU manages the 41 peripheral modules. This MMU can be configured per peripheral to only

allow access from a process with a certain PID. The registers to configure this are detailed in Table 112.

Table 112: MPU for Peripheral

. Authority

Peripheral
PID = 0/1 PD=2~7

DPort Register Access Forbidden
AES Accelerator Access Forbidden
RSA Accelerator Access Forbidden
SHA Accelerator Access Forbidden
Secure Boot Access Forbidden
Cache MMU Table Access Forbidden
PID Controller Access Forbidden
UARTO Access DPORT_AHBLITE_MPU_TABLE_UART_REG
SPI1 Access DPORT_AHBLITE_MPU_TABLE_SPI1_REG
SPIO Access DPORT_AHBLITE_MPU_TABLE_SPIO_REG
GPIO Access DPORT_AHBLITE_MPU_TABLE_GPIO_REG
RTC Access DPORT_AHBLITE_MPU_TABLE_RTC_REG
IO MUX Access DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG
SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_HINF_REG
UDMA1 Access DPORT_AHBLITE_MPU_TABLE_UHCI1_REG
12S0 Access DPORT_AHBLITE_MPU_TABLE_I2S0_REG
UARTA Access DPORT_AHBLITE_MPU_TABLE_UART1_REG
12C0O Access DPORT_AHBLITE_MPU_TABLE_I2C_EXTO_REG
UDMAO Access DPORT_AHBLITE_MPU_TABLE_UHCIO_REG
SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG
RMT Access DPORT_AHBLITE_MPU_TABLE_RMT_REG
PCNT Access DPORT_AHBLITE_MPU_TABLE_PCNT_REG
SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_SLC_REG
LED PWM Access DPORT_AHBLITE_MPU_TABLE_LEDC_REG
Efuse Controller Access DPORT_AHBLITE_MPU_TABLE_EFUSE_REG
Flash Encryption Access DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG
PWMO Access DPORT_AHBLITE_MPU_TABLE_PWMO_REG
TIMGO Access DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG
TIMGA Access DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG
SPI2 Access DPORT_AHBLITE_MPU_TABLE_SPI2_REG
SPI3 Access DPORT_AHBLITE_MPU_TABLE_SPI3_REG
SYSCON Access DPORT_AHBLITE_MPU_TABLE_APB_CTRL_REG

Espressif Systems

548 ESP32 Technical Reference Manual V3.1

26. PID/MPU/NMMU

; Authority

Peripheral
PID = 0/1 PID=2~7

12C1 Access DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG
SDMMC Access DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG
EMAC Access DPORT_AHBLITE_MPU_TABLE_EMAC_REG
PWM1 Access DPORT_AHBLITE_MPU_TABLE_PWM1_REG
1251 Access DPORT_AHBLITE_MPU_TABLE_I2S1_REG
UART2 Access DPORT_AHBLITE_MPU_TABLE_UART2_REG
PWM2 Access DPORT_AHBLITE_MPU_TABLE_PWM2_REG
PWM3 Access DPORT_AHBLITE_MPU_TABLE_PWM3_REG
RNG Access DPORT_AHBLITE_MPU_TABLE_PWR_REG

Each bit of register DPORT_AHBLITE_MPU_TABLE_X_REG determines whether each process can access the
peripherals managed by the register. For details please see Table 113. When a bit of register
DPORT_AHBLITE_MPU_TABLE_X_REG is 1, it means that a process with the corresponding PID can access the
corresponding peripheral of the register. Otherwise, the process cannot access the corresponding

peripheral.
Table 113: DPORT_AHBLITE_MPU_TABLE_X_REG
PID 234567
DPORT_AHBLITE_MPU_TABLE_X_REG bit 012345

All the DPORT_AHBLITE_MPU_TABLE_X_REG registers are in peripheral DPort Register. Only processes with
PID 0/1 can modify these registers.

Espressif Systems 549 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

27. PID Controller

27.1 Overview

The ESP32 is a dual core device and is capable of running and managing multiple processes. The PID Controller
supports switching of PID when a process switch occurs. In addition to PID management, the PID Controller also
facilitates management of nested interrupts by recording execution status just before an interrupt service routine
is executed. This enables the user application to manage process switches and nested interrupts more
efficiently.

27.2 Features

The PID Controller features:
® Process management and priority
® Process PID switch
e Interrupt information recording

¢ Nested interrupt management

27.3 Functional Description

Eight processes run on the CPU, and are assigned with PID of O ~ 7 respectively. Among the eight processes,
processes with PID of O or 1 are elevated processes with higher authority compared to processes with PID
ranging from 2 ~ 7.

A CPU process switch may occur in two cases:

e An interrupt occurs and the CPU fetches an instruction from the interrupt vector. Instruction fetch or
execution from interrupt vector is always treated as a process with PID of O, irrespective of which process
was being executed on the CPU when the interrupt occurred.

e A currently active process explicitly performs a process switch. Only elevated processes with PID of O or 1
may perform a process switch.

Espressif Systems 550 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

27.3.1 Interrupt Identification

Interrupts are classified into seven priority levels: Level 1, Level 2, Level 3, Level 4, Level 5, Level 6 (Debug), and
NMI. Each level of interrupt is assigned an interrupt vector entry address. The PID Controller recognizes CPU
instruction fetch from an interrupt vector entry address and automatically switches PID to 0. If CPU only
accesses the interrupt vector entry address, PID Controller performs no action.

PIDCTRL_INTERRUPT_ENABLE_REG determines whether the PID Controller identifies and registers an interrupt
of certain priority. When a bit of register PIDCTRL_INTERRUPT_ENABLE_REG is 1, PID Controller will take action
when CPU fetches instruction from the interrupt vector entry address of the corresponding interrupt. Otherwise,
PID Controller performs no action. The registers PIDCTRL_INTERRUPT_ADDR_1_REG ~
PIDCTRL_INTERRUPT_ADDR_7_REG define the interrupt vector entry address for all the interrupt priority levels.
For details please refer to Table 114.

Table 114: Interrupt Vector Entry Address

. PIDCTRL_INTERRUPT_ENABLE_REG bit
Priority level o : o Interrupt vector entry address
controlling interrupt identification

Level 1 1 PIDCTRL_INTERRUPT_ADDR_1_REG
Level 2 2 PIDCTRL_INTERRUPT_ADDR_2_REG
Level 3 3 PIDCTRL_INTERRUPT_ADDR_3_REG
Level 4 4 PIDCTRL_INTERRUPT_ADDR_4_REG
Level 5 5 PIDCTRL_INTERRUPT_ADDR_5_REG
Level 6 (Debug) | 6 PIDCTRL_INTERRUPT_ADDR_6_REG
NMI 7 PIDCTRL_INTERRUPT_ADDR_7_REG

27.3.2 Information Recording

When PID Controller identifies an interrupt, it records three items of information in addition to switching PID to O.
The recorded information includes the priority level of current interrupt, previous interrupt status of the system
and the previous process running on the CPU.

PID Controller records the priority level of the current interrupt in register PIDCTRL_LEVEL_REG. For details
please refer to Table 115.

Table 115: Configuration of PIDCTRL_LEVEL_REG

Value Priority level of the current interrupt

No interrupt

Level 1

Level 2
Level 3
Level 4
Level 5
Level 6
NMI

N[O~ IN|I—=]O

PID Controller also records in register PIDCTRL_FROM_n_REG the status of the system before the interrupt
occurred. The bit width of register PIDCTRL_FROM_n_REG is 7. The highest four bits represent the interrupt

Espressif Systems 551 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

status of the system before the interrupt indicated by the register occurred. The lowest three bits represent the

process running on the CPU before the interrupt indicated by the register occurred. For details please refer to

Table 116.
Table 116: Configuration of PIDCTRL_FROM_/_REG

[6:3] Previous interrupt [2:0] Previous process

0 No interrupt 0 Process with PID of O
1 Level 1 Interrupt 1 Process with PID of 1
2 Level 2 Interrupt 2 Process with PID of 2
3 Level 3 Interrupt 3 Process with PID of 3
4 Level 4 Interrupt 4 Process with PID of 4
5 Level 5 Interrupt 5 Process with PID of 5
6 Level 6 Interrupt 6 Process with PID of 6
7 Level 7 Interrupt 7 Process with PID of 7

PID Controller possesses registers PIDCTRL_FROM_1_REG ~ PIDCTRL_FROM_7_REG, which correspond to
the interrupts of Level 1, Level 2, Level 3, Level 4, Level 5, Level 6 (Debug), and NMI respectively. This enables

the system to implement interrupt nesting. Please refer to Table 124 for examples.

Espressif Systems

5562

ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

PIDCTRL_LEVEL_REG =0

PIDCTRL_FROM_1_REG = XXXX XXX
PIDCTRL_FROM_2_REG = XXXX XXX
PIDCTRL_FROM_3_REG = XXXX XXX
PIDCTRL_FROM_4_REG = XXXX XXX
PIDCTRL_FROM_5_REG = XXXX XXX
PIDCTRL_FROM_6_REG = XXXX XXX
PIDCTRL_FROM_7_REG = XXXX XXX

PID=0
PIDCTRL_LEVEL _REG =2
PIDCTRL_FROM_1_REG = XXXX XXX
PIDCTRL_FROM_2_REG = 0000 100
PIDCTRL_FROM_3_REG = XXXX XXX
PIDCTRL_FROM_4_REG = XXXX XXX
PIDCTRL_FROM_5_REG = XXXX XXX
PIDCTRL_FROM_6_REG = XXXX XXX
PIDCTRL_FROM_7_REG = XXXX XXX

Level 2 interrupt
OCCuUrs.

Level 5 interrupt
OCCUrs. PID=0
PIDCTRL_LEVEL_REG =5

PIDCTRL_FROM_1_REG = XXXX XXX
PIDCTRL_FROM_2_REG = 0000 100
PIDCTRL_FROM_3_REG = XXXX XXX
PIDCTRL_FROM_4_REG = XXXX XXX
PIDCTRL_FROM_5_REG = 0010 000
PIDCTRL_FROM_6_REG = XXXX XXX
RIDCTRL_FROM_7_REG = XXXX XXX

PID=0
PIDCTRL_LEVEL REG =7
PIDCTRL_FROM_1_REG = XXXX XXX
PIDCTRL_FROM_2_REG = 0000 100
PIDCTRL_FROM_3_REG = XXXX XXX
PIDCTRL_FROM_4_REG = XXXX XXX
PIDCTRL_FROM_5_REG = 0010 000
PIDCTRL_FROM_6_REG = XXXX XXX
PIDCTRL_FROM_7_REG = 0101 000

NMI interrupt
occurs.

Figure 124: Interrupt Nesting

If the configuration of register PIDCTRL_INTERRUPT_ENABLE_REG prevents PID Controller from identifying an
interrupt, PID Controller will not record any information, and PIDCTRL_LEVEL_REG and PIDCTRL_FROM_n_REG
will remain unchanged.

27.3.3 Proactive Process Switching

As mentioned before, only an elevated process with PID of O/1 can initiate a process switch. The new process
may have any PID from O ~ 7 after the process switch. The key for successful proactive process switching is that
when the last command of the current process switches to the first command of the new process, PID should

Espressif Systems 553 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

switch from 0/1 to that of the new process.
The software procedure for proactive process switching is as follows:
1. Mask all the interrupts except NMI by using software.
2. Set register PIDCTRL_NMI_MASK_ENABLE_REG to 1 to generate a CPU NMI Interrupt Mask signal.
3. Configure registers PIDCTRL_PID_DELAY_REG and PIDCTRL_NMI_DELAY_REG.
4. Configure register PIDCTRL_PID_NEW_REG.
5. Configure register PIDCTRL_LEVEL_REG and PIDCTRL_FROM_n_REG.
6. Set register PIDCTRL_PID_CONFIRM_REG and register PIDCTRL_NMI_MASK_DISABLE_REG to 1.
7. Revoke the masking of all interrupts but NMI.
8. Switch to the new process and fetch instruction.

Though we can deal with interrupt nesting, an elevated process should not be interrupted during the process
switching, and therefore the interrupts have been masked in step 1 and step 2.

In step 3, the configured values of registers PIDCTRL_PID_DELAY_REG and PIDCTRL_NMI_DELAY_REG will
affect step 6.

In step 4, the configured value of register PIDCTRL_PID_NEW_REG will be the new PID after step 6.

If the system is currently in a nested interrupt and needs to revert to the previous interrupt, register
PIDCTRL_LEVEL_REG must be restored based on the information recorded in register PIDCTRL_FROM_n_REG
in step 5.

In step 6, after the values of register PIDCTRL_PID_CONFIRM_REG and register
PIDCTRL_NMI_MASK_DISABLE_REG are set to 1, PID Controller will not immediately switch PID to the value of
register PIDCTRL_PID_NEW_REG, nor disable CPU NMI Interrupt Mask signal at once. Instead, PID Controller
performs each task after a different number of clock cycles. The numbers of clock cycles are the values specified
in register PIDCTRL_PID_DELAY_REG and PIDCTRL_NMI_DELAY_REG respectively.

In step 7, other tasks can be implemented as well. To do this, the cost of those tasks should be included when
configuring registers PIDCTRL_PID_DELAY_REG and PIDCTRL_NMI_DELAY_REG in step 3.

Espressif Systems 554 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

27.4 Register Summary

Name Description Address Access
PIDCTRL_INTERRUPT_ENABLE_REG | PID interrupt identification enable Ox3FF1FO00 | R/W
PIDCTRL_INTERRUPT_ADDR_1_REG | Level 1 interrupt vector address Ox3FF1F004 | R/W
PIDCTRL_INTERRUPT_ADDR_2_REG | Level 2 interrupt vector address Ox3FF1F008 | R/W
PIDCTRL_INTERRUPT_ADDR_3_REG | Level 3 interrupt vector address Ox3FF1FO0OC | R/W
PIDCTRL_INTERRUPT_ADDR_4_REG | Level 4 interrupt vector address Ox3FF1FO10 | R/W
PIDCTRL_INTERRUPT_ADDR_5_REG | Level 5 interrupt vector address Ox3FF1F014 | R/W
PIDCTRL_INTERRUPT_ADDR_6_REG | Level 6 interrupt vector address Ox3FF1F018 | R/W
PIDCTRL_INTERRUPT_ADDR_7_REG | NMIl interrupt vector address Ox3FF1FO1C | R/W
PIDCTRL_PID_DELAY_REG New PID valid delay Ox3FF1F020 | R/W
PIDCTRL_NMI_DELAY_REG NMI mask signal disable delay Ox3FF1F024 | R/W
PIDCTRL_LEVEL_REG Current interrupt priority Ox3FF1F028 | R/W
PIDCTRL_FROM_1_REG System status before Level 1 interrupt Ox3FF1F02C | R/W
PIDCTRL_FROM_2_REG System status before Level 2 interrupt Ox3FF1F030 | R/W
PIDCTRL_FROM_3_REG System status before Level 3 interrupt Ox3FF1F034 | R/W
PIDCTRL_FROM_4_REG System status before Level 4 interrupt Ox3FF1F038 | R/W
PIDCTRL_FROM_5_REG System status before Level 5 interrupt Ox3FF1FO3C | R/W
PIDCTRL_FROM_6_REG System status before Level 6 interrupt Ox3FF1F040 | R/W
PIDCTRL_FROM_7_REG System status before NMI Ox3FF1F044 | R/W
PIDCTRL_PID_NEW_REG New PID configuration register Ox3FF1F048 | R/W
PIDCTRL_PID_CONFIRM_REG New PID confirmation register Ox3FF1F04C | WO
PIDCTRL_NMI_MASK_ENABLE_REG | NMI mask enable register Ox3FF1F054 | WO
PIDCTRL_NMI_MASK_DISABLE_REG | NMI mask disable register Ox3FF1F058 | WO
Espressif Systems 555 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

27.5 Registers

Register 27.1: PIDCTRL_INTERRUPT_ENABLE_REG (0x000)

N
%Q)c\@
&

A\

‘31

‘oooooooooooooooooooooooo|ooooooo|o‘Reset

PIDCTRL_INTERRUPT_ENABLE These bits are sued to enable interrupt identification and process-

ing. (R/W)

Register 27.2: PIDCTRL_INTERRUPT_ADDR_1_REG (0x004)

[

‘ Reset

PIDCTRL_INTERRUPT_ADDR_1_REG Level 1 interrupt vector entry address. (R/W)

Register 27.3: PIDCTRL_INTERRUPT_ADDR_2_REG (0x008)

E

‘ Reset

PIDCTRL_INTERRUPT_ADDR_2_REG Level 2 interrupt vector entry address. (R/W)

Register 27.4: PIDCTRL_INTERRUPT_ADDR_3_REG (0x00C)

‘ Reset

PIDCTRL_INTERRUPT_ADDR_3_REG Level 3 interrupt vector entry address. (R/W)

Register 27.5: PIDCTRL_INTERRUPT_ADDR_4_REG (0x010)

E

‘ Reset

PIDCTRL_INTERRUPT_ADDR_4_REG Level 4 interrupt vector entry address. (R/W)

Espressif Systems

ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

Register 27.6: PIDCTRL_INTERRUPT_ADDR_5_REG (0x014)

‘ 0x040000240 ‘ Reset

PIDCTRL_INTERRUPT_ADDR_5_REG Level 5 interrupt vector entry address. (R/W)

Register 27.7: PIDCTRL_INTERRUPT_ADDR_6_REG (0x018)

‘31 O‘

‘ 0x040000280 ‘ Reset

PIDCTRL_INTERRUPT_ADDR_6_REG Level 6 interrupt vector entry address. (R/W)

Register 27.8: PIDCTRL_INTERRUPT_ADDR_7_REG (0x01C)

‘ 0x0400002C0 ‘ Reset

PIDCTRL_INTERRUPT_ADDR_7_REG NMI interrupt vector entry address. (R/W)

Register 27.9: PIDCTRL_PID_DELAY_REG (0x020)

4
\Y\
Q<</
Q7
I N
5 g
NS S
‘31 12|11 O‘
‘oooooooooooooooooooo| 20 ‘Reset
PIDCTRL_PID_DELAY Delay until newly assigned PID is valid. (R/W)
Register 27.10: PIDCTRL_NMI_DELAY_REG (0x024)
4
e~
Q
@\/
N
S S
N &
K QC)
§QJ Q\
‘31 12|11 O‘
‘oooooooooooooooooooo| 16 ‘Reset

PIDCTRL_NMI_DELAY Delay for disabling CPU NMI interrupt mask signal. (R/W)

Espressif Systems 557 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

Register 27.11: PIDCTRL_LEVEL_REG (0x028)

e
Q§/
&
O\)
O v
s &
= QO
N N
‘31 4|3 O‘
‘oooooooooooooooooooooooooooo| 0 ‘Reset
PIDCTRL_CURRENT_STATUS The current status of the system. (R/W)
Register 27.12: PIDCTRL_FROM_/_REG (: 1-7) (0x28+0x4*)
E\
N
KQ
5
N
@)
A\
Q{O
5 &
2)
N 2

PIDCTRL_PREVIOUS_STATUS_n System status before any of Level 1 to Level 6, NMI interrupts

occurs. (R/W)
Register 27.13: PIDCTRL_PID_NEW_REG (0x048)
N
&
Q7
) 7
P &
& o
g —
‘ooooooooooooooooooooooooooooo|o‘Reset

PIDCTRL_PID_NEW New PID. (R/W)

Espressif Systems 558 ESP32 Technical Reference Manual V3.1

27. PID CONTROLLER

Register 27.14: PIDCTRL_PID_CONFIRM_REG (0x04C)

Q
é<®
&
Q\
5 9
%QJGQJ OC,}Q\
N <2\
‘ooooooooooooooooooooooooooooooo|o‘Reset
PIDCTRL_PID_CONFIRM This bit is used to confirm the switch of PID. (WO)
Register 27.15: PIDCTRL_NMI_MASK_ENABLE_REG (0x054)
<
o
K,
&
@\/
S <2§’/e
%Q’é Qé
N D
‘31 1| 0 ‘
‘ooooooooooooooooooooooooooooooo|o‘Reset
PIDCTRL_NMI_MASK_ENABLE This bit is used to enable CPU NMI interrupt mask signal. (WO)
Register 27.16: PIDCTRL_NMI_MASK_DISABLE_REG (0x058)
<
&
Q
%\E./
@?‘
S
S X7
%Q’é QC'}
N <2\

‘31 1|0‘

‘ooooooooooooooooooooooooooooooo|o‘Reset

PIDCTRL_NMI_MASK_DISABLE This bit is used to disable CPU NMI interrupt mask signal. (WO)

Espressif Systems 559 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

28. On-Chip Sensors and Analog Signal Processing

28.1 Introduction

ESP32 has three types of built-in sensors for various applications: a capacitive touch sensor with up to 10 inputs,
a Hall effect sensor and a temperature sensor.

The processing of analog signals is done by two successive approximation ADCs (SAR ADC). There are five
controllers dedicated to operating ADCs. This provides flexibility when it comes to converting analog inputs in
both high-performance and low-power modes, with minimum processor overhead.

There is an attractive complement to the input of SAR ADC1, which processes small signals — the low noise
analog amplifier with an adjustable amplification ratio.

ESP32 is also capable of generating analog signals, using two independent DACs and a cosine waveform
generator.

28.2 Capacitive Touch Sensor

28.2.1 Introduction

A touch-sensor system is built on a substrate which carries electrodes and relevant connections under a
protective flat surface; see Figure 125. When a user touches the surface, the capacitance variation is triggered
and a binary signal is generated to indicate whether the touch is valid.

- Protective cover

- Substrate

Electrode

ESP32

Figure 125: Touch Sensor

28.2.2 Features
e Up to 10 capacitive touch pads / GPIOs

e The sensing pads can be arranged in different combinations, so that a larger area or more points can be
detected.

e The touch pad sensing process is under the control of a hardware-implemented finite-state machine (FSM)
which is initiated by software or a dedicated hardware timer.

e nformation that a pad has been touched can be obtained:

Espressif Systems 560 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

- by checking touch-sensor registers directly through software,
- from an interrupt triggered by a touch detection,
- by waking up the CPU from deep sleep upon touch detection.
e Support for low-power operation in the following scenarios:
— CPU waiting in deep sleep and saving power until touch detection and subsequent wake up

- Touch detection managed by the ULP coprocessor
The user program in ULP coprocessor can trigger a scanning process by checking and writing into
specific registers, in order to verify whether the touch threshold is reached.

28.2.3 Available GPIOs

All 10 available sensing GPIOs (pads) are listed in Table 118.

Table 118: ESP32 Capacitive Sensing Touch Pads

Touch Sensing Signal Name Pin Name
TO GPIO4
T GPIOO
T2 GPIO2
T3 MTDO
T4 MTCK
5 MTDI
T6 MTMS
T7 GPIO27
T8 32K_XN
T9 32K_XP

28.2.4 Functional Description

The internal structure of the touch sensor is shown in Figure 126. The operating flow is shown in Figure
127.

XPD_BIAS —»|
DREFH —»

orerL | Dias
DRANGE —=
bias bus
XPD 0 — XPD1 — XPD 9 —
START 0 — | START 1 — = START 9 —==
paco —=| Sensor pac1 —= Sensor paco —=| Sensor
TIE_OPT 0 —| 0 TIE_OPT 1 —=| 1 TIE_OPT 9 —| 9
ouT 0 |—= ouT1 - OUT9

w () [i
T0 T1 T9 |

Touch Pad Touch Pad Touch Pad

Figure 126: Touch Sensor Structure

The capacitance of a touch pad is periodically charged and discharged. The chart "Pad Voltage” shows the

Espressif Systems 561 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

charge/discharge voltage that swings from DREFH (reference voltage high) to DREFL (reference voltage low).
During each swing, the touch sensor generates an output pulse, shown in the chart as "OUT”. The swing slope is
different when the pad is touched (high capacitance) and when it is not (low capacitance). By comparing the
difference between the output pulse counts during the same time interval, we can conclude whether the touch
pad has been touched. TIE_OPT is used to establish the initial voltage level that starts the charge/discharge

cycle.
START START
t t
Pad Pad
Voltage Voltage

/7 Slope: DAC[2:0] /, Slope: DAC[2:0]

| y

DREFLI t DREFLI t

DREFH DREFH

out out

L L

TIE_OPT =0 TIEOPT=1

Figure 127: Touch Sensor Operating Flow

28.2.5 Touch FSM

The Touch FSM performs a measurement sequence described in section 28.2.4. Software can operate the
Touch FSM through dedicated registers. The internal structure of a touch FSM is shown in Figure 128.

The functions of Touch FSM include:
¢ Receipt of a start signal, either from software or a timer

— when SENS_SAR_TOUCH_START_FORCE=1, SENS_SAR_TOUCH_START_EN is used to initiate a
single measurement

— when SENS_SAR_TOUCH_START_FORCE=0, measurement is triggered periodically with a timer.

The Touch FSM can be active in sleep mode. The SENS_SAR_TOUCH_SLEEP_CYCLES register can be
used to set the cycles. The sensor is operated by FAST_CLK, which normally runs at 8 MHz. More
information on that can be found in chapter Reset and Clock.

e Generation of XPD_TOUCH_BIAS / TOUCH_XPD / TOUCH_START with adjustable timing sequence
To select enabled pads, TOUCH_XPD / TOUCH_START is masked by the 10-bit register
SENS_SAR_TOUCH_PAD_WORKEN.

e Counting of pulses on TOUCHO_OUT ~ TOUCH9_OUT
The result can be read from SENS_SAR_TOUCH_MEAS_OUTn. All ten touch sensors can work
simultaneously.

e (GGeneration of a wakeup interrupt
The FSM regards the touch pads as “touched”, if the number of counted pulses is below the threshold.
The 10-bit registers SENS_TOUCH_PAD_OUTEN1 & SENS_TOUCH_PAD_OUTEN2 define two sets of
touch pads, i.e. SET1 & SET2. If at least one of the pads in SET1 is “touched”, the wakeup interrupt will be

Espressif Systems 562 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

generated by default. It is also possible to configure the wakeup interrupt to be generated only when pads
from both sets are “touched”.

o
°
c

dnoel
dnoem ™

Start

|
Touch FSM RTCIO_TOUCH_DRANGE

SENS_TOUCH PAD_WORKEN xpd touch bias | . RTCIO TOUCH_DREFH
SENS_TOUCH_PAD_OUTEN RTCIO TOUCH DREFL

SENS TOUCH _MEAS DELAY
SENS TOUCH OUT THn

UeJS |ono}

IN0_yonoy

0 pdx
0 3e3s
03n0
T pdx
Tyes
T30

6 pdx
6 1els
630

RTCIO_TOUCH PADO TIE OPT RTCIO_ TOUCH PAD1 TIE OPT () RTCIO_TOUCH PAD9 TIE OPT
Sensor Sensor Sensor
RTCIO TOUCH PADO DAC 0 RTCIO TOUCH PAD1 DAC 1 RTCIO TOUCH PAD9 DAC

Figure 128: Touch FSM Structure

28.3 SAR ADC

28.3.1 Introduction

ESP32 integrates two 12-bit SAR ADCs. They are managed by five SAR ADC controllers, and are able to
measure signals from one to 18 analog pads. It is also possible to measure internal signals, such as vdd33. Some
of the pads can be used to build a programmable gain-amplifier which measures small analog signals.

The SAR ADC controllers have specialized uses. Two of them support high-performance multiple-channel
scanning. Another two are used for low-power operation during deep sleep, and the last one is dedicated to
PWDET / PKDET (power and peak detection). A diagram of the SAR ADCs is shown in Figure 129.

Espressif Systems 563 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Analog Domain RTC Domain Digital Domain

RTC ADC1
Low Noise Controller
Amplifier
SAR ADC1 .
Digital ADC1
Controller

L1t

inputs

Digital ADC2
RTC ADC2 Controller

Controller

< SAR ADC2
Power / Peak

Detect
Controller

=
3
2

Figure 129: SAR ADC Depiction

28.3.2 Features

e Two SAR ADCs, with simultaneous sampling and conversion

Up to five SAR ADC controllers for different purposes (e.g. high performance, low power or PWDET /
PKDET).

e Up to 18 analog input pads

e One channel for internal voltage vdd33, two for pa_pkdet (available on selected controllers)
e | ow-noise amplifier for small analog signals (available on one controller)

e 12-bit, 11-bit, 10-bit, 9-bit configurable resolution

e DMA support (available on one controller)

e Multiple channel-scanning modes (available on two controllers)

e Operation during deep sleep (available on one controller)

e Controlled by a ULP coprocessor (available on two controllers)

28.3.3 Outline of Function

The SAR ADC module’s major components, and their interconnections, are shown in Figure 130.

Espressif Systems 564 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Analog

RTC

SENS_SAR1_DIG_FORCE

en_pad[7:0]

pad_in[7:0] ~
hall sensor ~

[i>

enl
pa_pkdetl ~
en2
pa_pkdet2 /

en_test

vdd33 /

en_pad[9:0]

pad_in[9:0] ~

Low Noise
Amplifier

RTC
ADC1 CTRL

SAR ADC1

Digital

DIG

Lo N

SENS_SAR2_DIG_FORCE

ADC1 CTRL

APB_SARADC_SAR2_MUX

DIG

SAR ADC2

RTC
ADC2 CTRL

[N

ADC2 CTRL

PWDET

CTRL

A summary of all the analog signals that may be sent to the SAR ADC module for processing by either ADC1 or

ADC2 is presented in Table 119.

Figure 130: SAR ADC Outline of Function

Table 119: Inputs of SAR ADC module

Signal Name

Pad #

Processed by

VDET_2

VDET_1

SAR ADCH

32K_XN

32K_XP

SENSOR_VN

SENSOR_CAPN

SENSOR_CAPP

SENSOR_VP

Ol = IN|W| OO |

Hall sensor

>
X~
[

GPIO26

GPIO25

GPIO27

MTMS

MTDI

MTCK

MTDO

SAR ADC2

GPIO2

GPIOO

GPIO4

O = IN|W| OV O|N|0|O©

pa_pkdet1

>
~
()

pa_pkdet2

>
X~
QO

vdd33

n/a

Espressif Systems

565

ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

There are five ADC controllers in ESP32: RTC ADC1 CTRL, RTC ADC2 CTRL, DIG ADC1 CTRL, DIG ADC2

CTRL and PWDET CTRL. The differences between them are summarized in Table 120.

Table 120: ESP32 SAR ADC Controllers

RTC ADC1 RTC ADC2 DIG ADCH1 DIG ADC2 PWDET
DAC Y - - - -
Low-Noise Amplifier Y - - - -
Support deep sleep Y Y - . -
ULP coprocessor Y Y - - -
vdd33 - Y - Y -
PWDET/PKDET - - - . Y
Hall sensor Y - - . ,
DMA - - Y - ;

28.3.4 RTC SAR ADC Controllers

The purpose of SAR ADC controllers in the RTC power domain — RTC ADC1 CTRL and RTC ADC2 CTRL - is to
provide ADC measurement with minimal power consumption in a low frequency.

The outline of a single controller’s function is shown in Figure 131. For each controller, the start of
analog-to-digital conversion can be triggered by register SENS_SAR_MEASn_START_SAR. The measurement’s
result can be obtained from register SENS_SAR_MEASH_DATA_SAR.

Espressif Systems 566 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

SENS MEASn START FORCE
SENS ULP CP_FORCE START TOP
SENS MEASn_START SAR

SENS_ULP_CP_START_TOP start of conv. RTC

ADCn CTRL

ULP-coprocessor 0

RTC_CNTL_SLEEP CYCLE

timer 0

Figure 131: RTC SAR ADC Outline of Function

The controllers are intertwined with the ULP coprocessor, as the ULP coprocessor has a built-in instruction to
start an ADC measurement. In many cases, the controllers need to cooperate with the ULP coprocessor,

e.g.
e when periodically monitoring a channel during deep sleep, where the ULP coprocessor is the only trigger
source during this mode;

e when scanning channels continuously in a sequence. Continuous scanning or DMA is not supported by
the controllers. However, it is possible with the help of the ULP coprocessor.

The SAR ADC1 controller supports the low-noise amplifier, as well as DAC. As such, SAR ADC1 can be used in
complex application scenarios.

28.3.5 DIG SAR ADC Controllers

Compared to RTC SAR ADC controllers, DIG SAR ADC controllers have optimized performance and throughput.
Some of their features are:

e High performance; the clock is much faster, therefore, the sample rate is highly increased.

e Multiple-channel scanning mode; there is a pattern table that defines the measurement rule for each SAR
ADC. The scanning mode can be configured as a single mode, double mode, or alternate mode.

e The scanning can be started by software or 12S.

* DMA support; an interrupt will be generated when scanning is finished.

Note:

We do not use the term “start of conversion” in this section, because there is no direct access to starting a single SAR
analog-to-digital conversion. We use “start of scan” instead, which implies that we expect to scan a sequence of channels
with DIG ADC controllers.

Figure 132 shows a diagram of DIG SAR ADC controllers.

Espressif Systems 567 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

DIG SAR ADC Control Top
pointer

S/W or H/W start of scan ch_sel / bit_width / atten
Event Trigger

16 items

pad_en / bit_width / atten

‘ pattern table 1
< I ws
SAR ADC1 SAR ADC1 CTRL

mode . f

select | L6bits 1 DMA —— interrupt

SAR ADC2 SAR ADC2 CTRL 16 bits
(option)

pad_en / bit_width / atten ‘ pointer

ch_sel / bit_width / atten

16 items

pattern table 2

Figure 132: Diagram of DIG SAR ADC Controllers

The pattern tables contain the measurement rules mentioned above. Each table has 16 items which store
information on channel selection, resolution and attenuation. When scanning starts, the controller reads
measurement rules one-by-one from a pattern table. For each controller the scanning sequence includes 16
different rules at most, before repeating itself.

The 8-bit item (the pattern table register) is composed of three fields that contain channel, resolution and
attenuation information, as shown in Table 121.

Table 121: Fields of the Pattern Table Register

Pattern Table Register [7:0]
ch_sel[3:0] bit_width[1:0] atten[1:0]
channel to be scanned resolution attenuation

There are three scanning modes: single mode, double mode and alternate mode.
e Single mode: channels of either SAR ADC1 or SAR ADC2 will be scanned.
e Double mode: channels of SAR ADC1 and SAR ADC2 will be scanned simultaneously.
e Alternate mode: channels of SAR ADC1 and SAR ADC2 will be scanned alternately.

ESP32 supports up to a 12-bit SAR ADC resolution. The 16-bit data in DMA is composed of the ADC result and
some necessary information related to the scanning mode:

e For single mode, only 4-bit information on channel selection is added.

e For double mode or alternate mode, 4-bit information on channel selection is added plus one extra bit
indicating which SAR ADC was selected.

For each scanning mode there is a corresponding data format, called Type | and Type Il. Both data formats are
described in Tables 122 and 123.

Espressif Systems 568 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Table 122: Fields of Type | DMA Data Format

Type | DMA Data Format [15:0]
ch_sel[3:0] data[11:0]
channel SAR ADC data

Table 123: Fields of Type Il DMA Data Format

Type Il DMA Data Format [15:0]
sar_sel ch_sel[3:0] SAR ADC data[10:0]
SAR ADCn channel SAR ADC data

For Type | the resolution of SAR ADC is up to 12 bits, while for Type Il the resolution is 11 bits at most.

DIG SAR ADC Controllers allow the use of 12S for direct memory access. The WS signal of I2S acts as a
measurement-trigger signal. The DATA signal provides the information that the measurement result is ready.
Software can configure APB_SARADC_DATA_TO_I2S, in order to connect ADC to I12S.

28.4 Low-Noise Amplifier

28.4.1 Introduction

ESP32 integrates an analog amplifier designed to amplify a small DC signal that is then passed on to SAR ADC1
for sampling. The ampilification gain is adjustable with two off-chip capacitors.

28.4.2 Features

e Configurable gain by changing the value of two sampling capacitors connected to pins SENSOR_CAPP /
SENSOR_VP and SENSOR_CAPN / SENSOR_VN; see Figure 133.

¢ Designed to operate with other on-chip components like e.g. DAC or ULP coprocessor.

28.4.3 Overview of Function

The structure of the low-noise amplifier is shown in Figure 133:

amp_rst_fb
o—
SENSOR CAPP | |
A
C T amp_ short ref_gnd en_sar_amp
+O SENSOR VP amp_o / Dout
Vin ﬁmp short_ref
- SENSOR VN
amp_short_ref. gnd
TSENSOR CAPN |
[l
o ESP32
amp_rst_fb

Figure 133: Structure of Low-Noise Amplifier

Espressif Systems 569 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

The amplifier’s sequence of operation is shown in Figure 134:

sample | integrate

ADC

en_sar_amp .
- = conversion

on—

off

amp_rst_fb

on-

off

amp_short_ref
amp_short_ref_gnd

on4

off

Figure 134: Low-Noise Amplifier - Sequence of Operation

1. The process is started by en_sar_amp. The amplifier is powered up and connected to the SAR ADCH.
2. A pulse on amp_rst_fb resets the amplifier. Vi, is sampled by charging external capacitors.

3. Finally, amp_short_ref is closed. This starts integrating the Vi, sample by the amplifier.
Vampo = Vin -C+ ch

C is the value of external capacitors in pF. V¢ is the common-mode voltage of the ampilifier output, which
is fixed.

If the common-mode voltage input, Vi, is about OV, amp_short_ref_gnd could take the place of amp_short_ref .
In other cases, the bit controlling this signal should be always cleared. After the Vampo becomes stable, the SAR
ADC1 converts it into a digital value.

Since the low-power amplifier works always together with SAR ADC, it is usually controlled by the FSM in RTC
ADC1 CTRL.

28.5 Hall Sensor

28.5.1 Introduction

The Hall effect is the generation of a voltage difference across an n-type semiconductor passing electrical
current, when a magnetic field is applied to it in a direction perpendicular to that of the flow of the current. The
voltage is proportional to the product of the magnetic field’s strength and current value. A Hall-effect sensor
could be used to measure the strength of a magnetic field, when constant current flows through it, or when the
current is in the presence of a constant magnetic field. As the heart of many applications, the Hall-effect sensors
provide proximity detection, positioning, speed measurement, and current sensing.

Inside of ESP32 there is a Hall sensor for magnetic field-sensing applications, which is designed to feed voltage
signals to the ultra-low noise amplifier and SAR ADC. It can be controlled by the ULP coprocessor, when
low-power operation is required. Such functionality, which enhances the power-processing and flexibility of
ESP32, makes it an attractive solution for position sensing, proximity detection, speed measurement, etc.

Espressif Systems 570 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

28.5.2 Features
e Built-in Hall element with amplifier
e Designed to operate with low-noise amplifier and ADC
e Capable of outputting both analog voltage and digital signals related to the strength of the magnetic field

e Powerful and easy-to-implement functionality, due to its integration with built-in ULP coprocessor, GPIOs,
CPU, Wi-Fi, etc.

28.5.3 Functional Description

The Hall sensor converts the magnetic field into voltage, feeds it into an amplifier, and then outputs it through pin
SENSOR_VP and pin SENSOR_VN. ESP32’s built-in low-noise ampilifier and ADC convert the voltage into a
digital value for processing by the CPU in the digital domain.

The inner structure of a Hall sensor is shown in Figure 135.

Hall Element | ESP32

Current
source

Hall

voltage
; _,_)g : ¥ Ml SENSOR_VP
) 1
8o > Amp@
' 58 - :
e _: ; - M SENSOR_VN

Figure 135: Hall Sensor

The configuration of a Hall sensor for reading is done with registers SENS_SAR_TOUCH_CTRL1_REG and
RTCIO_HALL_SENS_REG, which are used to power up the Hall sensor and connect it to the low-noise amplifier.
The subsequent processing is done by SAR ADC1. The result is obtained from the RTC ADC1 controller. For
more details, please refer to sections 28.4 and 28.3.

28.6 Temperature Sensor

28.6.1 Introduction

The temperature sensor generates a voltage that changes linearly with temperature. The output voltage is then
converted with ADC into a digital value. The temperature measurement range is -40°C ~ 125°C.

It should be noted that temperature measurements are affected by heat generated by Wi-Fi circuitry. This
depends on power transmission, data transfer, module / PCB construction and the related dispersion of heat.
Also, temperature-versus-voltage characteristics have different offset from chip to chip, due to process variation.

Espressif Systems 571 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Therefore, the temperature sensor is suitable mainly for applications that detect temperature changes rather than
the absolute value of temperature.

Improvement of accuracy in absolute temperature measurement is possible by performing sensor calibration and
by operating ESP32 in low-power modes which reduce variation and the amount of heat generated by the
module itself.

28.6.2 Features
e Temperature measurement range: -40°C to 125°C

e Suitable for applications that detect changes in temperature rather than the absolute value of temperature.

28.6.3 Functional Description

A generic schematic description of the temperature sensor’s operation is provided in Figure 136. The
temperature-sensing device converts the temperature into voltage; then, the ADC samples and converts the
voltage into a digital value. Eventually, this value can be processed by a user application.

Temperature -
Srsor | |-\ Aoc [Tanvae | 09 m’>
Device

Figure 136: Temperature Sensor

The configuration of the temperature sensor is done by using register SENS_SAR_TSENS_CTRL_REG. The
conversion status is available in register SENS_TSENS_RDY_OUT. The measurement result can be read from
SENS_TSENS_OUT.

28.7 DAC

28.7.1 Introduction

Two 8-bit DAC channels can be used to convert digital values into analog output signals (up to two of them). The
design structure is composed of integrated resistor strings and a buffer. This dual DAC supports power supply
and uses it as input voltage reference. The dual DAC also supports independent or simultaneous signal
conversions inside of its channels.

28.7.2 Features
The features of DAC are as follows:
e Two 8-bit DAC channels
¢ |Independent or simultaneous conversion in channels

e \oltage reference from the VDD3P3_RTC pin

Espressif Systems 572 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

e Cosine waveform (CW) generator

DMA capability

Start of conversion can be triggered by software or SAR ADC FSM (please refer to the SAR ADC chapter
for more details)

Can be fully controlled by the ULP coprocessor

A diagram showing the DAC channel’s function is presented in Figure 137. For a detailed description, see the
sections below.

SENS_DAC_DIG_FORCE
SENS_DACNn_CW_EN

CW generator 1

RTCIO_PAD_PDACn_DACI[7:0]

DMA

0

pdacn_dac[7:0]

RTCIO_PAD_PDACn_XPD_DAC
1 pdacn_xpd_dac dacn_out

DACh |———
0
SAR ADC FSM pdac_clk

R

RTCIO_PAD_PDACh_DAC_XPD_FORCE

Figure 137: Diagram of DAC Function

28.7.3 Structure

The two 8-bit DAC channels can be configured independently. For each DAC channel, the output analog voltage
can be calculated as follows:

DACn_OUT = VDD3P3_RTC - PDACn_DAC/256

e VDD3P3_RTC is the voltage on pin VDD3P3_RTC (typically 3.3V).
e PDACH_DAC has multiple sources: CW generator, register RTCIO_PAD_DACn_REG, and DMA.

The start of conversion is determined by register RTCIO_PAD_PDAC_XPD_DAC. The conversion process itself
is controlled by software or SAR ADC FSM; see Figure 137.

28.7.4 Cosine Waveform Generator

The cosine waveform (CW) generator can be used to generate a cosine / sine tone. A diagram showing cosine
waveform generator’s function is presented in Figure 138.

The CW generator has the following features:

e Adjustable frequency
The frequency of CW can be adjusted by register SENS_SAR_SW_FSTEP[15:0]:

freq = dig_clk_rtc_freq - SENS_SAR_SW_FSTEP /65536

The frequency of dig_clk_rtc is typically 8 MHz.

Espressif Systems 573 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

e Scaling
Configuring register SENS_SAR_DAC_SCALEN[1:0]; the amplitude of a CW can be multiplied by 1, 1/2, 1/4
or 1/8.

e DC offset
The offset may be introduced by register SENS_SAR_DAC_DCn[7:0]. The result will be saturated.

® Phase shift
A phase-shift of 0 /90 / 180 / 270 degrees can be added by setting register SENS_SAR_DAC_INVn[1:0].

SENS_SAR_SW_FSTEP[15:0] SENS_SAR_DAC DCn[7:0]
SENS_SAR DAC_SCALEN[1:0] \ SENS_SAR_DAC_INVN[1:0]
dig_clk_rtc cw_out[7:0]
—— | CWgen |—» Scale |—» AddDC [—»Saturation|—» Inverter —

|

SENS_SAR SW TONE_EN

Figure 138: Cosine Waveform (CW) Generator

28.7.5 DMA support

A DMA controller with dual DMA channels can be used to set the output of two DAC channels. By configuring
SENS_SAR_DAC DIG_FORCE, 12S_clk can be connected to DAC clk, and 12S_DATA_OUT can be connected to
DAC_DATA for direct memory access.

For details, please refer to chapter DMA.

Espressif Systems 574 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

28.8 Register Summary

Note: The registers listed below have been grouped, according to their functionality. This particular grouping

does not reflect the exact sequential order of their place in memory.

28.8.1 Sensors
Name Description Address Access
Touch pad setup and control registers
SENS_SAR_TOUCH_CTRL1_REG Touch pad control Ox3FF48858 | R/W
SENS_SAR_TOUCH_CTRL2_REG Touch pad control and status Ox3FF48884 | RO
SENS_SAR_TOUCH_ENABLE_REG | Wakeup interrupt control and working set Ox3FF4888C | R/W
SENS_SAR_TOUCH_THRES1_REG | Threshold setup for pads 0 and 1 Ox3FF4885C | R/W
SENS_SAR_TOUCH_THRES2_REG | Threshold setup for pads 2 and 3 Ox3FF48860 | R/W
SENS_SAR_TOUCH_THRES3_REG | Threshold setup for pads 4 and 5 Ox3FF48864 | R/W
SENS_SAR_TOUCH_THRES4_REG | Threshold setup for pads 6 and 7 Ox3FF48868 | R/W
SENS_SAR_TOUCH_THRES5_REG | Threshold setup for pads 8 and 9 Ox3FF4886C | R/W
SENS_SAR_TOUCH_OUT1_REG Counters for pads 0 and 1 Ox3FF48870 | RO
SENS_SAR_TOUCH_OUT2_REG Counters for pads 2 and 3 Ox3FF48874 | RO
SENS_SAR_TOUCH_OUT3_REG Counters for pads 4 and 5 O0x3FF48878 | RO
SENS_SAR_TOUCH_OUT4_REG Counters for pads 6 and 6 Ox3FF4887C | RO
SENS_SAR_TOUCH_OUT5_REG Counters for pads 8 and 9 0x3FF48880 | RO
SAR ADC control register
SENS_SAR_START_FORCE_REG SAR ADC1 and ADC2 control Ox3FF4882C | R/W
SAR ADC1 control registers
SENS_SAR_READ_CTRL_REG SAR ADC1 data and sampling control 0x3FF48800 | R/W
SENS_SAR_MEAS_START1_REG SAR ADC1 conversion control and status Ox3FF48854 | RO
SAR ADC2 control registers
SENS_SAR_READ_CTRL2_REG SAR ADC2 data and sampling control Ox3FF48890 | R/W
SENS_SAR_MEAS_START2_REG SAR ADC2 conversion control and status Ox3FF48894 | RO
ULP coprocessor configuration register
SENS_ULP_CP_SLEEP_CYCO_REG | Sleep cycles for ULP coprocessor Ox3FF48818 | R/W
Pad attenuation configuration registers
SENS_SAR_ATTEN1_REG 2-bit attenuation for each pad Ox3FF48834 | R/W
SENS_SAR_ATTEN2_REG 2-bit attenuation for each pad Ox3FF48838 | R/W
Temperature sensor registers
SENS_SAR_TSENS_CTRL_REG Temperature sensor configuration Ox3FF4884C | R/W
SENS_SAR_SLAVE_ADDR3_REG Temperature sensor readout Ox3FF48844 | RO
DAC control registers
SENS_SAR_DAC_CTRL1_REG DAC control Ox3FF48898 | R/W
SENS_SAR_DAC_CTRL2_REG DAC output control Ox3FF4889C | R/W

28.8.2 Advanced Peripheral Bus
Name Description Address Access
SAR ADC1 and ADC2 common configuration registers

Espressif Systems 575 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

APB_SARADC_CTRL_REG SAR ADC common configuration 0x06002610 | R/W
APB_SARADC_CTRL2_REG SAR ADC common configuration 0x06002614 | R/W
APB_SARADC_FSM_REG SAR ADC FSM sample cycles configuration | 0x06002618 | R/W
SAR ADC1 pattern table registers

APB_SARADC_SAR1_PATT_TAB1_REG| Items O - 3 of pattern table 0x0600261C | R/W
APB_SARADC_SAR1_PATT_TAB2_REG| Items 4 - 7 of pattern table 0x06002620 | R/W
APB_SARADC_SAR1_PATT_TAB3_REG| Items 8 - 11 of pattern table 0x06002624 | R/W
APB_SARADC_SAR1_PATT_TAB4_REG| Items 12 - 15 of pattern table 0x06002628 | R/W
SAR ADC2 pattern table registers

APB_SARADC_SAR2_PATT_TAB1_REG| Items O - 3 of pattern table 0x0600262C | R/W
APB_SARADC_SAR2_PATT_TAB2_REG| Items 4 - 7 of pattern table 0x06002630 | R/W
APB_SARADC_SAR2_PATT_TAB3_REG| Items 8 - 11 of pattern table 0x06002634 | R/W
APB_SARADC_SAR2_PATT_TAB4_REG| Items 12 - 15 of pattern table 0x06002638 | R/W

28.8.3 RTC /0

For details, please refer to Section Register Summary in Chapter I0_MUX and GPIO Matrix.

Espressif Systems

576

ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

28.9 Registers

28.9.1 Sensors

Register 28.1: SENS_SAR_READ_CTRL_REG (0x0000)

<
O\/
< 3 50
Q O < O
) S & & 2
éO\Q/ N S N
N7 AN\ 7 N7 N 7 N /7
o K & & & &
& %/6%/ & é%/ é(b/ % a
¢ XK & 2% % %
’31 29|28|27|26 18|17 16|15 8|7 O‘
]o 0 o|o|o|o 00 00 0 0 O o| 3 | 9 | 2 ‘Reset

SENS_SAR1_DATA_INV Invert SAR ADC1 data. (R/W)

SENS_SAR1_DIG_FORCE 1: SAR ADC1 controlled by DIG ADC1 CTR, 0: SAR ADC1 controlled by
RTC ADC1 CTRL. (R/W)

SENS_SAR1_SAMPLE_BIT Bit width of SAR ADC1, 00: for 9-bit, 01: for 10-bit, 10: for 11-bit, 11:
for 12-bit. (R/W)

SENS_SAR1_SAMPLE_CYCLE Sample cycles for SAR ADC1. (R/W)

SENS_SAR1_CLK DIV Clock divider. (R/W)

Register 28.2: SENS_ULP_CP_SLEEP_CYCO_REG (0x0018)

E]

’ 200 ‘ Reset

SENS_ULP_CP_SLEEP_CYCO_REG Sleep cycles for ULP coprocessor timer. (R/W)

Espressif Systems 577 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.3: SENS_SAR_START_FORCE_REG (0x002c)

&
A 7
&L«
£ /7 X A K NS
8. & K LS ©
SS & 225 & o & &
o R XIS s g5 AN
ée’b\ %/v 5 %/O/ GQ’&%\)V@/\/ %?v g %?v %/v
& S $ ELE £ £ £ £
’31 24|23|22|21 11|10|9|8|7 5|4|3 2|1 0‘
’o 00 00 0 0 o|o|o|o 000 00 O0UO0GO0 O o|o|0|o|0 0 o|o|1 1|1 1‘Reset

SENS_SAR1_STOP Stop SAR ADC1 conversion. (R/W)
SENS_SAR2_STOP Stop SAR ADC2 conversion. (R/W)
SENS_PC_INIT Initialized PC for ULP coprocessor. (R/W)

SENS_ULP_CP_START_TOP Write 1 to start ULP coprocessor; it is active only when
reg_ulp_cp_force_start_top = 1. (R/W)

SENS_ULP_CP_FORCE_START_TOP 1: ULP coprocessor is started by SW, 0: ULP coprocessor
is started by timer. (R/W)

SENS_SAR2_PWDET_CCT SAR2_PWDET_CCT, PA power detector capacitance tuning. (R/W)
SENS_SAR2_EN_TEST SAR2_EN_TEST is active only when reg_sar2_dig_force = 0. (R/W)

SENS_SAR2_BIT_WIDTH Bit width of SAR ADC1, 00: 9 bits, 01: 10 bits, 10: 11 bits, 11: 12 bits.
(R'W)

SENS_SAR1_BIT_WIDTH Bit width of SAR ADC2, 00: 9 bits, 01: 10 bits, 10: 11 bits, 11: 12 bits.
(R'W)

Register 28.4: SENS_SAR_ATTEN1_REG (0x0034)

E]

’ OXOFFFFFFFF \ Reset

SENS_SAR_ATTEN1_REG 2-bit attenuation for each pad, 11: 1 dB, 10: 6 dB, 01: 3 dB, 00: 0 dB,
[1:0] is used for ADC1_CHO, [3:2] is used for ADC1_CH1, etc. (R/W)

Register 28.5: SENS_SAR_ATTEN2_REG (0x0038)

E]

’ OXOFFFFFFFF \ Reset

SENS_SAR_ATTEN2_REG 2-bit attenuation for each pad, 11: 1 dB, 10: 6 dB, 01: 3 dB, 00: 0 dB,
[1:0] is used for ADC2_CHO, [3:2] is used for ADC2_CH1, etc (R/W)

Espressif Systems 578 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.6: SENS_SAR_SLAVE_ADDR3_REG (0x0044)

o\g\ «
A/ S
&3@ éo”o
D < & S
S & o7 S

& & @
’31|30|29 22|43 22‘
]o|o| 0x000 |oooooooooooooooooooooo‘Reset

SENS_TSENS_RDY_OUT This indicates that the temperature sensor’s output is ready. (RO)

SENS_TSENS_OUT Temperature sensor data output. (RO)

Register 28.7: SENS_SAR_TSENS_CTRL_REG (0x004c)

<
QOQO
SEF
&L Q Q
\5®Q6\$O O\\/}‘"/ \$>é
%/ %/ %/ 7/ 7/
®® éoéé(/% 0 &%Q/% /\é(/e Q;&
@ébé %@2&&%/ s a @%@é
’31 27|26|25|24|23 16|15|29 15‘
’oo 0 oo|o|o|o| 6 |0|ooooooooooooooo‘Reset

SENS_TSENS_DUMP_OUT Temperature sensor dump output; active only when
reg_tsens_power_up_force = 1. (R/W)

SENS_TSENS_POWER_UP_FORCE 1: Temperature sensor dump output & power-up controlled by
SW; 0: controlled by FSM. (R/W)

SENS_TSENS_POWER_UP Temperature sensor power-up. (R/W)
SENS_TSENS_CLK_DIV Temperature sensor clock divider. (R/W)

SENS_TSENS_IN_INV Invert temperature sensor data. (R/W)

Espressif Systems 579 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.8: SENS_SAR_MEAS_START1_REG (0x0054)

< <
J J
&§ SR RS
7N 7 7
W w S <&
%/ N S 9 Q
N N S >
NS NS é&w@ & &
et‘o/ é<‘O/ é%/é%/&/ &/
& & & K & &

31 | 30 19 | 18 17 16 | 15 0 ‘

SENS_SAR1_EN_PAD_FORCE 1: SARADC1 pad enable bitmap is controlled by SW, 0: SAR ADCH1
pad enable bitmap is controlled by ULP coprocessor. (R/W)

SENS_SAR1_EN_PAD SAR ADC1 pad enable bitmap; active only when reg_sar1_en_pad_force =
1. (R'W)

SENS_MEAS1_START_FORCE 1: SAR ADC1 controller (in RTC) is started by SW, 0: SAR ADC1
controller is started by ULP coprocessor. (R/W)

SENS_MEAS1_START_SAR SAR ADC1 controller (in RTC) starts conversion; active only when
reg_meas1_start_force = 1. (R/W)

SENS_MEAS1_DONE_SAR SAR ADC1 conversion-done indication. (RO)

SENS_MEAS1_DATA_SAR SAR ADCH1 data. (RO)

Espressif Systems 580 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.9: SENS_SAR_TOUCH_CTRL1_REG (0x0058)

’31 28|27|26|25|24|23 16|15 O‘

]o 0 o o| 0 | 0 | 1 | 0 | 0x004 | 0x01000 ‘Reset

SENS_HALL_PHASE_FORCE 1: HALL PHASE is controlled by SW, 0: HALL PHASE is controlled
by FSM in ULP coprocessor. (R/W)

SENS_XPD_HALL_FORCE 1: XPD HALL is controlled by SW, 0: XPD HALL is controlled by FSM in
ULP coprocessor. (R/W)

SENS_TOUCH_OUT_1EN 1: wakeup interrupt is generated if SET1 is touched, O: wakeup interrupt
is generated only if both SET1 & SET2 are touched. (R/W)

SENS_TOUCH_OUT_SEL 1: the touch pad is considered touched when the value of the counter is
greater than the threshold, O: the touch pad is considered touched when the value of the counter
is less than the threshold. (R/W)

SENS_TOUCH_XPD_WAIT The waiting time (in 8 MHz cycles) between TOUCH_START and
TOUCH_XPD. (R/W)

SENS_TOUCH_MEAS_DELAY The measurement’s duration (in 8 MHz cycles). (R/W)

Register 28.10: SENS_SAR_TOUCH_THRES1_REG (0x005c)

’31 16|15 O‘

’ 0x00000 | 0x00000 \ Reset

SENS_TOUCH_OUT_THO The threshold for touch pad 0. (R/W)

SENS_TOUCH_OUT_TH1 The threshold for touch pad 1. (R/W)

Espressif Systems 581 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.11: SENS_SAR_TOUCH_THRES2_REG (0x0060)

& L
K7 L7
> >
< k)
&O ,\O
X4 S/
S S
=2 &
‘ 3 16 | 15 0 ‘
‘ 0x00000 | 0x00000 \ Reset

SENS_TOUCH_OUT_TH2 The threshold for touch pad 2. (R/W)

SENS_TOUCH_OUT_TH3 The threshold for touch pad 3. (R/W)

Register 28.12: SENS_SAR_TOUCH_THRES3_REG (0x0064)

‘ 0x00000 | 0x00000 ‘ Reset

SENS_TOUCH_OUT_TH4 The threshold for touch pad 4. (R/W)

SENS_TOUCH_OUT_TH5 The threshold for touch pad 5. (R/W)

Register 28.13: SENS_SAR_TOUCH_THRES4_REG (0x0068)

‘ 0x00000 | 000000 |Reset

SENS_TOUCH_OUT_TH6 The threshold for touch pad 6. (R/W)

SENS_TOUCH_OUT_TH7 The threshold for touch pad 7. (R/W)

Espressif Systems 582 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.14: SENS_SAR_TOUCH_THRES5_REG (0x006c)

& &
K7 L7
> >
Pe O
X4 S/
S S
=2 &

‘ 3 16 | 15 0 ‘
‘ 0x00000 | 0x00000 \ Reset

SENS_TOUCH_OUT_TH8 The threshold for touch pad 8. (R/W)

SENS_TOUCH_OUT_TH9 The threshold for touch pad 9. (R/W)

Register 28.15: SENS_SAR_TOUCH_OUT1_REG (0x0070)

&Q &
%/OQ %/o\)
<& <&

W N

o3 o3
O N
<O <O

&7 <2
=3 =3
‘ 0x00000 | 0x00000 ‘ Reset
SENS_TOUCH_MEAS_OUTO0 The counter for touch pad 0. (RO)
SENS_TOUCH_MEAS_OUT1 The counter for touch pad 1. (RO)
Register 28.16: SENS_SAR_TOUCH_OUT2_REG (0x0074)
'\q’ ,<b
9 9
<& <&

W N

o &
))
<O <O

& &
‘ 000000 | 0x00000 ‘ Reset

SENS_TOUCH_MEAS_OUT2 The counter for touch pad 2. (RO)

SENS_TOUCH_MEAS_OUTS3 The counter for touch pad 3. (RO)

Espressif Systems 583 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.17: SENS_SAR_TOUCH_OUT3_REG (0x0078)

& o
9 9
& &
N W
e o
N N
<O Pe
X4 S
P £
‘ 31 16 | 15 0 ‘
‘ 0x00000 | 0x00000 ‘ Reset
SENS_TOUCH_MEAS_OUT4 The counter for touch pad 4. (RO)
SENS_TOUCH_MEAS_OUT5 The counter for touch pad 5. (RO)
Register 28.18: SENS_SAR_TOUCH_OUT4_REG (0x007c)
& <
9 9
& &
N W
Rl o
N N
<O O
X4 s
& $
‘ 31 16 | 15 0 ‘
‘ 0x00000 | 0x00000 ‘ Reset
SENS_TOUCH_MEAS_OUT6 The counter for touch pad 6. (RO)
SENS_TOUCH_MEAS_OUT7 The counter for touch pad 7. (RO)
Register 28.19: SENS_SAR_TOUCH_OUT5_REG (0x0080)
& &L
%9\5 %90
& &
‘2‘/ \2\/
@ ©
o o
X4 S/
& $
‘ 3 16 | 15 0 ‘
‘ 0x00000 | 0x00000 ‘ Reset

SENS_TOUCH_MEAS_OUTS8 The counter for touch pad 8. (RO)

SENS_TOUCH_MEAS_OUT9 The counter for touch pad 9. (RO)

Espressif Systems 584 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.20: SENS_SAR_TOUCH_CTRL2_REG (0x0084)

& A© oi/e @\Q’o& &
% K7 LE &0 =
« ¥ 20 «
o\?’ow OOOY\/ 0\502\;02‘;02\;0 ; OOQY\/
S «(N A
é‘z) s s R4 s s
FE & SEBET &
’ 31 | 30 |29 14| 13 | 12 | 11 | 10 |Q O‘
’ 0 | 0 | 0x00100 | 0 | 0 | 1 | 0 | 0x000 ‘Reset

SENS_TOUCH_MEAS_EN_CLR Set to clear reg_touch_meas_en. (WO)
SENS_TOUCH_SLEEP_CYCLES Sleep cycles for timer. (R/W)

SENS_TOUCH_START_FORCE 1: starts the Touch FSM via software; O: starts the Touch FSM via
timer. (R/W)

SENS_TOUCH_START_EN 1: starts the Touch FSM,; this is valid when reg_touch_start_force is set.
(R/W)

SENS_TOUCH_START_FSM_EN 1: TOUCH_START & TOUCH_XPD are controlled by the Touch
FSM; 0: TOUCH_START & TOUCH_XPD are controlled by registers. (R/W)

SENS_TOUCH_MEAS_DONE Set to 1 by FSM, indicating that touch measurement is done. (RO)

SENS_TOUCH_MEAS_EN 10-bit register indicating which pads are touched. (RO)

Register 28.21: SENS_SAR_TOUCH_ENABLE_REG (0x008c)

N % <<§
& R &3
: 9 f
e o =
0\2\/ 0\2\/ OQ\/
N N N
(@& <Q QO %/\O
7/ 7/ 7/
& & & =3

’31 30|29 20|19 10|9 O‘
] 0o o | OX3FF | OX3FF | OX3FF ‘Reset

SENS_TOUCH_PAD_OUTEN1 Bitmap defining SET1 for generating a wakeup interrupt; SET1 is con-
sidered touched if at least one of the touch pads in SET1 is touched. (R/W)

SENS_TOUCH_PAD_OUTEN2 Bitmap defining SET2 for generating a wakeup interrupt; SET2 is con-
sidered touched if at least one of the touch pads in SET2 is touched. (R/W)

SENS_TOUCH_PAD_WORKEN Bitmap defining the working set during measurement. (R/W)

Espressif Systems 585 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.22: SENS_SAR_READ_CTRL2_REG (0x0090)

<
O\/
< 3 ¢
Q O Q @)
s & o N S
e N 7
59 5 54 S
s 5 B B &
Q\® c_)%) ? é‘z’ @? ? ?
LT g S S S
& KL & & & &
’31 30|29|28|27 18|17 16|15 8|7 O‘
’o o|0|o|o 00 00 00 0 O o| 3 | 9 | 2 ‘Reset

SENS_SAR2_DATA_INV Invert SAR ADC2 data. (R/W)

SENS_SAR2_DIG_FORCE 1: SAR ADC2 controlled by DIG ADC2 CTRL or PWDET CTRL, 0: SAR
ADC2 controlled by RTC ADC2 CTRL (R/W)

SENS_SAR2_SAMPLE_BIT Bit width of SAR ADC2, 00: for 9-bit, 01: for 10-bit, 10: for 11-bit, 11
for 12-bit. (R/W)

SENS_SAR2_SAMPLE_CYCLE Sample cycles of SAR ADC2. (R/W)

SENS_SAR2_CLK_DIV Clock divider. (R/W)

Register 28.23: SENS_SAR_MEAS_START2_REG (0x0094)

< 2
S S
& PSS &
© © S &
eg & é\v N O}
%??\ %/?\ 97 Q. %§ %§
S S SSASAS S
& & XL &

’31|30 19|18|17|16|15 O‘

0 000000 0O O0O0O0 0 0 0 OReset

SENS_SAR2_EN_PAD_FORCE 1: SAR ADC2 pad enable bitmap is controlled by SW, 0: SAR ADC2
pad enable bitmap is controlled by ULP coprocessor. (R/W)

SENS_SAR2_EN_PAD SAR ADC2 pad enable bitmap; active only when reg_sar2_en_pad_force =
1. (R'W)

SENS_MEAS2_START_FORCE 1: SAR ADC2 controller (in RTC) is started by SW, 0: SAR ADC2
controller is started by ULP coprocessor. (R/W)

SENS_MEAS2_START_SAR SAR ADC2 controller (in RTC) starts conversion; active only when
reg_meas2_start_force = 1. (R/W)

SENS_MEAS2_DONE_SAR SAR ADC2-conversion-done indication. (RO)

SENS_MEAS2_DATA_SAR SAR ADC2 data. (RO)

Espressif Systems 586 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.24: SENS_SAR_DAC_CTRL1_REG (0x0098)

@62\0&

(<// /(</

O 0O

%iﬁﬁoio@ 54 &
e oY 0\0/ > ES
SRR 5
S PR T S & o
Q)é @/ég/eg/@/ Q)é @/ @/
& KPP & 2% &

’31 26|25|24|23|22|21 17|16|15 O‘

SENS_DAC_CLK_INV 1: inverts PDAC_CLK, 0: no inversion. (R/W)
SENS_DAC_CLK_FORCE_HIGH forces PDAC_CLK to be 1. (R/W)
SENS_DAC_CLK_FORCE_LOW forces PDAC_CLK to be 0. (R/W)

SENS_DAC_DIG_FORCE 1: DAC1 & DAC2 use DMA, 0: DAC1 & DAC2 do not use DMA. (R/W)
SENS_SW_TONE_EN 1: enable CW generator, O: disable CW generator. (R/W)

SENS_SW_FSTEP Frequency step for CW generator; can be used to adjust the frequency. (R/W)

Register 28.25: SENS_SAR_DAC_CTRL2_REG (0x009c)

S g &
o %\W S & & §
b\ Q?\O/?g)/ VNC)/ ?g)/ O?g)/ ?\O/ vg)/ ?9/
Q
QQ)%Q)(A %Q/% &@ /%Q/eg/ (O @%/ Q/%@/ Q/% 7 (§%/ (-O Q§%/
’31 26|25|2A|23 22|21 20|19 18|17 16|15 8|7 O‘
’o 0 0 0 0 o|1|1|o o|o 0|o o|o o|o 0 0 00 0 O 0|0 00 00 0 O O‘Reset

SENS_DAC_CW_EN2 1: selects CW generator as source for PDAC2_DACI7:0], O: selects register
reg_pdac2_dac|[7:0] as source for PDAC2_DACI7:0]. (R/W)

SENS_DAC_CW_EN1 1: selects CW generator as source for PDAC1_DACI7:0], O: selects register
reg_pdaci_dac[7:0] as source for PDAC1_DACI7:0]. (R/W)

SENS_DAC_INV2 DAC2, 00: does not invert any bits, 01: inverts all bits, 10: inverts MSB, 11: inverts
all bits except for MSB. (R/W)

SENS_DAC_INV1 DACT, 00: does not invert any bits, 01: inverts all bits, 10: inverts MSB, 11: inverts
all bits except for MSB. (R/W)

SENS_DAC_SCALE2 DAC2, 00: no scale, 01: scale to 1/2, 10: scale to 1/4, scale to 1/8. (R/W)
SENS_DAC_SCALE1 DACH1, 00: no scale, 01: scale to 1/2, 10: scale to 1/4, scale to 1/8. (R/W)
SENS_DAC_DC2 DC offset for DAC2 CW generator. (R/W)

SENS_DAC_DC1 DC offset for DAC1 CW generator. (R/W)

Espressif Systems 587 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

28.9.2 Advanced Peripheral Bus

Register 28.26: APB_SARADC_CTRL_REG (0x10)

> &
AP &
\(L%Q\/é?ég y 7/ ’ ,<&\/ /<\>/ <>\A C,)?“ OQQ/ 0+
LT ¥ S o SIS Y
?\/ ?\/ 7 7 7/ 7/ /
FFF K ¥ ¥ ¥ Fx Sy
SIS o7 o7 o7 007 O OLOL07
L SIS S & e PERCHESIETCRC
& FFFF & K &K F¥ o X of o
(o‘?) @/ @/ @/ Q)/ Q)/ @/ @/ @/ @/ @/ @/ @/ s
& ERLE ¢ ¢ d L& & LY
’31 27|26 25|24|23|22 19|18 15|14 7|6|5|4 3|2|1|0‘
]o 0 0 0 o|0|o|o|o| 15 | 15 | 4 |w|o| 0 |o|o|o‘Reset

APB_SARADC_DATA_TO_I2S 1: I12S input data is from SAR ADC (for DMA), O: 12S input data is
from GPIO matrix. (R/W)

APB_SARADC_DATA_SAR_SEL 1: sar_sel will be coded by the MSB of the 16-bit output data, in
this case, the resolution should not contain more than 11 bits; 0: using 12-bit SAR ADC resolution.
RW)

APB_SARADC_SAR2_PATT_P_CLEAR Clears the pointer of pattern table for DIG ADC2 CTRL.
(R/W)

APB_SARADC_SAR1_PATT_P_CLEAR Clears the pointer of pattern table for DIG ADC1 CTRL.
(R/W)

APB_SARADC_SAR2_PATT_LEN SAR ADC2, 0 - 15 means pattern table length of 1 - 16. (R/W)
APB_SARADC_SAR1_PATT_LEN SAR ADCH1, 0 - 15 means pattern table length of 1 - 16. (R/W)
APB_SARADC_SAR_CLK_DIV SAR clock divider. (R/W)

APB_SARADC_SAR_CLK_GATED Reserved. Please initialize to Ob1 (R/W)
APB_SARADC_SAR_SEL 0: SAR1, 1: SAR2, this setting is applicable in the single SAR mode. (R/W)
APB_SARADC_WORK_MODE 0: single mode, 1: double mode, 2: alternate mode. (R/W)

APB_SARADC_SAR2_MUX 1: SAR ADC?2 is controlled by DIG ADC2 CTRL, 0: SAR ADC2 is con-
trolled by PWDET CTRL. (R/W)

APB_SARADC_START Reserved. Please initialize to 0 (R/W)

APB_SARADC_START_FORCE Reserved. Please initialize to O (R/W)

Espressif Systems 588 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.27: APB_SARADC_CTRL2_REG (0x14)

Q O
o> &
@§\§ ng %§\>
Fe & &
007 07 07
OO) QO
v v v
& KRR $ <
%) @/ Q>/ @/ Q;/
¢ ks s s
’31 11|10|9|8 1|0‘
| 0 | 0 | 255 | 0 ‘Reset

APB_SARADC_SAR2_INV 1: data to DIG ADC2 CTRL is inverted, O: data is not inverted. (R/W)
APB_SARADC_SAR1_INV 1: data to DIG ADC1 CTRL is inverted, 0: data is not inverted. (R/W)
APB_SARADC_MAX_MEAS_NUM Max conversion number. (R/W)

APB_SARADC_MEAS_NUM_LIMIT Reserved. Please initialize to Ob1 (R/W)

Register 28.28: APB_SARADC_FSM_REG (0x18)

<
\
d()
&
‘g\/
e
Q/
QO
?\
%??\ (@&
7 %)
& &
’31 24|47 24‘
’ 2 |oooooooooooooooooooooooo‘Reset

APB_SARADC_SAMPLE_CYCLE Sample cycles. (R/W)

Register 28.29: APB_SARADC_SAR1_PATT_TAB1_REG (0x1C)

E]

’ 0XO0FOFOFOF ‘ Reset

APB_SARADC_SAR1_PATT_TAB1_REG Pattern tables O - 3 for SAR ADC1, one byte for each
pattern table: [31:28] pattern0_channel, [27:26] pattern0_bit_width, [25:24] pattern0_attenuation,
[23:20] pattern1_channel, etc. (R/W)

Espressif Systems 589 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.30: APB_SARADC_SAR1_PATT_TAB2_REG (0x20)

‘31 O‘

‘ 0XOOFOFOFOF \ Reset

APB_SARADC_SAR1_PATT_TAB2_REG Pattern tables 4 - 7 for SAR ADC1, one byte for each
pattern table: [31:28] patternd_channel, [27:26] pattern4_bit_width, [25:24] pattern4_attenuation,
[23:20] pattern5_channel, etc. (R/W)

Register 28.31: APB_SARADC_SAR1_PATT_TAB3_REG (0x24)

‘31 O‘

‘ 0XOOFOFOFOF \ Reset

APB_SARADC_SAR1_PATT_TAB3_REG Pattern tables 8 - 11 for SAR ADC1, one byte for each
pattern table: [31:28] pattern8_channel, [27:26] pattern8_bit_width, [25:24] pattern8_attenuation,
[23:20] pattern9_channel, etc. (R/W)

Register 28.32: APB_SARADC_SAR1_PATT_TAB4_REG (0x28)

‘31 O‘

‘ OxOOFOFOFOF \ Reset

APB_SARADC_SAR1_PATT_TAB4_REG Pattern tables 12 - 15 for SAR ADC1, one byte for
each pattern table: [31:28] pattern12_channel, [27:26] pattern12_bit_width, [25:24] pat-
tern12_attenuation, [23:20] pattern13_channel, etc. (R/W)

Register 28.33: APB_SARADC_SAR2_PATT_TAB1_REG (0x2C)

‘31 O‘

‘ 0XOOFOFOFOF \ Reset

APB_SARADC_SAR2_PATT_TAB1_REG Pattern tables O - 3 for SAR ADC2, one byte for each
pattern table: [31:28] patternO_channel, [27:26] patternO_bit_width, [25:24] patternO_attenuation,
[23:20] pattern1_channel, etc. (R/W)

Register 28.34: APB_SARADC_SAR2_PATT_TAB2_REG (0x30)

E]

‘ OxOOFOFOFOF \ Reset

APB_SARADC_SAR2_PATT_TAB2_REG Pattern tables 4 - 7 for SAR ADC2, one byte for each
pattern table: [31:28] pattern4_channel, [27:26] pattern4_bit_width, [25:24] pattern4_attenuation,
[23:20] pattern5_channel, etc. (R/W)

Espressif Systems 590 ESP32 Technical Reference Manual V3.1

28. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 28.35: APB_SARADC_SAR2_PATT_TAB3_REG (0x34)

E]

’ 0XOOFOFOFOF \ Reset

APB_SARADC_SAR2_PATT_TAB3_REG Pattern tables 8 - 11 for SAR ADC2, one byte for each
pattern table: [31:28] pattern8_channel, [27:26] pattern8_bit_width, [25:24] pattern8_attenuation,
[23:20] pattern9_channel, etc. (R/W)

Register 28.36: APB_SARADC_SAR2_PATT_TAB4_REG (0x38)

E]

’ 0XOOFOFOFOF \ Reset

APB_SARADC_SAR2_PATT_TAB4_REG Pattern tables 12 - 15 for SAR ADC2, one byte for
each pattern table: [31:28] pattern12_channel, [27:26] pattern12_bit_width, [25:24] pat-
tern12_attenuation, [23:20] pattern13_channel, etc. (R/W)

28.9.3 RTCI/O

For details, please refer to Section Registers in Chapter I0_MUX and GPIO Matrix.

Espressif Systems 591 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29. ULP Co-processor

29.1 Introduction

The ULP co-processor is an ultra-low-power processor that remains powered on during the Deep-sleep mode of
the main SoC. Hence, the developer can store in the RTC memory a program for the ULP co-processor to
access peripheral devices, internal sensors and RTC registers during deep sleep. This is useful for designing
applications where the CPU needs to be woken up by an external event, or timer, or a combination of these,
while maintaining minimal power consumption.

29.2 Features
e Contains up to 8 KB of SRAM for instructions and data
e Uses RTC_FAST_CLK, which is 8 MHz
e Works both in normal and deep sleep
e |s able to wake up the digital core or send an interrupt to the CPU
e Can access peripheral devices, internal sensors and RTC registers

e Contains four 16-bit general-purpose registers (RO, R1, R2, R3) for manipulating data and accessing
memory

¢ Includes one 8-bit Stage_cnt register which can be manipulated by ALU and used in JUMP instructions

APB Bus

[}
O)|

hel
=

¥l

'—-| RTC CNTL REG |
RTC Memory RTC |0 REG
Arbiter
12C CTRL SARADC REG
~—>| RTC 12C REG |
TSENS CTRL
uLk RTC Timer
Coprocessor
SAR CTRL

ESP32 RTC

Figure 139: ULP Co-processor Diagram

Espressif Systems 592 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.3 Functional Description

The ULP co-processor is a programmable FSM (Finite State Machine) that can work during deep sleep. Like
general-purpose CPUs, ULP co-processor also has some instructions which can be useful for a relatively
complex logic, and also some special commands for RTC controllers/peripherals. The 8 KB of SRAM RTC slow
memory can be accessed by both the ULP co-processor and the CPU; hence, it is usually used to store
instructions and share data between the ULP co-processor and the CPU.

The ULP co-processor can be started by software or a periodically-triggered timer. The operation of the ULP

co-processor is ended by executing the HALT instruction. Meanwhile, it can access almost every module in RTC

domain, either through built-in instructions or RTC registers. In many cases the ULP co-processor can be a good

supplement to, or replacement of, the CPU, especially for power-sensitive applications. Figure 139 shows the
overall layout of a ULP co-processor.

29.4 Instruction Set

The ULP co-processor provides the following instructions:
e Perform arithmetic and logic operations - ALU
e | oad and store data - LD, ST, REG_RD and REG_WR
e Jump to a certain address - JUMP

e Manage program execution - WAIT/HALT

Control sleep period of ULP co-processor - SLEEP

Wake up/communicate with SoC - WAKE
e Take measurements - TSENS and ADC
e Communicate using 12C - 12C_RD/I12C_WR

The ULP co-processor’s instruction format is shown in Figure 140.
31 28 27 0
OpCode Operands

Figure 140: The ULP Co-processor Instruction Format

An instruction, which has one OpCode, can perform various different operations, depending on the setting of
Operands bits. A good example is the ALU instruction, which is able to perform ten arithmetic and logic
operations; or the JUMP instruction, which may be conditional or unconditional, absolute or relative.

Each instruction has a fixed width of 32 bits. A series of instructions can make a program be executed by the
ULP co-processor. The execution flow inside the program uses 32-bit addressing. The program is stored in a
dedicated region called Slow Memory (RTC_SLOW_MEM), which is visible to the main CPUs as one that has an
address range of 0x5000_0000 to 0x5000_1FFF (8 KB).

Espressif Systems 593 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.4.1 ALU - Perform Arithmetic/Logic Operations

The ALU (Arithmetic and Logic Unit) performs arithmetic and logic operations on values stored in ULP
co-processor registers, and on immediate values stored in the instruction itself.
The following operations are supported:

¢ Arithmetic: ADD and SUB

e |Logic: AND and OR

e Bit shifting: LSH and RSH

e Moving data to register: MOVE

e Stage count register manipulation: STAGE_RST, STAGE_INC and STAGE_DEC

The ALU instruction, which has one OpCode, can perform various different arithmetic and logic operations,
depending on the setting of the instruction’s bits [27:21] accordingly.

29.4.1.1 Operations among Registers

31 28 27 25 24 21 5 4 3 2 1 0
gd7 | 100 | ALU sel [Rsrc2Rsrc1| Rdst |

Figure 141: Instruction Type — ALU for Operations among Registers

When bits [27:25] of the instruction in Figure 141 are set to 1’b0, ALU performs operations, using the ULP
co-processor register R[0-3]. The types of operations depend on the setting of the instruction’s bits [24:21]
presented in Table 126.

Operand Description - see Figure 141
ALU_sel Type of ALU operation

Rdst Register R[0-3], destination
Rsrci Register R[0-3], source
Rsrc2 Register R[0-3], source
ALU_sel Instruction Operation Description
0 ADD Rdst = Rsrc1 + Rsrc2 Add to register
1 SUB Rdst = Rsrc1 - Rsrc2 Subtract from register
2 AND Rdst = Rsrc1 & Rsrc2 Logical AND of two operands
3 OR Rdst = Rsrcl | Rsre2 Logical OR of two operands
4 MOVE Rdst = Rsrc Move to register
5 LSH Rdst = Rsrc1 << Rsre2 Logical Shift Left
6 RSH Rast = Rsrc1 >> Rsrc2 Logical Shift Right

Table 126: ALU Operations among Registers

Note:
e ADD/SUB operations can be used to set/clear the overflow flag in ALU.

e All ALU operations can be used to set/clear the zero flag in ALU.

Espressif Systems 594 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.4.1.2 Operations with Immediate Value

31 28 27 25 24 21 19 4 3 2 1 0

3d7 | 11 | ALUsel | | Imm [Rsrc1| Raist|

Figure 142: Instruction Type — ALU for Operations with Immediate Value

When bits [27:25] of the instruction in Figure 142 are set to 1’b1, ALU performs operations, using register R[0-3]
and the immediate value stored in [19:4]. The types of operations depend on the setting of the instruction’s bits
[24:21] presented in Table 127.

Operand Description - see Figure 142
ALU_sel Type of ALU operation

Rdst Register R[0-3], destination
Rsrc1 Register R[0-3], source
Imm 16-bit signed value
ALU_sel Instruction Operation Description
0 ADD Rast = Rsrc1 + Imm Add to register
1 SUB Rdst = Rsrc1 - Imm Subtract from register
2 AND Rdst = Rsrc1 & Imm Logical AND of two operands
3 OR Rast = Rsrc1 | Imm Logical OR of two operands
4 MOVE Rast = Imm Move to register
5 LSH Rast = Rsrc1 << Imm Logical Shift to the Left
6 RSH Rast = Rsrc1 >> Imm Logical Shift to the Right

Table 127: ALU Operations with Immediate Value

Note:
e ADD/SUB operations can be used to set/clear the overflow flag in ALU.

e All ALU operations can be used to set/clear the zero flag in ALU.

29.4.1.3 Operations with Stage Count Register

31 28 27 25 24 21 1 4
3d7 | 12 | ALU_sel Imm

Figure 143: Instruction Type — ALU for Operations with Stage Count Register

ALU is also able to increment/decrement by a given value, or reset the 8-bit register Stage_cnt. To do so, bits
[27:25] of instruction in Figure 143 should be set to 1’b2. The type of operation depends on the setting of the
instruction’s bits [24:21] presented in Table 128. The Stage_cnt is a separate register and is not a part of the
instruction in Figure 143.

Operand Description - see Figure 143

ALU_sel Type of ALU operation

Stage_cnt Stage count register, a separate register [7:0] used to store variables, such as loop index
Imm 8-bit value

Espressif Systems 595 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

ALU_sel Instruction Operation Description
0 STAGE_INC Stage_cnt = Stage_cnt + Imm Increment stage count register
1 STAGE_DEC Stage_cnt = Stage_cnt - Imm Decrement stage count register
2 STAGE_RST Stage_cnt =0 Reset stage count register

Table 128: ALU Operations with Stage Count Register

29.4.2 ST - Store Data in Memory

31 28 27 25 20 10 3 2 1 0
3d6 |3b100| 40 Offset 6'b0 | Rast| Rsrc

Figure 144: Instruction Type — ST

Operand Description - see Figure 144

Offset 10-bit signed value, offset expressed in 32-bit words

Rsrc Register R[0-3], 16-bit value to store

Rdst Register R[0-3], address of the destination, expressed in 32-bit words
Description

The instruction stores the 16-bit value of Rsrc in the lower half-word of memory with address Rdst + Offset. The
upper half-word is written with the current program counter (PC) expressed in words and shifted to the left by 5
bits:

Mem [Rdst + Offset]{31:0} = {PC[10:0], 5’b0, Rsrc[15:0]}

The application can use the higher 16 bits to determine which instruction in the ULP program has written any
particular word into memory.

Note:
e This instruction can only access 32-bit memory words.

e Data from Rsrc is always stored in the lower 16 bits of a memory word. Differently put, it is not possible to
store Rsrc in the upper 16 bits of memory.

e The "Mem” written is the RTC_SLOW_MEM memory. Address 0, as seen by the ULP co-processor,
corresponds to address 0x50000000, as seen by the main CPUs.

29.4.3 LD - Load Data from Memory

31 28 20 10 3 2 1 0
3d13 Offset | Rsrc | Rdst \

Figure 145: Instruction Type — LD

Operand Description - see Figure 145

Offset 10-bit signed value, offset expressed in 32-bit words
Rsrc Register R[0-3], address of destination memory, expressed in 32-bit words
Rdst Register R[0-3], destination

Description

The instruction loads the lower 16-bit half-word from memory with address Rsrc + offset into the destination
register Rdst:

Espressif Systems 596 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Rdst[15:0] = Mem[Rsrc + Offset][15:0]

Note:
e This instruction can only access 32-bit memory words.

e |n any case, it is always the lower 16 bits of a memory word that are loaded. Differently put, it is not
possible to read the upper 16 bits.

e The "Mem” loaded is the RTC_SLOW_MEM memory. Address O, as seen by the ULP co-processor,
corresponds to address 0x50000000, as seen by the main CPUs.

29.4.4 JUMP - Jump to an Absolute Address

31 28 27 25 24 22 21 12 2 1 0
g8 | 100 | Type [3] ImmAddr | Raist|

Figure 146: Instruction Type — JUMP

Operand Description - see Figure 146

Rdst Register R[0-3], address to jump to
ImmAddr 13-bit address, expressed in 32-bit words
Sel Selects the address to jump to:

0 - jump to the address contained in ImmAdadr
1 - jump to the address contained in Rdst
Type Jump type:
0 - make an unconditional jump
1 - jump only if the last ALU operation has set the zero flag
2 - jump only if the last ALU operation has set the overflow flag

Description
The instruction prompts a jump to the specified address. The jump can be either unconditional or based on the

ALU flag.

Note:
All jump addresses are expressed in 32-bit words.

29.4.5 JUMPR - Jump to a Relative Offset (Conditional upon RO0)

31 28 27 25 24 17 16 15 0
3ds | 1b1 | Step Threshold

c
Q
O

Figure 147: Instruction Type — JUMPR

Operand Description - see Figure 147
Step Relative shift from current position, expressed in 32-bit words:
if Step[7] = 0 then PC = PC + Step[6:0]
if Step[7] = 1 then PC = PC - Step[6:0]
Threshold — Threshold value for condition (see Cond below) to jump
Cond Condition to jump:
0 - jump if RO < Threshold
1 - jump if RO >= Threshold

Espressif Systems 597 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Description
The instruction prompts a jump to a relative address, if the above-mentioned condition is true. The condition itself
is the result of comparing the RO register value and the Threshold value.

Note:
All jump addresses are expressed in 32-bit words.

29.4.6 JUMPS - Jump to a Relative Address (Conditional upon Stage Count Regis-
ter)

31 28 27 25 24 17 16 15 7 0
| sds | 12 | Step [Cond| Threshold

Figure 148: Instruction Type — JUMP

Operand Description - see Figure 148
Step Relative shift from current position, expressed in 32-bit words:
if Step[7] = 0, then PC = PC + Step[6:0]
if Step[7] = 1, then PC = PC - Step[6:0]
Threshold Threshold value for condition (see Cond below) to jump
Cond Condition of jump:
1X - jump if Stage_cnt == Threshold
00 - jump if Stage_cnt < Threshold
01 - jump if Stage_cnt > Threshold

Note:
¢ A description of how to set the stage count register is provided in section 29.4.1.3.
e All jump addresses are expressed in 32-bit words.

Description
The instruction prompts a jump to a relative address if the above-mentioned condition is true. The condition itself
is the result of comparing the value of Stage_cnt (stage count register) and the Threshold value.

29.4.7 HALT - End the Program

31 28 0
3'd11

Figure 149: Instruction Type — HALT

Description
The instruction ends the operation of the processor and puts it into power-down mode.

Note:
After executing this instruction, the ULP co-processor timer gets started.

Espressif Systems 508 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.4.8 WAKE - Wake up the Chip

31 28 27 25
3d9 | 100 | |

1b1jo

Figure 150: Instruction Type — WAKE
Description
This instruction sends an interrupt from the ULP co-processor to the RTC controller.

e |f the SoC is in Deep-sleep mode, and the ULP wake-up is enabled, the above-mentioned interrupt will
wake up the SoC.

e |f the SoC is not in Deep-sleep mode, and the ULP interrupt bit (RTC_CNTL_ULP_CP_INT_ENA) is set in
register RTC_CNTL_INT_ENA_REG, a RTC interrupt will be triggered.

29.4.9 Sleep - Set the ULP Timer’s Wake-up Period

31 28 27 25 3 0
3'd9 | 1’b1 | sleep_reg

Figure 151: Instruction Type — SLEEP

Operand Description - see Figure 151
sleep_reg Selects one of five SENS_ULP_CP_SLEEP_CYCn_REG (n: 0-4) as the wake-up period
of the ULP co-processor

Description

The instruction selects which one of the SENS_ULP_CP_SLEEP_CYCn_REG (n: 0-4) register values is to be
used by the ULP timer as the wake-up period. By default, the value of SENS_ULP_CP_SLEEP_CYCO_REG is
used.

29.4.10 WAIT - Wait for a Number of Cycles

31 28 15 0
3'd4 Cycles

Figure 152: Instruction Type — WAIT

Operand Description - see Figure 152
Cycles the number of cycles to wait between sleeps

Description
The instruction will delay the ULP co-processor from getting into sleep for a certain number of Cycles.

29.4.11 TSENS - Take Measurements with the Temperature Sensor

31 28 15 2 10
| 3di0 | Wait_Delay | Rost |

Figure 153: Instruction Type — TSENS

Operand Description - see Figure 153
Rdst Destination Register R[0-3], results will be stored in this register.
Wait_Delay ~ Number of cycles needed to obtain a measurement

Espressif Systems 599 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Description

Longer Wait_Delay can improve the accuracy of measurement.

The instruction prompts a measurement to be taken with the use of the on-chip temperature sensor. The
measurement result is stored into a general-purpose register.

29.4.12 ADC - Take Measurement with ADC

31 28 6 5 2 1 0
3d5 3| sarMux |Rdst]

Figure 154: Instruction Type — ADC

Operand Description - see Figure 154

Rdst Destination Register R[0-3], results will be stored in this register.
Sel Selected ADC : 0 = SAR ADC1, 1 = SAR ADC2, see Table 129.
Sar Mux SARADC Pad [Sar_Mux - 1] is enabled, see Table 129.

Table 129: Input Signals Measured using the ADC Instruction

Pad Name/Signal/GPIO Sar_Mux | Processed by /Sel
SENSOR_VP (GPIO36)
SENSOR_CAPP (GPIO37)
SENSOR_CAPN (GPIO38)
SENSOR_VN (GPIO39)
32K_XP (GPIO33)
32K_XN (GPIO32)
VDET_1 (GPIO34)
VDET_2 (GPIO35)

Hall phase 1

SAR ADC1/Sel =0

olo|N|o|lol w2l

—
(@]

Hall phase 0
GPIO4

GPIOO

GPIO2

MTDO (GPIO15)
MTCK (GPIO13)
MTDI (GPIO12)
MTMS (GPIO14)
GPIO27
GPIO25
GPIO26

SAR ADC2/Sel =1

OO N[O~ —

—
(@)

Description
The instruction prompts the taking of measurements with the use of ADC. Pads/signals available for ADC
measurement are provided in Table 129.

Espressif Systems 600 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.4.13 12C_RD/I12C_WR - Read/Write 12C

31 28 27 25 22 21 19 18 16 15 8 7 0
| a3 |Z] | 12csel | High | Low | Data Sub-addr

Figure 155: Instruction Type — 12C

Operand Description - see Figure 155
Sub-addr Slave register address

Data Data to write in 12C_WR operation (not used in 12C_RD operation)
Low High part of bit mask
High Low part of bit mask

12C Sel Select register n of SENS_|2C_SLAVE_ADDRn (n: 0-7), which contains the 12C slave address.
R/W 12C communication direction:
1 - 12C write
0 -12C read
Description
Communicate (read/write) with external 12C slave devices. Details on using the RTC 12C peripheral are provided
in section 29.6.

Note:
When working in master mode, RTC_I2C samples the SDA input on the negative edge of SCL.

29.4.14 REG_RD - Read from Peripheral Register

31 28 27 23 22 18 9 0
] 3'd2 | High Low Addr

Figure 156: Instruction Type — REG_RD

Operand Description - see Figure 156

Adadr Register address, expressed in 32-bit words
High High part of RO
Low Low part of RO

Description

The instruction prompts a read of up to 16 bits from a peripheral register into a general-purpose register:
RO = REG[Addr][High:Low]

In case of more than 16 bits being requested, i.e. High - Low + 1 > 16, then the instruction will return
[Low+15:Low].

Note:

e This instruction can access registers in RTC_CNTL, RTC_IO, SENS and RTC_I2C peripherals. The address
of the register, as seen from the ULP co-processor, can be calculated from the address of the same register
on the DPORT bus, as follows:

addr_ulp = (addr_dport - DR_REG_RTCCNTL_BASE)/4

Espressif Systems 601 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

e The addr_uip is expressed in 32-bit words (not in bytes), and value O maps onto the
DR_REG_RTCCNTL_BASE (as seen from the main CPUs). Thus, 10 bits of address cover a 4096-byte
range of peripheral register space, including regions DR_REG_RTCCNTL_BASE, DR_REG_RTCIO_BASE,
DR_REG_SENS_BASE and DR_REG_RTC_I2C_BASE.

29.4.15 REG_WR - Write to Peripheral Register

31 28 27 23 22 18 17 10 9 0
3'd2 High Low Data Addr

Figure 157: Instruction Type — REG_WR

Operand Description - see Figure 157

Addr Register address, expressed in 32-bit words
High High part of RO
Low Low part of RO
Data Value to write, 8 bits
Description

The instruction prompts the writing of up to 8 bits from a general-purpose register into a peripheral register.
REG[Addr][High:Low] = Data

If more than 8 bits are requested, i.e. High - Low + 1 > 8, then the instruction will pad with zeros the bits above
the eighth bit.

Note:
See notes regarding addr_ulp in section 29.4.14 above.

29.5 ULP Program Execution

The ULP co-processor is designed to operate independently of the main CPUs, while they are either in deep
sleep or running.

In a typical power-saving scenario, the ULP co-processor operates while the main CPUs are in deep sleep. To
save power even further, the ULP co-processor can get into sleep mode, as well. In such a scenario, there is a
specific hardware timer in place to wake up the ULP co-processor, since there is no software program running at
the same time. This timer should be configured in advance by setting and then selecting one of the
SENS_ULP_CP_SLEEP_CYCn_REG registers that contain the expiration period. This can be done either by the
main program, or the ULP program with the REG_WR and SLEEP instructions. Then, the ULP timer should be
enabled by setting bit RTC_CNTL_ULP_CP_SLP_TIMER_EN in the RTC_CNTL_STATEO_REG register.

The ULP co-processor puts itself into sleep mode by executing the HALT instruction. This also triggers the ULP
timer to start counting RTC_SLOW_CLK ticks which, by default, originate from an internal 150 kHz RC oscillator.
Once the timer expires, the ULP co-processor is powered up and runs a program with the program counter (PC)
which is stored in register SENS_PC_INIT. The relationship between the described signals and registers is shown
in Figure 158.

On reset or power-up the above-mentioned ULP program may start up only after the expiration of
SENS_ULP_CP_SLEEP_CYCO_REG, which is the default selection period of the ULP timer.

Espressif Systems 602 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

SoC — Main CPUs
°
2
S 3
T E
g =
£ @
Wakeup g
SoC &S 5
ULP-Coprocessor
WAKE ULP Timer
o.| Enable
REG_WR 7| RTC_CNTL_ULP_CP_SLP_TIMER_EN
».| Set Period
""| SENS_ULP_CP_SLEEP_CYCn_REG
SLEEP »-| Select Period n
Run HALT | Start Ti_mer
PC = SENS_PC_INIT Expired

Figure 158: Control of ULP Program Execution

A sample operation sequence of the ULP program is shown in Figure 159, where the following steps are

executed:
1. Software enables the ULP timer by using bit RTC_CNTL_ULP_CP_SLP_TIMER_EN.
2. The ULP timer expires and the ULP co-processor starts running the program at PC = SENS_PC_INIT.

3. The ULP program executes the HALT instruction; the ULP co-processor is halted and the timer gets
restarted.

4. The ULP program executes the SLEEP instruction to change the sleep timer period register.

5. The ULP program, or software, disables the ULP timer by using bit RTC_CNTL_ULP_CP_SLP_TIMER_EN.

Espressif Systems 603 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

———————— @ (5)

uP |

Timer 50 | 500 | 500 1100
Expired

4
Selected Period sleep cycles =500 et CH sleep cycles = 1100

ULP

time

\

Figure 159: Sample of a ULP Operation Sequence

29.6 RTC_I12C Controller

The ULP co-processor can use a separate 12C controller, located in the RTC domain, to communicate with
external 12C slave devices. RTC_I2C has a limited feature set, compared to 12C0/12C1 peripherals.

29.6.1 Configuring RTC_I2C

Before the ULP co-processor can use the 12C instruction, certain parameters of the RTC_I2C need to be
configured. This can be done by the program running on one of the main CPUs, or by the ULP co-processor
itself. Configuration is performed by writing certain timing parameters into the RTC_I2C registers:

1. Set the low and high SCL half-periods by using RTC_I12C_SCL_LOW_PERIOD_REG and
RTC_I2C_SCL_HIGH_PERIOD_REG in RTC_FAST_CLK cycles (e.g. RTC_I2C_SCL_LOW_PERIOD=40,
RTC_I2C_SCL_HIGH_PERIOD=40 for 100 kHz frequency).

2. Set the number of cycles between the SDA switch and the falling edge of SCL by using
RTC_I2C_SDA DUTY_REG in RTC_FAST_CLK (e.g. RTC_I2C_SDA_DUTY=16).

3. Set the waiting time after the START condition by using RTC_I2C_SCL_START_PERIOD_REG (e.g.
RTC_I2C_SCL_START_PERIOD=30).

4. Set the waiting time before the END condition by using RTC_I2C_SCL_STOP_PERIOD_REG (e.g.
RTC_I2C_SCL_STOP_PERIOD=44).

5. Set the transaction timeout by using RTC_I2C_TIMEOUT_REG (e.g. RTC_I2C_TIMEOUT=200).
6. Enable the master mode (set the RTC_I2C_MS_MODE bit in RTC_I2C_CTRL_REG).

7. Write the address(es) of external slave(s) to SENS_I2C_SLAVE_ADDRn (n: 0-7). Up to eight slave
addresses can be pre-programmed this way. One of these addresses can then be selected for each
transaction as part of the ULP 12C instruction.

Once RTC_I2C is configured, instructions ULP 12C_RD and 12C_WR can be used.

29.6.2 Using RTC_I2C

The ULP co-processor supports two instructions (with a single OpCode) for using RTC_I2C: 12C_RD (read) and
12C_WR (write).

Espressif Systems 604 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.6.2.1 12C_RD - Read a Single Byte

The 12C_RD instruction performs the following 12C transaction (see Figure 160):

1.

Master generates a START condition.

2. Master sends slave address, with r/w bit set to O (“write”). Slave address is obtained from
SENS_I2C_SLAVE_ADDRn, where 1 is given as an argument to the 12C_RD instruction.
3. Slave generates ACK.
4. Master sends slave register address (given as an argument to the I12C_RD instruction).
5. Slave generates ACK.
6. Master generates a repeated START condition.
7. Master sends slave address, with r/w bit set to 1 (“read”).
8. Slave sends one byte of data.
9. Master generates NACK.
10. Master generates a STOP condition.
1 2 3 4 5 6 7 8 9 10
Master % Slave Address W Reg Address % Slave Address R Sl &
Slave g $ Data
Figure 160: 12C Read Operation
Note:

The RTC_I2C peripheral samples the SDA signals on the falling edge of SCL. If the slave changes SDA in less

than 0.38 microseconds, the master will receive incorrect data.

The byte received from the slave is stored into the RO register.

29.6.2.2 12C_WR - Write a Single Byte

The 12C_WR instruction performs the following 12C transaction (see Figure 161):

1.
2.

© © N 9

Master generates a START condition.

Master sends slave address, with r/w bit set to O (“write”). Slave address is obtained from
SENS_I2C_SLAVE_ADDRn, where n is given as an argument to the 12C_WR instruction.

Slave generates ACK.

Master sends slave register address (given as an argument to the 1I2C_WR instruction).
Slave generates ACK.

Master generates a repeated START condition.

Master sends slave address, with r/w bit set to O (“write”).

Master sends one byte of data.

Slave generates ACK.

Espressif Systems 605 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

10. Master generates a STOP condition.

2 3 4 5
Slave Address W Reg Address

7 8 9
Slave Address W Data

—

STOP o

Master

START| —+
RSTRT| O)

Slave

ACK

N
o
<

ACK

Figure 161: 12C Write Operation

29.6.2.3 Detecting Error Conditions

ULP I2C_RD and 12C_WR instructions will not report error conditions, such as a NACK from a slave, via ULP
registers. Instead, applications can query specific bits in the RTC_I2C_INT_ST_REG register to determine if the
transaction was successful. To enable checking for specific communication events, their corresponding bits
should be set in register RTC_I2C_INT_EN_REG. Note that the bit map is shifted by 1. If a specific
communication event is detected and set in register RTC_I2C_INT_ST_REG, it can then be cleared using
RTC_I2C_INT_CLR_REG.

29.6.2.4 Connecting I2C Signals

SDA and SCL signals can be mapped onto two out of the four GPIO pins, which are identified in the ESP32 pin
lists in ESP32 Datasheet, using the RTCIO_SAR_I2C_IO_REG register.

Espressif Systems 606 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.7 Register Summary

29.7.1 SENS_ULP Address Space
Name ‘ Description Address Access
ULP Timer cycles select
SENS_ULP_CP_SLEEP_CYCO_REG Timer cycles setting 0 Ox3FF48818 | R/W
SENS_ULP_CP_SLEEP_CYC1_REG Timer cycles setting 1 Ox3FF4881C | R/W
SENS_ULP_CP_SLEEP_CYC2_REG Timer cycles setting 2 Ox3FF48820 | R/W
SENS_ULP_CP_SLEEP_CYC3_REG Timer cycles setting 3 Ox3FF48824 | R/W
SENS_ULP_CP_SLEEP_CYC4_REG Timer cycles setting 4 Ox3FF48828 | R/W
RTC I12C slave address select
SENS_SAR_SLAVE_ADDR1_REG |2C addresses 0 and 1 Ox3FF4883C | R/W
SENS_SAR_SLAVE_ADDR2_REG |2C addresses 2 and 4 Ox3FF48840 | R/W
SENS_SAR_SLAVE_ADDR3_REG I2C addresses 4 and 5 Ox3FF48844 | R/W
SENS_SAR_SLAVE_ADDR4_REG |2C addresses 6 and 7, 12C control Ox3FF48848 | R/W
RTC I12C control
SENS_SAR_I2C_CTRL_REG ‘ 12C control registers Ox3FF48850 | R/W
29.7.2 RTC_I2C Address Space

Name ‘ Description Address Access
RTC I12C control registers
RTC_I12C_CTRL_REG Transmission setting Ox3FF48C04 | R/W
RTC_I2C_DEBUG_STATUS_REG Debug status Ox3FF48C08 | R/W
RTC_I2C_TIMEOUT_REG Timeout setting Ox3FF48C0C | R/W
RTC_I2C_SLAVE_ADDR_REG Local slave address setting Ox3FF48C10 | R/W
RTC I12C signal setting registers

Configures the SDA hold time after a nega- | Ox3FF48C30 | R/W
RTC_I2C_SDA_DUTY_REG)

tive SCL edge
RTC_I2C_SCL_LOW_PERIOD_REG Configures the low level width of SCL Ox3FF48C00 | R/W
RTC_I2C_SCL_HIGH_PERIOD_REG Configures the high level width of SCL Ox3FF48C38 | R/W

Configures the delay between the SDA and | Ox3FF48C40 | R/W
RTC_I2C_SCL_START_PERIOD_REG , N

SCL negative edge for a start condition

Configures the delay between the SDA and | Ox3FF48C44 | R/W
RTC_I2C_SCL_STOP_PERIOD_REG . .

SCL positive edge for a stop condition
RTC I12C interrupt registers - listed only for debugging
RTC_I2C_INT_CLR_REG Clear status of 12C communication events Ox3FF48C24 | R/W

Enable capture of 12C communication sta- | Ox3FF48C28 | R/W
RTC_I2C_INT_EN_REG

tus events

Status of captured 12C communication | Ox3FF48C2C | R/O

RTC_I2C_INT_ST_REG

events

Note:

Interrupts from RTC_I2C are not connected. The interrupt registers above are listed only for debugging

purposes.

Espressif Systems

607

ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

29.8 Registers

29.8.1 SENS_ULP Address Space

Register 29.1: SENS_ULP_CP_SLEEP_CYC:_REG (n: 0-4) (0x18+0x4*/)

£]

’ 20 ‘ Reset

SENS_ULP_CP_SLEEP_CYCn_REG ULP timer cycles setting n; the ULP co-processor can select
one of such registers by using the SLEEP instruction. (R/W)

Register 29.2: SENS_SAR_START_FORCE_REG (0x002c)

&
A/
S o
Ko7
S5
S K&
) o7 S X7)
4 Q& NN %)
& &7 & 5O S
N & EEE N
’ 31 22 | 21 11| 10 9 8 15 8 ‘

[o]o]e]
’oooooooooo|ooooooooooo|o|o|o|oooooooo‘Reset

SENS_PC_INIT ULP PC entry address. (R/W)

SENS_ULP_CP_START_TOP Set this bit to start the ULP co-processor; it is active only when
SENS_ULP_CP_FORCE_START_TOP = 1. (R/W)

SENS_ULP_CP_FORCE_START_TOP 1: ULP co-processor is started by
SENS_ULP_CP_START_TOP; 0: ULP co-processor is started by timer. (R/W)

Register 29.3: SENS_SAR_SLAVE_ADDR1_REG (0x003c)
Q N
N N
P P
AQ’/ Q((/
N3 NS

’31 22|21 11|10 O‘

]o 0 00 00 0 0 O o| 0x000 | 0x000 \Reset

SENS_I2C_SLAVE_ADDRO 12C slave address 0. (R/W)

SENS_I2C_SLAVE_ADDR1 12C slave address 1. (R/W)

Espressif Systems 608 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.4: SENS_SAR_SLAVE_ADDR2_REG (0x0040)

&
& &
N K7
N3 N3
S 7 o7
y o o
& & éo
‘31 22|21 11|10 O‘
‘o 0 00 00 0 0 O o| 0x000 | 0x000 ‘Reset
SENS_I2C_SLAVE_ADDR2 |2C slave address 2. (R/W)
SENS_I2C_SLAVE_ADDR3 12C slave address 3. (R/W)
Register 29.5: SENS_SAR_SLAVE_ADDR3_REG (0x0044)
IR
VQO ?QQ
AQ’/ Q((/
Na Na
b\ Q/ Q/
s o o
& 2 &
‘31 22|21 11|10 O‘
‘o 0 0000 0 0 O o| 0x000 | 0x000 ‘Reset
SENS_I2C_SLAVE_ADDR4 12C slave address 4. (R/W)
SENS_I2C_SLAVE_ADDRS5 12C slave address 5. (R/W)
Register 29.6: SENS_SAR_SLAVE_ADDR4_REG (0x0048)
© A
s o
S s
& s S K
oy o N N
66&%90/ %\?’Q/ %\:LQ/ %\9’0/
& =3 = =3
‘ 0 | 0 | 0X000 | 0x000 | 0x000 ‘Reset

SENS_I2C_DONE Indicate 12C done. (RO)
SENS_I2C_RDATA [2C read data. (RO)
SENS_I2C_SLAVE_ADDR6 12C slave address 6. (R/W)

SENS_I2C_SLAVE_ADDR?7 12C slave address 7. (R/W)

Espressif Systems 609

ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.7: SENS_SAR_I2C_CTRL_REG (0x0050)

<
@)
OQ\
A7
S &
58" X
oSy oY
Q\Q)& :‘OV‘ X~ e
O &7 S/
& £&L &

’31 30|29|28|27

]o o|0|o|oooooooooooooooooooooooooooo‘Reset

SENS_SAR_I2C_START_FORCE 1: 12C started by SW, O: 12C started by FSM. (R/W)
SENS_SAR_I2C_START Start 12C; active only when SENS_SAR_I2C_START_FORCE = 1. (R/W)

SENS_SAR_I2C_CTRL I2C control data; active only when SENS_SAR_I2C_START_FORCE = 1.
(R/W)

29.8.2 RTC_I2C Address Space

Register 29.8: RTC_I12C_SCL_LOW_PERIOD_REG (0x000)

’31 19|18 O‘

’ooooooooooooo|ooooooooooooooooooo‘Reset

RTC_I2C_SCL_LOW_PERIOD Number of FAST_CLK cycles when SCL == 0. (R/W)

Espressif Systems 610 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.9: RTC_I12C_CTRL_REG (0x004)

A A KL
& \&é\@@ ROKS
\/%®/%®/(‘O/ OQ <<O <<O
N Y . e
@ﬁ*@b RS /\%Q/Qégb 7
& SO & &
’31 8|7|6|5|4|3 2|1|0‘
]oooooooooooooooooooooooo|o|o|o|o|o o|o|o‘Reset
RTC_I2C_RX_LSB_FIRST Send LSB first. (R/W)
RTC_I2C_TX_LSB_FIRST Receive LSB first. (R/W)
RTC_I2C_TRANS_START Force to generate a start condition. (R/W)
RTC_I2C_MS_MODE Master (1), or slave (0). (R/W)
RTC_I2C_SCL_FORCE_OUT SCL is push-pull (1) or open-drain (0). (R/W)
RTC_I2C_SDA_FORCE_OUT SDA is push-pull (1) or open-drain (0). (R/W)
Register 29.10: RTC_I2C_DEBUG_STATUS_REG (0x008)
NS
&C)
& < Q‘SW
& A &
/\é& &Y & VQQ)\? KX &
s \é/ <<// AQ//C‘)/ @/ Q/Q/QQ// /
& P R NORS
& & SASR 885
& & & & SR LEOK
6 5 4 3 2 1 0 ‘

RTC_I2C_SCL_STATE State of SCL machine. (R/W)
RTC_I2C_MAIN_STATE State of the main machine. (R/W)
RTC_I2C_BYTE_TRANS 8-bit transmit done. (R/W)

RTC_I12C_SLAVE_ADDR_MATCH Indicates whether the addresses are matched, when in slave
mode. (R/W)

RTC_I2C_BUS_BUSY Operation is in progress. (R/W)

RTC_I2C_ARB_LOST |Indicates the loss of 12C bus control, when in master mode. (R/W)
RTC_I2C_TIMED_OUT Transfer has timed out. (R/W)

RTC_I2C_SLAVE_RW Indicates the value of the received R/W bit, when in slave mode. (R/W)

RTC_I2C_ACK_VAL The value of ACK signal on the bus. (R/W)

Espressif Systems 611 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.11: RTC_I2C_TIMEOUT_REG (0x00c)

N
S /\@{O
& &7
&
X

’31 20|19 O‘

]oooooooooo00|oooooooooooooooooooo‘Reset

RTC_I2C_TIMEOUT Maximum number of FAST_CLK cycles that the transmission can take. (R/W)

Register 29.12: RTC_I2C_SLAVE_ADDR_REG (0x010)

Q
™\

Q\Q@ &

& &
N2 $
N J
o\q’o ! @‘@6 o\%o
7/ 7
& & &

’31|30 15|14 O‘

]o|0ooooooo0ooooooo|ooooooooooooooo‘Reset

RTC_I2C_SLAVE_ADDR_10BIT Set if local slave address is 10-bit. (R/W)

RTC_I2C_SLAVE_ADDR Local slave address. (R/W)

Espressif Systems 612 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.13: RTC_I2C_INT_CLR_REG (0x024)

’31 9|

RTC_I2C_TIME_OUT_INT_CLR Clear interrupt upon timeout. (R/W)
RTC_I2C_TRANS_COMPLETE_INT_CLR Clear interrupt upon detecting a stop pattern. (R/W)

RTC_I2C_MASTER_TRANS_COMPLETE_INT_CLR Clear interrupt upon completion of transaction,
when in master mode. (R/W)

RTC_I2C_ARBITRATION_LOST_INT_CLR Clear interrupt upon losing control of the bus, when in
master mode. (R/W)

RTC_I2C_SLAVE_TRANS_COMPLETE_INT_CLR Clear interrupt upon completion of transaction,
when in slave mode. (R/W)

Espressif Systems 613 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.14: RTC_I2C_INT_EN_REG (0x028)

(@b\ \0/\0/ Q/\Q/\q/Q/ IS
&
A

RTC_I2C_TIME_OUT_INT_ENA Enable interrupt upon timeout. (R/W)
RTC_I2C_TRANS_COMPLETE_INT_ENA Enable interrupt upon detecting a stop pattern. (R/W)

RTC_I2C_MASTER_TRAN_COMP_INT_ENA Enable interrupt upon completion of transaction,
when in master mode. (R/W)

RTC_I2C_ARBITRATION_LOST_INT_ENA Enable interrupt upon losing control of the bus, when in
master mode. (R/W)

RTC_I2C_SLAVE_TRAN_COMP_INT_ENA Enable interrupt upon completion of transaction, when
in slave mode. (R/W)

Register 29.15: RTC_I2C_INT_ST_REG (0x02c)

&7 é N\
. &\@/\QY@V%??@ PNa N
@b LR P L’ S
&

]oooooooooooooooooooooooo|o|o|o|o|o|ooo‘Reset

RTC_I2C_TIME_OUT_INT_ST Detected timeout. (R/O)
RTC_I2C_TRANS_COMPLETE_INT_ST Detected stop pattern on 12C bus. (R/O)
RTC_I2C_MASTER_TRAN_COMP_INT_ST Transaction completed, when in master mode. (R/O)
RTC_I2C_ARBITRATION_LOST_INT_ST Bus control lost, when in master mode. (R/O)

RTC_I2C_SLAVE_TRAN_COMP_INT_ST Transaction completed, when in slave mode. (R/O)

Espressif Systems 614 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.16: RTC_I2C_SDA_DUTY_REG (0x030)

<
N
o

e

D

o
2 O
\@% Q’S

‘31 20|19 O‘

\Q/C)
7

‘oooo0ooooo00|oooooooooooooooooooo‘Reset

RTC_I2C_SDA_DUTY Number of FAST_CLK cycles between the SDA switch and the falling edge of

SCL. (R/W)
Register 29.17: RTC_I2C_SCL_HIGH_PERIOD_REG (0x038)

)
(g\o

<

X

SO
o7
) o2
&° oy
& &

‘31 20|19 O‘

‘oooo00oooo00|oooooooooooooooooooo‘Reset

RTC_I2C_SCL_HIGH_PERIOD Number of FAST_CLK cycles when SCL == 1. (R/W)

Register 29.18: RTC_I2C_SCL_START_PERIOD_REG (0x040)

N
3

Q)%Q)J\A
A

‘31 20|19 O‘

‘oooo0ooooo00|oooooooooooooooooooo‘Reset

RTC_I2C_SCL_START_PERIOD Number of FAST_CLK cycles to wait before generating a start con-
dition. (R/W)

Espressif Systems 615 ESP32 Technical Reference Manual V3.1

29. ULP CO-PROCESSOR

Register 29.19: RTC_I2C_SCL_STOP_PERIOD_REG (0x044)

D

(A
\@%@

E

20|19

|

]oooooooooooo|ooooooo

oooooooooo‘Reset

RTC_I2C_SCL_STOP_PERIOD Number of FAST_CLK cycles to wait before generating a stop con-

dition. (R/W)

Espressif Systems

616

ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

30. Low-Power Management

30.1

Introduction

ESP32 offers efficient and flexible power-management technology to achieve the best balance between power
consumption, wakeup latency and available wakeup sources. Users can select out of five predefined power

modes of the main processors to suit specific needs of the application. In addition, to save power in

power-sensitive applications, control may be executed by the Ultra-Low-Power co-processor (ULP

co-processor), while the main processors are in Deep-sleep mode.

30.2 Features

e Five predefined power modes to support various applications

Up to 16 KB of retention memory

8 x 32 bits of retention registers

ULP co-processor enabled in all low-power modes

RTC boot supported to shorten the wakeup latency

VDD3P3_RTC VDD3P3_CPU VDDA
Low Power Digital Core Flash
Voltage Voltage Voltage
Regulator Regulator Regulator
Analog Core
— L] voo_spio
XPD_RTC_REG
XPD_DIG_REG PRO CPU
XPD_SDIO_REG
xpd_wifi
xpd_rom APP CPU
xpd_inter_ramx
xpd_rtc
xpd_rtc_mem
xpd_fast_rtc_mem MAC BB
Peripherals
Slow
& Memory & ROM
Fast
Power — & Memory —&) Internal SRAMx
Controller
RTC : Digital Core

Espressif Systems

Figure 162: ESP32 Power Control

617

ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

30.3 Functional Description

30.3.1 Overview

The low-power management unit includes voltage regulators, a power controller, power switch cells, power
domain isolation cells, etc. Figure 162 shows the high-level architecture of ESP32’s low-power
management.

30.3.2 Digital Core Voltage Regulator

The built-in voltage regulator can convert the external power supply (typically 3.3V) to 1.1V to support the internal
digital core. It receives a wide range of external power supply from 1.8V to 3.6V, and provides an output voltage
from 0.85V to 1.2V.

1. When XPD_DIG_REG == 1, the regulator outputs a 1.1V voltage and the digital core is able to run; when
XPD_DIG_REG == 0, both the regulator and the digital core stop running.

2. DIG_REG_DBIAS[2:0] tunes the supply voltage of the digital core:

VDD_DIG = 0.85 + DBIAS - 0.05V

3. The current to the digital core comes from pin VDD3P3_CPU and pin VDD3P3_RTC.

Figure 163 shows the structure of a digital core’s voltage regulator.

ESP32

: VDD3P3_CPU

VDD3P3_RTC
dbias[2:0]

VREF

1.1V (0.85V - 1.2V)

Digital Core

Figure 163: Digital Core Voltage Regulator

30.3.3 Low-Power Voltage Regulator

The built-in low-power voltage regulator can convert the external power supply (typically 3.3V) to 1.1V to support
the internal RTC core. To save power, it receives a wide range of external power supply from 1.8V to 3.6V, and
supports an adjustable output voltage of 0.85V to 1.2V in normal work mode, a fixed output voltage of about
0.75V both in Deep-sleep mode and Hibernation mode.

Espressif Systems 618 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

1. When the pin CHIP_PU is at a high level, the low-power voltage regulator cannot be turned off. It should be
switched only between normal-work mode and Deep-sleep mode.

2. In normal-work mode, RTC_DBIAS[2:0] can be used to tune the output voltage:

VDD_RTC = 0.85 + DBIAS - 0.05V

3. In Deep-sleep mode, the output voltage of the regulator is fixed at about 0.75V.
4. The current to the RTC core comes from pin VDD3P3_RTC.

Figure 164 shows the structure of a low-power voltage regulator.

ESP32 #l VDD3P3_RTC

dbias[2:0]

VREF

1.1V (0.85V - 1.2V)

RTC

Figure 164: Low-Power Voltage Regulator

30.3.4 Flash Voltage Regulator

The built-in flash voltage regulator can supply a voltage of 3.3V or 1.8V to other devices (flash, for example) in the
system, with a maximum output current of 40 mA.

1. When XPD_SDIO_VREG == 1, the regulator outputs a voltage of 3.3V or 1.8V; when XPD_SDIO_VREG ==
0, the output is high-impedance and, in this case, the voltage is provided by the external power supply.

2. When SDIO_TIEH == 1, the regulator shorts pin VDD_SDIO to pin VDD3P3_RTC. The regulator then
outputs a voltage of 3.3V which is the voltage of pin VDD3P3_RTC. When SDIO_TIEH == O, the inner loop
ties the regulator output to the voltage of VREF, which is typically 1.8V.

3. DREFH_SDIO, DREFM_SDIO and DREFL_SDIO could be used to tune the reference voltage VREF slightly.
However, it is recommended that users do not change the value of these registers, since it may affect the
stability of the inner loop.

4. When the regulator output is 3.3V or 1.8V, the output current comes from the pin VDD3P3_RTC.

Figure 165 shows the structure of a flash voltage regulator.

Espressif Systems 619 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

ESP32

VDD3P3_RTC
drefh, drefm, drefl

VREF

VDD_SDIO

__ Regulator
T T 1 owu

_I_1uF _I_ 500pF
A4 A4

Figure 165: Flash Voltage Regulator

30.3.5 Brownout Detector

The brownout detector checks the voltage of pin VDD3P3_RTC. If the voltage drops rapidly and becomes too
low, the detector would trigger a signal to shut down some power-consuming blocks (such as LNA, PA, etc.) to
allow extra time for the digital block to save and transfer important data. The power consumption of the detector
is ultra low. It remains enabled whenever the chip is powered on, with an adjustable trigger level calibrated
around 2.5V.

1. As the output of the brownout detector, RTC_CNTL_BROWN_OUT_DET goes high when the voltage of pin
VDD3P3_RTC is lower than the threshold value.

2. RTC_CNTL_DBROWN_OUT_THRESI2:0] is used to tune the threshold voltage, which is usually calibrated
around 2.5V.

Figure 166 shows the structure of a brownout detector.

ESP32
thres[2:0]

VREF ——mm8 — +
Brownout

comp detected

T VDD3P3_RTC

Figure 166: Brownout Detector

30.3.6 RTC Module

The RTC module is designed to handle the entry into, and exit from, the low-power mode, and control the clock
sources, PLL, power switch and isolation cells to generate power-gating, clock-gating, and reset signals. As for
the low-power management, RTC is composed of the following modules (see Figure 167):

e RTC main state machine: records the power state.

Espressif Systems 620 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Digital & analog power controller; generates actual power-gating/clock-gating signals for digital parts and

analog parts.

Sleep & wakeup controller: handles the entry into & exit from the low-power mode.

Timers: include RTC main timer, ULP co-processor timer and touch timer.

e | ow-Power processor and sensor controllers: include ULP co-processor, touch controller, SAR ADC

controller, etc.

Retention memory:

- RTC slow memory: an 8 KB SRAM, mostly used as retention memory or instruction & data memory
for the ULP co-processor. The CPU accesses it through the APB, starting from address 0x50000000.

- RTC fast memory: an 8 KB SRAM, mostly used as retention memory. The CPU accesses it through
IRAMO/DRAMO. Fast RTC memory is about 10 times faster than the RTC slow memory.

e Retention registers: always-on registers of 8 x 32 bits, serving as data storage.

e RTC IO pads: 18 always-on analog pads, usually functioning as wake-up sources.

- -
O O
=z L 9 o
[T T] Digital Power Controller
g 2 9
L o a
uvo»n O Wi-Fi Digital Core
Power Controller | Power Controller
RTC Memory ROM / RAM
Power Controller | Power Controller
Sleep Analog RTC Peripheral Protection
Controller Power Controller Power Controller Timer
A A A
-
Qo c E clo |0 c ﬂ,)
ol g T [® o5 ©fs
w % Ela cla 25 €la
A 4 \4
RTC Main State Machine
A A A A A
[e]
a
el 0|2 5 <Slo
e olo o 5§
I 5/ ® els
z S z
o
o
3
Coprocessor | trig ULP- Touch trig Touch 9
Timer coprocessor Timer Controller g
)
o
al (@)
> >
[[]
v VA
© ©
2 2
\ 4
Wakeup Controller
o]
=]
[
X
£
=0 o a o a
egs £23 23 85 23 &3 BES
_ X5e Doy oL ax =% g %9
RTC Main © a (;5 [§) g g g © 55 ©
Timer = £ 2 2

Figure 167: RTC Structure

Espressif Systems 621 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

30.3.7 Low-Power Clocks

In the low-power mode, the 40 MHz crystal and PLL are usually powered down to save power. But clocks are
needed for the chip to remain active in the low-power mode.

For the RTC core, there are five possible clock sources:
e external low-speed (32.768 kHz) crystal clock CK_XTAL_32K,

e external high-speed (2 MHz ~ 40 MHz) crystal clock CK_40M_DIG,

internal RC oscillator SLOW_CK (typically about 150 kHz and adjustable),
e internal 8-MHz oscillator CK8M_OUT, and
e internal 31.25-kHz clock CK8M_D256_OUT (derived from the internal 8-MHz oscillator divided by 256).

With these clocks, fast_rtc_clk and slow_rtc_clk is derived. By default, fast_rtc_clk is CK8M_OUT while
slow_rtc_clk is SLOW_CK. For details, please see Figure 168.

SLOW_CK* ’—V RTC timers
CK_XTAL_32K
slow clk rte RTC main state
CK8M_D256_OUT L
Power controller

—» ULP-coprocessor

CK8M_OuUT

divn
—> Sensor controllers

fast_clk_rtc

£ 3
CK_40M_DIG diva > RTC memory

. —> RTC registers
* default selection K

Figure 168: RTC Low-Power Clocks

For the digital core, low_power_clk is switched among four sources. For details, please see Figure 169.

CK XTAL 32K
CG
CK8M_OUT*
G Wi-Fi
ck32k mux [low_power clk
divn
slow_clk rtc
BT
CK 40M DIG
* default selection

Figure 169: Digital Low-Power Clocks

Espressif Systems 622 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

30.3.8 Power-Gating Implementation

ULP-coprocessor done,
touch done

@ RTC Sleep

ULP-coprocessor timer,
touch timer

Figure 170: RTC States

The switch among power-gating states can be see in Figure 170. The actual power-control signals could also be
set by software as force-power-up (FPU) or force-power-down (FPD). Since the power domains can be
power-gated independently, there are many combinations for different applications. Table 132 shows how the
power domains in ESP32 are controlled.

Table 132: RTC Power Domains

: RTC Main State S/W Options
Power Domains : ; Notes*
DIG Active RTC Active RTC Sleep FPU FPD
RTC Digital Core ON ON ON N N 1
RTC RTC Peripherals ON ON OFF Y Y 2
RTC Slow Memory | ON OFF OFF Y Y 3
RTC Fast Memory ON OFF OFF Y Y 4
Digital Core ON OFF OFF Y Y 5
- Wi-Fi ON OFF OFF Y Y 6
Digital
ROM ON OFF OFF Y Y -
Internal SRAM ON OFF OFF Y Y 7
40 MHz Crystal ON OFF OFF Y Y -
PLL ON OFF OFF Y Y -
Analog
8 MHz OSC ON OFF OFF Y Y -
Radio - - - Y Y -
Notes™:

1. The power-domain RTC core is the “always-on” power domain, and the FPU/FPD option is not

available.

2. The power-domain RTC peripherals include most of the fast logic in RTC, including the ULP co-processor,
sensor controllers, etc.

3. The power-domain RTC slow memory should be forced to power on when it is used as retention memory, or
when the ULP co-processor is working.

4. The power-domain RTC fast memory should be forced to power on, when it is used as retention

memory.

5. When the power-domain digital core is powered down, all included in power domains are powered

Espressif Systems 623 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

down.
6. The power-domain Wi-Fi includes the Wi-Fi MAC and BB.
7. Each internal SRAM can be power-gated independently.

30.3.9 Predefined Power Modes

In ESP32, we recommend that you always use the predefined power modes first, before trying to tune each
power control signal. The predefined power modes should cover most scenarios:

e Active mode
— The CPU is clocked at XTAL_DIV_N (40 MHz/26 MHz) or PLL (80 MHz/160 MHz/240 MHz).
— The chip can receive, transmit, or listen.
e Modem-sleep mode
— The CPU is operational and the clock is configurable.
— The Wi-Fi/Bluetooth baseband is clock-gated or powered down. The radio is turned off.
— Current consumption: ~30 mA with 80 MHz PLL.
— Current consumption: ~3 mA with 2 MHz XTAL.
- Immediate wake-up.
e Light-sleep mode
- The internal 8 MHz oscillator, 40 MHz high-speed crystal, PLL, and radio are disabled.
— The clock in the digital core is gated. The CPUs are stalled.
— The ULP co-processor and touch controller can be periodically triggered by monitor sensors.
— Current consumption: ~ 800 pA.
- Wake-up latency: less than 1 ms.
e Deep-sleep mode
— The internal 8 MHz oscillator, 40 MHz high-speed crystal, PLL and radio are disabled.
- The digital core is powered down. The CPU context is lost.
— The supply voltage to the RTC core drops to 0.7V.
- 8 x 32 bits of data are kept in general-purpose retention registers.
— The RTC memory and fast RTC memory can be retained.
— Current consumption: ~ 6.5 pA.
- Wake-up latency: less than 1 ms.
- Recommended for ultra-low-power infrequently-connected Wi-Fi/Bluetooth applications.
¢ Hibernatation mode
- The internal 8 MHz oscillator, 40 MHz high-speed crystal, PLL, and radio are disabled.
- The digital core is powered down. The CPU context is lost.

— The RTC peripheral domain is powered down.

Espressif Systems 624 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

— The supply voltage to the RTC core drops to 0.7V.

— 8 x 32 bits of data are kept in general-purpose retention registers.
— The RTC memory and fast RTC memory are powered down.

- Current consumption: ~ 4.5 pA.

— Wake-up source: RTC timer only.

- Wake-up latency: less than 1 ms.

- Recommended for ultra-low-power infrequently-connected Wi-Fi/Bluetooth applications.

Sleep accept —

Modem sleep

Light sleep
Deep sleep

Hibernate mode

Figure 171: Power Modes

Sleep accept

ac, uart, touch, co-processor, BT

Wake up time

Power consumption

RTC pads, RTC timer, touch,
CO-processor

By default, the ESP32 is in active mode after a system reset.There are several low-power modes for saving
power when the CPU does not need to be kept running, for example, when waiting for an external event. It is up
to the user to select the mode that best balances power consumption, wake-up latency and available wake-up
sources. For details, please see Figure 171.

Please note that the predefined power mode could be further optimized and adapted to any application.

30.3.10 Wakeup Source

The ESP32 supports various wake-up sources, which could wake up the CPU in different sleep modes. The
wake-up source is determined by RTC_CNTL_WAKEUP_ENA, as shown in Table 133.

Espressif Systems 625 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Table 133: Wake-up Source

WAKEUP_ENA Wake-up Source Light-sleep Deep-sleep Hibernation Notes*
Ox1 EXTO Y Y - 1
0x2 EXT1 Y Y Y 2
Ox4 GPIO Y Y - 3
0x8 RTC timer Y Y Y -
0x10 SDIO Y - - 4
0x20 Wi-Fi Y - - 5
0x40 UARTO Y - - 6
0x80 UARTA Y - - 6
0x100 TOUCH Y Y - -
0x200 ULP co-proccesor Y Y - -
0x400 BT Y - - 5
Notes™:

1. EXTO can only wake up the chip in light-sleep/deep-sleep mode. If RTC_CNTL_EXT_WAKEUPO_LV is 1, it is
pad high-level triggered; otherwise, it is low-level triggered. Users can set RTCIO_EXT_WAKEUPO_SEL[4:0] to
select one of the RTC PADs to be the wake-up source.

2. EXT1 is especially designed to wake up the chip from any sleep mode, and it also supports multiple pads’
combinations. First, RTC_CNTL_EXT_WAKEUP1_SEL[17:0] should be configured with the bitmap of PADS
selected as a wake-up source. Then, if RTC_CNTL_EXT_WAKEUP1_LVis 1, as long as one of the PADs is at
high-voltage level, it can trigger a wake-up. However, if RTC_CNTL_EXT_WAKEUP1_LV is O, it needs all selected
PADs to be at low-voltage level to trigger a wake-up.

3. In Deep-sleep mode, only RTC GPIOs (not DIGITAL GPIOs) can work as wakeup source.
4. Wake-up is triggered by receiving any SDIO command.

5. To wake up the chip with a Wi-Fi or BT source, the power mode switches between the Active, Modem- and
Light-sleep modes. The CPU, Wi-Fi, Bluetooth, and radio are woken up at predetermined intervals to keep
Wi-Fi/BT connections active.

6. Wake-up is triggered when the number of RX pulses received is greater than the value stored in the threshold
register.

30.3.11 RTC Timer

The RTC timer is a 48-bit counter that can be read. The clock is RTC_SLOW_CLK. Any reset/sleep mode,
except for the power-up reset, will not stop or reset the RTC timer.

The RTC timer can be used to wake up the CPU at a designated time, and to wake up TOUCH or the ULP
co-processor periodically.

30.3.12 RTC Boot

Since the CPU, ROM and RAM are powered down during Deep-sleep and Hibernation mode, the wake-up time
is much longer than that in Light sleep/Modem sleep, because of the ROM unpacking and data-copying from the
flash (SPI booting). There are two types of SRAM in the RTC, named slow RTC memory and fast RTC memory,
which remain powered-on in Deep-sleep mode. For small-scale codes (less than 8 KB), there are two methods
of speeding up the wake-up time, i.e. avoiding ROM unpacking and SPI booting.

Espressif Systems 626 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

The first method is to use the RTC slow memory:

1.

Set register RTC_CNTL_PROCPU_STAT_VECTOR_SEL for PRO_CPU (or register
RTC_CNTL_APPCPU_STAT_VECTOR_SEL for APP_CPU) to 0.

. Put the chip into sleep.

. When the CPU is powered up, the reset vector starts from 0x50000000, instead of 0x40000400. ROM

unpacking & SPI boot are not needed. The code in RTC memory has to do itself some initialization for the
C program environment.

The second method is to use the fast RTC memory:

1.

Set register RTC_CNTL_PROCPU_STAT_VECTOR_SEL for PRO_CPU (or register
RTC_CNTL_APPCPU_STAT_VECTOR_SEL for APP_CPU) to 1.

. Calculate CRC for the fast RTC memory, and save the result in register

RTC_CNTL_RTC_STORE6_REG[31:0].

. Input register RTC_CNTL_RTC_STORE7_REG[31:0] with the entry address in the fast RTC memory.
. Put the chip into sleep.

. When the CPU is powered up, after ROM unpacking and some necessary initialization, the CRC is

calculated again. If the result matches with register RTC_CNTL_RTC_STORE6_REG[31:0], the CPU wiill
jump to the entry address.

The boot flow is shown in Figure 172.

Running in ROM

reset_vector@ reset_vector@
0x40000400 0x50000000

Initialization Initialization

| |

Cal CRC in Run code in
fast RTC mem RTC mem

A Running in RTC memory
Yes No
CRC right

Jump to entry ;
point in fast H SPI Boot
RTC mem i

Run code in
CPU RAM

Running in CPU RAM

Figure 172: ESP32 Boot Flow

Espressif Systems 627 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

30.4 Register Summary

Notes:

¢ The registers listed below have been grouped according to their functionality. This particular grouping does

not reflect the exact sequential order in which they are stored in memory.

e The base address for registers is 0x60008000 when accessed by AHB, and 0x3FF48000 when accessed

by DPORT bus.
Name ’ Description ‘ Address ‘ Access
RTC option register
RTC_CNTL_OPTIONSO_REG ‘ Configure RTC options ‘ O0x3FF48000 ‘ R/W
Control and configuration of RTC timer registers
RTC_CNTL_SLP_TIMERO_REG RTC sleep timer Ox3FF48001 | R/W
RTC_CNTL_SLP_TIMER1_REG RTC sleep timer, alarm and control Ox3FF48002 | R/W
RTC_CNTL_TIME_UPDATE_REG Update control of RTC timer Ox3FF48003 | RO
RTC_CNTL_TIMEO_REG RTC timer low 32 bits Ox3FF48004 | RO
RTC_CNTL_TIME1_REG RTC timer high 16 bits Ox3FF48005 | RO
RTC_CNTL_STATEO_REG RTC sleep, SDIO and ULP control Ox3FF48006 | R/W
RTC_CNTL_TIMER1_REG CPU stall enable Ox3FF48007 | R/W
Slow clock and touch controller config-
RTC_CNTL_TIMER2_REG , Ox3FF48008 | R/W
uration
RTC_CNTL_TIMER5_REG Minimal sleep cycles in slow clock Ox3FF4800B | R/W
Reset state and wakeup control registers
RTC_CNTL_RESET_STATE_REG Reset state control and cause of CPUs | Ox3FF4800D | RO
RTC_CNTL_WAKEUP_STATE_REG Wake-up filter, enable and cause Ox3FF4800E | RO
Configuration of wake-up at low/high
RTC_CNTL_EXT_WAKEUP_CONF_REG vl Ox3FF48018 | R/W
Selection of pads for external wake-up
RTC_CNTL_EXT_WAKEUP1_REG) Ox3FF48033 | R/W
and wake-up clear bit
RTC_CNTL_EXT_WAKEUP1_STATUS_REG| External wake-up status Ox3FF48034 | RO
RTC interrupt control and status registers
RTC_CNTL_INT_ENA_REG Interrupt enable bits Ox3FF4800F | R/W
RTC_CNTL_INT_RAW_REG Raw interrupt status Ox3FF48010 | RO
RTC_CNTL_INT_ST_REG Masked interrupt status Ox3FF48011 | RO
RTC_CNTL_INT_CLR_REG Interrupt clear bits Ox3FF48012 | WO
RTC general purpose retention registers
RTC_CNTL_STOREO_REG General purpose retention register O Ox3FF48013 | R/W
RTC_CNTL_STORE1_REG General purpose retention register 1 Ox3FF48014 | R/W
RTC_CNTL_STORE2_REG General purpose retention register 2 Ox3FF48015 | R/W
RTC_CNTL_STORE3_REG General purpose retention register 3 Ox3FF48016 | R/W
RTC_CNTL_STORE4_REG General purpose retention register 4 0x3FF4802C | R/W
RTC_CNTL_STORE5_REG General purpose retention register 5 Ox3FF4802D | R/W
RTC_CNTL_STORE6_REG General purpose retention register 6 Ox3FF4802E | R/W
RTC_CNTL_STORE7_REG General purpose retention register 7 Ox3FF4802F | R/W
Internal power management registers
RTC_CNTL_ANA_CONF_REG Power-up/down configuration O0x3FF4800C | R/W

Espressif Systems

628

ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Name Description Address Access
RTC_CNTL_VREG_REG Internal power distribution and control Ox3FF4801F | R/W
RTC_CNTL_PWC_REG RTC domain power management 0x3FF48020 | R/W
RTC_CNTL_DIG_PWC_REG Digital domain power management Ox3FF48021 R/W
RTC_CNTL_DIG_ISO_REG Digital domain isolation control Ox3FF48022 | RO
RTC watchdog configuration and control registers

RTC_CNTL_WDTCONFIGO_REG WDT Configuration register O Ox3FF48023 | R/'W
RTC_CNTL_WDTCONFIG1_REG WDT Configuration register 1 Ox3FF48024 | R/W
RTC_CNTL_WDTCONFIG2_REG WDT Configuration register 2 Ox3FF48025 | R/W
RTC_CNTL_WDTCONFIG3_REG WDT Configuration register 3 Ox3FF48026 | R/W
RTC_CNTL_WDTCONFIG4_REG WDT Configuration register 4 Ox3FF48027 | R/W
RTC_CNTL_WDTFEED_REG Watchdog feed register Ox3FF48028 | WO
RTC_CNTL_WDTWPROTECT_REG Watchdog write protect register Ox3FF48029 | R/W
Miscellaneous RTC configuration registers

RTC_CNTL_EXT_XTL_CONF_REG XTAL control by external pads Ox3FF48017 | R/W
RTC_CNTL_SLP_REJECT_CONF_REG Reject cause and enable control Ox3FF48019 | R/W
RTC_CNTL_CPU_PERIOD_CONF_REG CPU period select Ox3FF4801A | R/W
RTC_CNTL_CLK_CONF_REG Configuration of RTC clocks Ox3FF4801C | R/W
RTC_CNTL_SDIO_CONF_REG SDIO configuration Ox3FF4801D | R/W
RTC_CNTL_SW_CPU_STALL_REG Stall of CPUs Ox3FF4802B | R/W
RTC_CNTL_HOLD_FORCE_REG RTC pad hold register Ox3FF48032 | R/W
RTC_CNTL_BROWN_OUT_REG Brownout management Ox3FF48035 | R/W

Espressif Systems

629

ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

30.5 Registers

Register 30.1: RTC_CNTL_OPTIONSO0_REG (0x0000)

<
S
A NS Q N)
QP PPN & » O QO OEENE
< DN QO \% Q 3) < s NY
&’ PO AR CA R OGP LA s &8
« S O O QOO OD O 4/ F S FE LT &£ &
P o5e? K S COR S S S S @ S S o
L P P PELPPO O FFSE S 0l 0P E
$c}9®§®§ ?‘%/?‘%/?‘%/?‘%/?‘%/?‘%/?‘%/?‘%/?‘%/\// Vg@Q\/é\/@Q\/@Q\/@\j/Q)\?/<3Y $/ $(;O
Oé&Oé\Oé& @Q‘& C)é&(')é&Q$Qé&O@Qé&C)é\OéOé&Q@OéO@Q@OéO@Q@O@C)@QS Oé& Oé&
OO0 7) 0707070707070 70 7O 7O 70 7O 7O O 7O 7O 7O 7 OO 7 O %
ARAES & QLTRSS & &
’31|30|29|28 23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3 2|1 O‘
]o|o|0|o 0 0 0 0 0|1|o|o|1|0|o|1|0|o|1|0|o|o|0|o|o|0|o|o|o o|0 O‘Reset

RTC_CNTL_SW_SYS_RST SW system reset. (WO)
RTC_CNTL_DG_WRAP_FORCE_NORST The digital core forces no reset in deep sleep. (R/W)
RTC_CNTL_DG_WRAP_FORCE_RST The digital core can force a reset in deep sleep. (R/W)
RTC_CNTL_BIAS_CORE_FORCE_PU BIAS_CORE force power up. (R/W)
RTC_CNTL_BIAS_CORE_FORCE_PD BIAS_CORE force power down. (R/W)
RTC_CNTL_BIAS_CORE_FOLW_8M BIAS_CORE follow CK8M. (R/W)
RTC_CNTL_BIAS_I12C_FORCE_PU BIAS_I2C force power up. (R/W)
RTC_CNTL_BIAS_I12C_FORCE_PD BIAS_I2C force power down. (R/W)
RTC_CNTL_BIAS_12C_FOLW_8M BIAS_I2C follow CK8M. (R/W)
RTC_CNTL_BIAS_FORCE_NOSLEEP BIAS_SLEEP force no sleep. (R/W)
RTC_CNTL_BIAS_FORCE_SLEEP BIAS_SLEEP force sleep. (R/W)
RTC_CNTL_BIAS_SLEEP_FOLW_8M BIAS_SLEEP follow CK8M. (R/W)
RTC_CNTL_XTL_FORCE_PU Crystal force power up. (R/W)

RTC_CNTL_XTL_FORCE_PD Crystal force power down. (R/W)
RTC_CNTL_BBPLL_FORCE_PU BB_PLL force power up. (R/W)
RTC_CNTL_BBPLL_FORCE_PD BB_PLL force power down. (R/W)
RTC_CNTL_BBPLL_12C_FORCE_PU BB_PLL [2C force power up. (R/W)
RTC_CNTL_BBPLL_I2C_FORCE_PD BB_PLL _I2C force power down. (R/W)
RTC_CNTL_BB_I2C_FORCE_PU BB_I2C force power up. (R/W)
RTC_CNTL_BB_I2C_FORCE_PD BB_I2C force power down. (R/W)

RTC_CNTL_SW_PROCPU_RST PRO_CPU SW reset. (WO)

Espressif Systems 630 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

RTC_CNTL_SW_APPCPU_RST APP_CPU SW reset. (WO)
RTC_CNTL_SW_STALL_PROCPU_CO described under RTC_CNTL_SW_CPU_STALL_REG. (R/W)

RTC_CNTL_SW_STALL_APPCPU_CO0 described under RTC_CNTL_SW_CPU_STALL_REG. (R/W)

Register 30.2: RTC_CNTL_SLP_TIMERO_REG (0x0001)

‘31 O‘

‘ 0x000000000 ‘ Reset

RTC_CNTL_SLP_TIMERO_REG RTC sleep timer low 32 bits. (R/W)

Register 30.3: RTC_CNTL_SLP_TIMER1_REG (0x0002)

%
@/
Q\
V\Y
&7 D
N >
& v
N\ &5’
S é\\/ é\\/
5 o o
N <& <&
‘31 17|16|15 O‘
‘ooooooooooooooo|o| 0x00000 \Reset

RTC_CNTL_MAIN_TIMER_ALARM_EN Timer alarm enable bit. (R/W)

RTC_CNTL_SLP_VAL_HI RTC sleep timer high 16 bits. (R/W)

Register 30.4: RTC_CNTL_TIME_UPDATE_REG (0x0003)

&Q/
Rt
N
S &
Q’SO é,SO 4 @%@

‘31|30|59 30‘

‘o|o|oooooooooooooooooooooooooooooo‘Reset

RTC_CNTL_TIME_UPDATE Set 1: to update register with RTC timer. (WO)

RTC_CNTL_TIME_VALID Indicates that the register is updated. (RO)

Espressif Systems 631 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.5: RTC_CNTL_TIMEO_REG (0x0004)

‘ 0x000000000 ‘ Reset

RTC_CNTL_TIMEO_REG RTC timer low 32 bits. (RO)

Register 30.6: RTC_CNTL_TIME1_REG (0x0005)

S
N
é‘*’& oé\v
& &
‘31 16|15 O‘
‘o 000 00O OGOTU OGO OGO OO 0O0 O o| 0x00000 ‘Reset

RTC_CNTL_TIME_HI RTC timer high 16 bits. (RO)

Register 30.7: RTC_CNTL_STATEO_REG (0x0006)

Q\Qﬁ@
&
RS <<,\§ Q) \@@
7/ 7/ Vi
SEES el
5% Q77 Q7D
NS S & Qv <O
QIQQLQ™RKL” S Q77 S\
0.0.0.0 & oo 5
L & & &

‘31|30|29|28|27 25|24|23|45 23‘

‘o|o|o|o|ooo|o|o|ooooooooooooooooooooooo‘Reset

RTC_CNTL_SLEEP_EN Sleep enable bit. (R/W)

RTC_CNTL_SLP_REJECT Sleep reject bit. (R/W)

RTC_CNTL_SLP_WAKEUP Sleep wake-up bit. (R/W)
RTC_CNTL_SDIO_ACTIVE_IND SDIO active indication. (RO)
RTC_CNTL_ULP_CP_SLP_TIMER_EN ULP co-processor timer enable bit. (R/W)

RTC_CNTL_TOUCH_SLP_TIMER_EN Touch timer enable bit. (R/W)

Espressif Systems 632 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.8: RTC_CNTL_TIMER1_REG (0x0007)

‘31 1|0‘

‘ooooooooooooooooooooooooooooooo|1‘Reset

RTC_CNTL_CPU_STALL_EN CPU stall enable bit. (R/W)

Register 30.9: RTC_CNTL_TIMER2_REG (0x0008)

N
N2
<
& %/\VQ\
7 \2\/
© e
O N)
% o
,&\Q OQ/
N N
Q7 Q7
O/ O7 %Q;
& & N
‘31 24|23 15|29 15‘
‘ 0x001 | 0x010 |o 0 000 0ODOOGOTOTOTOO O O‘Reset

RTC_CNTL_MIN_TIME_CK8M_OFF Minimal amount of cycles in slow_clk_rtc to power down
CK8M. (R/W)

RTC_CNTL_ULPCP_TOUCH_START_WAIT Awaited cycles in slow_clk_rtc before
ULP co-processor/touch controller starts working. (R/W)

Register 30.10: RTC_CNTL_TIMER5_REG (0x000b)

?\/
N
&
\//
S é& D
§ §
2 <07 &
N &K @
‘31 16|15 S|15 S‘
‘o 0 000 0ODOOGO OGO OGO OTU OTU OO 0O o| 0x080 |0 0 00 0 0 0 o‘Reset

RTC_CNTL_MIN_SLP_VAL Minimal amount of sleep cycles in slow_clk_rtc. (R/W)

Espressif Systems 633 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.11: RTC_CNTL_ANA_CONF_REG (0x000c)

O N

N RPN R

G K T
Q7R S RRQ /\ N
cﬁo‘\‘&bcﬁo‘\‘@é&o‘\‘cﬁ &

@
OO7 L OO0 7 L O O7 %2
SEFESEELE &

’31|30|29|28|27|26|25|24|23|45

3

]o|o|0|o|o|0|o|o|1|oooooooooooooooooooooo

0 ‘Reset

RTC_CNTL_PLL_I2C_PU 1: PLL_I2C power up, otherwise power down. (R/W)
RTC_CNTL_CKGEN_I2C_PU 1: CKGEN_I2C power up, otherwise power down. (R/W)
RTC_CNTL_RFRX_PBUS_PU 1: RFRX_PBUS power up, otherwise power down. (R/W)
RTC_CNTL_TXRF_I2C_PU 1: TXRF_I2C power up, otherwise power down. (R/W)
RTC_CNTL_PVTMON_PU 1: PVTMON power up, otherwise power down. (R/W)
RTC_CNTL_PLLA_FORCE_PU PLLA force power up. (R/W)

RTC_CNTL_PLLA_FORCE_PD PLLA force power down. (R/W)

Register 30.12: RTC_CNTL_RESET_STATE_REG (0x000d)

RTC_CNTL_PROCPU_STAT_VECTOR_SEL PRO_CPU state vector selection. (R/W)
RTC_CNTL_APPCPU_STAT_VECTOR_SEL APP_CPU state vector selection. (R/W)
RTC_CNTL_RESET_CAUSE_APPCPU Reset cause for APP_CPU. (RO)

RTC_CNTL_RESET_CAUSE_PROCPU Reset cause for PRO_CPU. (RO)

Espressif Systems 634 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.13: RTC_CNTL_WAKEUP_STATE_REG (0x000e)

&
QY &
Q /
& i &
\e Q7 s
o & &
& N2 N2
5 N & &
5 & & o5
N & & &

’31 23|22|21 11|10 O‘
]o 00000 0 O 0|o|o 000 00O 110 0| 0x000 ‘Reset

RTC_CNTL_GPIO_WAKEUP_FILTER Enable filter for GPIO wake-up event. (R/W)
RTC_CNTL_WAKEUP_ENA Wake-up enable bitmap. (R/W)

RTC_CNTL_WAKEUP_CAUSE Wake-up cause. (RO)

Espressif Systems 635 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.14: RTC_CNTL_INT_ENA_REG (0x000f)

e/ $ QO s A ‘o >
O RRSSESE
N NIESINIININININING
5 0909309090903 9S
é CEEELLGEE

Lo [rlelofefo]=]r]c]

’o 0O 00 00OO OOG OGO OGO OO OTG OGO OGO OGO OGO OGO 0O O oo|o|0|o|o|0|o|o|o‘Reset

w
u
©

RTC_CNTL_MAIN_TIMER_INT_ENA The interrupt enable bit for the RTC_CNTL_MAIN_TIMER_INT
interrupt. (R/W)

RTC_CNTL_BROWN_OUT_INT_ENA The interrupt enable bit for the
RTC_CNTL_BROWN_OUT_INT interrupt. (R/W)

RTC_CNTL_TOUCH_INT_ENA The interrupt enable bit for the RTC_CNTL_TOUCH_INT interrupt.
(R/W)

RTC_CNTL_ULP_CP_INT_ENA The interrupt enable bit for the RTC_CNTL_ULP_CP_INT interrupt.
(R/W)

RTC_CNTL_TIME_VALID_INT_ENA The interrupt enable bit for the RTC_CNTL_TIME_VALID_INT in-
terrupt. (R/W)

RTC_CNTL_WDT_INT_ENA The interrupt enable bit for the RTC_CNTL_WDT_INT interrupt. (R/W)

RTC_CNTL_SDIO_IDLE_INT_ENA The interrupt enable bit for the RTC_CNTL_SDIO_IDLE_INT in-
terrupt. (R/W)

RTC_CNTL_SLP_REJECT_INT_ENA The interrupt enable bit for the RTC_CNTL_SLP_REJECT_INT
interrupt. (R/W)

RTC_CNTL_SLP_WAKEUP_INT_ENA The interrupt enable bit for the
RTC_CNTL_SLP_WAKEUP_INT interrupt. (R/W)

Espressif Systems 636 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.15: RTC_CNTL_INT_RAW_REG (0x0010)

S O & 7QO7
B SIN O K
N NS
s 0909309090903 98
é CRERLLGE0E
[effelelelefe]e]o]

’o 0O 00 00ODOOOGO OGO OGO OGO OTG OGO OGO OGO OGO OO 0O O oo|o|0|o|o|0|o|o|o‘Reset

w
“
©

RTC_CNTL_MAIN_TIMER_INT_RAW The raw interrupt status bit for the
RTC_CNTL_MAIN_TIMER_INT interrupt. (RO)

RTC_CNTL_BROWN_OUT_INT_RAW The raw interrupt status bit for the
RTC_CNTL_BROWN_OUT_INT interrupt. (RO)

RTC_CNTL_TOUCH_INT_RAW The raw interrupt status bit for the RTC_CNTL_TOUCH_INT inter-
rupt. (RO)

RTC_CNTL_ULP_CP_INT_RAW The raw interrupt status bit for the RTC_CNTL_ULP_CP_INT inter-
rupt. (RO)

RTC_CNTL_TIME_VALID_INT_RAW The raw interrupt status bit for the
RTC_CNTL_TIME_VALID_INT interrupt. (RO)

RTC_CNTL_WDT_INT_RAW The raw interrupt status bit for the RTC_CNTL_WDT_INT interrupt.
(RO)

RTC_CNTL_SDIO_IDLE_INT_RAW The raw interrupt status bit for the RTC_CNTL_SDIO_IDLE_INT
interrupt. (RO)

RTC_CNTL_SLP_REJECT_INT_RAW The raw interrupt status bit for the
RTC_CNTL_SLP_REJECT_INT interrupt. (RO)

RTC_CNTL_SLP_WAKEUP_INT_RAW The raw interrupt status bit for the
RTC_CNTL_SLP_WAKEUP_INT interrupt. (RO)

Espressif Systems 637 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.16: RTC_CNTL_INT_ST_REG (0x0011)

7/

/\\@ze/ SO
SO Y
W SAO"X
N Q7Q7Q7LQ7LQLQLQRQ
’ 0909090308903
CEOLLOLLLLLE
8 4 | 3 | 2 | 1 | 0 ‘

[[e]:]
ofofoJo[ofo]ofo]o0]Reset

’31 9|

’OOOOOOOOOOOOOOOOOOOOOOO

RTC_CNTL_MAIN_TIMER_INT_ST The masked interrupt status bit for the
RTC_CNTL_MAIN_TIMER_INT interrupt. (RO)

RTC_CNTL_BROWN_OUT_INT_ST The masked interrupt status bit for the
RTC_CNTL_BROWN_OUT_INT interrupt. (RO)

RTC_CNTL_TOUCH_INT_ST The masked interrupt status bit for the RTC_CNTL_TOUCH_INT inter-
rupt. (RO)

RTC_CNTL_SAR_INT_ST The masked interrupt status bit for the RTC_CNTL_SAR_INT interrupt.
(RO)

RTC_CNTL_TIME_VALID_INT_ST The masked interrupt status bit for the
RTC_CNTL_TIME_VALID_INT interrupt. (RO)

RTC_CNTL_WDT_INT_ST The masked interrupt status bit for the RTC_CNTL_WDT_INT interrupt.
(RO)

RTC_CNTL_SDIO_IDLE_INT_ST The masked interrupt status bit for the
RTC_CNTL_SDIO_IDLE_INT interrupt. (RO)

RTC_CNTL_SLP_REJECT_INT_ST The masked interrupt status bit for the
RTC_CNTL_SLP_REJECT_INT interrupt. (RO)

RTC_CNTL_SLP_WAKEUP_INT_ST The masked interrupt status bit for the
RTC_CNTL_SLP_WAKEUP_INT interrupt. (RO)

Espressif Systems 638 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.17: RTC_CNTL_INT_CLR_REG (0x0012)

s Ny
Q\%\S’\/ PSS 0% 9"
S/ &7 /\Oé\/\%
PORASCIR DN S OR
\@ TN KoY K7 AL §</ ‘L‘
§$ @) /\e%/i>%o>QQ{</$?‘
7
\s Q”/\O\)@‘g«\@\%oé’\ NV

S
Q7/Q Q7 Q7 QR KR QA Q7

ST T
C)/« /« /& /& /« /& /& /« 7/

E

ST
8

e lefolefo]e] e [o]

||
]o 0O 0000 ODOOOG OGO OGO OO OTU OGO OGO OGO OGO OO0 0 O oo|o|0|o|o|o|o|o|o‘Reset

RTC_CNTL_MAIN_TIMER_INT_CLR Set this bit to clear the RTC_CNTL_MAIN_TIMER_INT inter-

rupt. (WO)

RTC_CNTL_BROWN_OUT_INT_CLR Set this bit to clear the RTC_CNTL_BROWN_OUT_INT inter-

rupt. (WO)

RTC_CNTL_TOUCH_INT_CLR Set this bit to clear the RTC_CNTL_TOUCH_INT interrupt. (WO)

RTC_CNTL_SAR_INT_CLR Set this bit to clear the RTC_CNTL_SAR_INT interrupt. (WO)

RTC_CNTL_TIME_VALID_INT_CLR Set this bit to clear the RTC_CNTL_TIME_VALID_INT interrupt.

(WO)

RTC_CNTL_WDT_INT_CLR Set this bit to clear the RTC_CNTL_WDT_INT interrupt. (WO)

RTC_CNTL_SDIO_IDLE_INT_CLR Set this bit to clear the RTC_CNTL_SDIO_IDLE_INT interrupt.

(WO)

RTC_CNTL_SLP_REJECT_INT_CLR Set this bit to clear the RTC_CNTL_SLP_REJECT_INT inter-

rupt. (WO)

RTC_CNTL_SLP_WAKEUP_INT_CLR Set this bit to clear the RTC_CNTL_SLP_WAKEUP_INT inter-

rupt. (WO)

Register 30.18: RTC_CNTL_STORE/n_REG (n: 0-3) (0x13+1*)

|

’ X ‘Reset

RTC_CNTL_STORE/_REG 32-bit general-purpose retention register. (R/W)

Espressif Systems

ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.19: RTC_CNTL_EXT_XTL_CONF_REG (0x0017)

S S
Q\/ s
@p/
e
ég\/é\\/ S
0o s
&E &

’31|30|59 30‘

]o|o|oooooooooooooooooooooooooooooo‘Reset

RTC_CNTL_XTL_EXT_CTR_EN Enable control XTAL with external pads. (R/W)

RTC_CNTL_XTL_EXT_CTR_LV 0: power down XTAL at high level, 1: power down XTAL at low level.

(R/W)
Register 30.20: RTC_CNTL_EXT_WAKEUP_CONF_REG (0x0018)
7%
S5

<&

58S
&\//«\//

I 5
Q/S Q§ 2

’31|30|59 30‘

]o|o|oooooooooooooooooooooooooooooo‘Reset

RTC_CNTL_EXT_WAKEUP1_LV 0: external wake-up at low level, 1: external wake-up at high level.
R/W)

RTC_CNTL_EXT_WAKEUPO_LV 0O: external wake-up at low level, 1: external wake-up at high level.
(R/W)

Espressif Systems 640 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.21: RTC_CNTL_SLP_REJECT_CONF_REG (0x0019)

2

0 00 00O O‘Reset

RTC_CNTL_REJECT_CAUSE Sleep reject cause. (RO)

RTC_CNTL_DEEP_SLP_REJECT_EN Enable reject for deep sleep. (R/W)

RTC_CNTL_LIGHT_SLP_REJECT_EN Enable reject for light sleep. (R/W)

RTC_CNTL_SDIO_REJECT_EN Enable SDIO reject. (R/W)

RTC_CNTL_GPIO_REJECT_EN Enable GPIO reject. (R/W)

Register 30.22: RTC_CNTL_CPU_PERIOD_CONF_REG (0x001a)

3

o

0ooooooooooooooooooooo‘Reset

RTC_CNTL_RTC_CPUPERIOD_SEL CPU period selection. (R/W)

RTC_CNTL_CPUSEL_CONF CPU selection option. (R/W)

Espressif Systems

641

ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.23: RTC_CNTL_CLK_CONF_REG (0x001c)

S
&> & N ©”
07 407 o S <</Q o % S ‘5’%\“
& Q\O Q‘Q Qg/) @/@/é&@,@
APSION POV e < 3 P&
o O o Q7 ’ / [@vo ’
&8 5 B & S SRSy
A O o @ QOO e O
Q7 Qv Q7 QI/Q«7 Q7 N Q&7 N\ QIR QS RQKQ™Y Q7 N
Ny g 58T EO0I0T S s
PSSP SPSA & & & FEEXLE T ¢
’31 30|29|28 27|26|25|24 17|16 15|14 12|11|10|9|8|7|6|5 4|7 4‘
] 0 |0| 0 |0|o| 0 |0 o| 2 |o|o|w|o|o|0|o 1|o 0 o O‘Reset

RTC_CNTL_ANA_CLK_RTC_SEL slow_clk_rtc sel. 0: SLOW_CK, 1: CK_XTAL_32K,
2: CK8M_D256_OUT. (R/W)

RTC_CNTL_FAST_CLK RTC_SEL fast_clk_rtc sel. 0: XTAL div 4, 1: CK8M. (R/W)
RTC_CNTL_SOC_CLK_SEL SOC clock sel. 0: XTAL, 1: PLL, 2: CK8M, 3: APLL. (R/W)
RTC_CNTL_CK8M_FORCE_PU CK8M force power up. (R/W)
RTC_CNTL_CK8M_FORCE_PD CK8M force power down. (R/W)
RTC_CNTL_CK8M_DFREQ CK8M_DFREQ. (R/W)

RTC_CNTL_CK8M_DIV_SEL Divider = reg_rtc_cntl_ck8m_div_sel + 1. (R/W)
RTC_CNTL_DIG_CLK8M_EN Enable CK8M for digital core (no relation to RTC core). (R/W)

RTC_CNTL_DIG_CLK8M_D256_EN Enable CK8M_D256_OUT for digital core (no relation to RTC
core). (R/W)

RTC_CNTL_DIG_XTAL32K_EN Enable CK_XTAL_32K for digital core (no relation to RTC core). (R/W)

RTC_CNTL_ENB_CK8M_DIV 1: CK8M_D256_OUT is actually CK8M, 0: CK8M_D256_OUT is
CK8M divided by 256. (R/W)

RTC_CNTL_ENB_CK8M Disable CK8M and CK8M_D256_OUT. (R/W)

RTC_CNTL_CK8M_DIV CKS8M_D256_OUT divider. 00: divi28, 01: div256, 10: div512, 11:
divi024. (R/W)

Espressif Systems 642 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.24: RTC_CNTL_SDIO_CONF_REG (0x001d)

3
L & & ES
QS NV R QYRR R
C)é& C)é C)é& O$ oé\oé\oé\oé\
O QO7 O/ O OO0 720207 2
EE & & EEEE &

’31|30 29|28 27|26 25|24|23|22|21|41 21‘

]o|0 o|o o|o 1|o|1|o|1|ooooooooooooooooooooo‘Reset

RTC_CNTL_XPD_SDIO_VREG SW option for XPD_SDIO_VREG; active only when
reg_rtc_cntl_sdio_force == 1. (R/W)

RTC_CNTL_DREFH_SDIO SW option for DREFH_SDIO; active only when reg_rtc_cntl_sdio_force
==1. (RW)

RTC_CNTL_DREFM_SDIO SW option for DREFM_SDIO; active only when reg_rtc_cntl_sdio_force
==1. (R/'W)

RTC_CNTL_DREFL_SDIO SW option for DREFL_SDIO; active only when reg_rtc_cntl_sdio_force ==
1. (R/W)

RTC_CNTL_REG1P8_READY Read-only register for REG1P8_READY. (RO)

RTC_CNTL_SDIO_TIEH SW option for SDIO_TIEH; active only when reg_rtc_cntl_sdio_force == 1.
RW)

RTC_CNTL_SDIO_FORCE 1: use SW option to control SDIO_VREG; 0: use state machine to control
SDIO_VREG. (R/W)

RTC_CNTL_SDIO_VREG_PD_EN Power down SDIO_VREG in sleep; active only when
reg_rtc_cntl_sdio_force == 0. (R/W)

Espressif Systems 643 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.25: RTC_CNTL_VREG_REG (0x001f)

\l..
S ® P §v ?\?
< QQ O((’/OQ/ \Vc') \VG')
SIS "4 %
IS <
/A7 S O & %
&7 /OOO‘)OOO‘) ?2)/ ?%)/ {_9 &£ S
LEFE N4 § P
QIZQRKQKL Qv N N N N
SEEET S < N S S >
/\QS/)\O S/)\Q%\QS) /\09 /\09 /\09 /\09 /\09 s
SEECE & & & & & @
’31|30|29|28|27 25|24 22|21 14|13 11|10 8|15 8‘
’1|o|1|o| 4 | 4 | 0 | 4 | 4 |00000000‘Reset

RTC_CNTL_VREG_FORCE_PU RTC voltage regulator - force power up. (R/W)

RTC_CNTL_VREG_FORCE_PD RTC voltage regulator - force power down (in this case power down
means decreasing the voltage to 0.8V or lower). (R/W)

RTC_CNTL_DBOOST_FORCE_PU RTC_DBOOST force power up. (R/W)
RTC_CNTL_DBOOST_FORCE_PD RTC_DBOOST force power down. (R/W)
RTC_CNTL_DBIAS_WAK RTC_DBIAS during wake-up. (R/W)

RTC_CNTL_DBIAS_SLP RTC_DBIAS during sleep. (R/W)

RTC_CNTL_SCK_DCAP Used to adjust the frequency of RTC slow clock. (R/W)
RTC_CNTL_DIG_VREG_DBIAS_WAK Digital voltage regulator DBIAS during wake-up. (R/W)

RTC_CNTL_DIG_VREG_DBIAS_SLP Digital voltage regulator DBIAS during sleep. (R/W)

Espressif Systems 644 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.26: RTC_CNTL_PWC_REG (0x0020)

O L P &
PL PP IELLEY G LH O
S S ERNIS S
S OF NN HE O OE o o Fe

NPESPAVAVALIS S IS FOA VAN IS IS HOEJA VAN 1)
PSSO SRS

S R RN s
7 7 7/ 7/ 7 7/ 7 7 7/ 7 7 7/ 7 7 7 7/ /. 7 7 /. 7/
& BSOS
& EEELEEEEEELEEEELEEEEE
’31 21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0‘
]oo0oo0ooo0o|o|o|0|o|1|0|o|1|0|1|o|0|1|o|0|1|o|0|1|o|1‘Reset

RTC_CNTL_PD_EN Enable power down rtc_peri in sleep. (R/W)

RTC_CNTL_FORCE_PU rtc_peri force power up. (R/W)

RTC_CNTL_FORCE_PD rtc_peri force power down. (R/W)

RTC_CNTL_SLOWMEM_PD_EN Enable power down RTC memory in sleep. (R/W)
RTC_CNTL_SLOWMEM_FORCE_PU RTC memory force power up. (R/W)
RTC_CNTL_SLOWMEM_FORCE_PD RTC memory force power down. (R/W)
RTC_CNTL_FASTMEM_PD_EN Enable power down fast RTC memory in sleep. (R/W)
RTC_CNTL_FASTMEM_FORCE_PU Fast RTC memory force power up. (R/W)
RTC_CNTL_FASTMEM_FORCE_PD Fast RTC memory force power down. (R/W)
RTC_CNTL_SLOWMEM_FORCE_LPU RTC memory force power up in low-power mode. (R/W)
RTC_CNTL_SLOWMEM_FORCE_LPD RTC memory force power down in low-power mode. (R/W)

RTC_CNTL_SLOWMEM_FOLW_CPU 1: RTC memory low-power mode PD following CPU; 0: RTC
memory low-power mode PD following RTC state machine. (R/W)

RTC_CNTL_FASTMEM_FORCE_LPU Fast RTC memory force power up in low-power mode. (R/W)

RTC_CNTL_FASTMEM_FORCE_LPD Fast RTC memory force power down in low-power mode.
(R/W)

RTC_CNTL_FASTMEM_FOLW_CPU 1: Fast RTC memory low-power mode PD following CPU; 0O:
fast RTC memory low-power mode PD following RTC state machine. (R/W)

RTC_CNTL_FORCE_NOISO rtc_peri force no isolation. (R/W)
RTC_CNTL_FORCE_ISO rtc_peri force isolation. (R/W)
RTC_CNTL_SLOWMEM_FORCE_ISO RTC memory force isolation. (R/W)
RTC_CNTL_SLOWMEM_FORCE_NOISO RTC memory force no isolation. (R/W)
RTC_CNTL_FASTMEM_FORCE_ISO Fast RTC memory force isolation. (R/W)

RTC_CNTL_FASTMEM_FORCE_NOISO Fast RTC memory force no isolation. (R/W)

Espressif Systems 645 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.27: RTC_CNTL_DIG_PWC_REG (0x0021)

RERPPOPPPL PP

NP R IR P R OB IP BRI IPBIP RIS O
S 82 S S S S S S S S 2
% D707 U7 NSO L Q0 0 WDV R R OO e S K
Q7 Q7 QN7 S R Q7 Q7 SN ST Q7 S ST QI 2 R0 S oS
PRATL AN > o QK (& L& LK (& & & AN IR
P EETTE PPIFEFEEE T O O 7 &

Q7 QR Q7 QA QA Q Q7
oé\oé\oé\oé\oé\oé\oé\oé\ (@&

C)/ O/ O/ 7 O/ 7, C)/ 7 %)
SEEEEEEE &

’31|30|29|28|27|26|25|24|23

QA Q7 QA Q7 QA Q0 QA Q7 QA Q7 QA Q0 QR Q0 QR Q0 Q0 Qv

oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\oé\
C)/ /O/ /O/ /O/ /O/ /O/ /C)/ /C)/ /C)/ 7/

CROLOGELLOLGLELLELLGLLLLLEE”

21|20|19|18|17|16|15|14|13|12|11|10|9|S|7|6|5|4|3|5 3‘

’><|><|x|><|><|x|><|><|0 0 o|1|o|w|o|1|0|1|o|w|o|1|0|1|o|w|o|1|o|o 0

RTC_CNTL_DG_WRAP_PD_EN Enable power down digital core in sleep mode. (R/W)
RTC_CNTL_WIFI_PD_EN Enable power down Wi-Fi in sleep. (R/W)
RTC_CNTL_INTER_RAM4_PD_EN Enable power down internal SRAM 4 in sleep mode.
RTC_CNTL_INTER_RAMS3_PD_EN Enable power down internal SRAM 3 in sleep mode.
RTC_CNTL_INTER_RAM2_PD_EN Enable power down internal SRAM 2 in sleep mode.
RTC_CNTL_INTER_RAM1_PD_EN Enable power down internal SRAM 1 in sleep mode.
RTC_CNTL_INTER_RAMO_PD_EN Enable power down internal SRAM O in sleep mode.
RTC_CNTL_ROMO_PD_EN Enable power down ROM in sleep mode. (R/W)
RTC_CNTL_DG_WRAP_FORCE_PU Digital core force power up. (R/W)
RTC_CNTL_DG_WRAP_FORCE_PD Digital core force power down. (R/W)
RTC_CNTL_WIFI_FORCE_PU Wi-Fi force power up. (R/W)

RTC_CNTL_WIFI_FORCE_PD Wi-Fi force power down. (R/W)

RTC_CNTL_INTER_RAM4_FORCE_PU
RTC_CNTL_INTER_RAM4_FORCE_PD
RTC_CNTL_INTER_RAM3_FORCE_PU
RTC_CNTL_INTER_RAM3_FORCE_PD
RTC_CNTL_INTER_RAM2_FORCE_PU
RTC_CNTL_INTER_RAM2_FORCE_PD
RTC_CNTL_INTER_RAM1_FORCE_PU
RTC_CNTL_INTER_RAM1_FORCE_PD
RTC_CNTL_INTER_RAMO_FORCE_PU

RTC_CNTL_INTER_RAMO_FORCE_PD

Internal SRAM 4 force power up. (R/W)
Internal SRAM 4 force power down. (R/W)
Internal SRAM 3 force power up. (R/W)
Internal SRAM 3 force power down. (R/W)
Internal SRAM 2 force power up. (R/W)
Internal SRAM 2 force power down. (R/W)
Internal SRAM 1 force power up. (R/W)
Internal SRAM 1 force power down. (R/W)
Internal SRAM 0 force power up. (R/W)

Internal SRAM 0 force power down. (R/W)

RTC_CNTL_ROMO_FORCE_PU ROM force power up. (R/W)

RTC_CNTL_ROMO_FORCE_PD ROM force power down. (R/W)
646

Espressif Systems ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

RTC_CNTL_LSLP_MEM_FORCE_PU Memories in digital core force power up in sleep mode.
(R/W)

RTC_CNTL_LSLP_MEM_FORCE_PD Memories in digital core force power down in sleep mode.
(R/W)

Espressif Systems 647 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.28: RTC_CNTL_DIG_ISO_REG (0x0022)

g AN 000
Qs R R RN (RN RNy QRN f QRN RN N Q/Q/Q QTR

PR AR AN L N N LN LN LN LN SN NI PN P P oS
BIETODEE RIS RIS IEE I
SRS S SIS SIS 5
OO0 7c07207.07c0Oc07cOc0O07c0O 70O OO0 OO O7 %)
&&Q\Q,SQ\Q/SQ\Q\Q/SQ/SQ’S&&&&«&««&&«Q/S &

RTC_CNTL_DG_WRAP_FORCE_NOISO Digital core force no isolation. (R/W)
RTC_CNTL_DG_WRAP_FORCE_ISO Digital core force isolation. (R/W)
RTC_CNTL_WIFI_FORCE_NOISO Wi-Fi force no isolation. (R/W)
RTC_CNTL_WIFI_FORCE_ISO Wi-Fi force isolation. (R/W)
RTC_CNTL_INTER_RAM4_FORCE_NOISO Internal SRAM 4 force no isolation. (R/W)
RTC_CNTL_INTER_RAM4_FORCE_ISO Internal SRAM 4 force isolation. (R/W)
RTC_CNTL_INTER_RAM3_FORCE_NOISO Internal SRAM 3 force no isolation. (R/W)
RTC_CNTL_INTER_RAM3_FORCE_ISO Internal SRAM 3 force isolation. (R/W)
RTC_CNTL_INTER_RAM2_FORCE_NOISO Internal SRAM 2 force no isolation. (R/W)
RTC_CNTL_INTER_RAM2_FORCE_ISO Internal SRAM 2 force isolation. (R/W)
RTC_CNTL_INTER_RAM1_FORCE_NOISO Internal SRAM 1 force no isolation. (R/W)
RTC_CNTL_INTER_RAM1_FORCE_ISO Internal SRAM 1 force isolation. (R/W)
RTC_CNTL_INTER_RAMO_FORCE_NOISO Internal SRAM 0 force no isolation. (R/W)
RTC_CNTL_INTER_RAMO_FORCE_ISO Internal SRAM O force isolation. (R/W)
RTC_CNTL_ROMO_FORCE_NOISO ROM force no isolation. (R/W)
RTC_CNTL_ROMO_FORCE_ISO ROM force isolation. (R/W)
RTC_CNTL_DG_PAD_FORCE_HOLD Digital pad force hold. (R/W)
RTC_CNTL_DG_PAD_FORCE_UNHOLD Digital pad force un-hold. (R/W)
RTC_CNTL_DG_PAD_FORCE_ISO Digital pad force isolation. (R/W)
RTC_CNTL_DG_PAD_FORCE_NOISO Digital pad force no isolation. (R/W)
RTC_CNTL_REG_RTC_CNTL_DG_PAD_AUTOHOLD_EN Digital pad enable auto-hold. (R/W)

RTC_CNTL_CLR_REG_RTC_CNTL_DG_PAD_AUTOHOLD Write-only register clears digital pad
auto-hold. (WO)

Espressif Systems 648 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

RTC_CNTL_DG_PAD_AUTOHOLD Read-only register indicates digital pad auto-hold status. (RO)

Register 30.29: RTC_CNTL_WDTCONFIGn_REG (: 0-4) (0x23+1%*)

‘31 O‘

‘ 0XO00000FFF \ Reset

RTC_CNTL_WDTCONFIGn_REG Hold cycles for WDT stage/V (N = n+1). (R/W)

Register 30.30: RTC_CNTL_WDTFEED_REG (0x0028)

BE 2]

[o]
o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

0 00 00O O‘Reset

RTC_CNTL_WDT_FEED SW feeds WDT. (WO)

Register 30.31: RTC_CNTL_WDTWPROTECT_REG (0x0029)

‘31 O‘

‘ 0x050D83AA1 ‘ Reset

RTC_CNTL_WDTWPROTECT_REG If RTC_CNTL_WDTWPROTECT is other than 0x50d83aafl,
then the RTC watchdog will be in a write-protected mode and RTC_CNTL_WDTCONFIGn_REG
will be locked for modifications. (R/W)

Espressif Systems 649 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.32: RTC_CNTL_SW_CPU_STALL_REG (0x002b)

N N
& &
o &
N \/Y
< »
c.)$ 7 c‘)$ 7
N N
Oé& Oé& (@®
O/ O7 %)
& & &

’31 26|25 20|39 20‘

]oooooo|ooooo0|oooooooooooooooooooo‘Reset

RTC_CNTL_SW_STALL_PROCPU_C1 reg_rtc_cntl_sw_stall_procpu_c1[5:0],
reg_rtc_cntl_sw_stall_procpu_cO[1:0] == 0x86 (100001 10) will stall PRO_CPU, see also
RTC_CNTL_OPTIONSO_REG. (R/W)

RTC_CNTL_SW_STALL_APPCPU_C1 reg_rtc_cntl_sw_stall_appcpu_c1[5:0],
reg_rtc_cntl_sw_stall_appcpu_cO[1:0] == 0x86 (100001 10) will stall APP_CPU, see also
RTC_CNTL_OPTIONSO_REG. (R/W)

Register 30.33: RTC_CNTL_STORE/_REG (: 4-7) (0x28+1%)

E]

’ X ‘Reset

RTC_CNTL_STORE/_REG 32-bit general-purpose retention register. (R/W)

Espressif Systems 650 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.34:

RTC_CNTL_HOLD_FORCE_REG (0x0032)

KN
D

QV QY QX QA QA QA QKR Q7 Q7

QIR
S

QIR
ST o

Q7 KQ QR QK

Oe

Qlc\e Q9i9i9i9i9i9i9e 9%9%/ 2070707070007
é OO LGOS

o Lo o [[[oo [[[[[+ [[][]

o

ofofofofofofoofofofofoofofofofo]0]0 |rest

RTC_CNTL_X32N_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_X32P_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD7_HOLD_FORCE
RTC_CNTL_TOUCH_PAD6_HOLD_FORCE
RTC_CNTL_TOUCH_PAD5_HOLD_FORCE
RTC_CNTL_TOUCH_PAD4_HOLD_FORCE
RTC_CNTL_TOUCH_PAD3_HOLD_FORCE
RTC_CNTL_TOUCH_PAD2_HOLD_FORCE
RTC_CNTL_TOUCH_PAD1_HOLD_FORCE

RTC_CNTL_TOUCH_PADO_HOLD_FORCE

Set to preserve pad’s state during hibernation.
Set to preserve pad’s state during hibernation.
Set to preserve pad’s state during hibernation.
Set to preserve pad’s state during hibernation.
Set to preserve pad’s state during hibernation.
Set to preserve pad’s state during hibernation.
Set to preserve pad’s state during hibernation.

Set to preserve pad’s state during hibernation.

RTC_CNTL_SENSE4_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_SENSE3_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_SENSE2_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_SENSE1_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_PDAC2_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_PDAC1_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_ADC2_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_ADC1_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

Espressif Systems

651

ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.35: RTC_CNTL_EXT_WAKEUP1_REG (0x0033)

>3
(b/
N
N
0Q’\ §\
& &
& 8
e 7/
N Q7 Q7
%Q)é@b Q/e Qg)e
N & &
‘31 19|18|17 0‘
‘ooooooooooooo|o| 0 ‘Reset

RTC_CNTL_EXT_WAKEUP1_STATUS_CLR Clear external wakeup1 status. (WO)

RTC_CNTL_EXT_WAKEUP1_SEL Bitmap to select RTC pads for external wakeup1. (R/W)

Register 30.36: RTC_CNTL_EXT_WAKEUP1_STATUS_REG (0x0034)

©
R
5

X

&

o

<<_/¢/
& &
& &

‘31 1s|17 0‘
‘oooooooooooooo| 0 ‘Reset

RTC_CNTL_EXT_WAKEUP1_STATUS External wakeup1 status. (RO)

Espressif Systems 652 ESP32 Technical Reference Manual V3.1

30. LOW-POWER MANAGEMENT

Register 30.37: RTC_CNTL_BROWN_OUT_REG (0x0035)

3

Ox3FF

|0|o|0ooooooooooooo‘Reset

RTC_CNTL_BROWN_OUT_DET Brownout detect. (RO)

RTC_CNTL_BROWN_OUT_ENA Enable brownout. (R/W)

RTC_CNTL_DBROWN_OUT_THRES Brownout threshold. (R/W)

RTC_CNTL_BROWN_OUT_RST_ENA Enable brownout reset. (R/W)

RTC_CNTL_BROWN_OUT_RST_WAIT Brownout reset wait cycles. (R/W)

RTC_CNTL_BROWN_OUT_PD_RF_ENA Enable power down RF when brownout happens. (R/W)

RTC_CNTL_BROWN_OUT_CLOSE_FLASH_ENA Enable close flash when brownout happens.

(R/W)

Espressif Systems

653

ESP32 Technical Reference Manual V3.1

